
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XXXX, NO. XXXX, SEPTEMBER 2019 1

Unobservable Messaging with MessageVortex
Martin Gwerder

Abstract—In this paper, we introduce an unobservable, censorship-resistant message anonymization protocol, named
MessageVortex. It bases on the zero trust principle and a distributed peer-to-peer like architecture and avoids central aspects such as
fixed infrastructures within a global network. Instead of using traditional aproaches like creating a new layer 3+ protocol we blend our its
traffic into suitable existing transport protocols, thus making it next to impossible to block traffic with traditional means such as firewalls,
without significantly affecting regular users of the transport medium. The protocol requires no additional protocol-specific infrastructure
in public networks and allows a sender to control all aspects of a message such as the degree of anonymity, timing, and redundancy of
the message transport without disclosing any of these details to the routing or transporting nodes.

Index Terms—Anonymity, Unlinkability, Communication protocol, Steganography

F

1 INTRODUCTION

A LMON BROWN STROWGER was the owner of a funeral
parlor in St. Petersburg. He filed a patent in 1891 for

an “Automatic Telephone Exchange” [1]. Supposedly, he
was annoyed by the fact that the local telephone operator
was married to another undertaker. She diverted potential
customers of Mr. Strowger to her husband instead. This
dialing technology enabled automatic routing for voice and
text messages (e.g., telex) up until today and is one of the
foundations for our current routed networks. These net-
works build the base of our communication-based society
these days and allow us to connect quickly with any person
or company of our wish.

Collected data may be used to judge upon our intentions
and, therefore, this data is not only confidential, if we have
something to hide. This problem has dramatically increased
in the last years as big companies and countries started
to collect all kinds of data and created the means to pro-
cess them. Such a judgment allows, supposedly, to classify
people and their intentions. This judgment is not limited to
what they are doing but as well, on what they did and what
they might do. Numerous events, present and past, show
that multiple actors, some of which are state-sponsored,
collected data on a broad base within the Internet. Whether
this is a problem or not may be disputable. Undisputed is
that such data requires careful handling, and accusations
should then base on solid facts. Unacceptable seems the use
of “guesses” or “extrapolations” in most of the cases. To
show that this may happen even under complete democratic
control, we may refer to events such as the “secret files
scandal” (or “Fichenskandal”) in Switzerland [2].

Whistleblower Edward Snowden leaked a vast amount
of documents. These documents suggested that such attacks
on privacy commonly exist on a global scale. The documents
leaked in 2009 and a significant number of journalists from
multiple countries screened them (e.g., [3], [4], [5], [6] or

• M. Gwerder is with the Institute of Mobile and Distributed Systems of
the University of Applied Sciences Northwestern Switzerland and is a
student of the University of Basel.
E-mail: martin.gwerder@fhnw.ch
Telephone: +41 56 202 76 81

[7]). According to these documents, the National Security
Agency (NSA) infiltrated more than 50k computer networks
with malware to collect classified or personal information.
They furthermore infiltrated Telecom-Operators such as Bel-
gacom to collect data and targeted high member of govern-
ments even in associated states. The NSA collected network
data with a program called XKeyscore. The documents (e.g.,
[4]) suggest details of this application. According to these
papers, XKeyscore spanned (in 2008) ≈ 150 sites with 700
Severs collecting emails, web traffic, and chat messages.

This list of events shows that big players are collecting
and storing vast amounts of data for analysis. The list of
events also shows that the use of this data has in the past
been at least partially questionable. As a part of possible
countermeasures, this work analyses the possibility of us-
ing state-of-the-art technology to minimize the information
footprint of a person on the Internet.

On a regular email, we disclose everything in a “post-
card” to any entity on its way (see [8]). Even when encrypt-
ing a message perfectly with today’s technology (S/MIME
[9] or PGP [10]) it still leaves at least the originating and
the receiving entity disclosed, or we rely on the promises of
a third party provider which offers a proprietary solution
(e.g., ProtonMail or IncaMail). Even in those cases, we
may leak pieces of information such as “message subject”,
“frequency of exchanged messages”, “size of messages”, or
“client being used”. This meta-information leakes (among
others) properties such as the intensity of relationships or
group memberships. According to [6], NSA uses such meth-
ods to identify potential terrorists. A suitable anonymity
protocol has, therefore, not only to hide a message but
additional attributes as well. It includes leaving the message
itself aside, all metadata, and all the traffic flows.

Furthermore, a protocol to unlink and anonymize mes-
sages should not rely on the trust of infrastructure other
than the infrastructure under control of the sending or re-
ceiving entity. Trust in any third party might be misleading
in terms of security of the protocol. Central infrastructure is
bound to be of particular interest to anyone gathering data.
It may furthermore allow manipulating the system or the
data or the data flow. So, avoiding a central infrastructure
was a primary goal for our protocol.



2 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XXXX, NO. XXXX, SEPTEMBER 2019

Allowing an entity to collect data may affect senders and
recipients of any information. Collection of vast amounts of
data allows a potent adversary to build a profile of a person.
Unlike in the past, the availability of this information rose
to new heights with the Internet. An entity in possession
of such Profiles may use them for many purposes. These in-
clude service adoption, directed advertising, or classification
of citizens. The examples given above show that the effects
of this data is not limited to the Internet but reaches us
effectively in the real world. While directed advertising may
be classified as legit use, a general classification of citizens
was considered as unacceptable in the past (see previously
quoted documents [3], [4], [5], [7], [2]).

The main problem of this data is that it may be collected
over a considerable amount of time and evaluated at any
time. It even happened that standard practices of the time
are judged differently upon later. Persons may then be
judged retrospectively upon these types of practice. This
questionable type of judgment is visible in the tax avoidance
discussion [11].

Another problem of such mass surveillance is the pos-
sibility of censorship. For censorship, we take a defini-
tion attributed to Chuck Stone, professor at the School of
Journalism and Mass Communication, University of North
Carolina.

Censorship: the cyclical suppression, banning, ex-
purgation, or editing by an individual, institution,
group or government that enforce or influence
its decision against members of the public – of
any written or pictorial materials which that in-
dividual, institution, group or government deems
obscene and “utterly without redeeming social
value,” as determined by “contemporary commu-
nity standards.”

Please note that “Self Censorship” (not expressing some-
thing in fear of consequences) is a form of censorship
according to this definition too. In our technical context, we
reduce the definition to

Censorship: A systematic suppression, modifica-
tion, or banning of data in a network by either
removal, or modification of the data, or systematic
influencing of entities (e.g., servers, networks, or
operators) involved in the processing of this data.

This simplified definition narrows down the location to
computer networks. Furthermore, it limits the definition
to the maximum reach within that system. A censorship-
resistant system is a system which allows the entities of the
system and the data itself to be unaffected from censorship.
Please note that this does not deny the presence of censor-
ship per se. It still may exist outside the system or may be
ineffective within the system.

In consequence, people must be able to control their data
footprint. Not providing this possibility does effectively
allow any country or a bigger player to ban and control
any number of persons within or outside the Internet.

In the next section, We explain roughly the main char-
acteristics and working of our protocol mitigating these
problems. We then introduce some of the core terms and
a general adversary model. We furthermore elaborate on
the Notation used to describe our protocol. In section 2, we

dive into the technical details of the protocol and describe
its operations in detail. In section 3, we discuss some of the
key findings related to the protocol.

1.1 Formalization

1.1.1 What We Worked On

In this work, a new protocol is designed to allow message
transfer through existing communication channels. These
messages are next to unobservable for any third party. This
unobservability does covers the message and all metadata
and flows associated with it. We called this protocol “Mes-
sageVortex”. The protocol is designed to be capable of using
a wide variety of transport protocols. It is possible to switch
protocols while the messages are transferred. This behavior
allows media breaches on a protocol level and makes an
analysis of the message flow for any adversary harder as
analysis have to span multiple protocols. MessageVortex
allows secure communication without the need for trusting
the underlying transport media. Furthermore, the usage of
the protocol itself is possible without altering the immediate
behavior of the transport layer. The transport layers regular
traffic increases the noise in which an adversary has to
search for information. We use a common internet transport
protocol such as SMTP or XMPP as a store and forward
service for our messages. We then set up nodes fetching
these messages from the transport layer, extract our own,
embedded messages, and process them. This processing, we
refer as routing and the processing node as VortexNode. A
user sending a message through this system connects to his
VortexNode and transfers the message to it.

To send a message, a VortexNode first selects a mesh
of other VortexNodes destined to be used for routing this
message. After this, the node creates temporary workspaces
on each of the involved nodes (or it may use pre-allocated
ones) and defines a set of instructions for every VortexNode
involved to be executed. The instructions include splitting
and reassembling of messages, encrypting and decrypting
messages, and adding and removing redundancy infor-
mation. While the first two sets of instructions are well
known and common, the third is a core functionality unique
to our protocol. We use a Reed-Solomon function with a
Vandermonde matrix and encrypt all resulting blocks. After
employing this operation, any sufficient number of blocks
may be used to rebuild the original information. If we send
these blocks to different nodes, the current node is unable
to tell which of the next peers is involved in routing and
which ones receive decoy traffic as none of the blocks can
be identified as a decoy by its creator. All this information
is compiled to a routing block with an onionized structure.
Each node decrypting the routing block obtains a new set
of routing blocks and instructions on how and when to
compile subsequent messages.

As a next step, the sender assembles a VortexMessage.
The VortexMessage contains the full message, parts of the
message, and possibly decoy payload. Furthermore, it con-
tains the previously built routing block and some additional
information in a header required for the protocol (such as
the workspace). The Vortex message is then passed from
VortexNode to VortexNode. Each VortexNode executes the



GWERDER: UNOBSERVABLE MESSAGING WIT MESSAGEVORTEX 3

set of instructions in the allocated workspace with the
received message parts.

The workspace contains a series of slots identified with
IDs to store the message parts. The first couple of IDs of any
workspace do have a special meaning. The first slots starting
from ID 1 serve as temporary storage for incoming messages
while as the slot with ID 0 is a special slot. This slot is used
to signal a VortexNode, that the result is destined for the
current node.

So, our protocol allows the passing of message fragments
through a mesh of VortexNodes. Each node is aware of the
previous sender of a message and the receiver of his pro-
cessed result. However, none of the nodes is aware where
the originally message came from, where it is destined to, or
if the passed message contains payload or just decoy.

1.2 About Unlinkability, Unobservability, Undetectabil-
ity and Censorship resistance
For definition of terms “unlinkability”, “anonymity”, and
“undetectability”, we use [?]. From an academic point of
view, achieving anonymity is relatively simple. All we need
is a trusted party distributing the messages while making
sure that no trace from the sender arrives at the recipient.
Unlinkability is much harder to achieve. It requires that a
specified attacker is unable to link a sender and recipients
of a message. A soon as a system provides properties
identifiable by third parties, it is prone to denial of service
and thus partial or full censorship. By introducing a global
observer or infiltrating parts of the system, an attacker may
gain insight into the messages transported by the system
and thus leaking information.

So to be censorship-resistant, a protocol requires many
critical, unobvious properties. As outlined, it should be
undetectable from the outside. From within the system, we
need to provide the possibility to make it ideally impossible
to follow message flows or identify participants.

MessageVortex is a protocol providing censorship-
resistance under ideal circumstances. It does this using
a rigid design from bottom up to provide the required
properties. While being a protocol on its own, it uses many
standard protocols. Partly to provide user-friendliness, but
mostly to hide within the regular network flows. As such,
a protocol requires to be undetectable on the network. A
protocol all alone may not be undetectable as each protocol
sends data over a network. This data is detectable. A pro-
tocol sending undetectable data requires to be embedded
undetectably in legit message flows or hide in side channels.
Such embedding is usually done either by side-channel
transmissions or by employing steganography. Steganogra-
phy is the preferred way in MessageVortex as it implies no
control over the transport infrastructure.

1.3 Threat Model
We refer to jurisdiction as a geographical area where a set
of legal rules created by a single actor or a group of actors
apply, and contains executive capabilities (e.g., police, army,
or secret service) to enforce this set of legal rules.

We assume for our protocol that adversaries are state-
sponsored actors or players of large organizations. Such ac-
tors have high funding and are assumed to have elaborated

capabilities within reach of the sponsor. Actors may join
forces with other actors as allies. However, achieving more
than 50% on a world scale is excluded from our model. We
always assume one or more actors with disjoint interests
covering half of the network or more.

We assume the following goals for an adversary:

• An adversary may disrupt non-authorized commu-
nication.

• An adversary may read any information passing
throughout the Internet.

• An adversary may build and conserve data about
individuals or groups of individuals of their life.

To achieve these goals, we assume the following proper-
ties of our adversary:

• An adversary has elaborated technical know-how to
attack any infrastructure. This attack may cover any
attack favoring his goals, starting with exploiting
weaknesses of popular software (e.g., buffer over-
flows or zero-day exploits) down to simple or elabo-
rated (D)DoS attacks.

• An adversary may monitor traffic at any point in
public networks within a jurisdiction.

• An adversary may modify routing information
within a jurisdiction freely.

• An adversary may freely modify even cryptograph-
ically weak secured data where a single or a limited
number of entities grant proof of authenticity or
privacy.

• An adversary may inject or modify any data on the
network of a jurisdiction.

• An adversary may create own nodes of a network.
He may furthermore monitor their behavior and data
flow without limitation.

• An adversary may force a limited number of other
non-allied nodes to expose their data to him. Actors
with disjoint interests are explicitly excluded from
this assumption.

• An adversary may have similar access to resources
as within its jurisdiction in a limited number of other
jurisdictions.

1.4 Notation
The theory in this document is heavily based on symmet-
ric encryption, asymmetric encryption, and cryptographic
hashing. To use a uniformed notation, we use EKa(M)
(where a is an index to distinguish multiple keys) for
an encrypting function with a key Ka. This results in
MKa for the encrypted message. If we are reflecting a
tuple of information, we write in boldface. To express a
concatenated set of information, we use angular brackets
〈normalAddress,vortexAddress〉.

For a symmetric encryption of a message M with a key
Ka resulting in MKa where a is an index to distinguish
different keys. Decryption uses therefore DKa(MKa) = M.

As notation for asymmetric encryption we use EK1
a(M)

where as K−1
a is the private key and K1

a is the public key
of a key pair Kpa . The asymmetric decryption is noted as
DK−1

a (M). If a key Ka is specific to a host, we refer to it
with a subscripted o (e.g., Kpeero ).



4 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XXXX, NO. XXXX, SEPTEMBER 2019

For hashing, we do use H(M) if unsalted and HSa if
using a salted hash with salt Sa. The generated hash is
shown as HM if unsalted and HSa

M if salted.
If we want to express what details are contained in a tu-

ple, we use the notation M〈t,MURB, serial〉 respectively
if encrypted MKa〈t,MURB, serial〉.

asym:EK−1
a (M) = MK−1

a

DK1
a

(
EK−1

a (M)
)
= DK−1

a

(
EK1

a (M)
)

= M

sym:EKa (M) = MKa

DKa
(
EKa (M)

)
= M

hash:H (M) = HM

In general, subscripts denote selectors to differentiate
values of the same type, and superscript denotes rele-
vant parameters to operations expressed. The subscripted
and superscripted information may be omitted where not
needed.

1.5 Related work
1.5.1 Definition of Anonymity, Unlinkability and Censorship
Resistance
For all other anonymity relevant terms, we refer to [?].



GWERDER: UNOBSERVABLE MESSAGING WIT MESSAGEVORTEX 5

It defines anonymity as
Anonymity of a subject means that the subject
is not identifiable within a set of subjects, the
anonymity set.1

and
Anonymity of a subject from an attacker’s per-
spective means that the attacker cannot sufficiently
identify the subject within a set of subjects, the
anonymity set.1

It defines unlinkability as
Unlinkability of two or more items of interest
(IOIs, e.g., subjects, messages, actions, . . . ) from an
attacker’s perspective means that within the sys-
tem (comprising these and possibly other items),
the attacker cannot sufficiently distinguish whether
these IOIs are related or not.1

and undetectability as
Undetectability of an item of interest (IOI) from
an attacker’s perspective means that the attacker
cannot sufficiently distinguish whether it exists or
not.

For our work, We define the anonymity set as the set of
all possible subjects within a supposed message.

The set of terms is further broadened with k-Anonymity
as defined in [12]. k-Anonymity is relevant for all jurisdic-
tions where it is insufficient to track an illegal action to more
than k − 1 subjects.

1.5.2 Existing work regarding Anonymity Protocols and
Censorship Resistance
We were unable to identify a protocol withstanding the
strong definition of our adversary. We have, however, found
many protocols dealing with anonymity and very few deal-
ing with censorship circumventions. We considered these
approaches and integrated appropriate techniques in our
work. It has to be said, however, that very little of the
mentioned protocols here had ever experienced broad adop-
tion. Even more, most of them were never implemented or
challenged.

In terms of censorship circumvention, we found that
only a little work has been done in academia. Several techni-
cal ways have been explored to circumvent censorship. All
of them seem to boil down to the following main ideas:

• Hide data
The most common approaches we have found were
either mimicking protocols (as in [13]), use protocols
as payload transports (e.g., [14]) or employ steganog-
raphy (as in [15]) or comparable technologies as side
channels.

• Copy or distribute data to a vast amount of places in order
to improve the lifespan of data
This has been done by systems like [16], or Wiki-
Leaks.

• Outcurve censorship measurements
Censorship measurements, especially regarding the
Internet censorship of China, have been analyzed in
depth under technological, sociological and econom-
ical aspects (e.g., [?], [?], or [17]).

1. footnotes of quotes are omitted for readability

For Anonymization the ideas seem mainly to concentrate
around onionizing (ToR [18], SOR [19], DUO-Onions and
Hydra-Onions [20]), DC networks (DC-Nets [21], Tarzan
[22], GAS [14]), mixing (Babel [23], MorphMix [24], Mixmin-
ion [25], Salsa [26]), and distributed hash tables (DHT; e.g.,
Bifrost [27], BitBlender [?]).

As we use alien transport protocols instead of our
protocol, we decided to go for a mixing approach. This
approach minimizes the number of messages between the
nodes. Furthermore, mixing allows using the nodes in a
structureless way as opposed to DC-nets, where we would
have to build fixed or ad-hoc rings for exchanging messages.

2 THE MESSAGEVORTEX PROTOCOL

2.1 General Design
Generally, the Vortex System consists only of nodes, whereas
a node may be any system always connected to the Internet.
This applies to any device regardless of NAT or similar
technologies which usually oppose problems for services.
Figure 1 shows a network of four nodes passing messages
between them. The symbols within the routing layer show
the content of a workspace of one ephemeral identity. We
elaborate on those two concepts further in the next sections.

The transport layer is a common message-passing pro-
tocol on the Internet. The infrastructure for this message-
passing protocol is used in unmodified form by VotexN-
odes, as it serves as a store-and-forward infrastructure.
Although we used SMTP for our experiments, it is not
limited to this protocol. The RFC draft document also
specifies XMPP. We refer to the upper part of each node
as VortexNode. These nodes may be any device with a
permanent connection to the Internet (e.g., a RaspberryPi
computer or a mobile phone). The message paths shown in
the figure are not relevant. Any path layout such as cyclical
or tree-like may be possible.

The Vortex system routes messages from a sender to
one or more recipients. We refer to the message sent by
the sender and received by the recipients as “message”. We
use the term “VortexMessage” for the messages exchanged
between the nodes containing either message parts, full
messages or decoy traffic.

Each VortexNode constitutes out of three layers. A
blending layer embedding and extracting messages from
the transport layer, a routing layer processing the Vor-
texMessages and providing “workspaces” for “ephemeral
identities”, and an accounting layer authorizing messages.
We describe the inner workings of these layer in detail in
the next sections.

The protocol handles messages which are passed by a
transport protocol from node to node. The instructions how
and when to pass a message is generated by a node we refer
to as “routing block builder” (RBB). The RBB defines the
path of the message, the type of hiding (blending) in the
transport protocol, and the operations applied to each part
of the message in each node. To avoid collision of opera-
tions, an RBB has on each used node “ephemeral identities”
with an assigned workspace within the node. Ephemeral
identities are short term identities containing a workspace
and message quotas for a limited time. Ephemeral identities
of a node are unrelated to each other. In the workspaces



6 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XXXX, NO. XXXX, SEPTEMBER 2019

Ops
Ops

OpsOps

Ops

Ops

Transport

Blending

Routing

Accounting

Vortex node

Blending

Routing

Accounting

Vortex node

Blending

Routing

Accounting

Vortex node

Blending

Routing

Accounting

Vortex node

Ops

Fig. 1. A rough protocol outline of the MessageVortex protocol

attached to the ephemeral identities, messages may be as-
sembled, transformed, or decomposed with the operations
above. Results are sent to other nodes. Due to the nature of
the operations, all messages passed on may be decoy traffic
or “real message parts” (We prove this claim in section 3.1).
A node identifies a message destined for it when a message
processes data to ID 0 of the identities workspace.

The RBB may be the sender of a block or a different
VortexNode. If the RBB is not identical to the sender, then
the sender is using the routing block for sending a message
without knowing its final destination.

2.1.1 Message Outline
Every Vortex node may decide for itself on the support
of algorithms and embedding mechanisms. A VortexMes-
sage contains an encrypted symmetric key Ehosto (Kpeero)
immediately followed by an inner message EKpeero which
is encrypted with this key. The inner message contains a
series of blocks encoded in ASN.1. We show in Figure 2 a
simplified view on a VortexMessage. The block structure of
a Vortex message is as follows:

• Encrypted peer key Kpeero

Contains the symmetrical key for decryption of fol-
low up header information and payload blocks. The
symmetric key is encrypted with the receiving host’s
public key (i.e. EKhosto (Kpeero) ). The key Kpeero is
known to the RBB, the message sending node, and
the message receiving node.

• Padding PAD
This padding is a defined excerpt of the transferred
payload blocks (see further down). It makes sure that
the message part encrypted with the peer key does
look different for each payload even when reusing
keys. This case is not recommended but unavoidable
in the case of a reused routing block. Using a differ-
ent IV is not an option as the IV would be replayed
as well.

• header block encrypted with Ksendero and signed
with the identities private key (detached signature).

– Identity
Authenticated by a signature. It serves as an
identifier for the workspace.

– Replay protection information
Allows a node to identify replayed messages
even if the payload has been modified.

– Forward secret information (forwardSecret)
Allows a node to identify VortexMessages
where tampering occurred by recombining
blocks of multiple messages.

– (optionally) Proof-of-work information
Allows a sending node to fulfill a proof of
work requirement raised due to a previously
sent request. Proof-of-work (puzzle) is re-
quired to assign a “cost” to a creator of an
ephemeral identity. A node fulfilling a puzzle
is “prepaying” the costs for one or multiple
potential message transfers.

• Routing blocks (encrypted with sender key)

– Next hop timing instructions
Specifies relative block in time for the building
instructions to be carried out. There may be
multiple timing instructions. Each of the in-
structions refers to precisely one routing and
one header block.

– Next-hop routing blocks
These with Ksendero+1 preencrypted routing
blocks are placed into the VortexMessage cre-
ated according to the build instructions. They
are not readable for the current node.

– Next hop header (encrypted with Ksendero+1 )
These preencrypted header blocks are placed
into the VortexMessage created according to
the build instructions.

– Message build instructions
These instructions form the core for the
workspace and contain all instructions and the
information which payload blocks should be
included in each of the messages.

– Next hop peer key Kpeero+1

This part contains one or more peer keys.
– Next hop blending instructions

These contain the information about what
transport to use, what blending to use, and the
address of the next router node.

• Encrypted payload blocks (encrypted with peer key)

– Payload blocks

It is important to note that there are two symmetrical
keys involved in encrypting and decrypting message head-
ers. Having two keys is not a flaw in the protocol but
necessary.

The first key of a VortexMessage is the peer key Ksendero .
This key is only accessible with the private key of the node
receiving the message and is furthermore known by the
RBB. It allows decryption of the routing blocks concerning
the current node and the header information. The sender of



GWERDER: UNOBSERVABLE MESSAGING WIT MESSAGEVORTEX 7

E
K1

hosto (. . .)

P
A
Y
L
O
A
D

0

P
A
Y
L
O
A
D

1

P
A
Y
L
O
A
D

p
−
1

HEADERo ROUTEo

EKpeero (. . .)

EKsendero (. . .)E
K1

hosto (. . .)
Kpeero

EKsendero (. . .)

Ksendero

Fig. 2. A simplified message outline for a message destined for a host o

a message block is therefore not able to tell if a VortexMes-
sage contains one or more routing blocks for the next node.
It is important to note that no other node should have access
to this information as this builds the unlinkability between
two non-adjacent nodes.

The second key is the peer key Kpeero preceding the
encrypted HEAD block. The RBB chooses the key. This
key protects the inner structure of the message. It makes it
impossible for any node except the sending or the receiving
peer node to detect the inner structure of the message.
Without this key, any independent observer with knowledge
about the blending capabilities of a receiving node may:

• Easier identify the block structure
This remains the case regardless of whether ASN.1 or
length prefixed structures are used. If the structure of
a vortex Message is identifiable, the messages may be
logged or dropped by an adversary.

• Identify the routing block size
The value of this information is only minimal as it
only reflects the complexity of the remaining routing
information indirectly.

• Identify the number of payload blocks and their respective
sizes
This is valuable information when following the
traffic of a message.

Furthermore, by providing a pre-encrypted key, we hide
the asymmetric key required to the next node. So, a node can
compile a message for another node without being aware of
the required public key.

2.1.2 Accounting Layer
The Accounting layer maintains all local identities called
ephemeral identities and controls the overall load to the sys-
tem. Ephemeral identities are temporary accounting objects
identified with the public part of an asymmetric key.

The accounting layer processes requests from other
nodes. Each request is either a request for information about
the node, the creation of a new ephemeral identity, or a
request to process messages. The accounting layer creates
replies to such requests and maintains the accounting in-
formation of such an entity. The accounting layer has the
options to either accept a request, reject a request, silently
drop a request (usually done to improve privacy), or to
request the solving of a proof-of-work puzzle (puzzle). To
send a reply to the unknown requester, the header block
contains a routing block prebuilt by the RBB.

The only implemented puzzle so far is a hash-based
puzzle. The puzzle opposes that a header block Ht−1 has
to be resent including a challenge c (an ASN.1 octet string)

and has to result in a specific bit sequence s of the hashed
block with signature.

Therefore we assume that a validly solved puzzle when:

HEAD = DKsender (H) = 〈Ht−1, c〉 (1)
puzzleSolved = Hspec(H).startsWith(s) (2)

The puzzle has an assigned lifetime. To solve the puzzle
successfully, the requesting host has to solve this puzzle
within the specified time frame.

In general, each message is first pre-authenticated by
the blending layer (incoming and outgoing). On an in-
coming, valid message (all decryption successful and all
forwardSecret do match), the following checks are exe-
cuted:

2.1.3 Routing Layer

The routing layer processes the messages. Incoming mes-
sages are passed after extraction by the blending layer to
the routing layer. There the message is disassembled in its
components.

As operations, we use some general capabilities such as
splitting a message into two payload blocks and merging
them again. Another type of operation is encryption and
decryption of payload blocks. The third and most important
type of operation is a redundancy operation. This opera-
tion uses a Reed-Solomon [28] function to add redundancy
information to the data while obfuscating its content. This
function has previously been proposed mainly for informa-
tion sharing systems (e.g., [29]).

A routing block may be used once or multiple times
if flagged accordingly. Repeating a routing block allows a
sender to use a routing block as an anonymous endpoint
address. It is essential to understand that reusing a routing
block does have downsides in terms of privacy. Reusing
a routing block does typically create the same pattern on
the network assuming the same workspace layout. While
the timing might vary the number of messages and the
sequence of messages remains the same. For a full list of
weaknesses when reusing routing blocks, see 3.2.

Tasks of the routing layer are:

• Build structure representing the block building and
the appropriate block IDs.

• Schedule all routing blocks for processing in a prior-
ity queue.

• Authorize all routing blocks ready for processing
with the calculated block sizes.

• Process blocks.
• Send prepared building blocks to the Blending layer.



8 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XXXX, NO. XXXX, SEPTEMBER 2019

Payload block

Routing blocksRouting

Ops

Ops

Operations

Payload slots

Fig. 3. Layout of a workspace

The workspace of an ephemeral identity is shown in
Figure 3.

Each workspace stores objects for a specific ephemeral
identity for a limited amount of time. The workspace re-
ceives routing blocks, payload blocks, and operations of
the respective ephemeral identity. The lifetime of these
objects is either limited by the lifetime of the header block
(this applies to payload blocks and operations), or by the
routing block (applies to the routing block). As soon as a
routing block is due he takes compiles a list of all payload
blocks which have to be sent and executes the operations to
generate them. The routing layer then assembles the inner
message with padding (PAD), the header block with a
prefix, the routing block, and the generated payload blocks
and encrypts the whole stream with the peer key Kpeero+1

.
The header and routing blocks are already pre-encrypted
with Ksendero+1

.

2.1.4 Blending Layer
The blending layer provides the “undetectability” feature of
the Vortex system. To avoid transport protocol misuse and
unintentional exit nodes of the protocol, the RBB has no
control over the transported content except for the hidden
VortexMessage and how it is embedded. This rule loads
the burden of sensible cleartext payload generation to the
blending layer.

A blending layer may provide multiple strategies to
embed a message. In our prototype, we always sent a Vor-
texMessage by embedding its content into an attachment.
While F5 [15] is currently preferred for embedding, current
implementation supports as well so-called plain embedding
simply replacing the file content of the attachment with the
VortexMessage. This may be done starting at character 0 or
any offset supported by the blending layer (to leave header
data intact).

Furthermore, this layer is taking care of multiple prob-
lems:

• Translating the message into the transport format
This translation includes jobs such as embedding a
message as encoded text, as a binary attachment or
hide it within a message using steganography.

• Extract incoming messages from the transport protocol
Identify incoming messages containing a possible
block and extract it from the message.

• Do housekeeping on the storage layer
Access protocols may require message deletion.

We define the blending layer to work as follows when
receiving messages:

1) Log arrival time (in UTC) on the transport layer.

2) Extract possible blocks.
3) Apply decryption on a suspected header block.
4) Validate the header using the accounting layer.
5) Process header requests (if any)
6) Extract and decrypt subsequent blocks.
7) Pass extracted blocks and information to the routing

layer.

We define the blending layer to work as follows for
sending messages:

1) Assemble message as passed on by the routing
layer.

2) Using the blending method specified in the routing
block build an empty message.

3) Create a message body content.
4) Send the message to the appropriate recipient using

the transport layer protocol.

For the prototype, we have implemented an SMTP trans-
port agent and the respective blending layer.

The routing layer receives the message blocks in a de-
crypted and authorized form from the blending layer. The
routing layer then assembles all information of identity and
executes the accepted operations using the available data.

It is relatively easy to generate a credible cleartext mes-
sage to pass an automated testing engine. This statement
may be verified by looking at the effectivity of today’s junk
mail filters. These filters have huge problems continuously
adapting to the new types of unsolicited bulk emails (UBE).

Things do, however, drastically change if taking a hu-
man censor into account. A human censor is not only able to
analyze the text and layout of a message. He is furthermore
capable of judging on the stringency of a communication.
He may deduce data such as relationship and type of writ-
ing. Then, he may detect anomalies within conversations
and judge whether the communication pattern is more likely
to be from a human or a chatbot.

2.1.5 Applied Steganography and the Dead Parrot
A human censor can take very complex information into
account when it comes to analyses of message content. He
is not only able to analyze a message for its content, but he
may also see the message in the context of other messages.
In [30] is expressed that it is easy for a human to determine
decoy traffic as the content is easily identifiable as generated
content. While this is true for the very general case, there is
a possibility here to generate “human-like” data traffic to
a certain extent. As an adversary may not assume that his
messages are replied to, the problem does not boil down to
a Turing test. It remains on the level of a “passive observer
Turing test”, in this scenario the censor is only able to judge
on the given messages instead of introducing his questions,
wordings, and verbal challenges. By enabling the potential
nodes to choose their messages and the replies generated
to them, we enabled them to choose very reduced types
of communications. The chosen messages may even be
identifiable as automated messages.

The most straightforward approach would have been to
give a routing block builder the possibility of controlling the
decoy message content. While such a possibility would be
easy, it would enable a routing block builder to use the node



GWERDER: UNOBSERVABLE MESSAGING WIT MESSAGEVORTEX 9

as a “exit node” from the system. Blackmailing messages
could be sent through the system to a non-participating
member and leak at the same time the presence of a routing
node. To deny this possibility, we shifted the ability to the
routing node.

The VortexMessage itself is binary, and as such, there
are only limited possibilities to hide it within the transport
protocol. We decided to use attachments or attachment-like
structures. Within the attachments, we currently support
two types of embedding: plain and steganographic embed-
ding. Plain embedding means that we insert a sequence of
blocks into a standard message. This is typically done within
files with a weaker structure and high entropy (such as an
MP3 encoded file). While this is very hard to detect for a
machine, it becomes immediately suspicious for a human
censor. A human censor would detect the presence of a
payload which does not make any sense.

For steganographic embedding, we decided to go for
F5 [15]. It is a reasonably well-researched algorithm which
attracted many researchers. The original F5 implementation
had a detectable issue with artifacts [31] caused by the
recompression of the image. This issue was caused only
due to an issue in the reference implementation, and the
researchers have provided a corrected reference implemen-
tation without the weakness.

2.2 The Core: Operations Executed in a Workspace
We differentiate three types of operations:

• Splitting and merging of chunks
• Encryption and decryption of chunks
• Redundancy calculations carried out on chunks

The first two Operations do not provide a high level of
unlinkability as they do allow analysis such as hotspot ana-
lysis and produce continuously inclining, steady or declin-
ing message sizes depending on the type of use. The third
operation, however, adds a whole lot of new possibilities in
conjunction with the other two.

2.2.1 Splitting and Merging
The splitPayload operation splits a payload block into two
chunks of different or equal sizes. The parameters for this
operation are:

• Source payload block pb1
• Fraction 0 < f < 1 of pb1 transferred to the first

chunk pb2

If len(pb1) expresses the size of a payload block called
pb1 in bytes, then the two resulting blocks of the SpitPayload
Operation pb2 and pb3 have to follow the following rules:

split(f, pb1) = 〈pb2, pb3〉 (3)
pb1.startsWith(pb2) (4)
pb1.endsWith(pb3) (5)

len(pb2) = blen(pb1) · fc (6)
len(pb1) = len(pb2) + len(pb3) (7)

The mergePayload operation combines two payload
blocks into one and is defined as the reversing function to
the splitPayload function. The mergePayload operation is
defined analogous to the splitPayload operation and joins
the two blocks into one.

2.2.2 Encryption and Decryption
The encryptPayload operation encrypts a payload block
pb1 symmetrically resulting in a block pb2. The length of
block pb2 may vary according to mode and padding chosen.
The parameters for this operation are:

• Source payload block pb1
• Encryption specification spec
• Symmetric key K

The operation follows the following rules (please note
section 1.4 for notation):

encrypt(pb1, spec,Ka) = pb2 (8)
pb2 = EKa

spec (pb1) (9)
len(pb2) ≥ len(pb1) (10)

The decryptPayload operation decrypts a payload block
pb1 symmetrically resulting in a block pb2. It is defined as
the reversing operation to encryptPayload.

2.2.3 Redundancy Operations
These operations build the core of the mixing operations.
The operation allows to add to a message redundancy
information or to rebuild a block from a chosen set of
information.

padding and splitting

[C1], [C2]
blocksize

(
EK

)
,

Rt, s

Reed-Solomon (m of n)

m,nm, n

ω

EK1 EK2 EKn−1 EKnE,K1...n

C1 C2 Cn−1 Cn

O1 O2 OnOn−1

B1 B2 Bn−m−1 Bn−m

I

Input

Output

Fig. 4. Outline of the addRedundancy operation

The operation itself is shown in Fig. 4 and may be
subdivided into the following operations:

• Pad the original message block in such a way, that
all resulting blocks are a multiple of the block size of
the encrypting cipher.

• Apply a Reed-Solomon operation in a given GF space
with a Vandermonde matrix.

• Encrypt all resulting blocks with unpadded, symmet-
rical encryption.

The padding is not standard padding from encryption.
The reason for this lies in the properties required in the
padding. These properties were:

• The padding must not leak whether the rebuild cycle
was successful or not.

• The padding should not leak whether a removeRe-
dundancy operation was successful or not.



10 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XXXX, NO. XXXX, SEPTEMBER 2019

• Anyone knowing the routing block content and the
transmitted message must be able to predict any
treated block including all padding bytes.

• The padding must work with any size padding
space.

The padded block X is created from a padding value
p, the unpadded block M and a srie of padding bytes. We
build X for a function RSm of n and an encryption block M
sized K as follows:

i = len(M) (11)
e = k · n (12)

l =

⌈
i+ 4 + C2

e

⌉
· e (13)

p = i+

(
C1 · l (mod

⌊
232 − i

l

⌋
· l)

)
(14)

X = 〈p,M, Rt (s, l − i− 4)〉 (15)

The remainder of the input block, up to length l, is padded
with random data. The random padding data may be spec-
ified by RBB though a PRNG spec t and an initial seed
value s. The message is padded up to size L. All resulting,
encrypted blocks do not require any padding. This baecause
the initial padding guarantees that all resulting blocks are
dividable by the block size of the encrypting function. If
not provided by an RBB, an additional parameter C1 is
chosen as random positive integer and C2 = 0 by the node
executing the operation.

To reverse a successful message recovery information the
of a padded block X, we calculate the original message size
by extracting p and doing len(M) = p (mod len(X)).

This padding has many important advantages:

1) The padding does not leak if the rebuilding of the
original message was successful. Any value in the
padding may reflect a valid value.

2) Since we have a value C2, the statement that a mes-
sage size is within len(X) < size < (len(X)−k ·n)
is no longer true and any value smaller len(X)−k·n
may be correct as well.

3) An RBB may predict the exact binary image of
the padded message when specifying C1, C2, and
Rt(s, ).

The Reed-Solomon operation is done with a Vander-
monde matrix. Unlike in error-correcting systems, we do
not normalize the matrix so that the result of the first blocks
is equivalent to the original message. Instead, the error-
correcting information is equally distributed over all result-
ing blocks adding further obfuscation. Since the entropy of
the resulting blocks is lowered as shown in Fig. 5 and may
thus leak an estimate of how a resulting block may have
been treated, we added the encryption step to equalize en-
tropy again. The previously introduced padding guarantees
that there is no further padding on block level required. The
presence of such padding could leak in case of decryption
whether the block has been successfully decrypted or not.

2.3 Usage of the Protocol
First, a sending node collects either a set of nodes and
keys it wants to use and creates identities on these nodes

Fig. 5. Resulting entropy of addRedundancy without encryption step

using header requests. Then the sender creates a routing
block containing all the routing instructions (hops and oper-
ations). Alternatively, a sender may use a premanufactured
routing block for the specified target. This routing block is
then concatenated to a message and passed to the locally
running routing node. From there the message is routed as
defined in the routing block. An example of such a route is
shown in Figure 1.

A trivial routing block may only include the direct hop
from the sender to the receiver. When adding subsequent
decoy paths leaving the receiver, it is even for an adversary
capable of mapping ephemeral identities to the respective
RBB impossible to tell the final recipient. This since a
message may increase or decrease in its size even after the
final delivery through the addRedundancy operation. Even
the recipient node is unable to tell if there are any other
messages routed if appropriately crafted.

If a node is always using a set of K recipients of its
address book, at least K anonymity is achieved. If an
adversary compromises all other nodes involved in rout-
ing, he is still unable to obtain additional knowledge. All
outgoing traffic from this node may be related or unrelated
to the observed message as linking between messages is no
longer possible. Essential properties, such as message size or
routing block size, may increase or decrease. If the adversary
can monitor all messages from the inner side of the system
(all messages are passed by an adversary controlled node
to the honest node), he may assume that a routing block,
in general, may only decrease in size. Starting from this
assumption, he might be able to eliminate some candidates
for linking.

3 ANALYSIS OF THE MESSAGEVORTEX DESIGN

We first focus on the protocol itself to show the strength an
weaknesses of the protocol. After that, we focus on the dy-
namic part and see what type of data may be collected when
considering not only the protocol but the whole message
flow. We then present guidelines for different jurisdictional
types.



GWERDER: UNOBSERVABLE MESSAGING WIT MESSAGEVORTEX 11

We focus on an adversary in an environment, where
the participation as a MessageVortex router, is considered
a criminal act and highlight some additional constraints
applying in such situations.

3.1 Static Protocol Analysis

A VortexMessage is not identifiable as the message is struc-
tureless on the outside. The VortexMessage itself follows the
encrypted key without any structure. Therefore, we require
the hosts private key to tell whether there is VortexMessage
within a transport message or not.

The communication itself is undetectable for an adver-
sary only observing as long as the blending mechanism is
secure, and the plain text communication of a node does
not differ from any other communication. While we can
monitor the first criteria, the latter is far harder to achieve
or measure as it involves many unobvious properties. Ob-
vious properties are the credibility of message content or
stringency of communication over all messages. Unobvious
properties may be the frequency of messages (e.g., bundling
of messages showing an inappropriate speed of writing
to a single entity or 24x7 activity of a natural person) or
a message exchange massively in favor of one recipient.
We were not able to create a set of measurable properties
covering these properties.

The padding block PAD makes sure that, even if a rout-
ing block is reused, the VortexMessage structure is not the
same. However, the preceding block with the key remains
the same unless the RBB provided multiple key blocks. If
a key block is reused, an adversary to identify repeated
MURBs by this fingerprint.

Next, and one of the biggest problems we found is that
a VortexNode is aware of its immediate peers. This flaw is
because we do require a routable address for the transport
protocol. Vortex nodes may thus discover their immediate
peers. It is, on the other side, not possible to use discovered
peers. If an adversary wants to use a peer, a transport
address and a host key are required. A VortexNode may
query this key, but there is no obligation to reply for the
node asked for the key. We were unable to find a proto-
col commonly used on the Internet, allowing to cloak the
receiving node of a message.

An active adversary may not create its routing blocks or
header blocks and inject them due to the forward secret. He
may, however, replace the peer key of a message. As this
key is known to him, he gains no additional knowledge.
Replacing the sender key block breaks the message. Replac-
ing the header or routing block of the message with another
header or routing block from the same ephemeral identity
breaks the message unless the RBB reused the sender key
and the forward secret. Finally, exchanging, omitting, or
adding payload blocks renders the message inoperable,
but does not generate additional knowledge. Replying the
same or a modified block does not generate any pattern
on the network as the replay protection stops propagating
messages at the next node. Thus, a replayed block does not
generate new knowledge to an observer.

All operations may apply to true message chunks as well
as decoy traffic. As a node cannot tell if a traffic arriving is
a decoy or true message content, it is unable to tell apart

what outgoing traffic is a decoy. An encrypted block is of the
same nature before and after encryption. As we do not know
the blocks nature before, we are unable to tell the blocks
nature after the encryption. The same argument applies to
decryption, split, and merge operations.

Redundancy operations are alike. They, however, fulfill
an additional purpose. A addRedundancy operation adds
size to a message without differentiating between redun-
dancy information and original payload. If the original
block was a decoy, then all resulting blocks are decoys. If
an originating block was message content, then all resulting
blocks hold the same amount of data from the original block.
So, this operation allows decoy traffic generation without
enabling a generating node to identify the decoy traffic.

3.1.1 Endpoint Operation
Depending on the blending method, an adversary may
identify single messages as long as they are detectable. De-
tectability depends on various factors, such as (broken) file
structure, uncommon attributes (e.g., mismatching entropy),
unrelated message flow (e.g., [30]), or non-human behavior
(e.g., message traffic 24x7)

Assuming a global observer as an adversary and unen-
crypted traffic, he might discover the originating routing
layer and thus identify it as Vortex node by following
traces of the transport layer. In most protocols, however,
this address is spoofable and not a reliable source for the
originating account.

3.1.2 Conclusions Based on Ephemeral Identities
The knowledge a node may gain from ephemeral identities
is minimal. The ephemeral identity is created by a node
unknown to the receiver of the request. The only thing
we know is what node was adjacent when creating the
ephemeral identity. As the creation of an ephemeral identity
is not linked to any other identity or ephemeral identity
relationship between ephemeral identities on two nodes
cannot be established. If two adjacent nodes cooperate when
processing two linked ephemeral identities, no additional
knowledge may be won. If two collaborating nodes have
one or more non-collaborating nodes between them, they
lose all linking knowledge due to the non-collaborating
nodes.

3.1.3 Conclusions from Operations
Operations have been carefully crafted to leak as little
information as possible. Being able to encrypt or decrypt
a payload block does not leak any information. The data
processed may be true message traffic or decoy as we do
not know what the nature of the received message was. If
an RBB avoids repeating patterns of blocks on nodes, it is
not possible to link ephemeral identities of two non-adjacent
nodes.

In this example the patterns of pb3 and pb4 = pb2 are
two patterns repeating on non-adjacent nodes. The same
conclusions are even more valid for splitting operations.
These two operations should be regarded as helpers for
the addRedundancy and removeRedundancy operations.
These operations may be used to generate decoy traffic or to
destroy data without knowledge of doing so of the process-
ing node. If we process a function addRedundancy2of3 any



12 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XXXX, NO. XXXX, SEPTEMBER 2019

of the output blocks contains the input payload and any two
of them may be used to recover the data. At the same time,
an operation removeRedundancy2of3 may be successful or
not. The node is unable to differentiate between the two
states. The padding applied and the unpadded encryption
makes it impossible to judge upon success or fail of an
operation.

3.1.4 Ill-behaving Nodes and Unlinkability
As the communication pattern is defined by the RBB and
not always the same, it is hard to judge on the security. We
may, however, look at some generic examples and show that
we can achieve the goals byzantine fault tolerance, privacy
and unlinkability, and anonymity. Figure 6 shows a sending
node s, a series of routing nodes ni, j assembled to routing
chains. Furthermore, we have a r for which the message
is destined and a set of nodes ak building the anonymity
set. Neither the number of chains j nor the length of the
chains i is relevant. We furthermore have to keep in mind
that we trust sender s and receiver r. Any possible routing
block may be reduced to this scheme if knowing the exact
building instructions applied by the RBB.

related VortexMessage

unrelated VortexMessage

sender s

routing node n1,1

routing node ni,1

routing node n1,j

routing node ni,j

anon a1 anon ak receiver r

Fig. 6. A possible path of a VortexMessage

We have to consider the fact that two adjacent nodes
collaborating may build one combined workspace executing
all operations. They are, therefore, able to link all operations
of these two adjacent nodes and follow all incoming and
outgoing paths. We, therefore, may assume that two adja-
cent nodes or an uninterrupted series of collaborating nodes
may be substituted by one node.

So a routing node n1, may not know if a VortexMes-
sage received from s is the result of processing another
message or the message has been injected on node s. Fur-
thermore, if s was acting as a routing node, it success-
fully unlinked the message from any previous node. The
sending node s may send a message by first employing
an addRedundancy operation or splitting and encrypting
the message. Each path through the streams has then not
enough information to rebuild the combined message. If
employing an addRedundancy operation, a receiver r may
recover a message, if sufficient paths through the routing
nodes were acting according to the protocol. Paths with
misbehaving nodes may eventually be identified depending
on the number of redundancy operations. Assuming that the
RBB included proper padding Information for the receiver r,
the receiver may identify what set of VortexMessages leads
to the original message due to the padding applied before
the RS function. So if sufficient paths, depending on the
chosen operations at r, provide correct data, we may recover
nodes misbehaving in our paths. If one node in a path is not

collaborating with adjacent nodes in the path, the path of
the Vortex Message becomes unlinked as previously shown
with sender s. If multiple paths are used, all paths must
have at least one honest node to unlink the message.

If all nodes in the anonymization set a1. . . ak are honest,
any preceding node may not know whether the message
ends at that node or the message is just routed through
an honest node. Even if some of the anonymization nodes
are not honest or collaborating with an adversary, the
anonymity set may be reduced in size, but the receiver is still
part of the anonymity set spanning the honest anonymiza-
tion nodes. So, we have shown that depending on the
chosen routing block anonymity, unlinkability, and fault
tolerance against a misbehaving node may be achieved.
AN RBB may furthermore send additional VortexMessages
to suspected misbehaving nodes. If misbehavior is repro-
ducible within an ephemeral identity, the RBB may identify
it by picking up parts of the previously sent message and
comparing them to an expected state. An RBB may even
introduce message paths leading back to the RBB itself.
Such a message path may allow observation of progress and
success of the message delivery.

3.2 Dynamic Protocol Analysis
A global observer is unable to analyze a message flow by
timing or pattern of the exchanged packet even when being
able to identify message vortex packages. Source and target
nodes of a message are indistinguishable from other nodes
even if having infiltrated significant portions of the network.
Cooperation between adjacent nodes does not gain more
information. Linking of the message of two non-adjacent
nodes is not possible as there are no linking attributes.

3.2.1 Bootstrapping of Addresses and Identities
Using the header requests an adversary may discover nodes
over time. While it is not possible to screen traffic destined
to such nodes, a global observer may identify peer partners
of these nodes on the transport level.

3.2.2 Discovery of Peer Nodes
Besides attacking the message content, attacking the routing
nodes is an option for an adversary in a jurisdiction where
the operation of such a node is a criminal act.

3.2.3 Findings based on Adversary Environment
In environments containing only global observers and no ju-
risdictional constraints regarding the technology, a VortexN-
ode may disclose its presence. As a result, a VortexNode is
not forced to cloak its presence. In such an environment, an
RBB should choose the operations to be sensible, but great
care is not required. Even if there is a node with a known
owner of the node and a suspected message is received,
the owner may credibly claim that the message in question
was a decoy. No information obtained by any node involved
in the routing of the message may proof anything else.
Since a message may be split into any number of parts and
related messages are only identifiable with a high degree of
improbability even meta information such as the real size of
the message, the sending time or the involved parties in the
anonymity set are unknown.



GWERDER: UNOBSERVABLE MESSAGING WIT MESSAGEVORTEX 13

In environments where using a VortexNode is subject
to criminal prosecution, much more care has to be applied.
As all routing nodes know their immediate peer, we were
only able to find two weak solutions to this problem. The
first solution is only to use trusted nodes. If we can trust
all routing nodes, no external observer may prove that
the message flow is, in fact, MessageVortex traffic. The
RBB may reduce the set of uncovered nodes by applying
communicating groups of nodes (communication cells) with
defined gateways nodes between them. In such a scenario,
only a cell and adjacent cells may be discovered.

3.2.4 Issues When Reusing Routing Blocks
Reusing a routing block is required if the receiver is not
known, and a continuous stream of messages is required.
Although it is possible to use multiple single route rout-
ing blocks (SURB) instead of one multi-use routing block
(MURB), it is costly. These costs arise due to the necessary
calculation power to create identities. MURBs do have,
however, significant drawbacks in terms of unlinkability
and should be, therefore, avoided if possible.

A MURB creates a repeated pattern on the network in
terms of messages. For a routing node, it is evident that
the same tuple of communication partners is exchanging
messages. The size of the VortexMessage allows in such a
case an estimate of the current size in relation to the previous
messages.

Furthermore, security is affected when using MURBs. A
MURB may be replayed and allows thus to exhaust quotas
of an ephemeral identity. To counter such exhaustion, the
protocol introduces a maximum replay rate, but this is only
weak protection.

4 CONCLUSION

Creating a protocol which is possibly censorship-resistant, is
already hard. The analysis showed that even when a proto-
col is crafted with great care, braking unobservability is far
simpler than doing it right. MessageVortex does show the
desired properties. The protocol allows sending a message
from a sender to a recipient without exposing the linking
between the two. Traditional analysis, such as hotspot ana-
lysis, fail since the operations successfully hide properties
of the message flow. At the same time, we were able to
present a system which requires an unmatched amount
of observation, infrastructure, and calculation power to be
broken.

4.1 The Missing Links and Future Research

For this protocol to be of any use, a user-friendly implemen-
tation is required. The currently released implementation
works as a prototype for academic research. It is, however,
far beyond from being user-friendly. A new implementation
must provide excellent censorship-resistance while provid-
ing easy to use recipes for message transfer. For the traffic to
be truly undetectable, chatbots must generate meaningful
conversation between blending nodes. This conversation
does not necessarily boil down to a Turing test. It is sufficient
that two blending layers are capable of setting up communi-
cation, which is indistinguishable from a regular human or

machine communication. As an adversary is typically not
able to generate own traffic without exposing the probing
activity and a blender is not required to such probes, an
attacker is very limited. Furthermore, some issues have been
identified, relating to updating nodes. A node should be
able to request the software over VortexMessages as official
sources for updates may be blocked. Another exciting field
of academic research is creating strategies for Routing block
builders (RBB). We currently have a toolset of powerful
operations, but academic researched strategies or guidelines
for good routing blocks are missing.

The hardware of a routing node should be protected
with a small platform featuring deniable encryption and
anti-forensic measures. We are currently investigating the
possibility of creating such a cheap platform based on a
RaspberryPi Zero.

4.2 Further Reading

This paper is a very rough overview of the MessageVortex
protocol. For those interested in the technical implementa-
tion details the current version of the RFC [32]. For a more
elaborated analysis covering additional topics such as the
blending types, additional literature research, or arguments
for a decision, we recommend reading the thesis paper
[33]. In this document, we cover additional details such as
elaborated analysis on the protocol, the implications of the
connection between transport endpoints and VortexNodes,
or an analysis of the plain embedding technique.

gwm
May 8, 2019

REFERENCES

[1] A. B. Strowger, “Automatic telephone-exchange,” 3 1891.
[2] M. Leuenberger and J. Meier, “Vorkommnisse im ejpd bericht der

parlamentarischen untersuchungskommission(puk),” Bundesblatt
1989-55, Nov. 1989. [Online]. Available: https://www.parlament.
ch/centers/documents/de/ed-berichte-puk-ejpd.pdf

[3] F. Boon, S. Derix, and H. Modderkolk, “Document snowden:
Nederland al sinds 1946 doelwit van nsa,” Newspaper, Nov.
2013. [Online]. Available: https://www.nrc.nl/nieuws/2013/11/
23/nederland-sinds-1946-doelwit-van-nsa-a1429490

[4] NSA, “XKeyscore presentation from 2008,” Web and several news-
papers (e.g., guardian), Jul. 2013, three slides have been redacted
as they contained suposedly specific NSA operations. [Online].
Available: https://www.theguardian.com/world/interactive/
2013/jul/31/nsa-xkeyscore-program-full-presentation

[5] J. Ball, “Nsa’s prism surveillance program: how it works and
what it can do,” Newspaper, Jun. 2013. [Online]. Available:
https://www.theguardian.com/world/2013/jun/08/nsa-prism-
server-collection-facebook-google

[6] S. Ackerman, “NSA warned to rein in surveillance as agency
reveals even greater scope,” Newspaper, Jun. 2013. [Online].
Available: https://www.theguardian.com/world/2013/jul/17/
nsa-surveillance-house-hearing

[7] A. Greenberg, “Leaked nsa doc says it can collect and
keep your encrypted data as long as it takes to crack it,”
Jun. 2013. [Online]. Available: https://www.forbes.com/sites/
andygreenberg/2013/06/20/leaked-nsa-doc-says-it-can-collect-
and-keep-your-encrypted-data-as- long-as- it- takes-to-crack-it/
#5edf34edb07d

[8] J. Klensin, RFC5321 Simple Mail Transfer Protocol. IETF, 2008.
[Online]. Available: http://tools.ietf.org/pdf/rfc5321.pdf

[9] N. Freed and N. Borenstein, RFC2045 Multipurpose Internet Mail
Extensions; (MIME) Part One: Format of Internet Message Bodies.
IETF, 1996. [Online]. Available: http://tools.ietf.org/pdf/rfc2045.
pdf

https://www.parlament.ch/centers/documents/de/ed-berichte-puk-ejpd.pdf
https://www.parlament.ch/centers/documents/de/ed-berichte-puk-ejpd.pdf
https://www.nrc.nl/nieuws/2013/11/23/nederland-sinds-1946-doelwit-van-nsa-a1429490
https://www.nrc.nl/nieuws/2013/11/23/nederland-sinds-1946-doelwit-van-nsa-a1429490
https://www.theguardian.com/world/interactive/2013/jul/31/nsa-xkeyscore-program-full-presentation
https://www.theguardian.com/world/interactive/2013/jul/31/nsa-xkeyscore-program-full-presentation
https://www.theguardian.com/world/2013/jun/08/nsa-prism-server-collection-facebook-google
https://www.theguardian.com/world/2013/jun/08/nsa-prism-server-collection-facebook-google
https://www.theguardian.com/world/2013/jul/17/nsa-surveillance-house-hearing
https://www.theguardian.com/world/2013/jul/17/nsa-surveillance-house-hearing
https://www.forbes.com/sites/andygreenberg/2013/06/20/leaked-nsa-doc-says-it-can-collect-and-keep-your-encrypted-data-as-long-as-it-takes-to-crack-it/#5edf34edb07d
https://www.forbes.com/sites/andygreenberg/2013/06/20/leaked-nsa-doc-says-it-can-collect-and-keep-your-encrypted-data-as-long-as-it-takes-to-crack-it/#5edf34edb07d
https://www.forbes.com/sites/andygreenberg/2013/06/20/leaked-nsa-doc-says-it-can-collect-and-keep-your-encrypted-data-as-long-as-it-takes-to-crack-it/#5edf34edb07d
https://www.forbes.com/sites/andygreenberg/2013/06/20/leaked-nsa-doc-says-it-can-collect-and-keep-your-encrypted-data-as-long-as-it-takes-to-crack-it/#5edf34edb07d
http://tools.ietf.org/pdf/rfc5321.pdf
http://tools.ietf.org/pdf/rfc2045.pdf
http://tools.ietf.org/pdf/rfc2045.pdf


14 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XXXX, NO. XXXX, SEPTEMBER 2019

[10] M. Elkins, RFC2015 MIME Security with Pretty Good Privacy (PGP).
IETF, 1996. [Online]. Available: http://tools.ietf.org/pdf/rfc2015.
pdf

[11] O. Amat, J. Blake, and J. Dowds, “The ethics of creative
accounting,” Journal of Economic Literature classification, Dec.
1999. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.198.7724&rep=rep1&type=pdf

[12] L. von Ahn, A. Bortz, and N. J. Hopper, “k-Anonymous Message
Transmission,” in Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS 2003), V. Atluri and
P. Liu, Eds. ACM Press, Oct. 2003, pp. 122–130. [Online].
Available: http://www.abortz.com/papers/k-anon.pdf

[13] H. Mohajeri Moghaddam, “Skypemorph: Protocol ob-
fuscation for censorship resistance,” Master’s the-
sis, University of Waterloo, 2013. [Online]. Available:
https://uwspace.uwaterloo.ca/bitstream/handle/10012/7262/
Mohajeri Hooman.pdf?sequence=1

[14] E. Athanasopoulos, M. Roussopoulos, K. G. Anagnostakis, and
E. P. Markatos, “Gas: Overloading a file sharing network as
an anonymizing system,” in Proceedings of Second International
Workshop on Security, (IWSEC 2007), 2007, p. 1. [Online]. Available:
http://dcs.ics.forth.gr/Activities/papers/gas%20iwsec07.pdf

[15] A. Westfeld, “F5 - a steganographic algorithm,” none, vol.
none, 2002. [Online]. Available: http://www.ws.binghamton.
edu/fridrich/research/f5.pdf

[16] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet:
A distributed anonymous information storage and retrieval
system,” in Proceedings of Designing Privacy Enhancing Technologies:
Workshop on Design Issues in Anonymity and Unobservability, Jul.
2000, pp. 46–66. [Online]. Available: https://freenetproject.org/

[17] G. Lowe, P. Winters, and M. L. Marcus, “The great dns wall of
china,” MS, New York University, vol. 21, p. 1, 2007. [Online].
Available: https://censorbib.nymity.ch/pdf/Lowe2007a.pdf

[18] R. Dingledine and N. Mathewson, “Tor protocol specification.”
[Online]. Available: https://gitweb.torproject.org/torspec.git/
tree/tor-spec.txt

[19] A. Egners, D. Gatzen, A. Panchenko, and U. Meyer,
“Introducing sor: Ssh-based onion routing,” in Advanced
Information Networking and Applications Workshops (WAINA),
2012 26th International Conference on, IEEE. IEEE,
Mar. 2012, pp. 280–286. [Online]. Available: https:
//www.researchgate .net/profile/Andre Egners/publication/
237007773 Introducing SOR SSH - based onion routing / links /
548805e90cf2ef34478ed724/Introducing- SOR- SSH- based- onion-
routing.pdf

[20] J. Iwanik, M. Klonowski, and M. Kutyłowski, “Duo-onions and
hydra-onions-failure and adversary resistant onion protocols,” in
Communications and Multimedia Security. Springer, 2005, pp. 1–15.
[Online]. Available: http://dl.ifip.org/db/conf/cms/cms2004/
IwanikKK04.pdf

[21] D. Chaum, “The dining cryptographers problem: Unconditional
sender and recipient untraceability,” Journal of Cryptology, vol. 1,
pp. 65–75, 1988. [Online]. Available: http://www.cs.ucsb.edu/
∼ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf

[22] M. J. Freedman and R. Morris, “Tarzan: A peer-to-peer
anonymizing network layer,” in Proceedings of the 9th ACM
Conference on Computer and Communications Security (CCS 2002),
Nov. 2002. [Online]. Available: http://pdos.lcs.mit.edu/tarzan/
docs/tarzan-ccs02.pdf

[23] C. Gülcü and G. Tsudik, “Mixing E-mail with Babel,” in
Proceedings of the Network and Distributed Security Symposium
- NDSS ’96. IEEE, Feb. 1996, pp. 2–16. [Online]. Available:
http://citeseer.nj.nec.com/2254.html

[24] M. Rennhard and B. Plattner, “Introducing morphmix: Peer-
to-peer based anonymous internet usage with collusion
detection,” in Proceedings of the Workshop on Privacy in the
Electronic Society (WPES 2002), Nov. 2002. [Online]. Available:
http://cecid.sourceforge.net/morphmix.pdf

[25] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion:
Design of a type iii anonymous remailer protocol,” in Proceedings of
the 2003 IEEE Symposium on Security and Privacy, May 2003, pp. 2–
15. [Online]. Available: http://mixminion.net/minion-design.pdf

[26] A. Nambiar and M. Wright, “Salsa: A structured approach to
large-scale anonymity,” in Proceedings of CCS 2006, Nov. 2006.
[Online]. Available: http://ranger.uta.edu/∼mwright/papers/
salsa-ccs06.pdf

[27] M. Kondo, S. Saito, K. Ishiguro, H. Tanaka, and H. Matsuo, “Bifrost
: A novel anonymous communication system with DHT,” in
2009 International Conference on Parallel and Distributed Computing,
Applications and Technologies. IEEE, Dec. 2009.

[28] I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” Journal of the society for industrial and applied mathematics,
vol. 8, no. 2, pp. 300–304, Jun. 1960. [Online]. Available:
https://faculty.math.illinois.edu/∼duursma/CT/RS-1960.pdf

[29] R. J. McEliece and D. V. Sarwate, “On sharing secrets and reed-
solomon codes,” Communications of the ACM, vol. 24, no. 9, pp.
583–584, 1981. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.80.2829&rep=rep1&type=pdf

[30] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot
is dead: Observing unobservable network communications,”
in Proceedings of the 2013 IEEE Symposium on Security and
Privacy, May 2013. [Online]. Available: http://www.cs.utexas.
edu/∼amir/papers/parrot.pdf

[31] Has F5 Really Been Broken, Department of Computing,
University of Surrey, Guildford GU2 7XH, England. IET,
2009. [Online]. Available: https://pdfs.semanticscholar.org/
4d6c/d9d7e3a419ea74a4a363a36fcc674e89ecc7.pdf

[32] M. Gwerder, “Messagevortex protocol,” IETF. [Online].
Available: https ://datatracker. ietf .org/doc/draft - gwerder-
messagevortexmain/

[33] ——, “Messagevortex – transport independent messaging anony-
mous to third parties,” Dec. 2017, PhD thesis writing in progress.

Martin Gwerder
Martin Gwerder was born 20. July 1972 in

Glarus, Switzerland. He is currently a PhD stu-
dent at the University of Basel.

After having concluded his studies at the poly-
technic at Brugg in 1997, he did a postgraduate
education as a master of business and engineer-
ing. Following that, he changed to the university
track doing an MSc in Informatics at FernUniver-
sität in Hagen.

While doing this, he steadily broadened his
horizon by working for industry, banking, and government as an engi-
neer and architect in security-related positions.

He currently holds a lecturer position for cloud and security at the
University of Applied Sciences Northwestern Switzerland. His primary
expertise is in the field of networking-related problems dealing with data
protection, distribution, confidentiality, and anonymity.

http://tools.ietf.org/pdf/rfc2015.pdf
http://tools.ietf.org/pdf/rfc2015.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.7724&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.7724&rep=rep1&type=pdf
http://www.abortz.com/papers/k-anon.pdf
https://uwspace.uwaterloo.ca/bitstream/handle/10012/7262/Mohajeri_Hooman.pdf?sequence=1
https://uwspace.uwaterloo.ca/bitstream/handle/10012/7262/Mohajeri_Hooman.pdf?sequence=1
http://dcs.ics.forth.gr/Activities/papers/gas%20iwsec07.pdf
http://www.ws.binghamton.edu/fridrich/research/f5.pdf
http://www.ws.binghamton.edu/fridrich/research/f5.pdf
https://freenetproject.org/
https://censorbib.nymity.ch/pdf/Lowe2007a.pdf
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt
https://www.researchgate.net/profile/Andre_Egners/publication/237007773_Introducing_SOR_SSH-based_onion_routing/links/548805e90cf2ef34478ed724/Introducing-SOR-SSH-based-onion-routing.pdf
https://www.researchgate.net/profile/Andre_Egners/publication/237007773_Introducing_SOR_SSH-based_onion_routing/links/548805e90cf2ef34478ed724/Introducing-SOR-SSH-based-onion-routing.pdf
https://www.researchgate.net/profile/Andre_Egners/publication/237007773_Introducing_SOR_SSH-based_onion_routing/links/548805e90cf2ef34478ed724/Introducing-SOR-SSH-based-onion-routing.pdf
https://www.researchgate.net/profile/Andre_Egners/publication/237007773_Introducing_SOR_SSH-based_onion_routing/links/548805e90cf2ef34478ed724/Introducing-SOR-SSH-based-onion-routing.pdf
https://www.researchgate.net/profile/Andre_Egners/publication/237007773_Introducing_SOR_SSH-based_onion_routing/links/548805e90cf2ef34478ed724/Introducing-SOR-SSH-based-onion-routing.pdf
http://dl.ifip.org/db/conf/cms/cms2004/IwanikKK04.pdf
http://dl.ifip.org/db/conf/cms/cms2004/IwanikKK04.pdf
http://www.cs.ucsb.edu/~ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf
http://www.cs.ucsb.edu/~ravenben/classes/595n-s07/papers/dcnet-jcrypt88.pdf
http://pdos.lcs.mit.edu/tarzan/docs/tarzan-ccs02.pdf
http://pdos.lcs.mit.edu/tarzan/docs/tarzan-ccs02.pdf
http://citeseer.nj.nec.com/2254.html
http://cecid.sourceforge.net/morphmix.pdf
http://mixminion.net/minion-design.pdf
http://ranger.uta.edu/~mwright/papers/salsa-ccs06.pdf
http://ranger.uta.edu/~mwright/papers/salsa-ccs06.pdf
https://faculty.math.illinois.edu/~duursma/CT/RS-1960.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.2829&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.2829&rep=rep1&type=pdf
http://www.cs.utexas.edu/~amir/papers/parrot.pdf
http://www.cs.utexas.edu/~amir/papers/parrot.pdf
https://pdfs.semanticscholar.org/4d6c/d9d7e3a419ea74a4a363a36fcc674e89ecc7.pdf
https://pdfs.semanticscholar.org/4d6c/d9d7e3a419ea74a4a363a36fcc674e89ecc7.pdf
https://datatracker.ietf.org/doc/draft-gwerder-messagevortexmain/
https://datatracker.ietf.org/doc/draft-gwerder-messagevortexmain/

	Introduction
	Formalization
	What We Worked On

	About Unlinkability, Unobservability, Undetectability and Censorship resistance
	Threat Model
	Notation 
	Related work
	Definition of Anonymity, Unlinkability and Censorship Resistance
	Existing work regarding Anonymity Protocols and Censorship Resistance


	The MessageVortex Protocol
	General Design
	Message Outline
	Accounting Layer
	Routing Layer
	Blending Layer
	Applied Steganography and the Dead Parrot

	The Core: Operations Executed in a Workspace
	Splitting and Merging
	Encryption and Decryption
	Redundancy Operations

	Usage of the Protocol

	Analysis of the MessageVortex Design
	Static Protocol Analysis
	Endpoint Operation
	Conclusions Based on Ephemeral Identities
	Conclusions from Operations
	Ill-behaving Nodes and Unlinkability

	Dynamic Protocol Analysis
	Bootstrapping of Addresses and Identities
	Discovery of Peer Nodes
	Findings based on Adversary Environment
	Issues When Reusing Routing Blocks


	Conclusion
	The Missing Links and Future Research
	Further Reading

	References
	Biographies
	Martin Gwerder


