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Sending unobservable messages across the internet
Martin Gwerder

Abstract—In this paper we introduce an unobservable message annonymisation protocol, named MessageVortex. It is based on the zero
trust principle and a distributed peer-to-peer (P2P) architecture and avoids central aspects such as fixed infrastructures within a global
network. It scores over existing work by blending its traffic into suitable existing transport protocols, thus making it next to impossible to
block it without significantly affecting regular users of the transport medium. It furthermore requires no protocol-specific infrastructure in
public networks and allows a sender to control all aspects of a message such as degree of anonymity, timing, and redundancy of the
message transport without disclosing any of these details to the routing or transporting nodes.
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1 INTRODUCTION

S INCE whistle blower Edward Snowden disclosed documents,
it seems generally accepted that global monitoring of Inter-

net traffic is conducted. According to these documents (veri-
fied by NRC) NSA infiltrated more than 50k computers with
malware to collect classified or personal information. They
furthermore infiltrated telecom operators such as Belgacom to
collect data, and targeted high members of governments even
in associated states.

A message sent throughout the Internet must, even when
perfectly encrypted, disclose at least the recipient to the router
transporting a message. The sender can be identified by the
return path or is identifiable by following the source of packets.
Meta information is valuable, because frequency and message
size disclose important facts about the association and intensity
of the relationship of involved parties.

This paper addresses the above-mentioned problems of traffic
monitoring by introducing a new protocol called MessageVortex.
Within MessageVortex we consider the whole network as un-
trusted with the exception of the sending and receiving node.
MessageVortex does not leak routing information as only the
immediate peers are known to a node. The protocol is able to
sustain anonymity [?] even under harsh assumptions such as
an adversary possessing a huge but limited funding, unlim-
ited monitoring capability on the network and a considerable
number of own nodes. For a more precise adversary model, see
appendix C.

Numerous attempts such as in [1], [2], [3], [4], [5], [6] have
been made to anonymise message flow. But most of them
have problems as they rely at least on the partial trust in the
nodes routing the messages, or some central infrastructures
[7], [8], [9], [10]. Exit and entry points are important as they
may leak information which is otherwise well hidden within
the network. By degrading the network, message flows can be
redirected and information extracted from the new flows. Ad-
ditionally, a dedicated transport protocol is easy to block since
their implementation can be easily identified by used ports or
some protocol properties. Furthermore, most approaches require
infrastructure with fixed addressing in the internet, rendering
owners vulnerable.

All papers analysed for this work introduced a new transport
layer solving these problems. Only TOR defined an additional
transporting mechanism which may be used as an alternate
transport medium between two defined nodes to avoid de-
tection. In our approach we decouple the routing layer from
the transport layer completely. By doing so we introduce new

degrees of complexity to attack scenarios, as messages may use
any common transport protocol of the used network.

Our work consists of a routing layer which is completely
P2P based without any central protocol specific infrastructure.
Any node is a routing node and may be an endpoint. There
is no implicit or explicit trust in any particular system of the
network. Decoy traffic generation is controlled by the original
sender of a message. Even a decoy traffic generating node is
unable to differentiate between message and decoy traffic as a
Solomon-Reed algorithm is used to blow the message up by
adding redundancy information. This redundancy information
may be decoy traffic or later required to rebuild data blocks.
The redundant blocks are always encrypted and a multitude of
the cyphers block size as they are padded before splitting. This
eliminates the need of padded encryption at block level. This
fact makes it very hard to apply brute force in order to decrypt
the content. This is due to the fact that padding no longer hints
gives whether decryption has been successful or not.

As transport media we use common, well known store-and-
forward-based protocols. By doing so the routing logic has no
affiliation to the transport layer. Literally any free-mailer email
address or chat account may be converted into a transport media
for our protocol without any modification required on the server
side. This makes the network very agile on one side at the
cost of reliability, as nodes may suddenly appear or disappear.
To counter this phenomenon, we are able to introduce a high
degree of redundancy if required and wished by the routing
block builder.

Using the MessageVortex protocol, any device with a latent or
permanent connectivity to the Internet may act as routing node.

By applying the zero trust model we give full control of all
traffic to the original sender of the message. He controls message
flow, redundancy, degree of anonymity, timing, and many more
aspects of the message transport throughout the whole network.
This is done without disclosing any of these parameters to the
participating nodes as they are encoded in the operations and
only visible to the node executing them. The operations itself
are chosen in such a way that they do not reveal the nature of
the traffic.

To limit possibilities of denial-of-service (DoS) within the
system and guarantee an efficient handling of messages, Mes-
sageVortex nodes (in short “node”) rely on unlinked, ephemeral
identities which are created in a proof of work system (PoW).
While it is technically easy to use a node, it is hard to carry
out traditional attacks against them as all transactions have
to be pre-authenticated with PoW puzzles. The amount of
work required to disrupt services or conduct traditional attacks

http://www.nrc.nl/nieuws/2013/11/23/nederland-sinds-1946-doelwit-van-nsa
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against the system grows significantly due to the non linear
growth of calculation power required when maintaining more
ephemeral identities. It is, however, still possible to exhaust
external resources such as network bandwidth.

1.1 Previous Work
Generally not many technologies are usable to achieve
anonymity or unlinkability as defined in [?]. Most analysed
protocols use relays [11], mixes [11], or Dining-Cryptographers-
related-networks [12] or their variants to achieve anonymisation.
Numerous protocols have evolved from these technologies:

• TOR [4]: Mixer-based infrastructure for tunnelling TCP-
based protocol streams. TOR is a synchronous or near
synchronous routing system. The anonymisation is based on
mixing by using a statical path consisting of an entry node,
an exit node and at least three more intermediate nodes.

• mixmaster [3]: A type-II remailer where all mixes may choose
the path on their own logic.

• Babel [2]: Mixer-based remailer where the sender chooses
the path and sends an onionised message.

• Mixminion [1]: A type-III remailer offering sender
anonymity. Unlike their predecessors, it is no longer
based on the SMTP transport protocol. This system
requires at least a centralised directory infrastructure.

• Freehaven [5]: A distributed storage system. The system of-
fers anonymous document storage. To receive a document,
a hash of a public key used to sign the document must be
known. Known documents may be identified and owners
of infrastructure might be held responsible if hosting such
well known, forbidden documents.

• Freenet [13]: Freenet is an anonymous, distributed data stor-
age system. The system does not trust any server. Instead
a reputation system is used. This system has attracted very
little attention from the researcher community.

• Herbivore [6]: A DC-net-based protocol without client imple-
mentation.

• P5 [14]: There is a simulator available for this protocol. Real
world implementations do not exist and therefore no attack
schemes have been elaborated so far.

• I2P (geti2p.net): P2P-based pseudonymous protocol allow-
ing TCP and UDP streams to be tunnelled synchronously
or near-synchronously. Unlike TOR, I2P works pseudony-
mously and mixes using packet switching.

Our protocol differs from these works in several ways. There
is no central network infrastructure. There are no entry or exit
nodes which might be blocked. All nodes including the sender
and the recipient are treated equal. The number of nodes, the
traffic to be generated, anonymity sets, timing of the message,
redundancy in message transmission, and size of all packages to
be sent along is solely decided by the builder of a routing block.
The builder is normally synonymous to the sender but might be
the recipient of a message in case of a reply block. Furthermore,
there is no dedicated transport protocol. Instead, MessageVortex
messages (in short “vmessages”) are embedded in other existing
Internet protocols. The traffic itself is mixed by operations. As
traffic is generated reproduceable, either by adding redundancy
information or by using PRNG with a defined seeding, decoy
traffic cannot be differentiated from required blocks.

2 METHODS AND MATERIAL

We define the protocol on three different layers:
• Blending layer: in this layer we embed MessageVortex mes-

sage into the transport protocol.

• Routing layer: this layer applies the logic to the message
routing and prepares the message for the blending layer.

• Accounting layer: this layer is a DoS and misuse protection. It
keeps track of the transfers for each ephemeral identity and
makes sure that queue and storage capacity are efficiently
handled.

These three layers are connected through a fourth existing layer.
This layer is based on one or more store-and-forward based,
common internet transport protocols. Protocols on this layer
we refer in general as transport protocols. It is important to
note that no modification is applied to the transport protocol
to accommodate vmessages.

All cryptographic operations such as encryption, decryption,
hashing, or random number generation do not rely on a single
algorithm. The protocol is able to signal what capabilities a node
has and how exactly a message should be processed. This makes
the protocol very robust if a used algorithm is broken. For this
reason, we defined for each capability at least two algorithms
which depend on different mathematical puzzles (e.g. “integer
factorisation problem” versus “discrete logarithms problem”).
This introduces a redundancy in algorithms, allowing a sender
to switch between algorithms if required.

2.1 Protocol Layers
2.1.1 Transport
The transport layer provides the Internet infrastructure. Unlike
in most other approaches such as [4], [13], [14] this layer is not
protocol specific. We use already existing, symmetrically built
store and forward protocols. Attributes such as anonymity do
not rely on the security of this layer.

By using this approach we remove the need for shaky tech-
nologies such as TCP or UDP hole punching to connect peer
partners. It furthermore makes the use of “mostly connected”
clients such as mobile phones or DSL connections suitable for
this protocol. This is because our transport endpoints are always
reachable within the global network. The routing nodes may
disconnect from time to time without affecting reachability of
an mix.

Protocols on this layer are typically well known and frequently
used. They have no prerequisite for encryption or privacy and
are store-and-forward based protocols with routing capabilities.

2.1.2 Blending
This layer is a translation-only layer and embeds vmessages
from the routing layer in transport protocol messages. Incoming
vmessages are extracted from the transport layer and passed
to the routing layer. Messages can be identified by picking a
potential vmessage block up and start decyphering kpN using
its private key k−1

hN
. If decryption succeeds a vmessage block is

found. This makes it impossible for an adversary to detect the
presence of a vmessage without the hosts private key k−1

hN
.

Protocol features such as anonymity or redundancy do not
rely on this level. This layer embeds messages within the trans-
port layer in such a way that an adversary is no longer able to
identify vmessages from regular transport layer messages. Good
blending is achieved if transport layer censorship measurements
such as application level firewalls are unable to detect the
difference between real world messages and vmessages. In an
ideal application, this applies to censorship applied by humans
as well as censorship applied on the base of algorithms.

In a real scenario, it is hard to achieve human proof censorship
circumvention. If not done with care, problems as described in
[15] arise. It is in our case not necessary as human censorship

https://geti2p.net/
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is very costly and slow compared to algorithms. Human cen-
sorship is too slow for real time censorship. Our transport layer
is by definition frequently used for regular communication. We
always consider an algorithm-based censorship as existing.

Currently, the specification of this layer is limited to the two
capabilities “embed with offset” and “F5”.

“Embed with offset” is a plain embedding of a block in a file
attached to a message. The offset allows issuing first a valid
header of some sort in order to improve blending (e.g. for a
PCM-encoded WAV file). While this is considered a very weak
protection, analysis to detect such a file on a global transport
scale is very demanding due to the sheer mass to be analysed.

“F5” means applying the F5 algorithm to hide a message
within a random suitable jpeg image. “F5” is one of the very few
steganographic works which have a real world implementation
and attracted at least some interest in the research commu-
nity. In [16], an approach to detect embedded information in
steganographically modified images is presented. To obtain this
information, a considerable effort in terms of calculation power
is required. This makes it impractical for real time censorship
on our scale. It does however allow messages to be identified.
Furthermore, It only discloses the fact that F5 is being used. It
does not leak the content of a message, its immediate sender
(apart from a socket), or a message size.

2.1.3 Routing
The routing layer is the mixer of the system. It processes
messages extracted by the blending layer and is supported by
the accounting layer. Any related set of messages is processed
by the routing layer by recombining payload with operations
defined in section 2.5. Due to the nature of these operations, a
node is unable to tell whether the traffic flow processed is decoy
traffic or an actual part of the message flow.

If a message is processed a new vmessage is generated and
passed on to the blending layer.

For a more precise working of the routing process see sec-
tion 2.4.

2.1.4 Accounting
The accounting layer protects a node from being overloaded
or misused. Every sender must first apply for an ephemeral
identity which is limited in lifetime. This is done by a proof
of work algorithm. When an ephemeral identity is created the
owner of the identity may route vmessages through a node. The
ephemeral identity is assigned with message and size transfer
quotas. Any identity may apply for a raise of quota as long as
it is not expired. It is up to the node to decide whether a raise
of quota is acceptable or not. If rejected, any sender might try
to apply for a new ephemeral identity.

Due to the costs of maintaining multiple identities and their
parental identities for anonymity of the original sender, the num-
ber of identities grows exponentially when growing a network
of ephemeral identities. A sender might either introduce a new
node to cut identity costs or maintain at higher identity costs a
single node.

2.2 Protocol Outline

We define a protocol block which has an inner block structure
as shown in Fig 1.

These blocks are passed from node to node. All blocks are
binary proof, which means that the same block sent twice will
always result in exactly the same bit layout. There is no room
for a misbehaving node to tag the block within it without
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Fig. 1. Protocol block outline.

compromising the message. The message as a whole is replay
protected. Routing and header blocks are linked with a chain
secret to avoid hijacking of header or routing blocks.

2.2.1 Message Keys
Every protocol block is protected by two symmetric keys
keypeerN (in short kpN ) , keysenderN (in short ksN ) and the
private part of an asymmetric host key k−1

hostN
(in short k−1

hN
).

The public host key k1
hN

and both symmetric keys are known
to the builder of the routing block structure.

This building is done by the sender. If using SURBs (Single
Use Reply Blocks) or MURBs (Multi Use Reply Blocks) it is done
by the builder of the reply block.

The header is protected by the symmetric key ksN and is
found in a preamble to the header protected by the receiving
peer’s private key k−1

hN
. The key ksN is known to the routing

block builder and the receiving node only. The receiving node
obtains all important information protected by this key. kpN is
known to two immediate peers and the builder of the routing
block. The sending peer obtains kpN from the routing block,
whereas the receiving peer acquires it in the headerBlock.

2.3 Pad Block
The pad block is a short block of a few bytes of padding content
(first bytes of the first message block; fixed size per message;
null padded) guaranteeing that all messages sent with the same
routing block look different on the transport layer.

2.3.1 Header Block
The header block contains vital static information for the
message disclosed to only one peer of the network. It is
protected by key ksN . The minimally contained information
can be described by the list headerBlocki := 〈sendingIdentity,
seriali, replayAttributesi, keypi , chainSecret, signature,
optionalOperations〉.

2.3.2 Routing Block
A routing block can be expressed with the following
recursive definition routingBlocki := 〈nexthopAddress,
chainSecret, timingAttributes, Eksi+1 (headerBlocki+1) ,
Eksi+1 (routingBlocki+1) , payloadBuildInstructionsi,
payloadId, optionalReplyBlocks〉

2.3.3 Payload Block
A payload block is any number of bytes representing parts of a
message, decoy traffic or a control block.

2.4 Message Processing
Unlike with a traditional mix system, a node has no choice of
sending. It purely relies on the message processing facilities.
A message is either handed over to the transport layer by the
blending layer or may be induced internally (if the local node
is the sender).
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First, the preamble to the header is extracted. This proves that
the sender possesses the public key of the node and contains
the sender key ksi . With this information, the node opens the
headerBlock revealing information regarding the ephemeral
identity of the original sender. Based on the information given
in the relatively small header, the transport layer may decide
whether further processing is desired or not. If desired, the
node extracts the key kpi and decrypts the rest of the message,
which is considerably larger containing routing and payload
information.

The routing block may contain instructions on processing
information contained in this or any message related to this
message and identity. These instructions are encoded in so-
called “Operations” as specified in section 2.5 and may be any
combination of them. As soon as the time arises for a routing
block to be processed, the operations building the new message
blocks are executed. If all prerequisites are satisfied, the new
payload blocks are built, concatenated with the new routing
block, pad, and header block. This resulting block is encrypted
with kpi+1 and prepended with the preamble. The built block
is passed to the blending layer with the blending specification
and the target address.

It is important to note that the blending specification contains
vital information about how the message must be blended but
not how the carrier message looks like. By doing so we avoid
abuse of the blending layer (eg. sending plain text spam through
the MessageVortex system).

2.5 Operations

The operations are designed in such a way that they allow
variance of message size without telling anyone, including
the generator, which message part is used later. They include
features to protect message content from bugging.

Some of the operations require a pseudo random number
generator (PRNG). This PRNG is defined in appendix B. The
definition of a reproduceable PRNG to be used by messages is
important as we have to achieve binary proof messages.

All interactions are non-interactive. Interactive operations
such as DC-nets do add more complexity to the system. Be-
havioural analysis can be used to identify interactive operations.

This is the reason why DC-nets are not used. Theoretically, it
is possible reflect them as a single operation by calculating the
answer and then broadcasting the answer. In practice, this fails
due to the non-existence of efficient, reliable multicast networks.
There are however attempts to apply DC-nets to real protocols
[17].

2.5.1 addRedundancy and removeRedundancy Operation
This operation is based on a modified Reed-Solomon redun-
dancy function in order to accommodate the anonymity needs
of this function. The Reed-Solomon function as defined in
appendix A offers a varying number of redundant checksum
blocks. When sending these blocks into multiple directions no
mixing node is able to tell where the original message is being
rebuilt. The general inner workings are described in Fig ??.

We define a function addRedundancyn,m(M, k1 . . . km) where
M denotes the message, n the number of total output blocks,
m the number of redundancy blocks wheras m < n, k the
encryption key and scheme to be used, and bsk the block size
required to accommodate scheme and key size described by k.
It is important to note that the number of true data blocks is
d = n − m, while the rest of the output blocks are redundant
information.

padding and splitting
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Fig. 2. Outline of the addRedundancy operation

By encrypting all output blocks individually we make sure
that no node having access to enough blocks may rebuild the
data stream without the routing block builder’s consent.

The message is length prefixed with a big endian 64 bit
unsigned integer number and padded in such a way that
8+ len(M)+ len(padding) mod bsk = 0. As padding stream, we
take the output of prngi

(⌈
8+len(M)

bs

⌉
bsn

)
. The first 64 bytes of

the message (padded with 0 if required) are taken as initialiser i
for the PRNG function. By preparing our message block in such
a way, we guarantee that the output blocks are encryptable with-
out further padding and that the output of all addRedundancy
functions is binary proof. If stream cyphers are used as output
cyphers, then padding is not required.

The reverse function for addRedundancy is called
removeRedundancym,n(B1 . . . Bm, k1 . . . km) = M and recovers
the original data stream if enough blocks (at least m) and
respective valid keys are provided.

2.5.2 splitPayload and mergePayload Operation
The splitPayload and mergePayload operations split and merge
payload blocks (pbN )into two chunks of different or equal sizes
respectively joins them. We define the functions as follows:

If len(pb1) expresses the size of a payload block called pb0
in bytes then the two resulting blocks of the splitPayload
Operation pb1 and pb2 have to follow the following rules:

splitPayload(f, pb0) = 〈pb1, pb2〉 (1)

startsWith(pb0, pb1) (2)

endsWith(pb0, pb2) (3)

len(pb2) = blen(pb0) · fc (4)

len(pb0) = len(pb1) + len(pb2) (5)

respectively

mergePayload(pb1, pb2) = pb0 (6)

startsWith(pb0, pb1) (7)

endsWith(pb0, pb2) (8)

len(pb0) = len(pb1) + len(pb2) (9)

2.5.3 xorSplit and xorMerge Operation
xorSplit and xorMerge are low cost obfuscation operations.
These operations may be applied if a block is passed on without
any required operation or as one-to-two blocks redundancy
generating function.
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The operations are defined as follows:

xorSplit(pb0) = 〈pb1, prngi(len(pb0))〉 (10)

pb1 = pb0 ⊕ prngi(len(pb0)) (11)

xorMerge(pb1, pb2) = 〈pb0〉 (12)

pb0 = pb1 ⊕ pb2 (13)

2.5.4 encrypt and decrypt Operation
encrypt and decrypt are used as message obfuscation operations.
These operations may be applied if a block is passed on without
any required operation. They minimise the risk for a known
plain text attack to a MessageVortex block. Both operations are
defined as a padded or unpadded symmetrical encryption. spec
is the encryption specification and key provided by the routing
block.

The operations are defined as follows:

encrypt(pb0) = pb1 (14)

len(pb1) ≥ len(pb0) (15)

decrypt(pb1) = pb0 (16)

2.6 Protocol Bootstrapping

In order to allow bootstrapping of the protocol, any node
may reveal a very small, fixed number of nodes known to it.
This allows fresh nodes to bootstrap their knowledge about an
existing network, given they know at least one node willing to
reveal other nodes.

Allowing this kind of bootstrapping has certain downsides.
As no trust is given into the requester’s identity, we have to be
very careful here not to reveal the full network to any adversary.
By applying the PoW and requiring an ephemeral identity, we
assign a high cost to this operation.

Another downside is that it takes a long time for such a
network to balance its loads if a network increases over time
in size. Mature nodes concentrate more traffic on them than
younger ones. This does however distribute more evenly over
time if algorithms as shown in [18] are applied.

3 RESULTS

Our protocol can be seen as tool set for creating and sending
anonymised messages. The degree of anonymity and redun-
dancy is created when building the routing block. This is why
constraints on message building are important.

3.1 Message Building

Using previously defined operations we may build a message
path. This path is typically built by first assigning an identity
set Ik where k denotes the target identity. Ik is a static set of
n ephemeral identities Ik〈eI1 . . . eIn〉 which are always used to
communicate with k. This set may be enriched with further m
ephemeral identities when sending. An identity set is replaced
with a different one as soon as ephemeral identities expire.
Therefore, we apply a new anonymity set unrelated to the old
one with each new set of ephemeral identities.

A full message graph including all traffic may have any type
of complexity. Fig 3 shows a graph with a k-Anonymity of k = 7
of a message. It features 5 partially independent routes from
source (edge 0) to the target (edge 1). One is highlighted in green.
All involved nodes receive enough information to build the
entire message if provided with the correct decoding instruction.
X-axis shows involved nodes and y-axis denotes the sequence

Fig. 3. Message graphs with different numbers of nodes

in time. In its background a graph with k = 30 and 20 partially
independent paths is shown.

When building the message it has to be ensured that all nodes
in Ik obtain enough information to rebuild the message. If an
adversary is able to identify the full message flow and knows
all the operations applied to the message except for those on the
entry and exit node and at least a subset of k = |Ikuncompromised |
where k > 1 exists then we are still at k-Anonymity as an
absolute worst case scenario. Thus we can prove that attacks
as described in [19] are of very limited use.

3.2 Attacking the Message Flow

In our thesis [18] we analyse various kinds of attacks. Such as
illicit behaving nodes, hijacking of header and routing blocks,
analysis on payload blocks, traffic replay, analysis on infrastruc-
ture, and analysis on operations. Results have shown that the
protocol is very resistant against most kinds of attacks.

For block hijacking of a single block we can proof that proba-
bility for success is at least below 10E−11. We can furthermore
prove the effectiveness of replay protection even when assuming
misbehaving nodes. Hijacking a routing block has very limited
use however. Prepending an own identity block to a hijacked
routing block would break the message path. Thus, allowing an
adversary to reveal all blocks built from this routing block out of
the message travelling through the adversary node. He does not
gain any information about other blocks. He may extract how
much traffic is generated on the manipulated node out of these
blocks. The real amount of traffic is, however, higher as some
operations may have failed due to missing blocks.

We can easily show the effectiveness of the tagging and
bugging protection. A misbehaving node has no room to tag
a message without compromising the message’s integrity. A
tagged message will be discarded at the first non-misbehaving
node.

3.3 Routing Diagnosis

If an interruption of path is suspected, parts of the message
may be obtained by the message block builder at any time. He
may do this by either introducing fixed diagnostic paths into a
routing block, which we refer to as implicit diagnosis, or he may
send a second message picking up a block of the message at a
node to be tested. This we refer to as explicit diagnostic.
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Explicit diagnostics may be used as a kind of “receipt” from
any node including but not limited to the terminal receiver of
a message. Any block at any time of routing may be returned
directly or indirectly to the original sender. Arrival of such a
packet and content tells the sender at which point a message
failed. If a diagnostic packet does not arrive, the routing block
builder may build a diagnostic message picking up random
packets on any suspected failing node.

4 DISCUSSION

4.1 Comparison to Existing Systems

The following section gives a short comparison to existing
systems. It shows that the solution defined in this paper covers a
different approach and what problems are solved. It is important
to note that this is not a ranking. It just outlines the differences
between the system and shows where our system is different
compared to existing solutions.

4.1.1 TOR
TOR is criticised for several things. Firstly, it is easy attackable if
encryption is not used in the transported protocol. It relies on the
trust in a centralized directory infrastructure. It is susceptible if
more than ≈ 30% of the nodes are controlled by an adversary as
shown in [20]. Furthermore, timing analysis on entry and exit
nodes are particularly easy due to the fact that TOR is a low
latency network [21], [22]. Harvesting of nodes is possible (e.g.
https://torstatus.blutmagie.de). Tor nodes are easily identifiable
by traffic as shown in [23]. To avoid this detection TOR uses
“pluggable transports”. Unlike in MessageVortex, this is not
used in general but only when specifically set up between two
nodes.

MessageVortex tries to address these problems in multiple
ways. First, there is no central infrastructure which defies the
trust problem. There are no entry or exit nodes as all partic-
ipating members are routers at the same time. Therefore, all
problems related to entry and exit nodes do not exist. There is no
dedicated transport protocol making the presence of vmessages
hard to detect.

MessageVortex has several downsides compared to TOR. It is
not suitable for real time communication due to its asynchronous
operation. It is furthermore a closed system and only participat-
ing members may use it.

4.1.2 P5

In-depth analysis of P5 is very limited, as there is no true
protocol specification but only a rough outline available. This
outline specifies the messaging and the crypto operations only.
It claims to be peer to peer, which would result in some kind of
NAT (Network Address Translation) circumvention technology.
This technology usually relies, at least partially, on a central
infrastructure (e.g. for hole punching).

In contrast MessageVortex protocol is peer to peer but the
transport layer is not. It misuses already existing infrastructure
for transport. This makes it not susceptible to approaches against
infrastructure unless our messages are identified and filtered.
This may be corrected by applying different blending schemes
for the transport layer. It furthermore removes the need for NAT
hole punching and similar technologies.

4.1.3 I2P

I2P has not attracted as much attention as TOR so far. It is thus
hard to judge its real qualities.

Unlike TOR, anonymity is not fully granted. Instead a
pseudonymity is used.

In [24] an attack specific to I2P is presented. As I2P s security
model is chosen based on IP addresses, the authors propose to
use several cloud providers in different B-Class networks. By
selectively flooding peers, an adversary may extract statistical
information. The paper proposes an attack based on the heuristic
performance-based peer selection. The main criticism of the
paper were that the peer selection may be influenced by an
adversary enabling him to recover data on a statistical base.

MessageVortex does only allow a routing block builder to
choose routes and amount of traffic. Due to the replay protection
and the trust, we do not rely on any node, we show in [18] that
attacks on this level are not possible.

4.1.4 Freenet
While Freenet is a pure distributed storage system it has many
good features adapted by MessageVortex. Like in Freenet a
MessageVortex node may deny to be the owner of a specific
information unless the key for the respective ephemeral identity
can be found on the system. As the key is only required for
building routing blocks but not for message assembly and
sending, this makes it a valuable feature comparable to the
deniability of Freenet.

5 CONCLUSION

The MessageVortex protocol outlined in the previous sections
does not solve all privacy issues which might arise. Furthermore,
it is complicated to implement and involves a considerable
amount of book keeping at runtime which is left to the sender
of a message and the mixing nodes.

On the positive side, we have a new protocol which addresses
privacy in a holistic approach leaving very little attack surface.
If handled with appropriate care by the sender and receiver,
the protocol allows a sender-controlled, high degree amount
of anonymity. Message paths are diagnosable, may be built
redundant and do not build on the trust of any third party
systems including all involved mixes except the sender’s and
receiver’s one. Even closed group communication or broadcast-
ing to multiple identities involving a specific subset of mixes is
possible if desired by the sender.

In [18] we show that the protocol is very secure. It is hard
to block as messages may be redundant, hard to identify as
messages are covered within message flows which may not be
blocked without huge impact on existing systems. It is hard
to apply censorship in a real world scenario as messages are
extremely hard to detect.

MessageVortex has some flaws which must be outlined. We al-
ways considered an algorithmic censorship. If human censorship
is applied, we must assume that at least some of the messages
are being identified as possible MessageVortex messages. If we
assume a white-listing, human, censoring adversary (everything
which is not identified by a human as compliant is censored)
we must conclude that at least some messages will fail to be
delivered.

Some of the participating transport nodes may be identified
and blocked. This may be compensated with redundancy in
message transmission.

Messages transported by MessageVortex generate huge
amounts of decoy traffic. Unlike other systems which control
decoy traffic on a “per peer” base, MessageVortex does not dy-
namically reduce decoy traffic as decoy traffic is not identifiable.
This results in a huge traffic overhead.

https://torstatus.blutmagie.de


7

APPENDIX A
REED-SOLOMON FUNCTION

The origins of the Reed-Solomon code go back to [25]. The
method described in this paper was however not applicable
in all cases. The publications [26] and [27] describe a more
practical solution whereas [28] brings up the similarity to the
Reed-Solomon code with a GF (2ω).

Reed-Solomon is used for many applications today. One of
the most well known application is a redundancy generator
for RAID-6 like systems. It is able to generate multiple linearly
independent equation systems to a given set of data B1 . . . Bn−m

creating redundancy information R1 . . . Rm. In a system with all
blocks 〈B1 . . . Bn−m, R1 . . . Rm〉 any number k where 0 ≤ k ≤ m
datablocks may be removed and the information contained in
〈B1 . . . Bn−m〉 is still recoverable.

Traditionally the data and redundancy information is striped
into blocks and distributed together with the redundancy infor-
mation over all n storages. This is done to avoid data storages
as bottleneck since a change to one data stripe in a stripe
set results always in a change of the redundancy data on the
other m redundancy storages. This would result in hot spots on
redundancy information storages.

We use the Reed-Solomon function as redundancy generating
function shown in Fig ??. Unlike in storage technology we
encrypt each redundancy block and all data stripes individually.
By doing so we make it impossible to recover the contained
information without knowledge of the keys. All blocks do then
contain the same amount of data. Given we have enough blocks
and the corresponding keys we may rebuild the message.

At the same time the generating node is unable to tell what
blocks belong to the true message path and what blocks are sent
for decoy traffic only.

As our resulting blocks are encrypted with a stream or block
cypher, we need to introduce some padding. The padding is
applied before doing RS calculation. In the case of a stream
cypher we need to pad so that the number of bytes is dividable
by the number of data blocks. In the case of block cyphers
we need to pad so that all resulting data blocks have exactly
a size dividable by the block size. We achieve two goals by
applying the padding before spliting the blocks. First we reduce
overhead by adding only one instead of n paddings. Secondly,
an unpadded block is much harder to brute force. Any resulting
block to a key might be the right one as we no longer have
padding to suggest that a decryption has been successful.

We defined to use Vandermonde matrices as outlined in
[29] and in [30] for our redundancy calculations. For more
information of the used GF-Fields and exact matrix building
instructions see [18].

APPENDIX B
PSEUDO RANDOM NUMBER GENERATOR

Our PRNG used for this work is an xorshift+ generator. It is
based on the XSadd PRNG [31] and passes the bigcrush PRNG
test suite. It is a fast, xor based PRNG which has two internal
64 bit seed states s0 respectively s1 and is defined as follows:

x = s0 (17)

s0 = s1 (18)

x = x⊕ (x� 23) (19)

s1 = x⊕ s1 ⊕ (x� 17)⊕ (s1 � 26) (20)

nextNumber = s1 + s0 (21)

We have chosen this comparably weak PRNG for practical
reasons. It is fast, simple, and is based on operations easy to
implement on hardware. As we do not need a cryptographically
strong PRNG, it is the primary choice so far.

As the protocol is heavily dependent on security we have
introduced everywhere at least one alternate algorithm which
may be used if one of the choices may become a problem.
In order to have a second choice for the PRNG we define
the Blum-Micali PRNG as described in [32]. This PRNG is a
cryptographically secure PRNG and is defined as follows:

p is prime and g is a primitive root modulo p. x0 reflects the
seed state.

xi+1 = gxi mod p (22)

APPENDIX C
ADVERSARY MODEL

We assume as an adversary a state-sponsored actor who has
unlimited monitoring possibilities on the network layer within a
limited geographic region (e.g. country). We furthermore assume
available funding and capabilities to efficiently run a consider-
able number of nodes (not exceeding the number of 70%) within
the network and harvest and combine all operations and content
processed by these nodes.

This means he is at least capable of analysing traffic by
algorithms and may disrupt any unwanted traffic.

The adversary is capable of generating any traffic anywhere
within the message flow.

This is an adversary model which goes far beyond any model
we have encountered in any other scientific approach.

Assumptions in this part are mostly derived from [23] and
extrapolated. In this paper researchers describe GFC (Great
Firewall of China) as a profiling firewall fingerprinting traffic
and blocking specific socket addresses when positively identified
as TOR nodes.

C.1 Detection
Any adversary may use detection schemes to detect traffic. This
may be used to apply censorship later. He is capable of analysing
up to 1% of the total transfer volume on an in-depth algorithmic
base and 50% based on simple context-less rules.

C.2 Censorship
We assume that an adversary is accepting considerable economic
damage but not the downfall of its own economy as a whole.
An active adversary may apply algorithmic censorship based on
the detection constraint (C.1) on a large scale.

C.3 Information Retrieval
We assume an adversary to be interested in all sorts of informa-
tion available around messages. We consider the triple “sender”,
“receiver”, and “content” as the most valuable set of information
for an adversary. Other important informations are:

• frequency of message interchange
• message size
For the system we consider the following information as

interesting for an adversary (descending order):
• Routing nodes
• Transporting nodes
• Routing operations
• Routing (ephemeral) identities
• Routing volumes
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