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ABSTRACT
Tahoe is a system for secure, distributed storage. It uses ca-
pabilities for access control, cryptography for confidentiality
and integrity, and erasure coding for fault-tolerance. It has
been deployed in a commercial backup service and is cur-
rently operational. The implementation is Open Source.

Categories and Subject Descriptors: D.4.6 [Security
and Protection]: Access controls; E.3 [Data Encryp-
tion]: Public key cryptosystems; H.3 [Information Sys-
tems]: Information Storage and Retrieval; E.4 [Coding
and Information Theory]: Error control codes

General Terms: Design, Human Factors, Reliability, Se-
curity

Keywords: capabilities, fault-tolerance, open source, peer-
to-peer

1. INTRODUCTION
Tahoe is a storage grid designed to provide secure, long-

term storage, such as for backup applications. It consists
of userspace processes running on commodity PC hardware
and communicating with one another over TCP/IP. Tahoe
was designed following the Principle of Least Authority [21]
– each user or process that needs to accomplish a task should
be able to perform that task without having or wielding more
authority than is necessary.

Tahoe was developed by allmydata.com to serve as the
storage backend for their backup service. It is now in oper-
ation and customers are relying on the Tahoe grid for the
safety of their data. Allmydata.com has released the com-
plete Tahoe implementation under open source software li-
cences [1].

The data and metadata in the filesystem is distributed
among servers using erasure coding and cryptography. The
erasure coding parameters determine how many servers are
used to store each file – denoted N , and how many of them
are necessary for the file to be available – denoted K. The
default settings for those parameters, and the settings which
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are used in the allmydata.com service, are K = 3, N = 10, so
each file is shared across 10 different servers, and the correct
function of any 3 of those servers is sufficient to access the
file.

The combination of cryptography and erasure coding min-
imizes the user’s vulnerability to these servers. It is an un-
avoidable fact of life that servers can fail, or can turn against
their clients. This can happen if the server is compromised
through a remote exploit, subverted by insider attack, or if
the owners of the server are required by their government to
change its behavior, as in the case of Hushmail in 2007 [29].

Tahoe’s cryptography ensures that even if the servers fail
or turn against the client they cannot violate confidentiality
by reading the plaintext, nor can they violate integrity by
forging file contents. In addition, the servers cannot violate
freshness by causing file contents to rollback to an earlier
state without a collusion of multiple servers.

2. ACCESS CONTROL
Tahoe uses the capability access control model [6] to man-

age access to files and directories. In Tahoe, a capability
is a short string of bits which uniquely identifies one file or
directory. Knowledge of that identifier is necessary and suf-
ficient to gain access to the object that it identifies. The
strings must be short enough to be convenient to store and
transmit, but must be long enough that they are unguess-
able (this requires them to be at least 96 bits).

Such an access scheme is known as “capabilities as keys”
or “cryptographic capabilities” [22]. This approach allows
fine-grained and dynamic sharing of files or directories.

The Tahoe filesystem consists of files and directories. Files
can be mutable, such that their contents can change, includ-
ing their size, or immutable, such that they are writable only
once.

Each immutable file has two capabilities associated with
it, a read capability or read-cap for short, which identifies
the immutable file and grants the ability to read its content,
and a verify capability or verify-cap, which identifies the im-
mutable file and grants the ability to check its integrity but
not to read its contents.

For mutable files, there are three capabilities, the read-
write-cap, the read-only-cap, and the verify-cap.

Users who have access to a file or directory can delegate
that access to other users simply by sharing the capability.
Users can also produce a verify-cap from a read-cap, or pro-
duce a read-only-cap from a read-write-cap. This is called
diminishing a capability.
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3. ERASURE CODING
All data is erasure coded using Reed-Solomon codes over

GF (28) [28]. When writing, a writer chooses erasure cod-
ing parameters N – the total number of shares that will be
written – and K – the number of shares to be used on read.

Using this codec allows an efficient byte-wise implemen-
tation of encoding and decoding, and constrains the choice
of erasure coding parameters to be 1 <= N <= 256 and
1 <= K <= N .

Compared to erasure codes such as Tornado Codes [5],
Reed-Solomon codes offer optimal storage overheard – ex-
actly b blocks of erasure code data (plus metadata – the in-
dex number of each block) are necessary to decode a b-block
file. On the other hand, Reed-Solomon codes suffer from
asymptotically worse computational complexity – the time
to encode or decode a file with a Reed-Solomon codec is in
the worst case proportional to N2 where N is the number of
erasure code blocks. Other codes offer asymptotically faster
encoding and decoding – O(N) computational complexity –
but they impose storage overhead – more than b blocks are
necessary to reconstruct a b block file. Also, many of these
faster codes are patented.

In Tahoe we have learned that since K and N are small
and since our implementation of Reed-Solomon (“zfec”) is
fast [25], the measured computational cost of erasure coding
is low, and in fact is lower than the cost of the encryption
and secure hash algorithms.

4. CRYPTOGRAPHY

4.1 Requirements
Tahoe is designed to run in software without requiring

“Trusted Computing” (also called “Treacherous Computing”
[2]) hardware. Therefore, the only robust way to constrain
users or administrators from certain behavior such as unau-
thorizedly reading or altering files is to make such behavior
require secrets, and to withhold those secrets from people
who are not authorized to perform those behaviors. Thus,
cryptography.

In this section we will describe the access control require-
ments of the different kinds of capabilities and how Tahoe
satisfies those requirements using cryptographic techniques.

We want a verify-cap to enable its wielder to check the
integrity of a file, but not to enable its wielder to learn the
file’s plaintext. This way a user can delegate to some other
entity (such as a backup service) the job of checking that a
file is still correctly stored, without sacrificing confidential-
ity.

A read-only-cap to a file has to give the ability to read
the plaintext of the file and also to verify its integrity. We
also require that a holder of a read-only-cap to a file is able
to diminish it to produce a verify-cap to the same file.

A read-write-cap is meaningful only for mutable files. A
read-write-cap grants its wielder the ability to write new
contents to a file, and to produce a read-only-cap to the
same file.

It is essential that these powers can not be gained by some-
one who has not been granted the appropriate capability. In
particular, knowing a read-only-cap to a mutable file must
not allow a user to change the contents of that file. This im-
poses an asymmetric cryptographic requirement on mutable
file capabilities: users who hold a read-only-cap but not a
read-write-cap must be able to check the integrity of the file
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Figure 1: immutable file

without being able to produce texts which would pass the in-
tegrity check. This excludes symmetric integrity primitives
such as Message Authentication Codes [19], and requires us
to use the more computationally expensive digital signatures
[19].

An additional requirement that we impose on read-only-
caps and read-write-caps is that they are short enough to
be conveniently used by humans, for example by being em-
bedded in URLs. This requirement is not common in cryp-
tography, and satisfying it turns out to require some careful
cryptographic constructions.

4.2 Cryptographic Preliminaries
In the description that follows a “secure hash”, denoted

H, always means SHA256d [8]. SHA256d(x) is equal to
SHA256(SHA256(x)). This construction prevents length-
extension attacks [26].

In addition, each time we use a secure hash function for a
particular purpose (for example hashing a block of data to
form a small identifer for that block, or hashing a master key
to form a sub-key), we prepend to the input a tag specific
to that purpose. This ensures that two uses of a secure hash
function for different purposes cannot result in the same
value. This is necessary to ensure that the root of a Merkle
Tree can match at most one file, and it is a good hygienic
practice in any case [15] [23].

“Merkle Tree” always means a binary Merkle Tree [20]
using SHA256d as its secure hash, using one tag for the
secure hash function to generate an internal node from its
children and another tag for the secure hash function to
generate a leaf from a segment of the file that the tree covers.

“Encrypt” always means encrypt using AES-128 in CTR
mode [18].

4.3 Immutable Files
An immutable file (Figure 1) is created exactly once and

can be read repeatedly. To create an immutable file, a client
chooses a symmetric encryption key, uses that key to encrypt
the file, chooses erasure coding parameters K and N , erasure
codes the ciphertext into N shares, and writes each share to
a different server.

Users may opt to derive the encryption key from the secure
hash of the plaintext of the file itself, a technique known
as convergent encryption [7]. Convergent encryption allows
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two users to produce identical ciphertext in two independent
writes of the same file. Since Tahoe coalesces storage of
identical ciphertexts this can be a space savings. However,
use of convergent encryption can undermine confidentiality
in some cases [30], and a measurement of files stored on
allmydata.com showed less than 1% of files (by aggregate
file size, not file count) are shared between users. To protect
confidentiality, Tahoe mixes in an added convergence secret
which limits the scope of convergent encryption to users who
share the same convergence secret.

For immutable files, the verify-cap is derived from the ci-
phertext of the file using secure hashes. We use a combina-
tion of two different secure hash structures to defend against
two different problems that could arise in file validity.

The first problem is that if the integrity check fails, the
client needs to know which erasure code share or shares were
wrong, so that it can reconstruct the file from other shares.
If the integrity check applied only to the ciphertext, then
the client wouldn’t know which share or shares to replace.
Instead we compute a Merkle Tree over the erasure code
shares. This allows the client to verify the correctness of
each share.

However, this Merkle Tree over the erasure code shares
is not sufficient to guarantee a one-to-one mapping between
verify-cap and file contents. This is because the initial cre-
ator of the immutable file could generate some erasure code
shares from one file and other erasure code shares from an-
other file, and then including shares from both files in the
set of N shares covered by the Merkle Tree. In this case, the
reader would see a different file depending on which subset
of the shares they used to reconstruct the file [10].

In order to ensure that there is a one-to-one mapping from
verify-cap to file contents, we construct another Merkle Tree
over the ciphertext itself. Since it is a Merkle Tree instead
of a hash of the entire file contents, the reader can verify the
correctness of part of the file without downloading the en-
tire file. This allows streaming download, such as to watch
a movie while it is downloading. It also allows the client
to perform a simple Proof of Retrievability protocol [14] by
downloading and verifying a randomly chosen subset of the
ciphertext (this protocol is not deployed in the current re-
lease of Tahoe, but is a work in progress).

The roots of the two Merkle Trees are kept in a small block
of data, a copy of which is stored on each server next to the
shares. This structure is called the “Capability Extension
Block” because its contents are logically part of the capa-
bility itself, but in order to keep the capability as short as
possible we store them on the servers and fetch them when
needed.

The verify-cap is the secure hash of the Capability Exten-
sion Block.

The read-cap to an immutable file is the the verify-cap
and the symmetric encryption key.

4.4 Mutable Files
Each mutable file (Figure 2) is associated with a unique

RSA key pair [27]. Authorized writers have access to the
private key (the signing key, or SK) so that they can make
digital signatures on the new versions of the file that they
write.

However, RSA keys are too large for humans to casually
manipulate such as by embedding them in URLs – we use
2048-bit (256 byte) RSA keys. In order to have small read-
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Figure 2: mutable file

caps and write-caps we create small (16-byte) secrets cryp-
tographically linked to the RSA keys in the following way.

To write to a mutable file, a client first computes the write
key, WK = Htrunc(SK), where Htrunc denotes SHA256d
with its output truncated to 16 bytes. It then computes the
read key, RK = Htrunc(WK). Therefore anyone who has
the write key can easily compute the read key, but knowledge
of the read key does not confer useful information about the
write key.

A client which is writing a file generates a new random
16 byte salt and computes the encryption key with EK =
H(RK, salt).

Using this encryption key, the client encrypts the plain-
text to produce the ciphertext, erasure codes the ciphertext
to form shares, and writes each share to a different server,
computing a Merkle Tree over the shares: ciphertext =
Encrypt(EK, plaintext).

Using the signing key SK, the client signs the root hash
of the Merkle Tree, as well as the salt, the erasure coding
parameters, the filesize, and a sequence number indicating
that this version of the file contents supercedes the previous
one.

For mutable files, verification involves checking a digital
signature. A copy of the RSA public key – the verifying key
or V K – for each file is stored in the clear along with the
erasure coded shares of the file on each server.

The verify-cap must provide the ability to check that the
verifying key which is stored on the storage server is the
right one. This is accomplished by making the verify-cap be
the secure hash of the verifying key: V C = H(V K).

The read-only-cap to a mutable file includes V C, and in
addition contains the read key: RC = V C, RK.

The read-write-cap to a mutable file includes V C, and
in addition contains the write key: WC = V C, WK. The
holder of a read-write-cap needs to get the ability to pro-
duce digital signatures on new versions of the file. This is
accomplished by storing the RSA signing key SK, encrypted
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with WK on the servers. This somewhat unusual arrange-
ment means that the RSA signing key is encrypted with the
truncation of the secure hash of itself.

This is an instance key-dependent encryption [3] [12] [11],
which is not as well-studied as we would like. However, we
think that it would be surprising if there were a weakness in
this construction which did not imply a weakness in the un-
derlying standard primitives – RSA, AES-128, and SHA256.
See 6.1 for a proposal to replace this nonstandard crypto-
graphic construction with a different nonstandard crypto-
graphic construction with better performance properties.

WK serves as both integrity check on SK (the client ver-
ifies that the Htrunc(SK) = WK) and access control to
the RSA signing key (the client uses WK to decrypt SK
in order to use SK to produce digital signatures). It also
serves to provide writers with access to RK, since RK =
Htrunc(WK).

4.5 Directories
Capabilities can be used as the child links in directories. A

directory could simply be a mutable file which contains a set
of tuples of (child name, capability to child). If directories
were implemented like this, then anyone given read access
to the directory would be able to learn the child names and
corresponding capabilities, thus enabling them to follow the
links. Anyone given write access to the directory would be
able to change the set of children.

Tahoe doesn’t use this scheme though, because we want
something in addition, the property of transitive read-only
– users who have read-write access to the directory can get
a read-write-cap to a child, but users who have read-only
access to the directory can get only a read-only-cap to a
child. It is our intuition that this property would be a good
primitive for users to build on, and patterns like this are
common in the capabilities community, e.g. the “sensory
keys” of KeyKOS [13].

In order to implement transitive read-only we include two
slots for the caps for each child – one slot for a read-write-cap
and one for a read-only-cap. All of the directory information
is of course encrypted as usual when the directory is written
as the contents of a Tahoe mutable file, but in addition the
read-write-caps to the children are super-encrypted – they
are encrypted separately by the writer before being stored
inside the mutable file.

5. FRESHNESS OF MUTABLE FILES AND
DIRECTORIES

We’ve shown how our use of cryptography makes it impos-
sible for an attacker – even one who controls all of the servers
– to violate the confidentiality of the user, which would allow
unauthorized people to learn the contents of files or directo-
ries. We’ve also shown how our use of cryptography makes
it impossible for an attacker – even one who controls all of
the servers – to forge file or directory contents. However
the digital signature does not prevent failing or malicious
servers from returning an earlier, validly signed, version of
the file contents.

In order to make it more difficult for servers to (either
accidentally or maliciously) serve a stale version of a muta-
ble file, Tahoe leverages the erasure coding scheme. Each
version of a mutable file has a sequence number. The read
protocol proceeds in two phases. In the first phase, the

reader requests the metadata about a share from each of
K + E servers. K is the number of shares necessary to re-
construct the file, and E is a constant configured into the
Tahoe client for the number of “extra” servers to read from.
In the current Tahoe client K is set to 3 and E is set to K.

If after querying K + E servers, the client learns that
there are at least K shares of the highest numbered version
available, then the client is satisfied and proceeds to the
second stage. If it learns about the existence of a higher
version number but does not find at least K shares for that
version, then the client will continue query more servers for
their metadata until it either locates at least K shares of the
newest known version or it runs out of servers to query.

Once the first phase has ended, either because the client
ran out of servers to ask or because it learned about at least
K shares of the newest version that it learned about, then
it proceeds to the next phase and downloads the shares.

This scheme reduces the chance of incurring a stale read,
either accidental or malicious, provided that enough of the
servers are honest and have fresh data. Tahoe makes no at-
tempt to enforce other consistency properties than freshness
of mutable files. For example, it makes no attempt to en-
force linearization of operations spanning more than a single
file, as in Byzantine Fault-Tolerant filesystems such as [17]
[9].

6. FUTURE WORK

6.1 ECDSA and Semi-Private Keys
A performance problem with the RSA-based write capa-

bilities is the generation of a new RSA key pair for each
mutable file. On our modern commodity PC hardware, the
process of generating a new 2048-bit RSA key pair takes be-
tween 0.8 seconds and 3.2 seconds.generating an RSA key
pair is done by ic

An alternative digital signature scheme which offers fast
key generation is DSA [24]. Creating a new DSA key is as
easy as choosing an unguessable secret x (and a generator g)
and then computing gx in some appropriate group. On our
hardware, generating a new DSA key pair takes less than
one millisecond.

Another potential improvement would be to use Elliptic
Curve Cryptography (or ECC ) instead of traditional integer-
based cryptography for the DSA group. ECC with similar
conjectured security to our 2048-bit RSA keys would require
only 192-bit ECC keys [16]. Such short keys could be suit-
able for including directly in capabilities.

However, observe that even with the use of short ECC
keys, we cannot simply make the write-cap be the private
key and make the verify-cap be the public key, because then
the read-cap would be unspecified. We require three, not
two, levels of privilege separation – write-caps, read-caps,
and verify-caps. We require that the lower levels of privi-
lege can be easily computed from the higher ones (to effi-
ciently diminish capabilities) but not, of course, the other
way around, and we require that the write-cap enable its
holder to create digital signatures and the read-cap enable
its holder to check the validity of such signatures.

This could be accomplished by including a separate secret
in the read-cap, but then the read-cap would be too large
to casually embed into URLs. A 192-bit secret, encoded in
a suitable URL safe base-62 encoding, looks like this:
http://hostname/2DM7XkGnnlFjIg8ozYy2pLo4qrkh6EY71
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Two cryptographic values (a 128-bit encryption secret and
a 192-bit hash value) would look like this:
http://hostname/ArpPguJIBJwtvm1F5JaoR6pWVVTF4eiNa

YWL8e5iF78rq2OAdzZL2z

Therefore we propose a novel cryptographic construction,
the semi-private key. A semi-private key is one which is
more private than the public key, and less private than the
private key, and which can be used to derive the public key
in order to check signatures.

To implement semi-private keys in DSA, recall that the
private key is the randomly chosen number x and the public
key is the value gx. Instead, randomly choose a secret num-
ber x, set the semi-private key y to be y = H(gx), and then
set the public key to be gxy. The signing key is therefore xy.
(Note that it is possible to iterate this process to produce
semi-semi-private keys and semi-semi-semi-private keys, for
as many levels of privilege separation as desired.)

Using semi-private keys we can implement capabilities
which are short, and which have a much simpler design:
Figure 3.

Intuitively, it would be surprising to us if digital signatures
using this scheme were vulnerable to an attack which did
not also defeat DSA itself. It seems closely related to the re-
cent formulation of“The One-Up Problem for (EC)DSA”[4].
However, we have not proven that this scheme is as secure as
ECDSA so, like the key-dependent encryption scheme from
section 4.4, we currently have only heuristic arguments to
believe that this scheme is secure.

7. DEPLOYMENT
The first beta of Allmydata.com was released April 3, 2008

and the first product was shipped May 5, 2008. At the time
of this writing, September 15, 2008, allmydata.com oper-
ates 40 servers, typically has about 300 clients connected
at any time, and typically has about 200 to 300 users ac-
cessing the filesystem through a web front-end in a 24-hour
period. There are about 5.0 million user files stored, with
an aggregate size of about 7.6 TB. See Figure 4.
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Figure 4: storage grid statistics for allmydata.com
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8. CONCLUSIONS
Tahoe, The Least-Authority Filesystem, is a practical se-

cure, decentralized filesystem, using several techniques of
which have previously been analyzed in the theoretical lit-
erature but not widely deployed. Tahoe’s security is based
on cryptographic capabilities for decentralized access con-
trol, which have proven to be flexible enough to serve our
requirements so far. It uses Reed-Solomon codes for fault-
tolerance, which have been characterized as being asymp-
totically inefficient in the literature but which are quite fast
enough in practice. Some non-standard cryptographic con-
structions were required to make cryptographic capabilities
short enough to fit conveniently into URLs.

Tahoe is open source (http://allmydata.org) and is cur-
rently in use in the allmydata.com backup service.
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