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Abstract

Anonymous routing protects user communication from
identification by third-party observers. Existing anony-
mous routing layers utilize Chaum-Mixes for anonymity
by relaying traffic through relay nodes called mixes. The
source defines a static forwarding path through which
traffic is relayed to the destination. The resulting path
is fragile and shortlived: failure of one mix in the path
breaks the forwarding path and results in data loss and
jitter before a new path is constructed. In this paper, we
propose Cashmere, a resilient anonymous routing layer
built on a structured peer-to-peer overlay. Instead of
single-node mixes, Cashmere selects regions in the over-
lay namespace as mixes. Any node in a region can act
as the MIX, drastically reducing the probability of a mix
failure. We analyze Cashmere’s anonymity and measure
its performance through simulation and measurements,
and show that it maintains high anonymity while pro-
viding orders of magnitude improvement in resilience to
network dynamics and node failures.

1 Introduction

In many applications it is desirable to hide the identity
of the communicating parties from each other and third-
party observers. The ability to anonymously route pack-
ets is used in many applications, such as anonymous web
browsing [1], anonymous voting and in peer-to-peer ap-
plications wanting to ensure fair resource sharing [19].

The first-generation of applications that used anony-
mous routing, including the Anonymizer [1], were
centralized, with central points of failure. More re-
cent anonymous routing proposals [22, 30, 11] extend
Chaum-Mixes [3] by forwarding traffic through a se-
quence of relays. Each relay is a single network end-
point. They attempt to ensure that the identity of the mes-
sage source is never revealed to the destination, and the
source and destination identities are hidden from relays

and third-party observers. They achieve this by wrapping
the payload and the sequence of relays through which a
message is to be forwarded in layers of public key en-
cryption, with one layer for each relay to be used. This
requires that a set of relays be statically chosen at the
beginning of a communication session. In general, if
A sends a message M to B, then A defines a forward-
ing path that is a sequence of L relays R1, R2, . . . , RL.
Each relay has a public/private key pair, where the pub-
lic key of relay Ri is Ki. The message M is then sent
encrypted in the form of R1 < R2, < R3, . . . < RL, <
B, M >KL

>KL−1
. . . >K2

>K1
.

Successful end-to-end message delivery requires that
every relay Ri in the forwarding path successfully de-
crypts its designated layer and forwards the message to
the next relay. If the next relay has failed or is unreach-
able, then the message cannot be forwarded any further.
When this occurs the source must discover the failure
and then select a new set of live relays and resend the
payload. Detecting failures in the routing path is made
difficult because relays cannot send error messages to
the anonymous source. This means that while these sys-
tems work in static and reliable networks, their perfor-
mance degrades on less reliable wide-area links. They
are also unlikely to function well on peer-to-peer and ad-
hoc networks, where both end-point and link failure are
observed regularly.

We propose a failure resilient anonymous routing sys-
tem called Cashmere. Cashmere achieves resilience by
using a set of distributed endpoints as a single virtual re-
lay rather than a single endpoint. We refer to these end-
points as relay groups, and the forwarding path used in
Cashmere is a sequence of relay groups. All members
of a relay group share a public/private key pair. Lay-
ered encryption is still used on the forwarding path, us-
ing the public key of the relay group. Every member of
the relay group has the ability to independently decrypt
the next layer in the forwarding path. A forwarding path
is valid as long as each relay group used in the forward-
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ing path has at least one single live reachable member.
While Chaum-Mixes route to the destination as the last
hop, the destination in Cashmere is a member of any one
of the relay groups on the forwarding path. The source
randomly orders the relay groups to hide the destination
relay group. When a message arrives at a member of a
relay group, the receiver both anycasts the message to the
next relay group and broadcasts the decrypted contents to
all other members of the relay group. This ensures that if
the destination is a member of the current group, it will
receive the message.

Design Goals There are different types of
anonymity [23]. Cashmere is designed to provide
both source anonymity and unlinkability of source and
destination. Unlinkability means that even if the source
and destination can each be identified as participating
in some communication, they can not be identified as
communicating with each other. Source anonymity
means that the identity of the source is hidden to all
other nodes including the receiver. An attacker may be
able to associate a set of messages with the same session
but cannot determine the source, destination or the
message payload. Provided the source does not divulge
its identity in the message payload or collude with
attackers, Cashmere provides both source anonymity
and unlinkability even if the destination is controlled by
an attacker. Cashmere can easily be extended to provide
destination anonymity, where the destinations identity is
hidden to all other nodes including the source, using an
additional level of indirection.

Attack model We assume the attacker controls a
fraction f of the nodes in the Cashmere network and
these compromised nodes collude, sharing all informa-
tion such as private keys. We assume a Byzantine failure
model where compromised nodes can behave arbitrarily.
The attacker can observe all messages sent over the net-
work, regardless of whether the source or destination is
controlled by the attacker, and there is zero latency for
messages sent between compromised nodes.

The rest of this paper is structured as follows. We give
an overview of related work and their limitations in Sec-
tion 2. Next, we present the design of Cashmere in Sec-
tion 3. We then discuss details of our current Cashmere
implementation in Section 4. In Section 5, we analyze
the level of anonymity in Cashmere and evaluate its se-
curity and performance using both simulation and mea-
surements from an actual implementation. Finally, we
outline future work and conclude in Section 6.

2 Related Works and Limitations

The original anonymous system redirected traffic
through a centralized proxy [1]. Chaum [3] improved on

this by using mix networks to create anonymous email,
and inspired a number of subsequent systems [11, 24, 10,
7], including the Onion Routing system [22, 31]. Onion
Routing relies on traffic redirection between a static set
of dedicated onion routers that maintain pair-wise sym-
metric keys. To send a message, the source selects a
set of currently active routers through which a message
is forwarded. These requirements limit the scalability
of Onion Routing, especially in environments with node
churn. Tor [9] proposes using a directory server to main-
tain router information but this approach is also limited
in scalability. It has also been shown that if the first or
last router is compromised in an Onion Routing network,
the source or destination is revealed [30].

Tarzan [11] also uses layered encryption and multi-
hop routing. The source chooses a set of relays to act as
a path and iteratively establishes a tunnel through these
relays with symmetric keys between them. Hence, the
creation of a tunnel incurs both significant computation
overhead and delay. The tunnels are static and any relay
failure requires formation of a new tunnel.

Crowds [23] and more recently AP3 [16] make use of
probabilistic random forwarding. Crowds is limited in
scalability because of its centralized admission control
server, and has been shown to provide lower anonymity
than Chaum-Mixes based systems [8].

Wright et al. [32, 33] have shown that relying on static
forwarding paths impacts the anonymity properties of
anonymous routing layers. They proposed a degradation
attack applicable to Crowds, Onion Routing and other
anonymizing systems that exploits the requirement to re-
construct the paths when they break due to node or link
failure. During a long communication session, the path
between source and destination is reconstructed many
times, and each instance of the path must include the
sender. After a large number of resets, the sender has
much higher probability of being a path member than
other nodes. Assume that the “first” attacker on each
path (of the same session) logs its predecessor. After a
number of path resets, the identity of the sender can be
guessed with increasing probability.

Cashmere addresses these limitations by removing the
reliance on static paths. By using flexible relay groups to
maintain resilient long-lived paths, we improve perfor-
mance by reducing path reconstruction time, and also re-
duce our vulnerability to the degradation attacks [32, 33]
mentioned above. We gain these benefits with minimal
loss to the level of anonymity attained compared to other
Chaum-Mixes approaches.

3 Cashmere Architecture

Cashmere uses layered-encryption and multi-hop routing
through relays. Instead of using a single node as a relay,
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Cashmere uses a set of nodes that act as a virtual relay,
called a relay group. All members of a relay group share
a common public/private key pair.

A forwarding path consists of a sequence of relay
groups. Any member of a relay group is able to decrypt
the forwarding path information for a message and for-
ward the message to the next relay group. The member-
ship of the relay group can change dynamically. As long
as the relay group has at least one member, it is able to
successfully relay messages. This makes Cashmere ex-
tremely resilient to node churn. A relay group is an any-
cast group, and the forwarding of a message in analogous
to anycasting to the next relay group. Unlike in Chaum-
Mixes where the destination is the last hop, in Cashmere
the destination is a member of one of the relay groups.

Cashmere is built on a structured overlay, and we
leverage this to both dynamically create and maintain the
relays groups as well as for routing between relay groups.

3.1 Structured Overlay Networks

Structured overlay networks provide a scalable routing
substrate for building resilient, large-scale decentralized
systems [21, 26, 29, 34]. A structured overlay is com-
posed of a set of nodes, where each node represents
an instance of a participant in the overlay. The struc-
tured overlay maintains a large k-bit identifier space, e.g.
k=160. Nodes are assigned nodeIDs uniformly at ran-
dom from this space, generated and signed by an off-line
central authority (CA).

Most structured overlays support Key-Based Routing
(KBR) [6], enabling applications to route a message
to any specified key selected from the identifier space.
These overlays dynamically map each key to a unique
live node in the overlay, the root node for the key. The
root could be the node with the nodeID numerically clos-
est or with the longest prefix match to the key.

Each node in a structured overlay maintains a routing
table that typically contains O(log N) nodeIDs and IP
addresses of other nodes in the overlay, where N is the
number of nodes in the overlay. By using nodeID con-
straints when choosing nodes for their routing table, they
can route messages in O(log N) hops.

Cashmere is designed to use a prefix-routing based
structured overlay, like Tapestry or Pastry. Routing in
such overlays requires that at each hop the message is
forwarded to a node whose nodeID shares a longer prefix
match than the current node’s nodeID. Figure 1 shows an
example of prefix routing. At each hop the prefix match
between the current nodeID and the key increases by one
digit. These protocols are resilient to node churn [4], and
can route around a large number of link failures [35].

Cashmere is being used as an anonymous routing in-
frastructure. The attacker could attempt to compromise

the structured overlay, and thus compromise anonymity
layer built on top it. To address this, we assume the struc-
tured overlay is secured against malicious nodes using
the techniques described in [2] and [14]. In this paper
we do not address the issue of denial of service (DoS) at-
tacks. In Cashmere, DoS attacks affect performance but
not the level of anonymity. Finally, our design can toler-
ate a large proportion of malicious nodes, and anonymity
can be increased by creating longer relay paths even if a
large proportion of the overlay has been corrupted. We
also generate sufficient cover traffic1 in the network to
prevent simple traffic analysis attacks.

3.2 Relay groups

Relay group membership management in Cashmere ex-
ploits properties of the identifier space maintained by
prefix-routing based structured overlays. In particular,
for each k-bit nodeID there are k unique prefixes. For
example, the 6-bit nodeID 101011 has prefixes: 1, 10,
101, 1010, 10101 and 101011. In general, if there
are N nodes it is expected that N/2m will share the same
m-bit prefix.

In Cashmere, each relay group has a groupID which
is an m-bit identifier, where 1 ≤ m ≤ k. A node is a
member of that relay group if the groupID is a prefix of
its nodeID. Since nodeIDs are randomly assigned, nodes
in a relay group are a random subset of the overlay nodes
and exhibit independent failure patterns. Each prefix re-
quires a public/private key pair and all nodes that share
that prefix need both the public and private key. We as-
sume these are generated and distributed using an off-line
CA. In general, a user wishing to contribute a node to the
system must obtain from the CA a signed k-bit nodeID
and the set of k public/private keys associated with its
nodeID and must have access to all the public keys of the
other prefixes. Each nodeID must be unique, so the pub-
lic/private key for the k-bit prefix will be unique to this
nodeID.

The structured overlay routes messages between re-
lay groups. The groupID is used as the key as a mes-
sage is routed using KBR. As the message is routed,
the first node that receives the message and shares the
groupID prefix processes the message on behalf of the
relay group. This node is referred to as the relay group
root. Therefore, routing a message to a groupID is effec-
tively performing an anycast to the relay group members.

Generally, if node A wants to route a message to node
B anonymously, it selects a random sequence of m-bit
groupIDs that defines the set of relay groups and includes
the m-bit prefix of B. These are used to construct a for-
warding path, i.e. a sequence of relay groups the message
routes through. Since A selects the groupIDs randomly,
the path cannot be predicted by others. The value of m
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Figure 1: Routing example in a structured
overlay using prefix routing. Node 5230

routes a message to the key 8954. At each
hop the message is forwarded to a node
that shares a longer prefix with the key.
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Figure 2: A forwarding path from A to B composed of multiple relay
groups. Here a relay group is defined by a 3-digit prefix. At each relay
group, the first node to receive the message broadcasts the message to all
members of the group using directed broadcast. In the inset, node 12302

forwards the message to the rest of the relay group for prefix 123.

controls the expected size of the relay group, and con-
sequently the resilience against failures and malicious
nodes. A encrypts the forwarding path in multiple layers
using the public keys associated with each relay group.
The overlay routes the message to the first relay group
using its groupID. When any node matching the current
prefix receives the message, it becomes the relay group
root for that message, and uses the relay group’s private
key to decrypt the next layer of the path. This reveals
the next groupID and the message is routed through the
overlay to that prefix.

3.3 Decouple forwarding path and payload

Unlike other Chaum-Mixes based systems, Cashmere
decouples the payload from the encrypted forwarding
path, and encrypts the payload separately. This has the
advantage that a source can reuse a forwarding path,
avoiding multiple public key encryptions. The source
caches the forwarding path, and only needs to perform a
single public key encryption on each message using the
destination’s unique public key.

The source needs to encrypt each message payload
such that it can only be decrypted by the true desti-
nation and such that each relay sees a different value
for the payload (as do eavesdroppers). Suppose there
are L relay groups in the forwarding path: P1, · · · , PL

and the destination node B is in relay group Pd where
1 ≤ d ≤ L. In order to encrypt the payload the source
generates a symmetric key (Ri) for each relay group Pi,
where 1 ≤ i ≤ L. The source generates the payload:

Payloadi =

{

〈

Payloadi+1

〉

Ri
1 ≤ i < d

〈M〉PubKeyB
i = d

where 〈M〉PubKeyB
is the real payload encrypted by the

destination’s public key and 〈·〉∗ indicates the content is

encrypted using the key on the subscript. The source
generates a forwarding path by:

Pathi =

{

〈Pathi+1, Pi+1, Ri〉PubKeyPi

1 ≤ i ≤ L

⊥ (termination) i = L + 1

The source then anycasts the tuple [Path1, Payload1] to
the first relay group P1. In general, the i-th relay group
root receives messages [Pathi, Payloadi] from the pre-
vious relay group. The i-th relay group root uses the
groups public key to decrypt the outer layer of Pathi,
revealing Pathi+1, the identity of the next relay group,
Pi+1 and the symmetric key Ri. The i-th relay group
root decrypts Payloadi using Ri, generating Payloadi+1.
Provided Pathi+1 is not ⊥ then the relay group root any-
casts the tuple [Pathi+1, Payloadi+1] to the next relay
group Pi+1. During a single session, the source caches
Path1 and generates Payload1 for each message.

This process ensures that Pathi 6= Pathj and
Payloadi 6= Payloadj if i 6= j. In particular, the source
only encrypts the payload with the symmetric keys for
the relay groups R1, . . . , Rd−1. The path has embed-
ded within it the symmetric keys R1, . . . , RL. At each
of the relay groups Pd, . . . , PL the payload will be de-
crypted using appropriate symmetric key, resulting in the
forwarded payload being a random number. This ensures
that Payloadi 6= Payloadj if i 6= j.

However, there is no guarantee that when the mes-
sage reaches Pd that the relay group root will be node
B, as any member of a relay group can receive a mes-
sage for its relay group. To ensure B receives the mes-
sage, we multicast the payload to the entire relay group.
If node X receives the message (thus becoming the re-
lay group root for the message), then X decrypts the re-
lay group’s layer from the path in the message and de-
crypts the payload with the revealed R. X caches the
map Pathi ↔ 〈Pathi+1, Pi+1, Ri〉 to reduce the compu-
tational load when further messages from the same ses-
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Figure 3: A detailed look at the path and payload components of a message, before and after processing at a relay
group. The relay group root for Pi decrypts the layer around the path component to get Pi+1, Ri, Ki. It performs a
symmetric decryption on the payload using Ri, and forwards the result to the relay group Pi+1.

sion are received. X forwards the message to the next
relay group and broadcasts Payloadi to all members of
the relay group (we discuss the exact mechanism in Sec-
tion 4). No matter what position B’s relay group is in
the path, B will receive the message either directly or
via a broadcast when the message routes to a member
of its relay group. Only B will be able decrypt the pay-
load successfully. An example of this Cashmere routing
is shown in Figure 2.

The use of a broadcast has two implications addressed
below; (i) that each node in a relay group has to perform
an asymmetric decryption for each packet in a session;
and (ii) malicious nodes can either drop messages or not
broadcast them to the relay group. While such actions
do not compromise anonymity they do negatively impact
performance. We rely on end-to-end acknowledgments
to detect failures and malicious nodes: if the source re-
ceives no acknowledgments, it can use timeouts to guide
retransmission.

We eliminate the need to perform asymmetric en-
crypt/decrypt operations on the data payload by encrypt-
ing it using a symmetric key SymKeyB chosen when a
source creates a path. In addition to the next relay group
prefix, Pi, and a group session key, Ri, we embed an-
other value Ki into the layered encrypted path. If desti-
nation B is in relay group d, then

Kd = 〈SymKeyB|FLAG〉PubKeyB
,

where | means concatenation. All other Ki values are
random numbers. Now the format of Pathi is changed to

Pathi = 〈Pathi+1, Pi+1, Ri, Ki〉PubKeyPi

,

and M is no longer encrypted with PubKeyB but is now
encrypted with SymKeyB , 〈M〉SymKeyB

. Figure 3 illus-
trates the full mechanism.

Now relay group roots broadcast 〈Ki, Payloadi〉 to all
members in the relay group. B decrypts Kd and iden-
tifies FLAG, thereby knowing that it is the destination.

Using SymKeyB B can decrypt M . All other members
of this relay group cache Ki. For future packets in the
same session, they remember they are not the destina-
tion node and without further decryption operations. B
caches SymKeyB and associates it with Ki and therefore
only needs to perform symmetric decryption for subse-
quent session payloads.

This also has the advantage that relay group roots can
cache 〈Pathi+1, Pi+1, Ri, Ki〉 if they have already for-
warded messages for the same session. Relay group
roots can identify messages using Pathi as the session
ID, hence no asymmetric decryption is necessary.

3.4 Anonymous Reply Addresses

A destination can reply to a source without sacrificing
source anonymity or requiring state to be stored in the
relay groups in the forwarding path. The destination can
reply to the source either a pre-formatted reply message
(e.g. an acknowledgment) or a message containing an
arbitrary payload. The reply message shares all of the
performance and security benefits with the anonymous
messages from source to destination.

Node A wishes to send an anonymous message to B
and receive a reply. A creates a forwarding path to B
as described, but also generates a return forwarding path
from B to A. A does this by randomly selecting L relay
groups (P ′

1, . . . , P
′
L). The set of relay groups used in the

return forwarding path may or may not intersect with the
set of relay groups used in the forwarding path from A
to B. A ensures that a relay group containing itself, Pd′ ,
is included in the return path. A sends ReplyAddrInfo as
part of the payload to B, where:

ReplyAddrInfo =
〈

Path′1, P
′
1, SymKeyA

〉

Path′i =

{
〈

Path′i+1, P
′
i+1, R

′
i, K

′
i

〉

PubKeyP ′

i

1 ≤ i ≤ L

⊥ (termination) i = L + 1

K ′
i =

{

k′
i i 6= d′

〈SymKeyA|FLAG〉PubKeyA
i = d′
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where k′
i and R′

i are selected uniformly at random,
P ′

L+1 = ⊥. If B wants to send a payload M ′ to A, it
sends Msg′ as [Path′1, 〈M

′〉SymKeyA
] to P ′

1. While Msg′

is created by B, it knows nothing about the path and the
source. The root of each relay group P ′

i decrypts Path′i
the same as in the forwarding path, while it encrypts
Payload′i with R′

i to get Payload′i+1 =
〈

Payload′i
〉

R′

i

.

Node A who is located in relay group P ′
d′ will receive

message
〈

K ′
d′ , Payload′d′

〉

, where Payload′d′ is the lay-
ered encryption of 〈M〉SymKeyA

by R′
1, . . . , R

′
d′−1. After

A decrypts K ′
d′ using PubKeyA, A can use SymKeyA to

identify which session the reply belongs to, and thus the
keys R′

i (1 ≤ i < d) to decrypt Payload′d′ . All caching
schemes used in the forwarding path also apply to the
return path.

3.5 Selection of GroupID and Path Length

The final issue is how a source selects groupIDs for relay
groups. Observation 1 shows the relation between the
length of groupIDs and relay group sizes.

OBSERVATION 1: (Distribution of Relay Group
Sizes) Let N be the number of nodes in the overlay and
nodeIDs are assigned to all nodes uniformly at random.
The size of relay groups defined by a m-digit groupID
is Poisson distributed with parameter ρ = N

2m . The ex-
pected size of the relay group is ρ. [Proof omitted]

A valid groupID requires that there exists at least one
node that has the groupID as a prefix. As N is much
smaller than the size of the nodeID identifier space, there
will be many invalid groupIDs. From Observation 1, the
probability that a groupID is valid is p1 = 1−e−ρ. When
a node forms a path by selecting groupIDs uniformly
at random, the chance that the path contains only valid
groupIDs is (p1)

L = (1− e−ρ)L, where L is the number
of relay groups used in the path. The expected number
of tries to generate a valid path, one that is composed on
only valid groupIDs, is 1

(1−e−ρ)L . Table 1 shows the av-
erage number of tries to generate a valid path is slightly
larger than 1 under typical L and ρ values.

In Cashmere, nodes independently (without external
communication) select per-session values of m (which
determines ρ) and L to control tradeoffs between churn
resilience, anonymity and overhead. We discuss this in
Section 5.1. In general, choosing a value of between 3
and 5 for ρ, and a value of L between 4 and 8 provides a
good combination of efficiency and resiliency. Because
nodeIDs are uniformly distributed, nodes can locally es-
timate N using their routing tables. From Observation 1,
a node can always get the average relay group size (ρ) it
wants by selecting a proper prefix length m. The design
of Cashmere removes the high cost of maintaining com-
plete or near-complete overlay membership information.

L = 4 L = 5 L = 6 L = 7 L = 8

ρ = 4 1.0767 1.0968 1.1173 1.1381 1.1594
ρ = 5 1.0274 1.0344 1.0414 1.0485 1.0556

Table 1: Average number of tries to get a valid path.

4 Implementation

We implemented Cashmere on top of FreePastry [12], a
Java implementation of Pastry [26]. The implementation
uses RSA (with 512-bit key length) and Blowfish (with
128-bit key length) as the asymmetric key and symmetric
key ciphers, and uses the Cryptix [5] crypto library.

Applications use a simple Cashmere API. The source
creates an AnonymousChannel object specifying a desti-
nation nodeID, and uses it to forward payloads. An appli-
cation instance running on the destination node receives
an up-call with the payload.

The Cashmere implementation ensures that relay
group roots cache Pathi information and all nodes cache
Ki as described in the previous section.

Our implementation performs relay group broadcast of
〈Ki, Payloadi〉 using the leaf sets that are maintained by
each node [26]. The leaf set is a set of pointers to the im-
mediate l neighbors in the identifier space, where typical
l = 8. If the leaf set does not contain all members of the
relay group, nodes on the edge of the leaf set forward the
message to their leaf set members. This recursive pro-
cess continues until all members of the relay group have
received the message.

One practical issue in the encoding of the path is that
it is desirable for it to have the same length all along
the forwarding path. This way no information about
the route can be obtained by simply observing the size
changes of the path onion. Previous work discussed
these length-preserving Chaum-Mixes. A simple scheme
is implemented in Mixmaster [18], and [17] presents a
more sophisticated, provably secure scheme. Our proto-
type currently uses the basic layered encryption, and thus
the path size decreases after each relay group. Chang-
ing the encoding scheme to preserve message length is
straightforward and orthogonal to the design and perfor-
mance of the overall system.

5 Analysis and Evaluation

5.1 Anonymity Measurement

We analyze two types of anonymity provided by Cash-
mere: source anonymity and unlinkability of source and
destination. We quantify Cashmere’s anonymity param-
eterized by:

• N : network size;
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• f : fraction of malicious nodes in the network;
• ρ: average relay group size (ρ = N/2m);
• L: number of relay groups in a path, the path length.

The parameter f has two implications: (i) the prob-
ability that compromised nodes are on the relay path;
and (ii) the fraction of relay group private keys known by
the attacker. For each compromised nodeID the attacker
will know the relay group private keys for all prefixes
associated with the nodeID. The probability that the at-
tacker knows a m-bit prefix private key is p2 = 1 − efρ.
The attacker can obtain prefix private keys either by
compromising other nodes or through obtaining nodeIDs
from the CA. We assume prefix private keys are leaking
slowly, and the offline CA can slowly issue new prefix
keys and revoke prior prefix keys over time. If the at-
tacker knows the private key for a relay group we refer
to the relay group as being compromised.

Our anonymity measurement follows the anonymity
definition by Pfitzmann et al. [20]: “Anonymity is the
state of being not identifiable within a set of subjects,
the anonymity set.” In a network with a finite set Ω
(|Ω| = N ) of nodes, ideal anonymity is achieved when
all nodes look equally likely to be the source or destina-
tion to an attacker, e.g. the anonymity set is Ω. In real-
ity, based on information leaked from the system, some
nodes look more likely to be the source or destination
than others. That is, the attacker knows that the source
(or destination) is in Ωi with probability Pr(Ωi)

2, where
Ω =

⋃

i Ωi. For example, the worst anonymity is the at-
tacker identifies the source or destination as u0; {u0} is
assigned with probability 1 and Ω\{u0} with probability
0. We use the metric proposed in [8, 28] to measure the
anonymity of our design as a proportion of the ideal en-
tropy achievable in a given network. We briefly describe
the entropy-based metric as follows:

DEFINITION 5.1. (Entropy of a System). Ω is the (fi-
nite) set of all nodes in the network. Using knowledge
of leaked information from the system, an attacker as-
signs each node u (u ∈ Ω) a probability pu as being the
source or destination of a message. System entropy is
defined as:

H(Ω) = −
∑

u∈Ω

pu log2(pu).

If we have ideal anonymity, all nodes look equal to
attackers: ∀u ∈ Ω, pu = 1

|Ω| . The entropy of ideal
anonymity is Hm(Ω) = log2(|Ω|), which is the maxi-
mum entropy achieved in a network of |Ω| nodes.

DEFINITION 5.2. (Anonymity of a System). The
anonymity of a system is measured as:

H(Ω)

Hm(Ω)
=

−
∑

u∈Ω pu log2(pu)

log2(|Ω|)
.

Definition 5.2 shows that the anonymity of a system is
measured by the real entropy of a system over the max-
imum (i.e. ideal anonymity) entropy the system could
achieve: 0 ≤ H(Ω)

Hm(Ω) ≤ 1.

The entropy definition above is more precise than the
straightforward probability definition of the probability
that the attacker knows the sender or receiver. For ex-
ample, let us consider source anonymity in network of
10000 nodes. In an anonymity system AS1 with attacker
T :

• T discovers the source of 5% of messages;

• T can limit sources of 40% of messages to a small
subset of nodes, e.g. 100;

• For the other 55% of messages, all nodes look
equally likely to be a source to T .

In another anonymity system AS2,

• T discovers the source of 5% of messages;

• For the other 95% of messages, all nodes look
equally likely to be a source to T .

Using the probability that T knows the sender or receiver,
both AS1 and AS2 have anonymity of 0.95. Using the
entropy definition, the anonymity of AS1 is:

0.05∗0+0.40∗
−100 ∗ log2(

1
100 )

−10000∗ log2(
1

10000 )
+0.55∗1 = 0.552;

and anonymity of AS2 is: 0.05 ∗ 0 + 0.95 ∗ 1 = 0.95.

The entropy definition is more precise, capturing that
AS2 provides better anonymity. In AS1 the attacker
knows more information about the sources than in AS2.

The anonymity of Cashmere is determined by ρ and
L given the fraction of compromised nodes. Anonymity
increases with larger values of L. Intuitively, the desti-
nation is hidden among all relay group members and ρ
and L determine the number of nodes in all relay groups.
However, as ρ increases, which means a shorter prefix is
selected for groupID and the attacker has more chance to
know consecutive relay groups, the anonymity decreases.
Larger ρ also means more resilience and a higher relay
group broadcast overhead. From analysis and experi-
mentation, good typical values for ρ are between 3 to 5.
In this section, we perform simulations with a network
of 16, 384 nodes. GroupIDs have a prefix length of 12
bits, such that the expected size of relay groups ρ = 4
nodes. We compute unlinkability and source anonymity
using the entropy definition. We first assume that attack-
ers only see their own traffic, and simulate unlinkabil-
ity and source anonymity given different parameters of
(f, L). We then analyze the security of Cashmere against
traffic analysis attacks.
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Figure 4: Anonymity measurement of unlinkability.

5.1.1 Unlinkability

In our simulations, the attacker gathers information ob-
served from compromised nodes and maintains, for each
pair of nodes (ui, uj), a probability pij that the pair are
a source and destination.

Using the entropy definition, we can measure unlinka-
bility using the relative entropy to ideal unlinkability:

∑

pij log2(pij)

N2 ·
(

1
N2 log2(

1
N2 )

) =
−

∑

pij log2(pij)

2 log2 N
.

If the attacker believes ui is the source with probabil-
ity pi and uj is the destination with probability pj , then
pij = pipj .

We assume the attacker determines the exact number
of relay groups L used for a message 3. We also assume
the attacker knows a chain of n consecutive relay groups
on the path of a message, each containing ρi nodes. As-
suming there is enough cover traffic, the attacker can-
not attribute discrete chains in the path to the same ses-
sion, because the path onion and the observed payload
are completely different at each relay group. Therefore,
the attacker’s knowledge about a message only comes
from one consecutive chain on the relay path.

The source is indistinguishable from the relay group
root of the immediately preceding relay group. When the
first relay group root on the chain is non-malicious and
known by the attacker, the attacker infers that the source
is the first root with probability 1

L−n+1 and the source
is among all other non-malicious nodes with probability
1 − 1

L−n+1 . That is, for each non-malicious node u, the
attacker assigns probability of u being the source as:

pu =

{

1
L−n+1 the first relay group root on the chain
(

1 − 1
L−n+1

)

· 1
(1−f)N−1 otherwise

When the first root on the chain is not known by the at-
tacker or is malicious itself, all non-malicious nodes look
equally to be the source, each with probability 1

(1−f)N .
Let S be the set of nodes that are in the chain of relay

groups known by the attacker, |S| =
∑n

i=1 ρi. The set of

S is composed of both a set S1 of malicious nodes and a
set S2 of non-malicious nodes: S = S1∪S2, |S1| = f |S|
and |S2| = (1 − f)|S|. The expected number of nodes
in all relay groups is Lρ. If the destination is among S1,
the attacker knows the destination and unlinkability be-
comes the source anonymity problem that we discuss in
Section 5.1.2. If the destination is among S2, the attacker
infers that each node in S2 is the destination with proba-
bility 1

Lρ−f |S| and the destination is among other nodes

outside S with probability 1− (1−f)|S|
Lρ−f |S| . That is, for each

node u not in S1, the attacker assigns the probability of
u being the destination as:

pu =

{ 1
Lρ−f |S| u ∈ S2
(

1 − (1−f)|S|
Lρ−f |S|

)

· 1
N−|S| u ∈ S̄

The number of relay groups compromised (i.e. n) is
closely related to the fraction f of compromised nodes.
If the compromised node was not the relay group root
then the attacker would only learn the value of Ki and the
payload, which is broadcast to the relay group. When the
compromised node is the relay group root for a message
the attacker also discovers the identity of the next relay
group. If the compromised node is on the intermediate
overlay hops between two relay group the attacker knows
the previous or/and the next relay group root.

In Figure 4, we compare through simulation Cash-
mere’s unlinkability metric to that of Chaum-Mixes ap-
proaches under different parameters of (L, f), ignoring
eavesdropping and traffic analysis (see Section 5.1.3). In
the simulation, we setup a relay path of length L, assign
each node on the path and in the relay groups as compro-
mised consistent with parameter f , count the probability
of different cases that the attacker knows n consecutive
groups, and compute the entropy in all cases. Then the
entropy of the system is the average over all cases [8, 28].

The results show that Cashmere has similar anonymity
to Chaum-Mixes. Cashmere even behaves better than
Chaum-Mixes for small L and f near 1, when the
whole Chaum-Mixes path is controlled by attackers with
high probability while Cashmere still benefits from the
anonymity among relay group members. We also mea-
sured how the level of unlinkability varies with network
size and, as expected, unlinkability is largely indepen-
dent of network size. Increasing network size from 20K
nodes to 2 million nodes results in less than 3% varia-
tion in unlinkability. Reducing the network size to 64
provides similar unlinkability under the same f as large
networks as long as ρ and L are set the same. Thus,
bootstrapping Cashmere requires a small initial network
of trusted nodes and then other nodes can join the net-
work while maintaining the fraction of malicious nodes
in the network as f .
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Figure 5: Source anonymity with anonymous messages.
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Figure 6: Source anonymity with anonymous channels.

5.1.2 Source Anonymity

In source anonymity, the destination colludes with other
malicious nodes to find the source’s identity. If Cash-
mere is being used for one-way communication (anony-
mous message) the attacker infers the first relay group
root on the chain (which includes the destination’s re-
lay group) as the source with probability 1

L−n+1 if the
first root is non-malicious, where n is the length of
the chain. Figure 5 compares the source anonymity of
Cashmere with Chaum-Mixes, assuming no traffic anal-
ysis attacks, for one-way communication. We see that
like Chaum-Mixes, Cashmere has high source anonymity
when f < 0.3 and increasing L improves anonymity.

If Cashmere is being used for two-way communica-
tion (anonymous channel), the attacker has two ways to
discover the source; (i) discover the first relay group root
on the chain of consecutive relay groups which includes
the destination’s relay group (as for one-way), or (ii) the
attacker compromises consecutive relay groups used on
the return path from the destination to the source. Even
if the attacker compromises all L of the return path relay
groups, the attacker only knows the source is a member
of one of these relay groups (the probability is the same
as in Section 5.1.1).

Figure 6 shows the results for anonymous channels.
The results show anonymous channels provide lower
anonymity compared to anonymous messages due to the
vulnerability of the return path. Finally, we also ana-
lyzed the impact of network size on source anonymity
and, as before, increasing or decreasing the network size
had negligible impact.

5.1.3 Robustness against Traffic Analysis

Our previous simulations disregarded the impact of traf-
fic analysis. In practice, however, attackers may moni-
tor part or all of the network traffic and use patterns to
trace session paths. With each message, the same de-
coupled path component is sent from a relay root. For
example, an attacker observes that a node u receives
[Pathi, Payloadi] and sends out [Pathi+1, Payloadi+1] to

u2. Later it observes u receiving Pathi with a different
payload, and sending Pathi+1 with other another pay-
load to u2. The attacker can then recognize all messages
with path component Pathi+1 as parts of a session in-
volving u and u2. We simulate the robustness of Cash-
mere in unlinkability and source anonymity against an
attacker observing increasing amounts of network traffic.
There are two attacker models: (i) the attacker analyzes a
fixed fraction of all network traffic, e.g. 0%, 90%, 100%,
etc.; or (ii) the attacker analyzes a fraction, ft, of traffic
proportional to the fraction of malicious nodes (f ) in the
network. For example, 10% of malicious nodes can an-
alyze 10% of all traffic. The second is a more realistic
model.

We simulate unlinkability and source anonymity for
anonymous channels (since it is weaker than anonymous
messages), and plot the results in Figures 7 and 8, using
parameters L = 6. We see that Cashmere is vulnerable
to traffic analysis if the attacker observes a significant
portion (> 90%) of all network traffic. But Cashmere
can still provide high levels of anonymity in the more
realistic proportional traffic analysis model.

Cashmere can completely disable traffic analysis at-
tacks with a small modification. Each node in the under-
lying structured overlay can exchange symmetric keys
with peers in its routing table. This sets up secure chan-
nels between all node pairs and encrypts all messages
using a symmetric cipher. Thus source anonymity and
unlinkability are protected against the strongest attacker
who can monitor all network traffic. The key-exchange
cost is done once per lifetime of a node, in contrast
to previous approaches that require per-session key ex-
changes [11]. Additionally, the small (O(log N)) num-
ber of neighbors for each node limits number of key ex-
changes, whereas approaches like Onion Routing require
O(N2) keys. Finally, the secure channel is established
lazily when the first message is routed through that link.
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Figure 7: Unlinkability in anonymous channels under dif-
ferent types of traffic analysis (T.A.) with L = 6.
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Figure 8: Source anonymity in anonymous channels under
different types of traffic analysis (T.A.) with L = 6.

5.2 Resilience and Fault-tolerance

Previous anonymous systems use single nodes as relays.
Nodes joining and failing in the system can lead to for-
warding paths failing. Here we examine the resilience of
Cashmere to node churn and intermittent link failures.

We refer to the time between a forwarding relay path is
formed and its failure as the relay path duration. When a
path fails, the sender needs to detect the failure via end-
to-end timeouts and establish a new path. If relay path
durations are too short, path construction time will dom-
inate. Nodes will constantly be rebuilding failed paths
and unable to deliver a message to a destination. Fre-
quent path reconstruction also makes the layer more vul-
nerable to the degradation attack [32] discussed in Sec-
tion 2.

In contrast, in Cashmere a relay is usable as long as at
least one single node in the network has the relay group’s
groupID as a prefix. Changes in the membership of the
relay group due to node joining and failing are transpar-
ent. We first compare the path duration and resilience of
Cashmere to previous works.

5.2.1 Churn-resilience

Measurements on real systems have shown that peer-to-
peer networks exhibit high node churn [27, 13]. Since
most anonymous routing layers are implemented on
overlay networks, they must be resilient to high node
churn in order to be useful.

Previous studies [25, 13, 27] use session time as a met-
ric of churn-rate. We approximate this using an expo-
nential distribution with parameter µ. This churn model
is consistent with those used in previous studies of the
effect of churn in peer-to-peer systems [15, 25]. Our net-
work model is as follows:

• The network is a finite set (Ω) of nodes, N = |Ω|.
The network size is stable, that is, node joins and
failures are equal.

• Session time is exponentially distributed with pa-
rameter µ, meaning node failure is a Poisson pro-

cess with rate Nµ. The mean session time is 1
µ

and

the median session time is ln 2
µ

.
• Node arrivals is a Poisson process with rate λ,

where λ = Nµ.

Previous measurements [27] of file sharing systems sug-
gest median session times of ln 2

µ
≈ 60 min which we

used for these experiments.
Figure 9 shows the expected path durations for for-

warding paths using relay groups compared to using sin-
gle nodes as relays. As expected, the use of relay groups
increases the expected path duration exponentially, mak-
ing Cashmere much more resilient to node churn.

5.2.2 Tolerance to Intermittent Failures

We now simulate Cashmere’s tolerance to short-term in-
termittent failures. We model the mean time between
failure (MTBF) as 1

λ1

and mean time to repair (MTTR)
as 1

µ1

. We assume the failure is a Poisson process
with failure event rate λ1 and time to repair is exponen-
tial distributed with parameter µ1. We assume MTBF
1
λ1

= 200min, and MTTR 1
µ1

= 5min.
Figure 10 shows that Cashmere completely masks all

intermittent network failures: the expected path duration
is more than 106 minutes (about 40 days) when we set
ρ = 4. This is an improvement of several orders of mag-
nitude over previous node-based approaches.

5.2.3 Simulation on Kazaa Measurements

We examine how Cashmere’s good path duration proper-
ties translate into stability for a real application. We sim-
ulate the fetching of objects in a file-sharing application,
and examine the number of path repairs required during
the object fetches. We model node churn and intermittent
failures using parameters from the previous two sections.
The distribution of object download times is long-tailed
and generated using measurements from the Kazaa net-
work. The Kazaa data [13] has distributions of down-
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Figure 9: Comparing expected durations of node-based
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Figure 12: Average number of path builds for small object
(10M) downloads using Kazaa data, comparing Cashmere
and node-based relays.

load times for small objects (10MB) and large objects
(100MB).

We simulate 100, 000 object download sessions on top
of both node-based relays and Cashmere’s group-based
relays. Both systems use relay paths of length L = 6, and
Cashmere uses average relay group size ρ = 5. Using
object download times from the Kazaa data, Figure 11
shows the distribution of expected frequencies that each
download needs to construct the relay path. It shows that
81% of these small object download sessions using Cash-
mere would not require any path rebuilds (i.e. number
of path builds is 1) and no sessions require more than
about 500 rebuilds. This compares to 28% using node-
based relays, and 10% of all sessions requiring between
100 and 25000 path rebuilds. The maximum number of
path builds is very large (i.e. 500 and 25000) because
Kazaa object download times are long-tail distributed
where some objects take extremely long time to down-
load.

The average number of path builds under different pa-
rameters (L, ρ) for small object downloads are shown
in Figure 12. Clearly, increasing relay group size in-
creases path duration significantly, and Cashmere pro-
vides more than an order of magnitude improvement
over node-based approaches. Measurements for large file

downloads are nearly identical and omitted for brevity.

5.3 Cost and Performance Comparison

In this section we analyze the relative costs in operat-
ing Cashmere compared to previous node-based relay ap-
proaches. We observe that the operating costs of node-
based relay path systems include:

1. Communication costs to maintain knowledge of
candidate relays nodes.

2. Bandwidth cost in forwarding messages.
3. Computational costs to construct the relay path at

the source and to decrypt messages at intermediate
relay nodes.

We first examine communication costs in network
maintenance and relay discovery. In node-based relay
approaches, nodes are expected to actively maintain in-
formation about the other nodes in the network, with a
total cost of O(N2). In contrast, Cashmere decouples
maintenance and relay discovery, and relay discovery re-
quires no communication. Nodes estimate the number
of nodes in the network by examining their local routing
tables, and choose an appropriate prefix length to estab-
lish relay groups of average size ρ. Nodes then choose

NSDI ’05: 2nd Symposium on Networked Systems Design & ImplementationUSENIX Association 311



0

0.2

0.4

0.6

0.8

1

1.2

1 1.5 2 2.5 3 3.5 4 4.5 5

re
la

tiv
e

co
m

pu
ta

tio
na

lc
os

t

average relay group size rho

encryption cost at source
decryption cost at relay nodes
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random prefixes of the desired length as relay groupIDs.
Cashmere relies on the underlying structured overlay,
and hence has a total cost of O(N log N).

However, Cashmere incurs a higher bandwidth cost to
gain resilience. Total number of messages sent is O(ρL)
while node-based approaches requires O(L). The ex-
tra messages are required to perform the per-relay group
broadcast of the payload, and do not adversely impact
end-to-end latency or throughput at the overlay layer.
This broadcast traffic does contribute to a node’s cover
traffic that it has to generate.

We now examine computational cost. High per-
message computation is often seen as a key obstacle to
the wide-spread deployment of Chaum-Mixes based sys-
tems. Given a path of length L, a Chaum-Mixes source
node performs L asymmetric encryption operations on
every message. In addition, each node on the path per-
forms one asymmetric decryption per message that it for-
wards. The high cost of asymmetric cryptographic oper-
ations limits the message send rate at the source and the
message forwarding rate at intermediate nodes.

Optimizations have been proposed to reduce computa-
tion for session-based communication on Chaum-Mixes
by using symmetric key encryption for payload messages
and amortizing asymmetric crypto operations across an
entire session. Both Tarzan [11] and our solution fall
into this category.

Assume the cost of asymmetric encryption and de-
cryption are Ce and Cd respectively. For each relay
group path, Cashmere incurs computational cost that in-
cludes encryption cost of L ·Ce at the source, decryption
cost of 2Cd at relay group root, decryption cost of Cd at
each relay group member, and additional operations to
refresh caches after relay group root failures. However,
these cost are amortized over a much longer path dura-
tion than node-based systems and dwarfed by the cost of
rebuilding paths in node-based systems.

Based on previous results of expected durations, Fig-
ure 13 plots the cost of our “relay group”-based approach
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Figure 14: Stretches: Cashmere latency, fake Cashmere
latency and Pastry latency vs. IP latency.

relative to that of node-based session solutions on a real-
istic network. As ρ increases, the path duration increases
and the per-session cost drops. For ρ = 4, the encryption
cost at the source in Cashmere is roughly 5.37% of the
cost at source nodes in node-based solutions. The aggre-
gate decryption cost at relay group members in Cashmere
is 46.83% of the cost at intermediate nodes in node-based
solutions. The reduction in encryption computation is
from amortizing the one time path setup costs across the
long path durations of Cashmere. The reduction in de-
cryption costs is from per-node caching of the path com-
ponent and whether a node is the destination, and reduc-
ing the number of asymmetric crypto operations to just
one per session for nodes who are not the destination.

5.4 Implementation Measurements

We ran experiments to determine the latency, throughput
and computational overheads of Cashmere.

We deployed and evenly distributed 128 Cashmere
nodes on 32 machines from PlanetLab that are geograph-
ically distributed all over the United States. We define
groupIDs to be 5-bit prefixes, so relay groups have aver-
age size of 4 nodes. We measure latency in:

• Cashmere: End to end latency of Cashmere routing
across 4 relay groups;

• Fake Cashmere: End to end latency of Cashmere
routing across 4 relay groups, removing crypto-
graphic computation;

• Pastry: The latency of routing via Pastry directly
from source to destination;

• IP: Direct IP latency.

Message payloads are 24 bytes long. The latency is mea-
sured using round trip time (RTT), by sending messages
from one node to all other nodes with each repeated 10
times.

We show the average latency in Cashmere, Fake Cash-
mere, Pastry vs. direct IP latency in Figure 14. The
“stretch” is computed as each sample of Cashmere/Fake
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Cashmere/Pastry latency divided by average IP latency
for the same destination. To plot the graph, we put all
stretch samples into bins of 10ms intervals of average
IP latency. Figure 14 shows that the stretches decrease
while the IP latency between source and destination in-
creases. For a pair of end nodes that are very close to
each other (i.e. < 50ms), Cashmere stretches are about
two times of Pastry. The extra delays introduced by the
Cashmere layer is significant compared to small IP la-
tency values. Most samples of IP latency are from 50ms
to 250ms. In this range, Cashmere stretches are be-
tween 1.9 to 5.5, which is quite close to Pastry (2.1 to
4.8). This means Cashmere layer introduces a relatively
small delay on the overlay. Comparing stretches between
Cashmere and fake Cashmere shows that delay caused
by cryptographic computation in Cashmere is negligible.
This is attributed to no per message asymmetric encryp-
tion/decryption in Cashmere. We also measured that the
average number of IP messages per Cashmere message is
19.54 and the average number of IP messages per Pastry
message is 1.54. The larger number of IP message comes
from the relay and broadcast messages in Cashmere.

To measure computation cost, we utilize FreePastry’s
network emulation capabilities. We created 64 virtual
FreePastry nodes inside the same Java virtual machine
on a 2.4Ghz Pentium IV PC. The virtual nodes are con-
nected together using local loopback (called “direct” net-
work in FreePastry) network transport. There is no CPU
contention between the nodes because the emulation is
event-driven and at most one virtual node is running at
a time. Cashmere is set up similarly as above. We ob-
tain highly accurate time measurements by calling the
RDTSC instruction supported by the Pentium architec-
ture via Java Native Interface (JNI).

In the first experiment, we approximate throughput
of relay group roots by measuring per-message latency
across 1000 random source-destination pairs. For each
source and destination pair, we send a single message to
set up the path and allow relay group roots to set up their
caches, then measure the latency taken to process a sec-
ond payload message. We then approximate the through-
put as 1

latency
. Table 2 shows the results for forward-

ing throughput of relay group roots for different message
sizes.

In the second experiment we measure the computa-
tional overheads for the source, the relay group root
nodes, the non-root relay group nodes and the destina-
tion, for both the first and subsequent messages. 1000
empty messages are sent from random source to desti-
nation with and without the routes already set up. Ta-
ble 3 summarizes the results, showing the average CPU
time incurred per node role with the standard deviation
in brackets. The first message invokes RSA on each hop
and therefore is relatively expensive. The subsequent

Msg Size (B) Msg/second Throughput (Mb/s)
128 1370 1.337
1024 1160 9.063
4096 855 26.72

16384 386 48.25

Table 2: Message forwarding rate and effective through-
put for different message sizes of relay group root nodes.

First Msg Subsequent Msg
Source 8.21 (5.3) 0.73 (0.39)

Relay Group Root 27.5 (11.8) 0.22 (0.10)
Non-root Group Member 4.73 (347) 0.001 (0.05)

Destination 7.19 (1.87) 0.18 (0.03)

Table 3: CPU time (ms) spent by each class of node rout-
ing an empty message using Cashmere. Standard devia-
tion shown in parentheses.

messages to the same destination, using the same for-
warding path, utilize cached routing information on each
node. Therefore they only invoke Blowfish which is less
expensive.

We also evaluated the space overhead during the ex-
periment. At the source nodes the overhead for each mes-
sage is 456 bytes for the path element and any necessary
padding bytes to round the payload to RSA block sizes
(64 bytes).

6 Conclusion

We present Cashmere, a resilient anonymous routing in-
frastructure that leverages the flexible anycast routing
inherent in structured overlay networks to significantly
improve path durations compared to node-based relay
approaches. Cashmere also decouples the encrypted
path component of each session from the payload, and
uses symmetric session keys to encrypt message pay-
loads. Anonymous source nodes in Cashmere can choose
their own per-session parameters to tradeoff between
anonymity, resilience and computation overhead.

We compare Cashmere to previous node-based
Chaum-Mixes approaches through analysis and simula-
tion. We find that Cashmere provides similar anonymity
properties while providing one to two orders of mag-
nitude improvement in path durations under both node
churn and intermittent failures. This translates into sig-
nificantly lower path reconstructions across an anony-
mous application session. Performance optimizations in
Cashmere avoid asymmetric crypto operations, result-
ing in lower per-session computation costs compared to
other session-based Chaum-Mixes approaches. Finally,
we provide measurements of a real Cashmere deploy-
ment and show that it provides reasonable throughput
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while incurring a small latency overhead over structure
overlay routing.

Ongoing work on Cashmere includes issues related to
key management and key revocation in particular. We are
also interested in better understanding the impact of net-
work dynamics on key discovery. A straight-forward yet
very useful extension to Cashmere is to support anony-
mous object location in DOLR [6, 34] overlays like Pas-
try and Tapestry. Finally, we are working on a stable
wide-area deployment on PlanetLab and a software pack-
age for public release.
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Notes

1Cashmere only requires each node generates a small amount of
traffic. When the real traffic is not sufficient, nodes send out dummy
messages as cover traffic.

2Nodes in Ωi are equal, each with probability Pr(Ωi)
|Ωi|

to be the

source (or destination).
3This is a worst case assumption. In reality the attacker can only

estimate this by monitoring certain network latencies and system over-
heads. For example, the more relay groups are used, the more compu-
tation a source will perform.
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