
Xorshift RNGs

George Marsaglia∗

The Florida State University

Abstract

Description of a class of simple, extremely fast random number generators (RNGs) with periods 2k
−1 for k =

32, 64, 96, 128, 160, 192. These RNGs seem to pass tests of randomness very well.

1 Introduction

A xorshift random number generator (xorshift RNG) produces a sequence of 232
−1 integersx , or a sequence of 264

−1
pairsx,y , or a sequence of 296

−1 triplesx,y,z , etc., by means of repeated use of a simple computer construction:
exclusive-or (xor) a computer word with a shifted version of itself. In C, the basic operation isyˆ(y<<a) for shifts
left, yˆ(y>>a) for shifts right. (In Fortran, a single form,ieor(y,ishft(y,a)) will produce the desired
result, with negativea for shifts right, nonnegative for shifts left.)

Combining such xorshift operations for various shifts and arguments provides extremely fast and simple RNGs that
seem to do very well on tests of randomness. To give an idea of the power and effectiveness of xorshift operations,
here is the essential part of a C procedure that, with only three xorshift operations per call, will provide 2128

−1 random
32-bit integers, given four random seedsx,y,z,w :

tmp=(xˆ(x<<15)); x=y; y=z; z=w; return w=(wˆ(w>>21))ˆ(tmpˆ(tmp>>4));
Such a procedure is very fast, typically over 200 million/second, and the resulting random integers pass all the tests
of randomness that have been applied to them, particularly the“tough" tests in [3] and the new version of the Diehard
Battery [2].

Background theory for establishing the periods and choices that provide a variety of xorshift RNGs with periods up
to 2160 are given here. Longer periods are available, for example, from multiply-with-carry RNGs, but they use integer
multiplication and require keeping a (sometimes large) table of the most recently generated values. More detailed
comparisons are given in the final, summary section.

2 Theory

A mathematical model for most RNGs can be put in the following form: We have aseed setZ made up ofm-tuples
(x1, x2, . . . , xm), and a one-to-one functionf () onZ. Most commonly,Z is just a set of integers, but for better RNGs,
it may be a set of pairs, triples, etc. Ifz is chosen uniformly and randomly fromZ, then the output of the RNG is the
sequencef (z), f 2(z), f 3(z), . . ., where f 2(z) meansf (f (z)), etc. Becausef is 1-1 overZ, the random variablef (z)
is itself uniform overZ, as is f 2(z); indeed, each element of the sequencef (z), f 2(z), . . . is uniformly distributed
over the seed setZ, but they are not independent.

For xorshift RNGs, the seed setZ is the set of 1×n binary vectors,β = (b1, b2, . . . , bn), excluding the zero vector.
Usually, n will be 32, 64, 96, etc., so that its elements can be made up by adjoining 32-bit computer words. The
elements of the vectorsβ in Z are in the field{0, 1}, so that addition of binary vectors can be implemented by xor’ing
the constituent 32-bit parts. For our xorshift RNG, we need an invertible function overZ, and for that we use a linear
transformation over the binary vector space, characterized by a nonsingularn×n binary matrixT . If β is a uniform
random choice, (theseed), fromZ, then each member of the sequenceβT, βT2, βT3, . . . is also uniformly distributed

∗While the author is now Professor Emeritus, portions of the research for this article were done under by grants from The National Science
Foundation.

1

overZ, so we have a sequence of ID, Identically Distributed, uniform elements fromZ, but they are not IID, that is,
Independent Identically Distributed. But it turns out here, as for many RNGs, functions of the ID elements often have
distributions very close to those of the same functions of elements of an IID sequence. That is the remarkable property
of certain choices of functionsf () over seed setsZ that justifies their usefulness in computers for the past fifty years.

2.1 MatricesT that generate all non-null binary vectors

First given in [1], here is the main result:
Theorem In order that a nonsingularn×n binary matrixT produce all possible non-null1×n binary vectors in the
sequenceβ, βT, βT2, . . . for every non-null initial1×n binary vectorβ, it is necessary and sufficient that, in the group
of nonsingularn×n binary matrices, the order ofT is 2n

−1
Proof: First, the necessity: If the period ofβT, βT2, . . . is k = 2n

−1 thenβTk
= β for every 1×n binary vectorβ,

so the null space of the matrixTk
+ I is the whole space, and thusTk

+ I must be the zero matrix, that is,Tk
= I . If

T j
= I for some j < k, then the period ofβT, βT2, . . . would be less than 2n−1.
Then the sufficiency: If the order ofT is k = 2n

−1, then the matricesT, T2, T3, . . . , Tk are nonsingular and
distinct, and through the characteristic polynomial ofT and Euclid’s algorithm, each of them can be represented as
a polynomial inT of degree< n. Since there arek = 2n

−1 non-null polynomials inT of degree< n, they must
be, in some order, the distinct nonsingular matricesT, T2, . . . , Tk. In particular, if a polynomial inT is a singular
matrix, then it must reduce, throughT ’s characteristic polynomial, to the zero matrix. It follows that the the period of
βT, βT2, . . . mustk = 2n

−1, becauseβT j
= β for some non-nullβ and j < k would mean thatT j

+ I is singular.

3 Application to Xorshift RNGs

For a binary vectory, the operationyT in a computer is likely to be expensive unless the matrixT has a special form.
If L is then×n binary matrix that effects a left shift of one position on a binary vectory, that is,L is all 0’s except for
1’s on the principal subdiagonal, then, withT = I + La, the xorshift operation in C,yˆ(y<<a) produces the linear
transformationyT: add, mod 2, the binary vectory to a left-shift-a version of itself. Similarly, ifR is the right-shift-1
matrix, (the transpose ofL), then the xorshift operationyˆ(y>>b) may be used to formyT, with T = I + Rb.

The n×n matricesI + La and I + Rb are nonsingular, since, for example,Ln
= 0 and thus the finite series

I + La
+ L2a

+ L3a
+ . . . is the inverse of(I + La). So an obvious candidate for a matrix that has order 2n

−1 is
T = (I + La)(I + Rb) or T = (I + Rb)(I + La). Unfortunately, whenn is 32 or 64, no choices fora andb will
provide such aT with the required order. (A preliminary test on candidates is to squareT n times. If the result is not
T , thenT cannot have order 2n

−1. By representing the rows of a binary matrix as a computer word, then xoring all
of the rows for which a (left) multiplying binary vector has 1’s, very fast binary matrix products can be evaluated with
simple C or Fortran programs, and it only takes a few minutes to check every possiblea, b in T = (I + La)(I + Rb).)

However, there are many choices fora, b, c for which the matricesT = (I + La)(I + Rb)(I + Lc) have or-
der 2n

−1, whenn = 32 or n = 64. There are 81 triples(a, b, c), a < c, for which the 32× 32 binary matrix
T = (I + La)(I + Rb)(I + Rc) has order 232

−1:

1, 3,10	1, 5,16	1, 5,19	1, 9,29	1,11, 6	1,11,16	1,19, 3	1,21,20	1,27,27
2, 5,15	2, 5,21	2, 7, 7	2, 7, 9	2, 7,25	2, 9,15	2,15,17	2,15,25	2,21, 9
3, 1,14	3, 3,26	3, 3,28	3, 3,29	3, 5,20	3, 5,22	3, 5,25	3, 7,29	3,13, 7
3,23,25	3,25,24	3,27,11	4, 3,17	4, 3,27	4, 5,15	5, 3,21	5, 7,22	5, 9,7
5, 9,28	5, 9,31	5,13, 6	5,15,17	5,17,13	5,21,12	5,27, 8	5,27,21	5,27,25
5,27,28	6, 1,11	6, 3,17	6,17, 9	6,21, 7	6,21,13	7, 1, 9	7, 1,18	7, 1,25
7,13,25	7,17,21	7,25,12	7,25,20	8, 7,23	8,9,23	9, 5,1	9, 5,25	9,11,19
9,21,16	10, 9,21	10, 9,25	11, 7,12	11, 7,16	11,17,13	11,21,13	12, 9,23	13, 3,17
13, 3,27	13, 5,19	13,17,15	14, 1,15	14,13,15	15, 1,29	17,15,20	17,15,23	17,15,26

Of those 81 triples witha < c, the triple(c, b, a) also provides a full periodT , making 162 in all. In addition,
another 162 full-periodT ’s arise from taking transposes: use triples(a, b, c) to formT = (I + Rc)(I +Lb)(I + Rc), for

2

a total of 324. Then, finally, for each of the 324T ’s of the form(I + La)(I + Rb)(I + Lc) or (I + Ra)(I + Lb)(I + Rc),
the corresponding matrices(I + La)(I + Lc)(I + Rb), and(I + Ra)(I + Rc)(I + Lb), also turn out to have period
232

−1, making a total of 648 choices.
In summary, for each of the above 81 triplesa, b, c with a < c, any one of these eight lines of C can serve as the

basis for a 32-bit xorshift RNG with period 232
−1,:

yˆ=y<<a; yˆ=y>>b; yˆ=y<<c;
yˆ=y<<c; yˆ=y>>b; yˆ=y<<a;
yˆ=y>>a; yˆ=y<<b; yˆ=y>>c;
yˆ=y>>c; yˆ=y<<b; yˆ=y>>a;
yˆ=y<<a; yˆ=y<<c; yˆ=y>>b;
yˆ=y<<c; yˆ=y<<a; yˆ=y>>b;
yˆ=y>>a; yˆ=y>>c; yˆ=y<<b;
yˆ=y>>c; yˆ=y>>a; yˆ=y<<b;

For 64-bit integers, the following 275 triples provide 64×64 matricesT = (I + La)(I + Rb)(I + Lc) whose order
is 264

−1:

1, 1,54	1, 1,55	1, 3,45	1, 7, 9	1, 7,44	1, 7,46	1, 9,50	1,11,35	1,11,50
1,13,45	1,15, 4	1,15,63	1,19, 6	1,19,16	1,23,14	1,23,29	1,29,34	1,35, 5
1,35,11	1,35,34	1,45,37	1,51,13	1,53, 3	1,59,14	2,13,23	2,31,51	2,31,53
2,43,27	2,47,49	3, 1,11	3, 5,21	3,13,59	3,21,31	3,25,20	3,25,31	3,25,56
3,29,40	3,29,47	3,29,49	3,35,14	3,37,17	3,43, 4	3,43, 6	3,43,11	3,51,16
3,53, 7	3,61,17	3,61,26	4, 7,19	4, 9,13	4,15,51	4,15,53	4,29,45	4,29,49
4,31,33	4,35,15	4,35,21	4,37,11	4,37,21	4,41,19	4,41,45	4,43,21	4,43,31
4,53, 7	5, 9,23	5,11,54	5,15,27	5,17,11	5,23,36	5,33,29	5,41,20	5,45,16
5,47,23	5,53,20	5,59,33	5,59,35	5,59,63	6, 1,17	6, 3,49	6,17,47	6,23,27
6,27, 7	6,43,21	6,49,29	6,55,17	7, 5,41	7, 5,47	7, 5,55	7, 7,20	7, 9,38
7,11,10	7,11,35	7,13,58	7,19,17	7,19,54	7,23, 8	7,25,58	7,27,59	7,33, 8
7,41,40	7,43,28	7,51,24	7,57,12	8, 5,59	8, 9,25	8,13,25	8,13,61	8,15,21
8,25,59	8,29,19	8,31,17	8,37,21	8,51,21	9, 1,27	9, 5,36	9, 5,43	9, 7,18
9,19,18	9,21,11	9,21,20	9,21,40	9,23,57	9,27,10	9,29,12	9,29,37	9,37,31
9,41,45	10, 7,33	10,27,59	10,53,13	11, 5,32	11, 5,34	11, 5,43	11, 5,45	11, 9,14
11, 9,34	11,13,40	11,15,37	11,23,42	11,23,56	11,25,48	11,27,26	11,29,14	11,31,18
11,53,23	12, 1,31	12, 3,13	12, 3,49	12, 7,13	12,11,47	12,25,27	12,39,49	12,43,19
13, 3,40	13, 3,53	13, 7,17	13, 9,15	13, 9,50	13,13,19	13,17,43	13,19,28	13,19,47
13,21,18	13,21,49	13,29,35	13,35,30	13,35,38	13,47,23	13,51,21	14,13,17	14,15,19
14,23,33	14,31,45	14,47,15	15, 1,19	15, 5,37	15,13,28	15,13,52	15,17,27	15,19,63
15,21,46	15,23,23	15,45,17	15,47,16	15,49,26	16, 5,17	16, 7,39	16,11,19	16,11,27
16,13,55	16,21,35	16,25,43	16,27,53	16,47,17	17,15,58	17,23,29	17,23,51	17,23,52
17,27,22	17,45,22	17,47,28	17,47,29	17,47,54	18, 1,25	18, 3,43	18,19,19	18,25,21
18,41,23	19, 7,36	19, 7,55	19,13,37	19,15,46	19,21,52	19,25,20	19,41,21	19,43,27
20, 1,31	20, 5,29	21, 1,27	21, 9,29	21,13,52	21,15,28	21,15,29	21,17,24	21,17,30
21,17,48	21,21,32	21,21,34	21,21,37	21,21,38	21,21,40	21,21,41	21,21,43	21,41,23
22, 3,39	23, 9,38	23, 9,48	23, 9,57	23,13,38	23,13,58	23,13,61	23,17,25	23,17,54
23,17,56	23,17,62	23,41,34	23,41,51	24, 9,35	24,11,29	24,25,25	24,31,35	25, 7,46
25, 7,49	25, 9,39	25,11,57	25,13,29	25,13,39	25,13,62	25,15,47	25,21,44	25,27,27
25,27,53	25,33,36	25,39,54	28, 9,55	28,11,53	29,27,37	31, 1,51	31,25,37	31,27,35
33,31,43	33,31,55	43,21,46	49,15,61	55, 9,56				

As with the 32-bit case, a selection of any one of the 275a, b, c choices for 64-bit sequences, and any one of
the above eight lines of C code, will provide, for 64-bit words, a xorshift RNG with period 264

−1, for a total of
8×275= 2200 choices.

Here is a basic 32-bit xorshift C procedure that takes a 32-bit seed value y:

3

unsigned long xor(){
static unsigned long y=2463534242;
yˆ=(y<<13); y=(y>>17); return (yˆ=(y<<5)); }

It uses one of my favorite choices,[a, b, c] = [13, 17, 5], and will pass almost all tests of randomness, except the
binary rank test in Diehard [2]. (A long period xorshift RNG necessarily uses a nonsingular matrix transformation, so
every successiven vectors must be linearly independent, while truly random binary vectors will be linearly independent
only some 30% of the time.) Although I have only tested a few of them, any one of the 648 choices above is likely to
provide a very fast, simple, high quality RNG.

For C compilers that have 64-bit integers, the following will provide an excellent period 264
−1 RNG, given a 64-bit

seed x:

unsigned long long xor64(){
static unsigned long long x=88172645463325252LL;
xˆ=(x<<13); xˆ=(x>>7); return (xˆ=(x<<17));

but any of the above 2200 choices is likely to do as well.

3.1 Binary vector spaces of dimensionn = 96, 128, 160. . ..

While it is convenient to use a 32-bit computer word to represent an element of a vector space of dimension 32, or
dimension 64 for compilers that allow 64-bit integers, to get longer xorshift periods we need methods for representing
elements of vector spaces of higher dimensions. A good way to do this is to allow, say, 1×96 vectors made up of 32-bit
components(x, y, z) or 1×128 vectors with 32-bit components(x, y, z, w), etc. We are then faced with the problem
of choosing matricesT that define linear transformations over such vector spaces.

A natural choice is to makeT a companion matrix in block form—that is, forn = 64, 96, 128,

T =

(
0 A
I B

)
, T =

 0 0 A
I 0 C
0 I B

 , T =


0 0 0 A
I 0 0 C
0 I 0 D
0 0 I B

 .

Then, for example,(x, y, z)T = (y, z, x A + yC + zB), and we can seek 32×32 matricesA, B, C so the 32-bit
operationsx A, yC, zBare easy andT has order 296

−1 in the group of 96×96 nonsingular binary matrices. (I put the
last column of blocks asA, B or A, C, B or A, C, D, B because it turns out that there are full period choices, 264

−1,
296

−1, 2128
−1, by just choosingA = (I + La)(I + Rb) and B = (I + Rc), the other blocks all the zero matrix.)

Thus, for suitable choices of the triple[a, b, c], these matrices all have the required orders, respectively, 264
−1, 296

−1,
2128

−1:

(
0 (I + La)(I + Rb)

I (I + Rc)

)
,

 0 0 (I + La)(I + Rb)

I 0 0
0 I (I + Rc)

 ,


0 0 0 (I + La)(I + Rb)

I 0 0 0
0 I 0 0
0 0 I (I + Rc)

 .

Some (four) choices for the triple[a, b, c] are: Forn = 64, [10, 13, 10], [8, 9, 22], [2, 7, 3], [23, 3, 24];
for n = 96, [10, 5, 26], [13, 19, 3], [1, 17, 2], [10, 1, 26]; for n = 128, [5, 14, 1], [15, 4, 21], [23, 24, 3], [5, 12, 29].
In each case, the order of the block matrixT is 2n

−1, and the essences of C procedures for generating sequences of
the required length are, withx,y,z,w static unsigned longs and a temporaryt :

t=(xˆ(x<<a)); x=y; return y=(yˆ(y>>c))ˆ(tˆ(t>>b)); (period 264
−1).

t=(xˆ(x<<a)); x=y; y=z; return z=(zˆ(z>>c))ˆ(tˆ(t>>b)); (period 296
−1).

t=(xˆ(x<<a)); x=y; y=z; z=w; return w=(wˆ(w>>c))ˆ(tˆ(t>>b)); (period 2128
−1).

These examples provide xorshift RNGs with period 2160
−1, using the same promotion scheme, but requiring (static

unsigned long) seedsx,y,z,w,v :
t=(xˆ(x>>a)); x=y; y=z; z=w; w=v; return v=(vˆ(v>>c))ˆ(tˆ(t>>b));

with choice of parameters[a,b,c]=[2,1,4],[7,13,6],[1,1,20] .

4

Long periods may also be found by choosing the last column of the block companion matrix to beI + La, I +

Rb, I + Lc, I + Rd as needed. Examples of the C generating code:
t=(xˆ(x<<3))ˆ(yˆ(y>>19))ˆ(zˆ(z<<6));x=y;y=z;return(z=t); period 296

−1.
t=(xˆ(x<<20))ˆ(yˆ(y>>11))ˆ(zˆ(z<<27))ˆ(wˆ(w>>6));x=y;y=z;z=w;return(w=t);

period 2128
−1.

All of the above procedures return a 32-bit integer, although the procedures create sequences of pairs(x, y), or
triples (x, y, z) or quadruples(z, y, z, w) of the maximal period, 2n −1, over binary vector spaces of dimension
n = 64, 96, 128. For all of the above choices of parameters, the resulting xorshift RNGs pass all the tests in Diehard,
and are exceptionally fast, all taking 4-6 nanoseconds, or about 200 million random numbers per second. They are so
fast that a dominant part is the linkage: saving before—and restoring after—the registers used in the subroutine call.

Note that in the above, the last value:y in (x, y), z in (x, y, z), w in (x, y, z, w), is the returned value, but it need
not be. If it is merely assigned, the full sequence of pairs, triples, quadruples will still be generated, but any function
of those values could be returned. This provides a variety of possibilities for interesting RNGs. For example, merely
returning 69069*x would provide a sort of congruential RNG with period 2n

−1, while a period of 232(2n
−1) will

result from combining (+ or xor) the regular xorshift with what I call a Weyl sequence:d+=362437; period 232

(with any odd constant replacing 362437). Here is an example:

unsigned long xorwow(){
static unsigned long x=123456789,y=362436069,z=521288629,

w=88675123,v=5783321, d=6615241;
unsigned long t;
t=(xˆ(x>>2)); x=y; y=z; z=w; w=v; v=(vˆ(v<<4))ˆ(tˆ(t<<1)); return (d+=362437)+v;

}

Simple and very fast (125 million/sec), the elements in its cycle of 2192
−232 easily pass all the tests in Diehard.

4 Summary

A variety of simple and extremely fast RNGs can be developed by combining xorshift operations in different ways, yet in
spite of their simplicity, the random numbers they produce do extremely well in tests of randomness. For the hundreds of
choices of[a, b, c]given above, the simplest ones use the basic C operationxˆ=(x<<a);xˆ=(x>>b);(xˆ=(x<<c);
to produce periods 232

−1 for 32-bit words, or period 264
−1 for 64-bit words. They are suitable by themselves or for

use in combination with other methods.
A period of 232 is considered low by modern standards. With very little additional computer time, xorshift operations

can be used to provide sequences of pairs(x, y) of period 264
−1, triples(x, y, z) of period 296

−1, or quadruples
(x, y, z, w) of period 2128

−1 or quintuples(x, y, z, w, v), period 2192
−1. Extensions to higherk-tuples are feasible, but

the general procedure: compute the new value as a function of the previousk values, then promote:x=y;y=z;z=w;
etc. becomes less efficient than methods that keep a circular table of thek previously generated values. With such
tables, the multiply-with-carry and complimentary-multiply-with-carry methods can provide periods as large as 2131102.
I have described various versions through newsgroup postings, and a general description is in [4].

Suppose we compare a xorshift RNG, period 2128
−1, with a multiply-with-carry RNG of comparable period. First,

the xorshift:

unsigned long xor128(){
static unsigned long x=123456789,y=362436069,z=521288629,w=88675123;
unsigned long t;
t=(xˆ(x<<11));x=y;y=z;z=w; return(w=(wˆ(w>>19))ˆ(tˆ(t>>8)));

}

then the multiply-with-carry (MWC):

unsigned long mwc(){
static unsigned long x=123456789,y=362436069,z=77465321,c=13579;

5

unsigned long long t;
t=916905990LL*x+c; x=y; y=z; c=(t>>32); return z=(t&0xffffffff);

}

The MWC RNG generates a sequencexn = axn−3 + carry modb, with a = 916905990, b = 232. It keeps the
three previous values,x, y, z and the current carryc, formst=ax+c in 64 bits, then promotes,x=y,y=z . Then the
newc (the carry) is the top 32 bits oft and the newz is the bottom 32. The period is(ab3

− 1)/2 ≈ 2125 (the order
of b for the primeab3

− 1).

Both routines pass all in the Diehard battery of tests [2].

Both use just a few C instructions; the xorshift RNG has to keep the four most recent values; the MWC has to keep the
three most recent as well as the latest carryc .

The seed set forxor128 is four 32-bit integersx,y,z,w not all 0, while the seed set for MWC is three 32-bit integers
x,y,z and an initialc<a , excluding the two casesx=y=z=c=0 , andx=y=z=b-1,c=a-1 .

But xor128() is much faster thanmwc() . On an 1800MHz PC,xor128() takes 4.4 nanoseconds (> 220 million
numbers/sec), whilemwc() takes 21 nanosecs (48 million/sec). But of course 48 million numbers/second is not likely
to be considered a bottleneck in simulation problems that call for random numbers.

If you are interested in RNGs with extremely long periods, then you might consider MWC or CMWC methods that
attain periods up to 2131102, but require keeping a table of thek most recent values, withk’s of hundreds or thousands.
But if not, and you are content with periods of 2160, 2128, 296 or less, then one of the xorshift RNGs that merely keeps
the lastx or x, y or x, y, z in a straightforward matter, yet still provides periods that seem large enough for most
applications, is worth considering as a workhorse RNG. Particularly when such xorshift RNGs are so simple, so fast
and do so well on tests of randomness.

References
[1] Marsaglia, George and Tsay, L. H., 1985, Matrices and the structure of random number sequences,
Linear Algebra and its Applications, 67, 147–156.

[2] Marsaglia, George, 1995, The Marsaglia Random Number CDROM, with The Diehard Battery of Tests of Ran-
domness, produced at Florida State University under a grant from The National Science Foundation. Access available at
www.stat.fsu.edu/pub/diehard , and a revised version of the Diehard tests atwww.csis.hku.hk/˜diehard .

[3] Marsaglia, George and Tsang, Wai Wan, 2002, Some difficult-to-pass tests of randomness,
Journal Statistical Software, 7, Issue 3.

[4] Marsaglia, George, 2003, Random number generators,
Journal of Modern Applied Statistical Methods, 2 No. 2.

6

