XVIPP

XEP-0234: Jingle File Transfer

Peter Saint-Andre Lance Stout
mailto:xsf@stpeter.im mailto:lance@andyet.com
Xmpp: peter@jabber.org xmpp:lance@lance.im

http://stpeter.im/

2018-11-08
Version 0.19.0

Status Type Short Name
Deferred Standards Track jingle-ft

This specification defines a Jingle application type for transferring a file from one entity to another.
The protocol provides a modular framework that enables the exchange of information about the file to
be transferred as well as the negotiation of parameters such as the transport to be used.

mailto:xsf@stpeter.im
xmpp:peter@jabber.org
http://stpeter.im/
mailto:lance@andyet.com
xmpp:lance@lance.im

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2018 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

10

11

12

13

14

Introduction
Requirements
Terminology

Jingle Conformance

4.1 Use of Jingle Content Senders

Application Format

Negotiating a Jingle File Transfer Session

6.1 OfferingaFile
6.2 RequestingaFile

6.3 Offering or Requesting Additional Files

6.4 RangedTransfers
6.5 Abortinga Transfer
6.6 Endingthe Session

Mapping to Session Description Protocol

Informational Messages

81 Received
82 Checksum.

Errors

9.1 FilenotAvailable.
9.2 Filetoolarge

Implementation Notes
10.1 Mandatory to Implement Technologies
10.2 Preference Order of Transport Methods

10.3 Migration from XEP-0096

Determining Support
Security Considerations
IANA Considerations

XMPP Registrar Considerations

14.1 Protocol Namespaces
14.2 Namespace Versioning
14.3 Jingle Application Formats

......................

......................

......................

16

17
17
17

20
20
20

21
21
21
21

22

22

23

15 XML Schema
15.1 urn:xmpp:jingle:apps:file-transfer:5

15.2 urn:xxmpp:jingle:apps:file-transfer:errors:0

16 Acknowledgements

\J 2 REQUIREMENTS

1 Introduction

Jingle (XEP-0166) ! can be used to initiate and negotiate a wide range of peer-to-peer sessions.
One session type of interest is file transfer. This document specifies an application format for
negotiating Jingle file transfer sessions, where files are exchanged via any available reliable
transport.

2 Requirements

SI File Transfer (XEP-0096) * was the original XMPP protocol extension for file transfer
negotiation. However, that protocol has several drawbacks, most related to the Stream
Initiation (XEP-0095) ® protocol on which it depends:

1. It does not enable a true, bidirectional negotiation; instead, the initiator sets the
terms for the file transfer and the responder either accepts the terms or cancels the
negotiation.

2. 1t is the only technology in the Jabber/XMPP protocol "stack” that uses XEP-0095:
Stream Initiation. More modern technologies such as voice and video session negotia-
tion use Jingle (XEP-0166) 4, and it would be helpful if implementors could re-use the
same code for all negotiation use cases.

To overcome these drawbacks, this specification defines a file transfer negotiation method
that meets the following requirements:

« Use the session negotiation semantics from XEP-0166.

« Use any reliable Jingle transport mechanism, including but not limited to:

- ICE-TCP RFC 6544 °
- SOCKS5 Bytestreams Jingle SOCKS5 Bytestreams Transport Method (XEP-0260) ¢
- In-Band Bytestreams Jingle In-Band Bytestreams Transport Method (XEP-0261) 7

'XEP-0166: Jingle <https://xmpp.org/extensions/xep-0166.html>.

2XEP-0096: SI File Transfer <https://xmpp.org/extensions/xep-0096.html>,

*XEP-0095: Stream Initiation <https://xmpp.org/extensions/xep-0095.html>,

*XEP-0166: Jingle <https://xmpp.org/extensions/xep-0166.html>.

RFC 6544: TCP Candidates with Interactive Connectivity Establishment (ICE) <http://tools.ietf.org/html/rf
Cc6544>,

SXEP-0260: Jingle SOCKS5 Bytestreams Transport Method <https://xmpp.org/extensions/xep-0260.html>,

"XEP-0261: Jingle In-Band Bytestreams Transport Method <https: //xmpp.org/extensions/xep-0261.html>.

https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0096.html
https://xmpp.org/extensions/xep-0095.html
https://xmpp.org/extensions/xep-0095.html
https://xmpp.org/extensions/xep-0166.html
http://tools.ietf.org/html/rfc6544
https://xmpp.org/extensions/xep-0260.html
https://xmpp.org/extensions/xep-0261.html
https://xmpp.org/extensions/xep-0166.html
https://xmpp.org/extensions/xep-0096.html
https://xmpp.org/extensions/xep-0095.html
https://xmpp.org/extensions/xep-0166.html
http://tools.ietf.org/html/rfc6544
http://tools.ietf.org/html/rfc6544
https://xmpp.org/extensions/xep-0260.html
https://xmpp.org/extensions/xep-0261.html

\J 4 JINGLE CONFORMANCE

+ Define a file description format that, unlike XEP-0096, enables hash agility (via Use of
Cryptographic Hash Functions in XMPP (XEP-0300) 8).

* Define a clear upgrade path from SI File Transfer to Jingle File Transfer.

Note that Jingle file transfer is only as reliable as the transports on which it depends. In
particular, SOCKS5 Bytestreams ("S5B”) does not always result in NAT or firewall traversal.
To work around that problem, this specification requires all implementations to support as
a fallback mechanism In-Band Bytestreams ("IBB”), which usually results in a successful (if
slow) file transfer. A more robust and adaptable option is ICE-TCP (RFC 6544); at the time of
writing Jingle ICE-UDP Transport Method (XEP-0176) ? is being updated to include the ability
to negotiate ICE-TCP candidates.

3 Terminology

File Offer A Jingle File Transfer Content is said to be a File Offer if the content creator is the
same as the content sender (see Use of Jingle Content Senders).

File Request A Jingle File Transfer Content is said to be a File Request if the content creator
is the opposite of the content sender (see Use of Jingle Content Senders).

File Sender The File Sender is the side of the Jingle session responsible for sending the file
data. The File Sender is not necessarily the same entity as the Jingle session initiator,
and an entity could be both a File Sender and File Receiver in the context of a single
Jingle session with multiple files.

File Receiver The File Receiver is the side of the Jingle session responsible for receiving the
file data. The File Receiver is not necessarily the same entity as the Jingle session re-
sponder, and an entity could be both a File Receiver and File Sender in the context of a
single Jingle session with multiple files.

4 Jingle Conformance

In accordance with Section 12 of XEP-0166, this document specifies the following information
related to the Jingle File Transfer ("Jingle FT”) application type:

1. The application format negotiation process is defined in the Negotiating a Jingle File
Transfer Session section of this document.

8XEP-0300: Use of Cryptographic Hash Functions in XMPP <https: //xmpp.org/extensions/xep-0300.html>,
XEP-0176: Jingle ICE-UDP Transport Method <https://xmpp.org/extensions/xep-0176.html>.

https://xmpp.org/extensions/xep-0300.html
https://xmpp.org/extensions/xep-0300.html
https://xmpp.org/extensions/xep-0176.html
https://xmpp.org/extensions/xep-0300.html
https://xmpp.org/extensions/xep-0176.html

\J 4 JINGLE CONFORMANCE

2. The semantics of the <description/> element are defined in the Application Format
section of this document.

3. A mapping of Jingle semantics to the Session Description Protocol is provided in the
Mapping to Session Description Protocol section of this document.

4, AJingle File Transfer session SHOULD use a streaming transport method, not a datagram
transport method.

5. Transport components are not used in Jingle File Transfer.

6. Content is to be sent and received as follows:
For streaming transports, outbound content shall be encoded into packets (as defined
by the transport mechanism) without any other framing mechanism and sent in succes-
sion over the transport. Incoming data received over the transport shall be processed
as a stream of packets, where each packet’s content payload is entirely composed of the
next portion of file data to be processed.

4.1 Use of Jingle Content Senders

Jingle File Transfer makes critical use of the senders’ attribute of Jingle <content/> elements
in order to specify which party is responsible for sending the described file. As such, Jingle File
Transfer content MUST include a ’senders’ attribute, where the allowed values are "initiator”
and "responder”. The semantics of the values "both” and "none” are undefined in Jingle File
Transfer and thus NOT RECOMMENDED for use with Jingle File Transfer content.

In general, a Jingle File Transfer content is said to be a "File Offer” if the ’senders’ attribute is
the same as the role of the party adding the content to the session, and a "File Request” if the
‘senders’ value is the opposite role of the party adding the content.

Note: The content 'creator’ attribute does not specify who created or is sending the file, it only
specifies which party to the session added the Jingle content to the session.

Jingle Session Role Content Senders File Transfer Type
initiator initiator File Offer

initiator responder File Request
responder initiator File Request
responder responder File Offer

/5 APPLICATION FORMAT

5 Application Format

A Jingle File Transfer session is described by a content type that contains one application
format and one transport method. Each <content/> element defines the details of a single file
transfer. A Jingle negotiation MAY result in the establishment of multiple file transfers by
including multiple <content/> elements.

The application format consists of a file description contained within a <description/> element
qualified by the "urn:xmpp:jingle:apps:file-transfer:5” namespace (see Namespace Versioning
regarding the possibility of incrementing the version number). The file description is a <file/>
element specifying metadata such as the name of the file, media type, etc., as illustrated in
the following example.

<description xmlns=’urn:xmpp:jingle:apps:file-transfer:5’>
<file>
<media-type>text/plain</media-type>
<name>test.txt</name>
<date>2015-07-26T21:46:00+01:00</date>
<size>6144</size>
<hash xmlns=’urn:xmpp:hashes:2’
algo="sha-1">w@mcJylzCn+AfvuGdgkty2+KP48=</hash>
</file>
</description>

The <description/> element is intended to be a child of a Jingle <content/> element as specified
in XEP-0166.
The child elements of the <file/> element are as follows:

Element Name Description Inclusion
date Timestamp specifying the last OPTIONAL
modified time of the file (which
MUST conform to the Date-
Time profile of XMPP Date and
Time Profiles (XEP-0082) XEP-
0082: XMPP Date and Time Profiles
<https://xmpp.org/extensions/xep-

0082.html>.).
desc A human readable description of OPTIONAL

the file. Multiple <desc/> ele-
ments MAY be included if different
xml:lang values are specified.

/5 APPLICATION FORMAT

Element Name Description Inclusion

hash A hash of the file content, us- See <hash-used/>
ing the <hash/> element de-
fined in Use of Cryptographic
Hash Functions in XMPP (XEP-
0300) XEP-0300: Use of Crypto-
graphic Hash Functions in XMPP
<https://xmpp.org/extensions/xep-
0300.html>. and qualifed by the
‘urn:xmpp:hashes:2” namespace.
Multiple hashes MAY be included
for hash agility.
hash-used Alternatively to a <hash/> element, Either a <hash/> or a <hash-used/>
the initiator can also include a element MUST be included when
<hash-used/> element. This avoids offering a file.
the need to read the file twice to cal-

culate the hash.
media-type The media type of the file con- RECOMMENDED when offering a

tent, which SHOULD be a valid file, otherwise OPTIONAL
MIME-TYPE as registered with

the Internet Assigned Numbers
Authority (IANA) The Internet As-

signed Numbers Authority (IANA)

is the central coordinator for the
assignment of unique parameter

values for Internet protocols,

such as port numbers and URI
schemes. For further information,

see <http://www.iana.org/>.
(specifically, as listed at
<http://www.iana.org/assignments/media-
types>). If not specified,

the content is assumed to be
"application/octet-stream”.

/5 APPLICATION FORMAT

Element Name Description Inclusion
name The name of the file. The name OPTIONAL
SHOULD NOT contain characters or
character sequences that would be
interpreted as a directory structure
by the local file system (e.g. ”/”,
"\”, 7../”, etc.). 1f any such char-
acters or character sequences are
present (possibly because the local
and remote file systems use differ-
ent syntax for directory structure),
they SHOULD be escaped (e.g., via
percent-encoding) before using the
name as part of any file system op-
eration. See Security Considera-

tions.

size The length of the file’s content, in OPTIONAL, but SHOULD be present
bytes. when offering a file.

range The presence of the <range/> ele- OPTIONAL

ment indicates support of ranged
transfers, and can be used to con-
trol where a transfer starts.

One or more <hash/> elements MUST be present when offering a file, but those elements
MAY be empty if the hash has not yet been computed. If there is no computed hash value, the
<hash/> element(s) MUST possess an "algo’ attribute specifying which hash algorithm will be
used. Once a hash has been calculated by the File Sender, the File Sender SHOULD inform the
File Receiver of the hash value as described in Checksum.

Additional elements MAY be included as children of the <file/> element to provide additional
metadata about the file, such as File Transfer Thumbnails (XEP-0264) 1°.

The optional <range/> element MAY possess two attributes:

Attribute Description Inclusion
offset Specifies the position, in bytes, from OPTIONAL
which to start transferring file data.

This defaults to zero (0) if not speci-

fied.
length Specifies the number of bytes to re- OPTIONAL

trieve starting at offset. This defaults
to the length of the file from offset to
the end.

10XEP-0264: File Transfer Thumbnails <https://xmpp.org/extensions/xep-0264.html>,

https://xmpp.org/extensions/xep-0264.html
https://xmpp.org/extensions/xep-0264.html

\J 6 NEGOTIATING A JINGLE FILE TRANSFER SESSION

Inclusion of a <range/> element in a File Offer indicates support of ranged transfers for future
File Requests if the transfer is interrupted and needs to be restarted.

A <range/> element MAY include an "offset’ attribute set to begin the transfer at a point other
than the start of the file, and MAY include a "length’ attribute to request a portion of the file
smaller than the remaining length of the file. If no "offset’ or "length’ attributes are present
then it is the same as if no <range/> element was present, because the default values of the
attributes would indicate a requested range of the entire file. In general, the first byte of data
to be transferred is at the (zero-indexed) position specified by the offset’ value, with a total
of "length’ bytes sent.

6 Negotiating a Jingle File Transfer Session

In general, the process for negotiating a Jingle File Transfer session is as follows:

Initiator Responder

| session-initiate |

| mmm e >
| ack |
R et |
| session-accept

| <mmmmmmm oo |
| ack

| =mmmmmmmmmmmmeeee >

| [optional further |
| negotiation] |

6.1 Offering a File

To start a File Offer, the initiator sends a Jingle session-initiation request to a potential
responder. The request specifies three things:

1. A content ’senders’ attribute with the value of ’initiator’ to indicate this is a File Offer.

2. An application type of "urn:xmpp:jingle:apps:file-transfer:5”. In particular, the <de-
scription/> element contains a <file/> elements describing the file to be sent.

\J 6 NEGOTIATING A JINGLE FILE TRANSFER SESSION

3. An appropriate transport method.

In this example, the initiator is <romeo@montague.example>, the responder is
<juliet@capulet.example>, the application type is a File Offer, and the transport method
is jingle-s5b (XEP-0260).

The flow is as follows.

First the initiator sends a Jingle session-initiate.

Listing 1: Initiator sends session-initiate

<ig from=’romeo@montague.example/dr4hcrost3lup4c’
id="nzu25s8”’
to=’juliet@capulet.example/yn@cl4bnw@yr3vym’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-initiate’
initiator="romeo@montague.example/dr4hcr@ost3lup4c’
sid=’851ba2’>
<content creator=’initiator’ name=’a-file-offer’ senders=’
initiator’>
<description xmlns=’urn:xmpp:jingle:apps:file-transfer:5’>

<file>
<date>1969-07-21T02:56:15Z</date>
<desc>This is a test. If this were a real file...</desc>

<media-type>text/plain</media-type>
<name>test.txt</name>
<range/>
<size>6144</size>
<hash xmlns=’urn:xmpp:hashes:2’
algo="sha-1’>woOmcJylzCn+AfvuGdgkty2+KP48=</hash>
</file>
</description>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
mode="tcp’
sid="vj3hs98y’>
<candidate cid=’hft54dqy’
host="192.168.4.1"
jid=’romeo@montague.example/dr4hcr@st3lup4c’
port="5086"
priority='8257636"
type=’direct’/>
<candidate cid=’hutr46fe’
host="24.24.24.1"
jid=’romeo@montague.example/dr4hcr@st3lup4c’
port=’5087"’
priority='8258636"
type=’direct’/>
</transport>
</content>

\J 6 NEGOTIATING A JINGLE FILE TRANSFER SESSION

</jingle>
</iqg>

Note: Inclusion of the <range/> child of the <file/> element indicates that the initiator
supports ranged transfers as described below under Ranged Transfers.

Note: Computing the hash of the file before sending it can slow down the process of file
transfer, because the sending application needs to process the file twice. The File Sender
might prefer to send the hash after the file transfer has begun, using a session-info message
as described under Checksum.

The responder immediately acknowledges receipt of the Jingle session-initiate.

Listing 2: Responder acknowledges session-initiate

<ig from=’juliet@capulet.example/yn@cl4bnw@yr3vym’
id="nzu25s8’
to=’romeo@montague.example/dr4hcr@st3lup4c’
type=’result’/>

The initiator then attempts to initiate a SOCKS5 Bytestream with the responder as described
in XEP-0260 and XEP-0065. In the meantime, the responder returns a Jingle session-accept. In
the session-accept message, the <file/> element MAY contain a <range/> element to indicate
that the receiver also supports ranged transfers as described below under Ranged Transfers.
If the responder includes a <range /> element with a limit or offset, the File Sender SHOULD
respect the provided range settings.

Listing 3: Responder sends session-accept

<ig from=’juliet@capulet.example/yn@cl4bnw@yr3vym’

id=’jn2vs71g’

to="romeo@montague.example/dr4hcr@st3lup4c’

type=’'set’>

<jingle xmlns=’urn:xmpp:jingle:1’

action=’session-accept’
responder="juliet@capulet.example/yn@cl4bnw@yr3vym’
sid=’851ba2’>

<content creator=’initiator’ name=’a-file-offer’ senders=’

initiator’>
<description xmlns=’urn:xmpp:jingle:apps:file-transfer:5’>

<file>
<date>1969-07-21T02:56:15Z</date>
<desc>This is a test. If this were a real file...</desc>

<media-type>text/plain</media-type>
<name>test.txt</name>
<range/>
<size>6144</size>
<hash xmlns=’urn:xmpp:hashes:2’
algo="sha-1’>woOmcJylzCn+AfvuGdgkty2+KP48=</hash>
</file>

\J 6 NEGOTIATING A JINGLE FILE TRANSFER SESSION

</description>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
mode="tcp’
sid="vj3hs98y’>
<candidate cid=’ht567dq’
host="192.169.1.10"
jid=’juliet@capulet.example/yn@cl4bnw@yr3vym’
port=’6539"’
priority=’8257636"
type=’direct’/>
<candidate cid="hr65dqyd’
host="134.102.201.180"
jid=’juliet@capulet.example/yn@cl4bnw@yr3vym’
port=’16453"
priority=’7929856"
type=’assisted’/>
<candidate cid=’grt654q2’
host="2001:638:708:30c9:219:d1ff:fea4:a17d’
jid=’juliet@capulet.example/yn@cl4bnw@yr3vym’
port="6539"
priority=’8257606"
type=’direct’/>
</transport>
</content>
</jingle>
</ig>

The initiator acknowledges the Jingle session-accept.

Listing 4: Initiator acknowledges session-accept

<ig from=’romeo@montague.example/dr4hcr@st3lup4c’
id=’jn2vs71g’
to=’juliet@capulet.example/yn@cl4bnw@yr3vym’
type=’result’/>

6.2 Requesting a File

If the File Sender has advertised the existence of a file that it hosts, such as by Publishing
Available Jingle Sessions (XEP-0358) 1, or if a previous file transfer attempt has failed and
the File Receiver would like to initiate another attempt, the File Receiver can "pull” the file
from the File Sender. This is done by sending a Jingle session-initiate to the File Sender which
includes a <content/> with the ’senders’ attribute set to the opposite Jingle session role of
the party requesting the file (see Use of Jingle Content Senders) and a <description/> element
qualified by the "urn:xmpp:jingle:apps:file-transfer:5’ namespace and which includes a <file/>
element with enough information included to form a "file selector” (see Section 5 of RFC 5547

'XEP-0358: Publishing Available Jingle Sessions <https://xmpp.org/extensions/xep-0358.html>.

10

https://xmpp.org/extensions/xep-0358.html
https://xmpp.org/extensions/xep-0358.html
http://tools.ietf.org/html/rfc5547
https://xmpp.org/extensions/xep-0358.html

\J 6 NEGOTIATING A JINGLE FILE TRANSFER SESSION

12) to identify the requested file.

Listing 5: File Receiver requests hosted file

<ig from=’juliet@capulet.example/yn@cl4bnw@yr3vym’
id="wsn361c3’
to="romeo@montague.example/dr4hcr@st3lup4c’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-initiate’
initiator=’juliet@capulet.example/yn@cl4bnw@yr3vym’
sid="uj3b2’>
<content creator=’initiator’ name=’a-file-request’ senders=’
responder’>
<description xmlns=’urn:xmpp:jingle:apps:file-transfer:5’>
<file>
<hash xmlns=’urn:xmpp:hashes:2’
algo="sha-1’>womcJylzCn+AfvuGdgkty2+KP48=</hash>
</file>
</description>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
mode="tcp’
sid="xig361fj’>
<candidate cid=’ht567dq’
host=7192.169.1.10°
jid=’juliet@capulet.example/yn@cl4bnw@yr3vym’
port=’6539"’
priority=’"8257636"
type=’direct’/>
<candidate cid="hr65dqyd’
host="134.102.201.180"’
jid=’juliet@capulet.example/yn@cl4bnw@yr3vym’
port="16453"
priority=’7929856"
type=’assisted’/>
<candidate cid=’grt654q2’
host="2001:638:708:30c9:219:d1ff:fead4:a17d’
jid=’juliet@capulet.example/yn@cl4bnw@yr3vym’
port=’6539"
priority='8257606"
type=’direct’/>
</transport>
</content>
</jingle>
</ig>

2RFC 5547: A Session Description Protocol (SDP) Offer/Answer Mechanism to Enable File Transfer <http: //tool
s.ietf.org/html/rfc5547>.

11

http://tools.ietf.org/html/rfc5547
http://tools.ietf.org/html/rfc5547

\J 6 NEGOTIATING A JINGLE FILE TRANSFER SESSION

See File not Available for how to respond if the requester does not have permission to request
the file, or if the file cannot be found.

6.3 Offering or Requesting Additional Files

While the Jingle File Transfer session is active, either party MAY choose to add additional files
(both offers and requests) to the transfer session. To do so, a Jingle content-add action is used,
as shown in the following examples.

Listing 6: File Sender offers additional file

<ig from=’romeo@montague.example/dr4hcr@st3lup4c’
id="wsn361c9’
to=’juliet@capulet.example/yn@cl4bnw@yr3vym’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’content-add’
sid="uj3b2’>
<content creator="initiator’ name=’additional’ senders=’initiator’
>
<description xmlns=’urn:xmpp:jingle:apps:file-transfer:5’>
<file>
<name>second-file.txt</name>
<media-type>text/plain</media-type>
<size>6144</size>
<hash xmlns=’urn:xmpp:hashes:2’
algo="sha-1’>womcJylzCn+AfvuGdgkty2+KP48=</hash>
</file>
</description>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
mode="tcp’
sid="vj3hs98y’>
<candidate cid=’hft54dqy’
host="192.168.4.1"
jid=’romeo@montague.example/dr4hcr@st3lup4c’
port="5086"
priority=’8257636"
type=’direct’/>
<candidate cid="hutr46fe’
host="24.24.24.1"
jid=’romeo@montague.example/dr4hcr@st3lup4c’
port="5087"
priority=’8258636"
type=’direct’/>
</transport>
</content>
</jingle>

12

\J 6 NEGOTIATING A JINGLE FILE TRANSFER SESSION

‘</iq>

The other party then acks the content-add request.

Listing 7: File Receiver acks content-add request

<ig from=’juliet@capulet.example/yn@cl4bnw@yr3vym’
to=’romeo@montague.example/dr4hcr@st3lup4c’
id="wsn361c9’
type=’result’ />

At this point, the content-add request needs to be either accepted or rejected using Jingle
content-accept or content-reject actions.

6.4 Ranged Transfers

As in XEP-0096, a transfer can include only part of a file (e.g., to restart delivery of a truncated
transfer session at a point other than the start of the file). This is done using the <range/>
element. The usage is illustrated in the following examples.

Let us imagine that the parties negotiate afile transfer session using, say, In-Band Bytestreams.
During the transfer, the recipient goes offline unexpectedly and IBB stanzas from the File
Sender to the File Receiver begin to bounce. When the recipient comes back online, the File
Sender could initiate a new Jingle session and specify that it wants to send all chunks after
byte 270336 (which might be the 66th chunk of size 4096).

Listing 8: File Sender requests session to send file, with range

<ig from=’romeo@montague.example/dr4hcr@st3lup4c’
id="wsn361c3”’
to=’juliet@capulet.example/yn@cl4bnw@yr3vym’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-initiate’
initiator="romeo@montague.example/dr4hcr@st3lup4c’
sid="uj3b2’>
<content creator="initiator’ name=’restart’ senders=’initiator’>
<description xmlns=’urn:xmpp:jingle:apps:file-transfer:5’>
<file>
<range offset=’270336"/>
<hash xmlns=’urn:xmpp:hashes:2’
algo="sha-1’>woOmcJylzCn+AfvuGdgkty2+KP48=</hash>
</file>
</description>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
mode="tcp’
sid=’vj3hs98y’>
<candidate cid=’hft54dqy’

13

\J 6 NEGOTIATING A JINGLE FILE TRANSFER SESSION

host=7192.168.4.1"
jid=’romeo@montague.example/dr4hcr@st3lup4c’
port=’5086"
priority=’8257636"
type=’direct’/>
<candidate cid=’hutr46fe’
host="24.24.24.1"
jid=’romeo@montague.example/dr4hcr@st3lup4c’
port="5087"
priority=’8258636"
type=’direct’/>
</transport>
</content>
</jingle>
</ig>

6.5 Aborting a Transfer

At any point, either party MAY choose to abort the transfer of a single file, or end the session
entirely to abort all active transfers.

When there is only a single Jingle content or if a party wishes to abort the transfer of all files
in the session, a session-terminate including a Jingle reason of <cancel /> is sent.

Listing 9: File Receiver aborts all active file transfers

<ig from=’juliet@capulet.example/yn@cl4bnw@yr3vym’
id=’jp2ba614’
to=’romeo@montague.example/dr4hcr@st3lup4c’
type=’"set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid=’a73sjjvkla37jfea’>
<reason>
<cancel />
</reason>
</jingle>
</iqg>

If a party chooses to abort the transfer of a single file out of several active transfers, a Jingle
content-remove action is used, which MAY include a Jingle reason of <cancel/>, as shown in
the following example.

Listing 10: File Receiver aborts the transfer

<ig from=’juliet@capulet.example/yn@cl4bnw@yr3vym’
id="jp2ba614’
to=’romeo@montague.example/dr4hcrost3lup4c’

14

\J 6 NEGOTIATING A JINGLE FILE TRANSFER SESSION

type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’content -remove’
sid="a73sjjvkla37jfea’>
<content creator=’initiator’ name=’a-file-offer’
<reason>
<cancel />
</reason>
</jingle>
</ig>

/>

The other party then acks the content-remove request.

Listing 11: File Sender acks abort request

<ig from=’romeo@montague.example/drd4hcr@st3lup4c’
id=’jp2ba614’
to=’juliet@capulet.example/yn@cl4bnw@yr3vym’
type='result’ />

If after removing the content there are no other Jingle contents the session MUST be termi-

nated as described in the next section.

6.6 Ending the Session

Once all file content in the session has been transfered, either party MAY acknowledge receipt
of the received files (see Received) or, if there are no other active file transfers, terminate the
Jingle session with a Jingle session of <success/>. Preferably, sending the session-terminate is
done by the last entity to finish receiving a file to ensure that all offered or requested files by

either party have been completely received (up to the advertised sizes).

Listing 12: File Receiver ends the session after successfully receiving all files

<ig from=’juliet@capulet.example/yn@cl4bnw@yr3vym’
id=’jp2ba614’
to="romeo@montague.example/dr4hcr@st3lupéc’
type=’"set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid="a73sjjvkla37jfea’>
<reason>
<success />
</reason>
</jingle>
</ig>

15

/' 7 MAPPING TO SESSION DESCRIPTION PROTOCOL

7 Mapping to Session Description Protocol

RFC 5547 13 defines the general process for including file transfer information in SDP.

The SDP media type for Jingle File Transfer can be "message” (e.g. when used with RFC 4975
14) or "application”; however, this media value is not reflected in the Jingle File Transfer
application format.

Any combination of <name/>, <size/>, <media-type/>and <hash/> values MAY be used to form
a "file selector” (see Section 5 of RFC 5547 1°), which would be mapped to SDP as follows:

a=file-selector [name:”<name>”] [size:<size>] [type:<media-type>] [
hash:<hash algo>:<hash value>]

(The hash value MUST be encoded as hexadecimal with each byte separated by a colon.)
The <date/> value is the last modified time of the file, and thus is mapped as follows:

a=file-date:modification:”<date>”

Note: the format used here for <date> is the date-time format defined in RFC 5322 1.

If a range is specified, the SDP mapping requires both a start and stop offset. If no length was
specified for the range, the stop offset is ”*”. If a length was specified, the stop offset is the
<range/> offset value plus the length.

a=file-range:<offset>-<(offset + length) | x>

As a full example, given the following Jingle File Transfer content description:

<description xmlns=’urn:xmpp:jingle:apps:file-transfer:5’>
<file>
<media-type>text/plain</media-type>
<name>test.txt</name>
<date>2015-07-26T21:46:00+01:00</date>
<size>6144</size>
<hash xmlns=’urn:xmpp:hashes:2’
algo="sha-1’>womcJylzCn+AfvuGdgkty2+KP48=</hash>
<range offset="1024" />
</file>
</description>

The equivalent SDP would be:

BRFC 5547: A Session Description Protocol (SDP) Offer/Answer Mechanism to Enable File Transfer <http://tool
s.ietf.org/html/rfc5547>.

MRFC 4975: The Message Session Relay Protocol (MSRP) <http://tools.ietf.org/html/rfc4975>,

RFC 5547: A Session Description Protocol (SDP) Offer/Answer Mechanism to Enable File Transfer <http://tool
s.ietf.org/html/rfc5547>,

1SRFC 5322: Internet Message Format <http: //tools.ietf.org/html/rfc5322>,

16

http://tools.ietf.org/html/rfc5547
http://tools.ietf.org/html/rfc4975
http://tools.ietf.org/html/rfc5547
http://tools.ietf.org/html/rfc5322
http://tools.ietf.org/html/rfc5547
http://tools.ietf.org/html/rfc5547
http://tools.ietf.org/html/rfc4975
http://tools.ietf.org/html/rfc5547
http://tools.ietf.org/html/rfc5547
http://tools.ietf.org/html/rfc5322

/'8 INFORMATIONAL MESSAGES

a=file-selector: name:”test.txt” size:6144 type:text/plain hash:sha-1
:55:2D:A7:49:93:08:52:C6:9A:E5:D2:14:1D:37:66:B1

a=file-date:modification:”26_.Jul_2015.21:46:00”

a=file-range:1024 -%

8 Informational Messages

8.1 Received

Once a file has been successfully received, the recipient MAY send a Jingle session-info
message indicating receipt of the complete file, which consists of a <received/> element
qualified by the "urn:xmpp:jingle:apps:file-transfer:5’ namespace. The <received/> element
SHOULD contain ’creator’ and 'name’ attributes sufficient to identify the content that was
received.

Listing 13: File Receiver sends ack in session-info

<ig from=’juliet@capulet.example/yn@cldbnw@yr3vym’
id=’jp2ba614’
to=’romeo@montague.example/dr4hcr@st3lup4c’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-info’
sid=’a73sjjvkla37jfea’>
<received xmlns=’urn:xmpp:jingle:apps:file-transfer:5’
creator=’1initiator’
name='a-file-offer’ />
</jingle>
</iqg>

8.2 Checksum

At any time during the lifetime of the file transfer session, the File Sender can communicate
the checksum of the file to the File Receiver.

This can be done in the session-initiate message if the File Sender already knows the check-
sum, as shown above in Example 3.

After the session-initiate message, this can also be done by sending a session-info message
containing a <checksum/> element qualified by the 'urn:xmpp:jingle:apps:file-transfer:5’
namespace. In such a case however, the session-initiate message MUST contain a <hash-
used/> element. The <checksum/> element SHOULD contain ’creator’ and 'name’ attributes
sufficient to identitfy the content the checksum belongs to. Additionally, the <checksum/>
element MUST contain a <file/> element which MUST contain at least one <hash/> or <hash-
used/> element qualified by the 'urn:xmpp:hashes:2’ namespace. Each <hash/> element
contains a checksum of the file data produced in accordance with the hashing function

17

/'8 INFORMATIONAL MESSAGES

specified by the algo’ attribute, which MUST be one of the functions listed in the IANA Hash
Function Textual Names Registry 7.

Listing 14: Initiator sends checksum in session-info

<ig from=’romeo@montague.example/dr4hcr@st3lup4c’
id="kqh401b5’
to=’juliet@capulet.example/yn@cl4bnw@yr3vym’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-info’
sid=’a73sjjvkla37jfea’>
<checksum xmlns=’urn:xmpp:jingle:apps:file-transfer:5’
creator="initiator’
name=’a-file-offer’>
<file>
<hash xmlns=’urn:xmpp:hashes:2’
algo="sha-1’>wOmcJylzCn+AfvuGdgkty2+KP48=</hash>
</file>
</checksum>
</jingle>
</ig>

If a ranged transfer was requested, the <file/> element inside the <checksum/> element MAY
include a <range/> element specifying the offset and length of the requested range, which
in turn includes <hash/> element(s) with hashes of the data that was transferred for that range.

Listing 15: Initiator sends checksum in session-info for a specific range

<ig from=’romeo@montague.example/dr4hcr@st3lup4c’
id="kqh401b5’
to=’juliet@capulet.example/yn@cl4bnw@yr3vym’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-info’
sid=’a73sjjvkla37jfea’>
<checksum xmlns=’urn:xmpp:jingle:apps:file-transfer:5’
creator="initiator’
name="a-file-offer’>
<file>
<range offset=’2048" length=’1024">
<hash xmlns=’urn:xmpp:hashes:2’
algo="sha-1’>kHp5RSzW/h7Gm1etSf90Mr5PC/k=</hash>
</range>
</file>
</checksum>

IANA registry of Hash Function Textual Names <http://www.iana.org/assignments/hash-function-text-n
ames>,

18

http://www.iana.org/assignments/hash-function-text-names
http://www.iana.org/assignments/hash-function-text-names
http://www.iana.org/assignments/hash-function-text-names
http://www.iana.org/assignments/hash-function-text-names

/'8 INFORMATIONAL MESSAGES

</jingle>
</iqg>

If the initiator wishes to communicate only the hashing algorithm at the beginning of the
session (e.g., because it has not yet calculated the checksum), it can send an empty <hash/>
element (without a checksum in the XML character data as shown in the previous examples)
in the session-initiate message; this enables the recipient to check the file during the trans-
fer session (which can be helpful in the case of transfers that are truncated or fail mid-stream).

Listing 16: Initiator communicates hashing algorithm in session-initiate

<ig from=’romeo@montague.example/dr4hcr@st3lup4c’
id="nzu25s8’
to=’juliet@capulet.example/yn@cl4bnw@yr3vym’
type=’"set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-initiate’
initiator="romeo@montague.example/dr4hcr@st3lup4c’
sid=’851ba2’>
<content creator=’initiator’ name=’a-file-offer’ senders=’
initiator’>
<description xmlns=’urn:xmpp:jingle:apps:file-transfer:5’>

<file>
<date>1969-07-21T02:56:15Z</date>
<desc>This is a test. If this were a real file...</desc>

<media-type>text/plain</media-type>
<name>test.txt</name>
<range/>
<size>6144</size>
<hash xmlns=’urn:xmpp:hashes:2’ algo=’sha-1’/>
</file>
</description>
<transport xmlns=’urn:xmpp:jingle:transports:s5b:1’
mode="tcp’
sid="vj3hs98y’>
<candidate cid=’hft54dqy’
host=7192.168.4.1"
jid=’romeo@montague.example/dr4hcr@st3lup4c’
port="5086"
priority='8257636"
type=’direct’/>
<candidate cid=’hutr46fe’
host="24.24.24.1"
jid=’romeo@montague.example/dr4hcr@st3lup4c’
port=’5087"’
priority='8258636"
type=’direct’/>
</transport>
</content>

19

/9 ERRORS

</jingle>
</iqg>

9 Errors

9.1 File not Available

If a requested file cannot be found (or the requester does not have permission to request
or know about the existence of the file in question), then the File Sender SHOULD send
either a session-terminate or content-reject action in response to the session-initiate or
content-add request, and SHOULD include a Jingle reason of <failed-application/> and MAY
include an application specific reason of a <file-not-available/> element qualified by the
‘urn:xmpp:jingle:apps:file-transfer:errors:0’ namespace.

Listing 17: File Sender rejects file request because the file could not be found

<iq from=’romeo@montague.example/dr4hcr@st3lup4c’
id="wsn361c9’
to=’juliet@capulet.example/yn@cl4bnw@yr3vym’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’content-reject’
sid="uj3b2’>
<content creator="initiator’ name=’requesting-file’ senders=’
initiator’/>
<reason>
<failed-application />
<file-not-available xmlns=’urn:xmpp:jingle:apps:file-
transfer:errors:0’ />
</reason>
</jingle>
</ig>

9.2 File too Large

There are several situations where a File Receiver might wish to abort a transfer due to an
excess of file data, for example:

« The File Receiver has reached a file system storage quota or other hard limit that pre-
vents continuing to receive file data.

« The File Sender has continued sending data past the initially specified size of the file.

In such cases, the File Receiver MAY abort the transfer by sending a Jingle session-terminate
(or content-remove as appropriate) which includes a Jingle reason of <media-error/> and

20

\/ 10 IMPLEMENTATION NOTES

MAY include an application specific reason of a <file-too-large/> element qualified by the
"urn:xmpp:jingle:apps:file-transfer:errors:0’ namespace.

Listing 18: File Receiver rejects file offer because the file is too large

<ig from=’romeo@montague.example/dr4hcr@st3lup4c’
id="wsn361c9’
to=’juliet@capulet.example/yn@cl4bnw@yr3vym’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’content -remove’
sid="uj3b2’>
<content creator="initiator’ name=’big-file’ senders=’initiator’/>
<reason>
<media-error />
<file-too-large xmlns=’urn:xmpp:jingle:apps:file-
transfer:errors:0’ />
</reason>
</jingle>
</iqg>

To prevent denial of service and other attacks, the File Receiver is fully within its rights to
drop received data or not send a session-terminate message.

10 Implementation Notes

10.1 Mandatory to Implement Technologies

All implementations MUST support the Jingle In-Band Bytestreams Transport Method (XEP-
0261) as a reliable method of last resort. An implementation SHOULD support other transport
methods as well, especially ICE-TCP (RFC 6544) and the Jingle SOCKS5 Bytestreams Transport
Method (XEP-0260).

10.2 Preference Order of Transport Methods

An application MAY present transport methods in any order, except that the Jingle In-Band
Bytestreams Transport Method MUST be the lowest preference.

10.3 Migration from XEP-0096

Support for Jingle file transfer can be determined through discovery of the
‘urn:xmpp:jingle:apps:file-transfer:5” namespace (see Namespace Versioning regarding
the possibility of incrementing the version number), via either service discovery (XEP-0030)

21

\J 12 SECURITY CONSIDERATIONS

or entity capabilities (XEP-0115). If the initiator knows that the responder supports Jingle file
transfer, it SHOULD first attempt negotiation using Jingle rather than Stream Initiation.

11 Determining Support

To advertise its support for the Jingle File Transfer, when replying to service discovery
information ("disco#info”) requests an entity MUST return URNs for any version of this
protocol that the entity supports -- e.g., "urn:xmpp:jingle:apps:file-transfer:5” for this version
(see Namespace Versioning regarding the possibility of incrementing the version number).

Listing 19: Service discovery information request

<ig from=’romeo@montague.example/dr4hcr@st3lup4c’
id="uw72g176"’
to="juliet@capulet.example/yn@cl4bnw@yr3vym’
type="get’>
<query xmlns=’http://jabber.org/protocol/disco#info’/>
</iqg>

Listing 20: Service discovery information response

<ig from=’juliet@capulet.example/yn@cl4bnw@yr3vym’
id="uw72g176"’
to="romeo@montague.example/dr4hcr@st3lup4c’
type=’result’>
<query xmlns=’http://jabber.org/protocol/disco#info’>
<feature var=’urn:xmpp:jingle:1’/>
<feature var=’urn:xmpp:jingle:apps:file-transfer:5’/>
<feature var=’urn:xmpp:jingle:transports:s5b:1’/>
<feature var=’urn:xmpp:jingle:transports:ibb:1’/>
</query>
</ig>

In order for an application to determine whether an entity supports this protocol, where
possible it SHOULD use the dynamic, presence-based profile of service discovery defined
in Entity Capabilities (XEP-0115) '8, However, if an application has not received entity
capabilities information from an entity, it SHOULD use explicit service discovery instead.

12 Security Considerations

Caution needs to be exercised when using the <name/> of a file offer or request to con-
trol any interaction with a file system. For example, a malicious user could request a file

XEP-0115: Entity Capabilities <https: //xmpp.org/extensions/xep-0115.html>,

22

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html

\/ 14 XMPP REGISTRAR CONSIDERATIONS

with <name>/etc/passwd</name> or include file system specific control patterns such as
<name>../../private.txt</name> to try and access a sensitive file outside of the set of files
intended to be shared. Or a malicious user could offer a file named ”/etc/passwd” to try and
trick the receiver into overwriting that or other sensitive files. Therefore, implementations
SHOULD escape any file system path separators in the <name/> before using that value in any
file system calls.

It is RECOMMENDED for implementations to use the strongest hashing algorithm available to
both parties. See XEP-0300 for further discussion.

In order to secure the data stream, implementations SHOULD use encryption methods
appropriate to the transport method being used. For example, end-to-end encryption can be
negotiated over either SOCKS5 Bytestreams or In-Band Bytestreams as described in XEP-0260
and XEP-0261.

Refer to XEP-0047, XEP-0065, XEP-0096, XEP-0176, XEP-0260, XEP-0261, and RFC 6544 for
related security considerations.

13 IANA Considerations

No interaction with the Internet Assigned Numbers Authority (TANA) 1 is required as a result
of this document.
The XML character data of the <media-type/> element SHOULD be a value registered with the

IANA in the IANA MIME Media Types Registry .

14 XMPP Registrar Considerations

14.1 Protocol Namespaces

This specification defines the following XML namespace:

« urn:xxmpp:jingle:apps:file-transfer:5

Upon advancement of this specification from a status of Experimental to a status of
Draft, the XMPP Registrar 2! shall add the foregoing namespace to the registry located
at <https://xmpp.org/registrar/namespaces.html>, as described in Section 4 of XMPP
Registrar Function (XEP-0053) 22,

“The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

2JANA registry of MIME media types <http://www.iana.org/assignments/media-types>.

*IThe XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

X EP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.

23

http://www.iana.org/
http://www.iana.org/assignments/media-types
https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
http://www.iana.org/
http://www.iana.org/assignments/media-types
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

\/ 15 XML SCHEMA

14.2 Namespace Versioning

If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

14.3 Jingle Application Formats

The XMPP Registrar shall include "file-transfer” in its registry of Jingle application formats.
The registry submission is as follows:

<application>
<name>file-transfer</name>
<desc>Jingle sessions for the transfer of a file</desc>
<transport>streaming</transport>
<doc>XEP-0234</doc>
</application>

15 XML Schema

15.1 urn:xmpp:jingle:apps:file-transfer:5

<?xml version=’1.0’ encoding=’UTF-8’?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="urn:xmpp:jingle:apps:file-transfer:5’
xmlns="urn:xmpp:jingle:apps:file-transfer:5’
elementFormDefault="qualified’>

<xs:import namespace=’urn:xmpp:hashes:2’/>

<xs:element name=’description’>
<xs:complexType>
<xs:all>
<xs:element name=’file’ type=’fileTransferElementType’/>
</xs:all>
</xs:complexType>
</xs:element>

<xs:element name=’checksum’>
<xs:complexType>
<xs:all>
<xs:element name=’file’ type=’fileTransferElementType’/>

24

\/ 15 XML SCHEMA

</xs:all>
<xs:attribute name=’creator’ use=’required’>
<xs:simpleType>
<xs:restriction base=’xs:NCName’>
<xs:enumeration value=’initiator’/>
<xs:enumeration value=’responder’/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name=’name’ type=’xs:string’ use=’required’/>
</xs:complexType>
</xs:element>

<xs:element name=’received’>
<xs:complexType>
<xs:attribute name=’creator’ use='required’>
<xs:simpleType>
<xs:restriction base=’xs:NCName’>
<xs:enumeration value=’initiator’/>
<xs:enumeration value=’responder’/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name=’name’ type=’xs:string’ use=’required’/>
</xs:complexType>
</xs:element>

<xs:complexType name=’fileTransferElementType’>
<xs:all xmlns:h=’urn:xmpp:hashes:2’ minOccurs=’0’">
<xs:element name=’date’ type=’xs:date’/>
<xs:element name=’media-type’ type=’xs:string’/>
<xs:element name=’name’ type=’xs:string’/>
<xs:element name=’desc’ type=’xs:string’/>
<xs:element name=’size’ type=’xs:positivelnteger’/>
<xs:element name=’range’ type=’fileTransferRangeType’/>
<xs:element ref="h:hash’ minOccurs=’0’ maxOccurs=’unbounded’/>
</Xxs:sequence>
</xs:complexType>

<xs:complexType name=’fileTransferRangeType’>
<xs:attribute name=’offset’ type=’xs:nonNegativelnteger’ use=’
optional’ default=’0@’ />
<xs:attribute name=’1length’ type=’xs:nonNegativelnteger’ use=’
optional’ />
<xs:all xmlns:h=’urn:xmpp:hashes:2’ minOccurs="0">
<xs:element ref="h:hash’ minOccurs=’0’ maxOccurs=’unbounded’ />
</xs:all>
</xs:complexType>

25

\/ 16 ACKNOWLEDGEMENTS

‘</xs:schema>

15.2 urn:xmpp:jingle:apps:file-transfer:errors:0

<?xml version=’1.0’ encoding=’UTF-8’7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="urn:xmpp:jingle:apps:file-transfer:5’
xmlns="urn:xmpp:jingle:apps:file-transfer:errors:0’
elementFormDefault="qualified’>

<xs:element name=’file-not-available’ type=’empty’ />
<xs:element name=’file-too-large’ type=’empty’ />

</xs:schema>

16 Acknowledgements

Thanks to Diana Cionoiu, Olivier Créte, Viktor Fast, Philipp Hancke, Waqas Hussain, Justin
Karneges, Steffen Larsen, Yann Leboulanger, Marcus Lundblad, Robert McQueen, Joe Maissel,
Glenn Maynard, Ali Sabil, Sjoerd Simons, Will Thompson, Matthew Wild, Paul Schaub and Jit{
Zérevucky for their feedback.

26

	Introduction
	Requirements
	Terminology
	Jingle Conformance
	Use of Jingle Content Senders

	Application Format
	Negotiating a Jingle File Transfer Session
	Offering a File
	Requesting a File
	Offering or Requesting Additional Files
	Ranged Transfers
	Aborting a Transfer
	Ending the Session

	Mapping to Session Description Protocol
	Informational Messages
	Received
	Checksum

	Errors
	File not Available
	File too Large

	Implementation Notes
	Mandatory to Implement Technologies
	Preference Order of Transport Methods
	Migration from XEP-0096

	Determining Support
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Namespace Versioning
	Jingle Application Formats

	XML Schema
	urn:xmpp:jingle:apps:file-transfer:5
	urn:xmpp:jingle:apps:file-transfer:errors:0

	Acknowledgements

