XVIPP

XEP-0166: Jingle

Scott Ludwig Joe Beda Peter Saint-Andre
mailto:scottlu@google.com mailto: jbeda@google.com mailto:xsf@stpeter.im
xmpp:scottlu@google.com xmpp : jbeda@google.com Xmpp: peter@jabber.org
http://stpeter.im/
Robert McQueen Sean Egan
mailto:robert.mcqueen@collabora.co.uk mailto:seanegan@google.com
xmpp: robert.mcqueen@collabora.co.uk Xmpp : seanegan@google.com
Joe Hildebrand

mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org

2018-09-19
Version 1.1.2

Status Type Short Name
Draft Standards Track jingle

This specification defines an XMPP protocol extension for initiating and managing peer-to-peer media
sessions between two XMPP entities in a way that is interoperable with existing Internet standards. The
protocol provides a pluggable model that enables the core session management semantics (compatible
with SIP) to be used for a wide variety of application types (e.g., voice chat, video chat, file transfer) and
with a wide variety of transport methods (e.g., TCP, UDP, ICE, application-specific transports).

mailto:scottlu@google.com
xmpp:scottlu@google.com
mailto:jbeda@google.com
xmpp:jbeda@google.com
mailto:xsf@stpeter.im
xmpp:peter@jabber.org
http://stpeter.im/
mailto:robert.mcqueen@collabora.co.uk
xmpp:robert.mcqueen@collabora.co.uk
mailto:seanegan@google.com
xmpp:seanegan@google.com
mailto:jhildebr@cisco.com
xmpp:hildjj@jabber.org

Legal

Copyright

This XMPP Extension Protocol is copyright © 1999 - 2020 by the XMPP Standards Foundation (XSF).

Permissions

Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
"Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty

NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance

This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https: //xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents

1 Introduction

2 How It Works

3 Requirements

4 Terminology
Glossary o
Conventions i i i i i

4.1
4.2

5 Concepts and Approach
Overall Session Management e.....

5.1

6 Session Flow

Resource Determination e
Initiation e e e e e e e e
Responder RESPONSE . . v v v v v v v i e e e e e e e e e

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8

6.3.1
6.3.2

Acknowledgement
Errors e

Negotiation o e
Acceptance o e e e e e e
Modifying an Active Session
Termination e e e e
Informational Messages v v v it e e e

7 Formal Definition

7.1 JingleElement e
7.2 Action Attribute
7.21 content-accept e
7.22 content-add
7.2.3 content-modify
7.24 content-reject
7.25 content-remove L Lo e e e e e
7.2.6 description-info
7.27 security-info
7.2.8 session-accept e e
7.29 session-info
7.2.10 session-initiate oo
7.2.11 session-terminate o L
7.2.12 transport-accept e
7.213 transport-info
7.2.14 ftransport-reject oL e e

7.2.15

transport-replace

10

12
12
12
14
14
14
16
17
18
18
23

10

11

12

13

14

15

16

17

18

7.2.16 Tie Breaking Related to Jingle Actions

73 ContentElement
74 ReasonElement
Transport Types

8.1 Datagram e e e e e e
8.2 Streaming i e e e e e

Security Preconditions
Error Handling
Determining Support

Conformance by Using Protocols

12.1 Application Formats v v vt e e
12.2 TransportMethods
12.3 Security Preconditions

Security Considerations

13.1 TransportSecurity o o e
13.2 Denialof Service
13.3 Communication Through Gateways
13.4 Information EXPOSUre v v v v v v e i e i e e e e e e
13.5 Redirection o i e

IANA Considerations

XMPP Registrar Considerations

15.1 Protocol Namespaces o v v v v v it et e e
15.2 Namespace Versioning v v v v v v v v v v oot it e
15.3 Jingle Application Formats Registry
15.4 Jingle Transport Methods Registry

XML Schemas
16.1 Jingle L e
16.2 JINGlE EXTOrS . . v v v vt e e e e e e e e e e e e e

History

Acknowledgements

34
34
35

35

36

37

38
38
38
39

39
39
39
39
40
40

40

40
40
41
41
41

42
42
45

45

46

/1 INTRODUCTION

1 Introduction

The purpose of Jingle is to enable one-to-one, peer-to-peer media sessions between XMPP
entities, where the negotiation occurs over the XMPP signalling channel and the media is
exchanged over a data channel that is usually a dedicated non-XMPP transport. Jingle is
designed in a modular way:

« Developers can easily plug in support for a wide variety of application types, such as
voice and video chat (see Jingle RTP Sessions (XEP-0167)), file transfer (see Jingle File
Transfer (XEP-0234) 2), application sharing, collaborative editing, whiteboarding, and
secure transmission of end-to-end XML streams (see Jingle XML Streams (XEP-0247) 3).

¢ The transport methods are also pluggable, so that Jingle implementations can use
any appropriate datagram transport such as User Datagram Protocol (UDP; RFC 768
%) as negotiated via Jingle Raw UDP Transport Method (XEP-0177) ° or Jingle ICE-UDP
Transport Method (XEP-0176) ©, or any appropriate streaming transport such as
Transmission Control Protocol (TCP; RFC 793 7), SOCKS5 Bytestreams (XEP-0065) ¢ as
negotiated via Jingle SOCKS5 Bytestreams Transport Method (XEP-0260) ?, and In-Band
Bytestreams (XEP-0047) ° as negotiated via Jingle In-Band Bytestreams Transport
Method (XEP-0261) .

« This modular approach also extends to the security preconditions that need to be met
before application data can be exchanged over a given transport, such as negotiation
of Transport Layer Security (TLS; RFC 5246 '?) for streaming transports and negoti-
ation of Datagram Transport Layer Security (DTLS; RFC 4347 %) for datagram transports.

It is expected that most application types, transport methods, and security preconditions will
be documented in specifications produced by the XMPP Standards Foundation (XSF) * or the

'XEP-0167: Jingle RTP Sessions <https://xmpp.org/extensions/xep-0167.html>,
*XEP-0234: Jingle File Transfer <https://xmpp.org/extensions/xep-0234.html>,
SXEP-0247: Jingle XML Streams <https://xmpp.org/extensions/xep-0247.html>.
“RFC 768: User Datagram Protocol <http://tools.ietf.org/html/rfce768>.
XEP-0177: Jingle Raw UDP Transport Method <https://xmpp.org/extensions/xep-0177.html>,
SXEP-0176: Jingle ICE-UDP Transport Method <https: //xmpp.org/extensions/xep-0176.html>,
"RFC 793: Transmission Control Protocol <http://tools.ietf.org/html/rfce793>.
8XEP-0065: SOCKS5 Bytestreams <https://xmpp.org/extensions/xep-0065.html>.
XEP-0260: Jingle SOCKS5 Bytestreams Transport Method <https://xmpp.org/extensions/xep-0260.html>,
1°XEP-0047: In-Band Bytestreams <https://xmpp.org/extensions/xep-0047.html>,
"'XEP-0261: Jingle In-Band Bytestreams Transport Method <https://xmpp.org/extensions/xep-0261.html>,
12RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2 <http://tools.ietf.org/html/rfc5246>,
RFC 4347: Datagram Transport Layer Security <http://tools.ietf.org/html/rfc4347>,
"“The XMPP Standards Foundation (XSF) is an independent, non-profit membership organization that develops
open extensions to the IETF’s Extensible Messaging and Presence Protocol (XMPP). For further information,
see <https://xmpp.org/about/xmpp-standards-foundation>,

https://xmpp.org/extensions/xep-0167.html
https://xmpp.org/extensions/xep-0234.html
https://xmpp.org/extensions/xep-0234.html
https://xmpp.org/extensions/xep-0247.html
http://tools.ietf.org/html/rfc0768
https://xmpp.org/extensions/xep-0177.html
https://xmpp.org/extensions/xep-0176.html
https://xmpp.org/extensions/xep-0176.html
http://tools.ietf.org/html/rfc0793
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0260.html
https://xmpp.org/extensions/xep-0047.html
https://xmpp.org/extensions/xep-0047.html
https://xmpp.org/extensions/xep-0261.html
https://xmpp.org/extensions/xep-0261.html
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4347
https://xmpp.org/about/xmpp-standards-foundation
https://xmpp.org/extensions/xep-0167.html
https://xmpp.org/extensions/xep-0234.html
https://xmpp.org/extensions/xep-0247.html
http://tools.ietf.org/html/rfc0768
https://xmpp.org/extensions/xep-0177.html
https://xmpp.org/extensions/xep-0176.html
http://tools.ietf.org/html/rfc0793
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0260.html
https://xmpp.org/extensions/xep-0047.html
https://xmpp.org/extensions/xep-0261.html
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4347
https://xmpp.org/about/xmpp-standards-foundation

\/ 2 HOW IT WORKS

Internet Engineering Task Force (IETF) '°; however, developers can also define proprietary
methods for custom functionality.

Although Jingle provides a general framework for session management, the original target
application for Jingle was simple voice and video chat. We stress the word "simple”. The
purpose of Jingle was not to build a full-fledged telephony application that supports call wait-
ing, call forwarding, call transfer, hold music, IVR systems, find-me-follow-me functionality,
conference calls, and the like. These features are of interest to some user populations, but
adding support for them to the core Jingle layer would introduce unnecessary complexity
into a technology that is designed for simple but generalized session negotiation.
Furthermore, Jingle is not intended to supplant or replace existing Internet technologies
based on the Session Initiation Protocol (SIP; RFC 3261 '©). Because dual-stack XMPP+SIP
clients are difficult to build, Jingle was designed as a pure XMPP signalling protocol. However,
Jingle is at the same time designed to interwork with SIP so that the millions of deployed
XMPP clients can be added onto existing Voice over Internet Protocol (VoIP) networks, rather
than limiting XMPP users to a separate and distinct network.

2 How It Works

This section provides a friendly introduction to Jingle.

In essence, Jingle enables two XMPP entities (e.g., romeo@montague.lit and juliet@capulet.lit)
to set up, manage, and tear down a multimedia session. The negotiation takes place over
XMPP, and the media transfer typically takes place outside of XMPP. A simplified session flow
would be as follows: 7

Romeo Juliet

| session-initiate |

| mmmmmmmmmmmmmeooooooos >|
| ack |
| o= mmmmmmmoo oo |
| session-accept |
| <mmmm oo |
| ack |
| mmmmmmmoomeeoooooooooo >

The Internet Engineering Task Force is the principal body engaged in the development of new Internet standard
specifications, best known for its work on standards such as HTTP and SMTP. For further information, see
<http://www.ietf.org/>.

1®RFC 3261: Session Initiation Protocol (SIP) <http://tools.ietf.org/html/rfc3261>.

Naturally, more complex scenarios are possible; such scenarios are described in other specifications, such as
Jingle RTP Sessions for voice and video chat.

http://www.ietf.org/
http://tools.ietf.org/html/rfc3261
http://www.ietf.org/
http://tools.ietf.org/html/rfc3261

\/ 2 HOW IT WORKS

To illustrate the basic flow, we show a truncated example with a "stub” application format
and transport method (skipping non-essential steps to enforce the most essential concepts
and ignoring security preconditions for now).

Listing 1: Initiator sends session-initiate (stub)

<ig from=’romeo@montague.lit/orchard’
id=’zid615d9”’
to=’juliet@capulet.lit/balcony’
type=’"set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-initiate’
initiator="romeo@montague.lit/orchard’
sid="a73sjjvkla37jfea’>
<content creator=’initiator’ name=’this-is-a-stub’>
<description xmlns=’urn:xmpp:jingle:apps:stub:0’/>
<transport xmlns=’urn:xmpp:jingle:transports:stub:0’/>
</content>
</jingle>
</iqg>

In this example, the initiator (romeo@montague.lit/orchard) sends a session initiation offer
to the responder (juliet@capulet.lit/balcony), where the session is defined as the exchange of
”stub” media over a "stub” transport.

After the responding client acknowledges receipt of the session-initiate message (not shown
here), it prompts the responding user (if any) to choose whether she wants to proceed with
the session (however, it does not need to prompt the user if for example she has configured
her client to automatically accept session requests from this particular initiator). If she wants
to proceed she selects the appropriate interface element and her client sends a session-accept
message to the initiator.

Listing 2: Responder definitively accepts the session

<ig from=’juliet@capulet.lit/balcony’
id="rc61n59s”’
to=’romeo@montague.lit/orchard’
type=’"set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-accept’
responder="juliet@capulet.lit/balcony’
sid=’a73sjjvkla37jfea’>
<content creator=’initiator’ name=’this-is-a-stub’>
<description xmlns=’urn:xmpp:jingle:apps:stub:0’/>
<transport xmlns=’urn:xmpp:jingle:transports:stub:0’/>

\/ 2 HOW IT WORKS

</content>
</jingle>
</ig>

The initiating client acknowledges receipt of the session-accept message (not shown here)
and the parties can exchange "stub” media data over the "stub” transport.
Eventually, one of the parties (here the responder) will terminate the session.

Listing 3: Responder terminates the session

<ig from=’juliet@capulet.lit/balcony’
id="1e71fa63’
to=’romeo@montague.lit/orchard’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid=’a73sjjvkla37jfea’>
<reason>
<success/>
</reason>
</jingle>
</ig>

The initiating client acknowledges receipt of the session-terminate message (not shown here)
and the session is ended.

We now "fill in the blanks” for the <description/> and <transport/> elements with a more
complex example: a voice chat session, where the application type is a Jingle RTP session
(with several different codec possibilities) and the transport method is ICE-UDP.

Listing 4: Initiator sends session-initiate

<ig from=’romeo@montague.lit/orchard’
id="ph37a419’
to=’juliet@capulet.lit/balcony’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-initiate’
initiator="romeo@montague.lit/orchard’
sid="a73sjjvkla37jfea’>
<content creator=’initiator’ name=’voice’>
<description xmlns=’urn:xmpp:jingle:apps:rtp:1’ media=’audio’>
<payload-type id=’96’ name=’speex’ clockrate=’16000’/>
<payload-type id=’97’ name=’speex’ clockrate=’8000’/>
<payload-type id=’18’ name=’G729’/>
<payload-type id=’@’ name=’PCMU’ />
<payload-type id=’103’ name=’L16’ clockrate="16000’ channels=’
2 />
<payload-type id=’98’ name=’x-ISAC’ clockrate="8000’/>

\/ 2 HOW IT WORKS

</description>
<transport xmlns=’urn:xmpp:jingle:transports:ice-udp:1’
pwd="asd88fgpdd777uzjYhagZg’
ufrag=’8hhy’>
<candidate component=’1"
foundation="1"
generation="0’
id=’elo@747fg11’
ip=’10.0.1.1"
network="1"
port=’8998"’
priority=’2130706431"
protocol="udp’
type="host’ />
<candidate component=’1"
foundation="2"
generation="0"’
id=’y3s2b30v3r’
ip=’192.0.2.3"
network="1"
port=’45664"
priority=’1694498815"’
protocol="udp’
rel-addr="10.0.1.1"
rel-port=’8998"’
type=’srflx’/>
</transport>
</content>
</jingle>
</ig>

Upon receiving the session-initiate message, the responder determines whether it can
proceed with the negotiation. If there is no error, the responder acknowledges the session
initiation request.

Listing 5: Responder acknowledges session-initiate

<ig from=’juliet@capulet.lit/balcony’
id="ph37a419’
to=’romeo@montague.lit/orchard’
type=’result’/>

When the responding user affirms that she would like to proceed with the session, the
responding client sends a session-accept message to the initiator (including in this example
the subset of offered codecs that the responding client supports and one or more transport
candidates generated by the responder).

Listing 6: Responder definitively accepts the session

\/ 2 HOW IT WORKS

<ig from=’juliet@capulet.lit/balcony’
id=’yd71f495’
to=’romeo@montague.lit/orchard’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-accept’
responder=’juliet@capulet.lit/balcony’
sid="a73sjjvkla37jfea’>
<content creator=’"initiator’ name=’voice’>
<description xmlns=’urn:xmpp:jingle:apps:rtp:1’ media=’audio’>
<payload-type id=’97’ name=’speex’ clockrate=’8000’/>
<payload-type id=’18’ name=’G729’/>
</description>
<transport xmlns=’urn:xmpp:jingle:transports:ice-udp:1’>
<candidate component=’1"
foundation="1"
generation="0’
id=’or2ii2syr1’
ip=’192.0.2.1"
network=’0"’
port=’3478"
priority=’2130706431"’
protocol="udp’
type="host’ />
</transport>
</content>
</jingle>
</iqg>

And the initiating client acknowledges session acceptance:

Listing 7: Initiator acknowledges session acceptance

<ig from=’romeo@montague.lit/orchard’
id=’yd71f495"
to=’juliet@capulet.lit/balcony’
type=’result’/>

Once the parties finish the transport negotiation, they would then exchange media using any
of the acceptable codecs.
Eventually, one of the parties (here the responder) will terminate the session.

Listing 8: Responder terminates the session

<ig from=’juliet@capulet.lit/balcony’
id=’vua614d9’
to=’romeo@montague.lit/orchard’
type=’"set’>

/' 3 REQUIREMENTS

<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid=’a73sjjvkla37jfea’>
<reason>
<success/>
<text>Sorry, gotta go!</text>
</reason>
</jingle>
</ig>

The other party then acknowledges termination of the session:

Listing 9: Initiator acknowledges termination

<ig from=’romeo@montague.lit/orchard’
id=’vua614d9’
to="juliet@capulet.lit/balcony’
type=’result’/>

3 Requirements

The protocol defined herein is designed to meet the following requirements:

1. Make it possible to manage a wide variety of peer-to-peer sessions (including but not
limited to voice and video) within XMPP.

2. When a peer-to-peer connection cannot be negotiated, make it possible to fall back to
relayed communications.

3. Clearly separate the signalling channel (XMPP) from the data channel.

4, Clearly separate the application format (e.g., RTP audio) from the transport method (e.g.,
UDP).

5. Make it possible to add, modify, and remove both application types and transport meth-
ods in an existing session.

6. Make it relatively easy to implement support for the protocol in standard Jabber/XMPP
clients.

7. Where communication with non-XMPP entities is needed, push as much complexity as
possible onto server-side gateways between the XMPP network and the non-XMPP net-
work.

This document defines the signalling protocol only. Additional documents specify the follow-
ing:

\/ 4 TERMINOLOGY

« Various application formats (audio, video, etc.) and, where possible, mapping of those
types to the Session Description Protocol (SDP; see RFC 4566 '8); examples include Jingle
RTP Sessions and Jingle File Transfer.

« Various transport methods; examples include Jingle ICE-UDP Transport Method, Jingle
Raw UDP Transport Method, Jingle In-Band Bytestreams Transport Method, and Jingle
SOCKS5 Bytestreams Transport Method.

» Various methods of securing the transport before using it to send application data;
the only method defined so far is Transport Layer Security as described in Jingle XTLS *°.

« Procedures for mapping the Jingle signalling protocol to existing signalling standards
such as the IETF’s Session Initiation Protocol (SIP) and the ITU’s H.323 protocol (see
H.323 %°); see for example draft-ietf-stox-media 2!

4 Terminology

4.1 Glossary

Application Format The data format of the content type being established, which formally
declares one purpose of the session (e.g., “audio” or "video”). This is the 'what’ of the
session (i.e., the bits to be transferred), such as the acceptable codecs when establishing
a voice conversation. In Jingle XML syntax the application format is the namespace of
the <description/> element.

Component A numbered stream of data that needs to be transmitted between the endpoints
for a given content type in the context of a given session. It is up to the transport to
negotiate the details of each component. Depending on the content type, multiple com-
ponents might be needed (e.g., one to transmit an RTP stream and another to transmit
RTCP timing information).

Content Type A pair formed by the combination of one application format and one transport
method.

Session One or more content types negotiated between two entities. It is delimited in time by
a session-initiate action and a session-terminate action. During the lifetime of a session,

18RFC 4566: SDP: Session Description Protocol <http://tools.ietf.org/html/rfc4566>.

YExtensible Messaging and Presence Protocol (XMPP) End-to-End Encryption Using Transport Layer Security
("XTLS”) <http://tools.ietf.org/html/draft-meyer-xmpp-e2e-encryption=.

“ITU Recommendation H.323: Packet-based Multimedia Communications Systems (September 1999).

“Interworking between the Session Initiation Protocol (SIP) and the Extensible Messaging and Presence Protocol
(XMPP): Media Sessions <http://tools.ietf.org/html/draft-ietf-stox-media> (work in progress).

http://tools.ietf.org/html/rfc4566
http://tools.ietf.org/html/draft-meyer-xmpp-e2e-encryption
http://tools.ietf.org/html/draft-ietf-stox-media
http://tools.ietf.org/html/rfc4566
http://tools.ietf.org/html/draft-meyer-xmpp-e2e-encryption
http://tools.ietf.org/html/draft-ietf-stox-media

/5 CONCEPTS AND APPROACH

content types can be added or removed. A session consists of at least one content type
at a time.

Transport Method The method for establishing data stream(s) between entities. Possible
transports might include ICE-UDP, ICE-TCP, Raw UDP, In-Band Bytestreams, SOCKS5
Bytestreams, etc. This is the how’ of the session. In Jingle XML syntax this is the names-
pace of the <transport/> element. The transport method defines how to transfer bits
from one host to another. Each transport method MUST specify whether it is ”data-
gram” or "streaming” as described in the Transport Types section of this document.

4.2 Conventions

In diagrams, the following conventions are used:

« Single-dashed lines (---) represent Jingle stanzas that are sent via the XMPP signalling
channel.

+ Double-dashed lines (===) represent media packets that are sent via the data channel,
which typically is not an XMPP channel (although the Jingle In-Band Bytestreams Trans-
port Method is an exception) but instead is a direct or mediated channel between the
endpoints.

5 Concepts and Approach

Jingle consists of three parts, each with its own syntax and semantics:

1. Overall session management
2. Application types (the "what”)
3. Transport methods (the "how™)

This document defines the semantics and syntax for overall session management. It also
provides pluggable "slots” for application formats and transport methods, which are specified
in separate documents.

At the most basic level, the process for initial negotiation of a Jingle session is as follows:

1. One user (the "initiator”) sends to another user (the "responder”) a session-initiate mes-
sage containing at least one content definition, each of which defines one application
type, one transport method, and optionally one security precondition.

2. If the responder wishes to proceed, it sends a session-accept message to the initiator,
optionally including one or more transport candidates (depending on the transport
method specified in the session-initiate message).

/5

CONCEPTS AND APPROACH

The parties attempt to establish connectivity over the offered transport method as de-
fined in the relevant specification, which might involve the exchange of transport-info
messages for additional transport candidates; if connectivity cannot be established then
the parties might attempt to fall back to another transport method using the transport-
replace and transport-accept messages.

Optionally, the parties attempt to establish security for the transport method before
using it to exchange application data.

Optionally, either party can add or remove content definitions, or change the direction
of the media flow, using the content-add, content-remove, and content-modify mes-
sages.

Optionally, either party can send session-info messages (e.g., to inform the other party
that its device is ringing).

As soon as the initiator and responder determine that data can flow over the negoti-
ated transport (potentially only after a security precondition has been met), they start
sending application data over the transport.

Even after application data is being exchanged, the parties can adjust the session definition
by sending additional Jingle messages, such as content-modify, content-remove, content-add,
description-info, security-info, session-info, and transport-replace.

5.1 Overall Session Management

The state machine for overall session management (i.e., the state per Session ID) is as follows:

PENDING OQ-=--==--===--==--—=———-- +

| content-accept, |
| content-add, |
| content-modify, |
| content-reject, |
| content-remove, |
| description-info, |
| session-info, |
| transport-accept, |
| transport-info, |
| transport-reject, |
| transport-replace |

10

/5 CONCEPTS AND APPROACH

ACTIVE o0---------=-=—======-=--—-—--- +
| content-accept, |
| content-add, |
| content-modify, |
| content-reject, |
| content-remove, |
| description-info, |
| session-info, |
| transport-accept, |
| transport-info, |
| transport-reject, |
| transport-replace |

session-terminate

|
|
|
o ENDED

As shown, there are three overall session states:

1. PENDING
2. ACTIVE
3. ENDED

Note: While it is allowed to send all actions while in the PENDING state, typically the responder
will send a session-accept message as quickly as possible in order to expedite the transport
negotiation; see the Security Considerations section of this document regarding information
exposure when the responder sends transport candidates to the initiator.

The actions related to management of the overall Jingle session are as follows (detailed
definitions are provided in the Action Attribute section of this document).

content-accept Accept a content-add action received from another party.
content-add Add one or more new content definitions to the session.
content-modify Change the directionality of media sending.
content-reject Reject a content-add action received from another party.

content-remove Remove one or more content definitions from the session.

11

\J 6 SESSION FLOW

description-info Exchange information about parameters for an application type.
security-info Exchange information about security preconditions.
session-accept Definitively accept a session negotiation.

session-info Send session-level information, such as a ping or a ringing message.
session-initiate Request negotiation of a new Jingle session.

session-terminate End an existing session.

transport-accept Accept a transport-replace action received from another party.
transport-info Exchange transport candidates.

transport-reject Reject a transport-replace action received from another party.

transport-replace Redefine a transport method or replace it with a different method.

6 Session Flow

This section defines the high-level flow of a Jingle session. More detailed descriptions are
provided in the specifications for Jingle application formats and transport methods.

6.1 Resource Determination

In order to initiate a Jingle session, the initiator needs to determine which of the responder’s
XMPP resources is best for the desired application format. Methods for doing so are out of
scope for this specification. However, see the Determining Support section of this document
for relevant information.

6.2 Initiation

Once the initiator has discovered which of the responder’s XMPP resources is ideal for the
desired application format, it sends a session initiation request to the responder. This request
is an 1Q-set containing a <jingle/> element qualified by the "urn:xmpp:jingle:1’ namespace
(see Namespace Versioning regarding the possibility of incrementing the version number),
where the value of the ’action’ attribute is "session-initiate” and where the <jingle/> element
contains one or more <content/> elements. Each <content/> element defines a content type to
be transferred during the session, and each <content/> element in turn contains one <descrip-
tion/> child element that specifies a desired application format and one <transport/> child
element that specifies a potential transport method, as well as (optionally) one <security/>
element that specifies a security precondition that needs to be met before the parties can
exchange application data over the negotiated transport.

12

\J 6 SESSION FLOW

Listing 10: Initiator sends session-initiate

<ig from=’romeo@montague.lit/orchard’
id=’xs51rok4’
to=’juliet@capulet.lit/balcony’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-initiate’
initiator="romeo@montague.lit/orchard’
sid=’a73sjjvkla37jfea’>
<content creator=’initiator’ name=’voice’>
<description xmlns=’urn:xmpp:jingle:apps:rtp:1’ media=’audio’>
<payload-type id=’96’ name=’speex’ clockrate=’16000’/>
<payload-type id=’97’ name=’speex’ clockrate=’8000’/>
<payload-type id=’18’ name=’G729°’/>
<payload-type id=’Q@’ name=’PCMU’ />
<payload-type id=’103’ name=’L16’ clockrate=’16000’ channels=’
27 />
<payload-type id=’98’ name=’x-ISAC’ clockrate=’8000’/>
</description>
<transport xmlns=’urn:xmpp:jingle:transports:ice-udp:1’
pwd="asd88fgpdd777uzjYhagzg’
ufrag=’8hhy’>
<candidate component=’1"
foundation="1"
generation="0’
id="el@747fg11’
ip=’10.0.1.1"
network="1"
port=’8998"’
priority=’"2130706431"’
protocol="udp’
type="host’/>
<candidate component=’1"
foundation=’2"
generation="0’
id=’y3s2b30v3r’
ip=’192.0.2.3"
network="1"
port="45664"
priority="1694498815"’
protocol="udp’
rel-addr="10.0.1.1"
rel-port=’8998"’
type="srflx’/>
</transport>
</content>
</jingle>
</iqg>

13

\J 6 SESSION FLOW

Application types ought not to be mixed beyond necessity within a single session. Therefore
the session initiation request (along with subsequent additions) will include only content-
types that can be grouped together into a coherent session within a given Jingle application.
For example, two parties might start an audio call but then add a video aspect to that call.
If one of the parties decides to send a file to the other party as a result of discussion over
the audio/video session or a text chat conversation, conceptually that is probably a separate
session (unless file exchange or screen sharing or some other application type is an integral
part of a broader collaboration experience and needs to be calibrated with the audio/video
session).

Note: The syntax and semantics of the <description/>, <transport/>, and <security/> elements
are out of scope for this document, since they are defined in related specifications. The syntax
and semantics of the <jingle/> and <content/> elements are specified in this document under
Formal Definition.

6.3 Responder Response
6.3.1 Acknowledgement

Unless one of the following errors occurs, the responder MUST acknowledge receipt of the
initiation request.

Listing 11: Responder acknowledges session-initiate

<ig from=’juliet@capulet.lit/balcony’
id="xs51rok4’
to=’romeo@montague.lit/orchard’
type=’result’/>

However, after acknowledging the session initiation request, the responder might subse-
quently determine that it cannot proceed with negotiation of the session (e.g., because it does
not support any of the offered application formats or transport methods, because a human
user is busy or unable to accept the session, because a human user wishes to formally decline
the session, etc.). In these cases, the responder SHOULD immediately acknowledge the session
initiation request but then terminate the session with an appropriate reason as described in
the Termination section of this document.

6.3.2 Errors

There are several reasons why the responder might immediately return an error instead of
acknowledging receipt of the initiation request:

+ The initiator is unknown to the responder and the responder does not communicate
with unknown entities.

14

\J 6 SESSION FLOW

« The responder does not support Jingle.

* The responder wishes to redirect the request to another address.

« The responder does not have sufficient resources to participate in a session.
¢ The initiation request was malformed.

If the initiator is unknown to the responder (e.g., via presence subscription as defined in
RFC 3921 ?2) and the responder has a policy of not communicating via Jingle with unknown
entities, it MUST return a <service-unavailable/> error.

Listing 12: Initiator is unknown to responder

<ig from=’juliet@capulet.lit/balcony’
id=’xs51rok4’
to=’romeo@montague.lit/orchard’
type=’error’>
<error type=’cancel’>
<service-unavailable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</iqg>

If the responder does not support Jingle, it MUST return a <service-unavailable/> error.

Listing 13: Responder does not support Jingle

<ig from=’juliet@capulet.lit/balcony’
id=’xs51rok4’
to=’romeo@montague.lit/orchard’
type=’error’>
<error type=’cancel’>
<service-unavailable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</ig>

If the responder wishes to redirect the request to another address, it MUST return a <redi-
rect/> error.

Listing 14: Responder redirection

<ig from=’juliet@capulet.lit/balcony’
id="xs51rok4’
to=’romeo@montague.lit/orchard’
type=’error’>
<error type=’modify’>

2RFC 3921: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc3921>

15

http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921
http://tools.ietf.org/html/rfc3921

\J 6 SESSION FLOW

<redirect xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’>
xmpp:voicemail@capulet.lit
</redirect>
</error>
</ig>

If the responder does not have sufficient resources to participate in a session, it MUST return
a <resource-constraint/> error.

Listing 15: Responder has insufficent resources

<ig from=’juliet@capulet.lit/balcony’
id=’xs51rok4’
to=’romeo@montague.lit/orchard’
type=’error’>
<error type=’wait’>
<resource-constraint xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</ig>

If the initiation request was malformed, the responder MUST return a <bad-request/> error.

Listing 16: Initiation request malformed

<ig from=’juliet@capulet.lit/balcony’
id="xs51rok4’
to=’romeo@montague.lit/orchard’
type=’error’>
<error type=’cancel’>
<bad-request xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
</error>
</ig>

6.4 Negotiation

Although in general it is preferable for the responder to send a session-accept message as
soon as possible, some forms of negotiation might be necessary before the parties can agree
on an acceptable set of application formats and transport methods. There are many potential
parameter combinations, as defined in the relevant specifications for various application
formats and transport methods.

The allowable negotiations (e.g., content-level and transport-level negotiations) include:

« Exchanging particular transport candidates via the transport-info action.

« Modifying the communication direction for a content type via the content-modify ac-
tion.

16

\J 6 SESSION FLOW

+ Changing the definition of a content type via the transport-replace action (typically to
fall back to a more suitable transport).

« Adding a content type via the content-add action.
« Removing a content type via the content-remove action.

These forms of negotiation can also occur after the session has been accepted.

6.5 Acceptance

As soon as possible after receiving the session-initiate message, the responder informs the
initiator that she wishes to proceed with the session by sending a session-accept message.

Listing 17: Responder accepts the session

<ig from=’juliet@capulet.lit/balcony’
id=’jd82f517’
to=’romeo@montague.lit/orchard’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-accept’
responder="juliet@capulet.lit/balcony’
sid="a73sjjvkla37jfea’>
<content creator=’initiator’ name=’voice’>
<description xmlns=’urn:xmpp:jingle:apps:rtp:1’ media=’audio’>
<payload-type id=’97’ name=’speex’ clockrate='8000’/>
<payload-type id=’18’ name=’G729’/>
</description>
<transport xmlns=’urn:xmpp:jingle:transports:ice-udp:1’>
<candidate component=’1"
foundation="1"
generation="0’
id=’or2ii2syr1’
ip=’192.0.2.1"
network=’0’
port=’3478"
priority=’2130706431"
protocol="udp’
type=’host’/>
</transport>
</content>
</jingle>
</iqg>

Note: After receiving and acknowledging the "session-initiate” action received from the
initiator, the responding client SHOULD present an interface element that enables a human
user to explicitly agree to proceeding with the session (e.g., an "Accept Incoming Call?”

17

\J 6 SESSION FLOW

pop-up window including "Yes” and "No” buttons). However, the responding client SHOULD
NOT return a "session-accept” action to the initiator until the responder has explicitly agreed
to proceed with the session (unless the initiator is on a list of entities whose sessions are
automatically accepted).

The initiator then acknowledges the responder’s definitive acceptance.

Listing 18: Initiator acknowledges session acceptance

<iq from=’romeo@montague.lit/orchard’
id=’jd82f517"’
to=’juliet@capulet.lit/balcony’
type=’result’/>

The session is now in the ACTIVE state. However, this does not necessarily mean that the
parties can exchange application data yet, because further negotiation might be necessary
(e.g., to fall back from the offered transport method to a suitable alternative).

6.6 Modifying an Active Session

Once a session is in the ACTIVE state, it might be modified via a content-add, content-modify,
content-remove, or transport-info message. Examples of such modifications are shown in the
specifications for various application formats and transport methods.

6.7 Termination

In order to gracefully end the session (which can be done at any point after acknowledging
receipt of the initiation request, including immediately thereafter in order to decline the
request), either the responder or the initiator MUST send a session-terminate message to the
other party.

The party that terminates the session SHOULD include a <reason/> element that specifies why
the session is being terminated. Examples follow.

Probably the primary reason for terminating a session is that the session has ended suc-
cessfully (e.g., because a file has been sent or a voice call has completed); in this case, the
recommended condition is <success/>.

Listing 19: Terminating the session (success)

<ig from=’juliet@capulet.lit/balcony’
id="bv81gs75’
to="romeo@montague.lit/orchard’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid=’a73sjjvkla37jfea’>

18

\J 6 SESSION FLOW

<reason>
<success/>
</reason>
</jingle>
</ig>

Another reason for terminating the session is that the terminating party is busy; in this case,
the recommended condition is <busy/>.

Listing 20: Terminating the session (busy)

<ig from=’juliet@capulet.lit/balcony’
id="hr81fs63”’
to=’romeo@montague.lit/orchard’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid=’a73sjjvkla37jfea’>
<reason>
<busy/>
</reason>
</jingle>
</iqg>

Another reason for terminating the session is that the terminating party wishes to formally
decline the session; in this case, the recommended condition is <decline/>.

Listing 21: Terminating the session (session formally declined)

<ig from=’juliet@capulet.lit/balcony’
id="ky47g295’
to=’romeo@montague.lit/orchard’
type=’"set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid="a73sjjvkla37jfea’>
<reason>
<decline/>
</reason>
</jingle>
</ig>

Another reason for terminating the session is that the terminating party already has an
existing session with the other party and wishes to use that session rather than initiate
a new session; in this case, the recommended condition is <alternative-session/> and the
terminating party SHOULD include the session ID of the alternative session in the <sid/>
element.

19

\J 6 SESSION FLOW

Listing 22: Terminating the session (existing session)

<ig from=’juliet@capulet.lit/balcony’
id="ay3r2b86’
to=’romeo@montague.lit/orchard’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid="a73sjjvkla37jfea’>
<reason>
<alternative-session>
<sid>bh84tkkwlmb48kgfb</sid>
</alternative-session>
</reason>
</jingle>
</ig>

Another reason for terminating the session is that the terminating party does not support any
of the offered transport methods; in this case, the recommended condition is <unsupported-

transports/>.

Listing 23: Terminating the session (no offered transport method supported)

<ig from=’juliet@capulet.lit/balcony’
id="h82bs51g’
to=’romeo@montague.lit/orchard’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid=’a73sjjvkla37jfea’>
<reason>
<unsupported-transports/>
</reason>
</jingle>
</ig>

Another reason for terminating the session is that the terminating party has determined that
transport setup has failed in an unrecoverable fashion (e.g., all transport methods have been
exhausted even after fallback and the last method attempted has failed); in this case, the
recommended condition is <failed-transport/>.

Listing 24: Terminating the session (transport negotiation failed)

<ig from=’juliet@capulet.lit/balcony’
id="pe81gal88’
to=’romeo@montague.lit/orchard’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’

20

\J 6 SESSION FLOW

sid=’a73sjjvkla37jfea’>
<reason>
<failed-transport/>
</reason>
</jingle>
</iqg>

Another reason for terminating the session is that the terminating party does not support any
of the offered application types; in this case, the recommended condition is <unsupported-
applications/>.

Listing 25: Terminating the session (no offered application type supported)

<ig from=’juliet@capulet.lit/balcony’
id=’yd62vd67’
to=’romeo@montague.lit/orchard’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid=’a73sjjvkla37jfea’>
<reason>
<unsupported-applications/>
</reason>
</jingle>
</iqg>

Another reason for terminating the session is that the terminating party has determined
that setup of the application type has failed in an unrecoverable fashion (e.g., the client
cannot initialize audio processing for a voice call); in this case, the recommended condition is
<failed-application/>.

Listing 26: Terminating the session (application setup failed)

<ig from=’juliet@capulet.lit/balcony’
id="kd82vs71’
to=’romeo@montague.lit/orchard’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid=’a73sjjvkla37jfea’>
<reason>
<failed-application/>
</reason>
</jingle>
</ig>

Another reason for terminating the session is that the terminating party supports the offered
application type but does not support the offered or negotiated parameters (e.g., in a voice

21

\J 6 SESSION FLOW

call none of the payload types); in this case, the recommended condition is <incompatible-
parameters/>.

Listing 27: Terminating the session (incompatible parameters)

<ig from=’juliet@capulet.lit/balcony’
id="hb3m59s7’
to="romeo@montague.lit/orchard’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-terminate’
sid=’a73sjjvkla37jfea’>
<reason>
<incompatible -parameters/>
</reason>
</jingle>
</ig>

Note: Other reasons for terminating the session might apply, and the foregoing list is not
exhaustive.

Upon receiving session-terminate message, the other party MUST then acknowledge termi-
nation of the session:

Listing 28: Acknowledging termination

<ig from=’romeo@montague.lit/orchard’
id="h82bs51g’
to=’juliet@capulet.lit/balcony’
type=’result’/>

Note: As soon as an entity sends a session-terminate action, it MUST consider the session
to be in the ENDED state (even before receiving acknowledgement from the other party). If
the terminating entity receives additional Jingle-related 1Q-sets from the other party after
sending the session-terminate action, it MUST reply with an <unknown-session/> error.

Listing 29: Unknown-session error

<ig from=’romeo@montague.lit/orchard’
id="ur71vs62’
to=’juliet@capulet.lit/balcony’
type=’error’>
<error type=’cancel’>
<item-not-found xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
<unknown-session xmlns=’urn:xmpp:jingle:errors:1’/>
</error>
</ig>

22

\J 6 SESSION FLOW

Not all Jingle sessions end gracefully. When the parties to a Jingle session also exchange XMPP
presence information, receipt of <presence type="unavailable’/> from the other party SHOULD
be considered a session-ending event that justifies proactively sending a session-terminate
message to the seemingly unavailable party -- if, that is, no other communication has been
received within 5 or 10 seconds from the seemingly unavailable party in the form of XMPP
signalling traffic, connectivity checks, or continued media transfer.

6.8 Informational Messages

At any point after initiation of a Jingle session, either entity MAY send an informational
message to the other party, for example to inform the other party that a device is ringing.

Listing 30: Responder sends ringing message

<iq from=’juliet@capulet.lit/balcony’
id="hq7rgi186’
to=’romeo@montague.lit/orchard’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-info’
sid="a73sjjvkla37jfea’>
<ringing xmlns=’urn:xmpp:jingle:apps:rtp:1:info’/>
</jingle>
</iqg>

An informational message MUST be an IQ-set containing a <jingle/> element whose ’action’
attribute is set to a value of "session-info”, “description-info”, or “transport-info”; the
<jingle/> element SHOULD further contain a payload child element (specific to the application
format or transport method) that specifies the information being communicated. If the party
that receives an informational message does not understand the payload, it MUST return a
<feature-not-implemented/> error with a Jingle-specific error condition of <unsupported-
info/>.

Listing 31: Responder returns unsupported-info error

<ig from=’romeo@montague.lit/orchard’
id="hq7rg186’
to=’juliet@capulet.lit/balcony’
type=’error’>
<error type=’modify’>
<feature-not-implemented xmlns=’urn:ietf:params:xml:ns:xmpp-
stanzas’/>
<unsupported-info xmlns=’urn:xmpp:jingle:errors:1°’/>
</error>
</ig>

23

/7 FORMAL DEFINITION

However, the <jingle/> element associated with a session-info message MAY be empty. If
either party receives an empty session-info message for an active session, it MUST send an
empty IQ result; this usage functions as a "ping” to determine session vitality via the XMPP
signalling channel.

Listing 32: Responder sends session ping

<ig from=’juliet@capulet.lit/balcony’
id="ug37vb25’
to=’romeo@montague.lit/orchard’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-info’
sid=’a73sjjvkla37jfea’/>
</iqg>

Listing 33: Initiator returns IQ-result

<ig from=’romeo@montague.lit/orchard’
id="ug37vb25’
to=’juliet@capulet.lit/balcony’
type=’result’/>

7 Formal Definition

7.1 Jingle Element

The <jingle/> element MAY be empty or contain one or more <content/> elements (for which
see Content Element).
The attributes of the <jingle/> element are as follows.

Attribute Definition Inclusion
action AJingle action as described under Ac- REQUIRED
tion Attribute.

24

/7 FORMAL DEFINITION

Attribute

Definition

Inclusion

initiator*

The full JID of the entity that has
initiated the session flow. When the
Jingle action is "session-initiate”, the
<jingle/> element SHOULD possess
an 'initiator” attribute that explicitly
specifies the full JID of the initiating
entity; for all other actions, the
<jingle/> element SHOULD NOT
possess an ’initiator’ attribute and
the recipient of the message SHOULD
ignore the value if provided. The
value of the ’initiator’ attribute
MAY be different from the ’from’
address on the 1Q-set of the session-
initiate message (e.g., to handle
certain interactions involving call
managers, soft switches, and media
relays). This usage shall be defined
in other specifications, for example,
in Jingle Session Transfer (XEP-0251)
XEP-0251: Jingle Session Transfer
<https://xmpp.org/extensions/xep-
0251.html>.. However, in all cases
if the ’initiator’ and ’from’ values
differ then the responder MUST
NOT interact with the ’initiator’ JID
unless it trusts the ’initiator’ JID or
trusts that the 'from’ JID is allowed to
authorize the ’initiator’ JID to act on
the 'from’ JID’s behalf. In the absence
of explicit rules for handling this
case, the responder SHOULD simply
ignore the ’initiator’ attribute and
treat the 'from’ JID as the initiating
entity. After sending acknowledge-
ment of the session-initiate message,
the responder MUST send all future
commmunications about the Jingle
session to the initiator (whether the
initiator is considered the 'from’ JID
or the ’initiator’ JID).

25

RECOMMENDED for session-initiate,
NOT RECOMMENDED otherwise

/7 FORMAL DEFINITION

Attribute

Definition

Inclusion

responder*®

The full JID of the entity that has
replied to the initiation, which can
be different from the ’to’ address on
the 1Q-set. When the Jingle action
is "session-accept”, the <jingle/> el-
ement SHOULD possess a ’respon-
der’ attribute that explicitly speci-
fies the full JID of the responding en-
tity; for all other actions, the <jin-
gle/> element SHOULD NOT possess
a 'responder’ attribute and the re-
cipient of the message SHOULD ig-
nore the value if provided. The
value of the ’responder’ attribute
MAY be different from the 'from’ ad-
dress on the IQ-set of the session-
accept message, where the logic for
handling any difference between the
‘responder’ JID and the from’ JID fol-
lows the same logic as for session-
initiate messages (see above). Af-
ter sending acknowledgement of the
session-accept message, the initiator
MUST send all future commmunica-
tions about this Jingle session to the
responder (whether the responder is
considered the 'from’ JID or the 're-
sponder’ JID).

26

RECOMMENDED for session-accept,
NOT RECOMMENDED otherwise

/7 FORMAL DEFINITION

Attribute Definition Inclusion
sid A random session identifier gen- REQUIRED
erated by the initiator, which
effectively maps to the local-
part of a SIP ”Call-ID” param-
eter; this SHOULD match the
XML Nmtoken production See
<http://www.w3.0rg/TR/2000/WD-
xml-2e-20000814#NT-Nmtoken> so
that XML character escaping is not
needed for characters such as &’

In some situations the Jingle session
identifier might have security impli-
cations. See RFC 4086 RFC 4086: Ran-
domness Requirements for Security
<http://tools.ietf.org/html/rfc4086>.
regarding requirements for random-

ness.

7.2 Action Attribute

The value of the "action’ attribute MUST be one of the following. If an entity receives a value
not defined here, it MUST ignore the attribute and MUST return a <bad-request/> error to the
sender. There is no default value for the ’action’ attribute.

7.2.1 content-accept

The content-accept action is used to accept a content-add action received from another party.

7.2.2 content-add

The content-add action is used to add one or more new content definitions to the session. The
sender MUST specify only the added content definition(s), not the added content definition(s)
plus the existing content definition(s). Therefore it is the responsibility of the recipient to
maintain a local copy of the current content definition(s). If the recipient wishes to include
the new content definition in the session, it MUST send a content-accept action to the other
party; if not, it MUST send a content-reject action to the other party.

27

/7 FORMAL DEFINITION

7.2.3 content-modify

The content-modify action is used to change the direction of an existing content definition
through modification of the ’senders’ attribute. If the recipient deems the directionality of
a content-modify action to be unacceptable, it MAY reply with a contrary content-modify
action, terminate the session, or simply refuse to send or accept application data in the new
direction. In any case, the recipient MUST NOT send a content-accept action in response to
the content-modify.

7.2.4 content-reject

The content-reject action is used to reject a content-add action received from another party.
If the content-reject results in zero content definitions for the session, the entity that receives
the content-reject SHOULD send a session-terminate action to the other party (since a session
with no content definitions is void).

7.2.5 content-remove

The content-remove action is used to remove one or more content definitions from the
session. The sender MUST specify only the removed content definition(s), not the removed
content definition(s) plus the remaining content definition(s). Therefore it is the respon-
sibility of the recipient to maintain a local copy of the current content definition(s). Upon
receiving a content-remove from the other party, the recipient MUST NOT send a content-
accept and MUST NOT continue to negotiate the transport method or send application data
related to that content definition.

If the content-remove results in zero content definitions for the session, the entity that
receives the content-remove SHOULD send a session-terminate action to the other party
(since a session with no content definitions is void).

7.2.6 description-info

The description-info action is used to send informational hints about parameters related
to the application type, such as the suggested height and width of a video display area or
suggested configuration for an audio stream.

7.2.7 security-info

The security-info action is used to send information related to establishment or maintenance
of security preconditions.

28

/7 FORMAL DEFINITION

7.2.8 session-accept

The session-accept action is used to definitively accept a session negotiation (implicitly this
action also serves as a content-accept). A session-accept action indicates a willingness to
proceed with the session (which might necessitate further negotiation before media can be
exchanged). The session-accept action indicates acceptance only of the content definition(s)
whose disposition type is "session” (the default value of the <content/> element’s "disposition’
attribute), not any content definition(s) whose disposition type is something other than
"session” (e.g., "early-session” for early media).

In the session-accept stanza, the <jingle/> element MUST contain one or more <content/>
elements, each of which MUST contain one <description/> element and one <transport/>
element.

7.2.9 session-info

The session-info action is used to send session-level information, such as a session ping or
(for Jingle RTP sessions) a ringing message.

7.2.10 session-initiate

The session-initiate action is used to request negotiation of a new Jingle session. When
sending a session-initiate with one <content/> element, the value of the <content/> element’s
"disposition’ attribute MUST be "session” (if there are multiple <content/> elements then at
least one MUST have a disposition of "session”); if this rule is violated, the responder MUST
return a <bad-request/> error to the initiator.

7.2.11 session-terminate

The session-terminate action is used to end an existing session.

7.2.12 transport-accept

The transport-accept action is used to accept a transport-replace action received from
another party.

7.2.13 transport-info

The transport-info action is used to exchange transport candidates; it is mainly used in Jingle
ICE-UDP but might be used in other transport specifications.

29

/7 FORMAL DEFINITION

7.2.14 transport-reject

The transport-reject action is used to reject a transport-replace action received from another
party.

7.2.15 transport-replace

The transport-replace action is used to redefine a transport method, typically for fallback
to a different method (e.g., changing from ICE-UDP to Raw UDP for a datagram transport, or
changing from SOCKS5 Bytestreams (XEP-0065) ** to In-Band Bytestreams (XEP-0047) * for
a streaming transport). If the recipient wishes to use the new transport definition, it MUST
send a transport-accept action to the other party; if not, it MUST send a transport-reject
action to the other party.

7.2.16 Tie Breaking Related to Jingle Actions

It is possible that the same Jingle action can be sent at the same time by both parties. There
are two possible scenarios:

No existing session If there is no existing session and both parties simultaneously send a
Jingle session-initiate message with a content-type that is functionally equivalent (e.g.,
each message requests initiation of a voice call), the action with the lower of the two ses-
sion IDs MUST overrule the other action, where by "lower” is meant the session ID that is
sorted first using "i;octet” collation as specified in Section 9.3 of RFC 4790 RFC 4790: In-
ternet Application Protocol Collation Registry <http://tools.ietf.org/html/rfc4790>. (in
the unlikely event that the random session IDs are the same, the action sent by the lower
of the JabberIDs MUST overrule the other action). The party that receives the session-
initiate action with the lower of the two session IDs MUST acknowledge the action or
return an error condition that would normally be returned when receiving a session-
initiate message, and the party that receives the session-initiate action with the higher
of the two session IDs MUST return a <conflict/> error to the other party, which SHOULD
include a Jingle-specific condition of <tie-break/>.

Existing session In the context of an existing session, the action sent by the initiator MUST
overrule the action sent by the responder; i.e., both parties MUST accept the action sent
by the initiator and the initiator MUST return a <conflict/> error to the responder for
the duplicate action, which SHOULD include a Jingle-specific condition of <tie-break/>.

In both scenarios, the error to be returned is <conflict/>, as shown in the following example.

BXEP-0065: SOCKS5 Bytestreams <https://xmpp.org/extensions/xep-0065.html>,
**XEP-0047: In-Band Bytestreams <https://xmpp.org/extensions/xep-0047.html>,

30

https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0047.html
https://xmpp.org/extensions/xep-0065.html
https://xmpp.org/extensions/xep-0047.html

/7 FORMAL DEFINITION

Listing 34: Initiator returns conflict error on tie-break

<ig from=’romeo@montague.lit/orchard’
id="hb2f164w’
to=’juliet@capulet.lit/balcony’
type=’error’>
<error type=’cancel’>
<conflict xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
<tie-break xmlns=’urn:xmpp:jingle:errors:1’/>
</error>
</iqg>

7.3 Content Element

The attributes of the <content/> element are as follows.

Attribute Definition Inclusion

creator Which party originally generated the REQUIRED

content type (used to prevent race
conditions regarding modifications);
the defined values are "initiator” and
“responder” (where the default is
"initiator”). The value of the ’cre-
ator’ attribute for a given content
type MUST always match the party
that originally generated the con-
tent type, even for Jingle actions that
are sent by the other party in rela-
tion to that content type (e.g., subse-
quent content-modify or transport-
info messages). The combination of
the "creator’ attribute and the 'name’
attribute is unique among both par-
ties to a Jingle session.

31

/7 FORMAL DEFINITION

Attribute

Definition

Inclusion

disposition

name

How the content definition is to be
interpreted by the recipient. The
meaning of this attribute matches
the ”Content-Disposition” header
as defined in RFC 2183 RFC 2183:
Communicating Presentation Infor-
mation in Internet Messages: The
Content-Disposition Header Field
<http://tools.ietf.org/html/rfc2183>.
and applied to SIP by RFC 3261. The
value of this attribute SHOULD
be one of the values registered in
the IANA Mail Content Disposition
Values and Parameters Registry
IANA registry of Mail Content
Disposition Values and Parameters

OPTIONAL

<http://www.iana.org/assignments/mail-

cont-disp>.. The default value of this

attribute is "session”.
A unique name or identifier for

the content type according to the
creator, which MAY have meaning
to a human user in order to dif-
ferentiate this content type from
other content types (e.g., two con-
tent types containing video media
could differentiate between “room-
pan” and ”slides”). If there are
two content types with the same
value for the 'name’ attribute, they
shall understood as alternative def-
initions for the same purpose (e.g.,
a legacy method and a standards-
based method for establishing a voice
call), typically to smooth the transi-
tion from an older technology to Jin-
gle.

32

REQUIRED

/7 FORMAL DEFINITION

Attribute Definition Inclusion
senders Which parties in the session will OPTIONAL except when sending

be generating content (i.e., the content-modify, in which case it is
direction in which a Jingle session REQUIRED.

is active); the allowable values are

“both”, ”initiator”, "none”, and

“responder” (where the default

is "both”). Note that the defined

values of the ’senders’ attribute

in Jingle correspond to the SDP

attributes of "sendrecv”, "sendonly”,

“inactive”, and recvonly” de-

fined in RFC 4566 RFC 4566: SDP:

Session Description Protocol

<http://tools.ietf.org/html/rfc4566>.

and used in the offer-answer

model RFC 3264 RFC 3264: An

Offer/Answer Model with the

Session Description Protocol (SDP)

<http://tools.ietf.org/html/rfc3264>..

7.4 Reason Element

The structure of the <reason/> element is as follows.

* The <reason/> element MUST contain an element that provides machine-readable in-
formation about the condition that prompted the action.

+ The <reason/> element MAY contain a <text/> element that provides human-readable
information about the reason for the action.

+ The <reason/> element MAY contain an element qualified by some other namespace that
provides more detailed machine-readable information about the reason for the action.

A <reason/> element can be included with any Jingle action, and is not limited to session
termination events.
The defined conditions are described in the following table.

33

/'8 TRANSPORT TYPES

Element

Description

<alternative-session/>

<busy/>
<cancel/>

<connectivity-error/>
<decline/>

<expired/>
<failed-application/>
<failed-transport/>
<general-error/>
<gone/>
<incompatible-parameters/>
<media-error/>
<security-error/>
<success/>

<timeout/>

<unsupported-applications/>
<unsupported-transports/>

8 Transport Types

The party prefers to use an existing session with the peer
rather than initiate a new session; the Jingle session ID of
the alternative session SHOULD be provided as the XML

character data of the <sid/> child.
The party is busy and cannot accept a session.

The initiator wishes to formally cancel the session initia-
tion request.

The action is related to connectivity problems.

The party wishes to formally decline the session.

The session length has exceeded a pre-defined time limit

(e.g., a meeting hosted at a conference service).
The party has been unable to initialize processing related

to the application type.
The party has been unable to establish connectivity for the

transport method.
The action is related to a non-specific application error.

The entity is going offline or is no longer available.
The party supports the offered application type but does

not support the offered or negotiated parameters.
The action is related to media processing problems.

The action is related to a violation of local security policies.
The action is generated during the normal course of state

management and does not reflect any error.
Arequest has not been answered so the sender is timing out

the request.
The party supports none of the offered application types.

The party supports none of the offered transport methods.

Jingle defines two types of transport methods.

8.1 Datagram

A datagram transport has one or more components with which to exchange packets with
UDP-like behavior. Packets might be of arbitrary length, might be received out of order, and
might not be received at all (i.e., the transport is lossy). Each component is assigned a string
identifier and has a maximum packet length.

Applications compatible with datagram transports MUST specify how many components are
necessary, what identifier to assign each component, and how each component will be used.

34

/9 SECURITY PRECONDITIONS

8.2 Streaming

A streaming transport has one or more components with which to exchange bidirectional
bytestreams with TCP-like behavior. Bytes are received reliably and in order, and applications
MUST NOT rely on a stream being chunked in any specific way. Each component is assigned a
string identifier and has a maximum packet length.

Applications compatible with stream transports MUST specify how many components are
necessary, what identifier to assign each component, and what data shall be exchanged over
the transport.

9 Security Preconditions

The initiator MAY include a <security/> element in its offer to signal that it wishes to enforce
some security precondition on the session. A stub example follows.

Listing 35: Initiator sends session-initiate with security precondition (stub)

<ig from=’romeo@montague.lit/orchard’
id="tiw51bv9’
to=’juliet@capulet.lit/balcony’
type=’set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’session-initiate’
initiator=’romeo@montague.lit/orchard’
sid=’a73sjjvkla37jfea’>
<content creator="initiator’ name=’this-is-a-stub’>
<description xmlns=’urn:xmpp:jingle:apps:stub:0’/>
<transport xmlns=’urn:xmpp:jingle:transports:stub:0’/>
<security xmlns=’urn:xmpp:jingle:security:stub:0’/>
</content>
</jingle>
</ig>

Currently the only security precondition that is envisioned will enforce the use of end-to-end
encryption for the transport before application data can be exchanged. This document
does not define any security preconditions, just as it does not define any application types or
transport methods. See Jingle XTLS ? for an in-progress description of a security precondition
using Transport Layer Security (TLS).

In order to exchange information about the establishment or maintenance of a security
precondition, either party might send a Jingle security-info message. For example, when
attempting to negotiate the use of TLS the initiator might send hints about his supported TLS
methods (e.g., X.509 certificates and Secure Remote Password) in his session-initiate message
and the responder might also send hints about her supported methods (e.g., X.509 and SRP) in

“Extensible Messaging and Presence Protocol (XMPP) End-to-End Encryption Using Transport Layer Security
("XTLS”) <http://tools.ietf.org/html/draft-meyer-xmpp-e2e-encryption>

35

http://tools.ietf.org/html/draft-meyer-xmpp-e2e-encryption
http://tools.ietf.org/html/draft-meyer-xmpp-e2e-encryption

/10 ERROR HANDLING

her session-accept message; however, it is possible that the initiator might be able to verify
the responder’s certificate and therefore needs to inform the responder (via a security-info
message) that he can in the end support only the X.509 method for this negotiation. An
example follows.

Listing 36: Initiator sends security-info message

<ig from=’romeo@montague.lit/orchard’
id=’zywbm167"’
to=’juliet@capulet.lit/balcony’
type=’'set’>
<jingle xmlns=’urn:xmpp:jingle:1’
action=’security-info’
sid=’a73sjjvkla37jfea’>
<content creator=’initiator’ name=’xmlstream’>
<security xmlns=’urn:xmpp:jingle:security:xtls:0’>
<method name=’x509’/>
</security>
</content>
</jingle>
</iqg>

If one of the parties attempts to send information over the unsecured XMPP signalling channel
that the other party expects to receive over the encrypted data channel, the receiving party
SHOULD return a <not-acceptable/> error to the sender, including a <security-required/>
element qualified by the "urn:xmpp:jingle:errors:1’ namespace. An example follows.

Listing 37: Initiator sends security-required error

<ig from=’romeo@montague.lit/orchard’
id="bsi381f5’
to=’juliet@capulet.lit/balcony’
type=’error’>
<error type=’cancel’>
<not-acceptable xmlns=’urn:ietf:params:xml:ns:xmpp-stanzas’/>
<security-required xmlns=’urn:xmpp:jingle:errors:1’/>
</error>
</iqg>

10 Error Handling
The Jingle-specific error conditions are as follows. These condition elements are qualified by

the 'urn:xmpp:jingle:errors:1’ namespace (see Namespace Versioning regarding the possibility
of incrementing the version number).

36

\/ 11 DETERMINING SUPPORT

Jingle Condition XMPP Condition Description

<out-of-order/> <unexpected-request/> The request cannot occur at
this point in the state machine
(e.g., session-initiate after

session-accept).
<tie-break/> <conflict/> The request is rejected because

it was sent while the initiator
was awaiting a reply on a similar

request.

<unknown-session/> <item-not-found/> Th(ie 'sid” attribute specifies a ses-
sion that is unknown to the re-
cipient (e.g., no longer live ac-
cording to the recipient’s state
machine because the recipient
previously terminated the ses-
sion).

<unsupported-info/> <feature-not-implemented/> The recipient does not support
the informational payload of a
session-info action.

11 Determining Support

If an entity supports Jingle, it MUST advertise that fact by returning a feature of
“urn:xmpp:jingle:1” (see Namespace Versioning regarding the possibility of increment-
ing the version number) in response to a Service Discovery (XEP-0030) 26 information request.
The response MUST also include features for the application formats and transport methods
supported by the responding entity, as described in the relevant specifications.

Listing 38: Service Discovery Information Request

<ig from=’kingclaudius@shakespeare.lit/castle’
id="ku6e51v3”’
to=’laertes@shakespeare.lit/castle’
type=’get’>
<query xmlns=’http://jabber.org/protocol/disco#info’/>
</ig>

Listing 39: Service Discovery Information Response

<iq from=’laertes@shakespeare.lit/castle’
id="ku6e51v3”’
to="kingclaudius@shakespeare.lit/castle’

%XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>,

37

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

\/ 12 CONFORMANCE BY USING PROTOCOLS

type=’result’>

<query xmlns=’http://jabber.org/protocol/disco#info’>
<feature var=’urn:xmpp:jingle:1’/>
<feature var=’urn:xmpp:jingle:apps:rtp:1’/>
<feature var=’urn:xmpp:jingle:apps:rtp:audio’/>
<feature var=’urn:xmpp:jingle:apps:rtp:video’/>

</query>

</iqg>

In order for an application to determine whether an entity supports this protocol, where
possible it SHOULD use the dynamic, presence-based profile of service discovery defined
in Entity Capabilities (XEP-0115) #. However, if an application has not received entity
capabilities information from an entity, it SHOULD use explicit service discovery instead.

12 Conformance by Using Protocols

12.1 Application Formats

A document that specifies a Jingle application format (e.g., RTP sessions) MUST define:

1. How successful application format negotiation occurs.

2. A <description/> element and associated semantics for representing the application for-
mat.

3. If and how the application format can be mapped to the Session Description Protocol,
including the appropriate SDP media type (see Section 8.2.1 of RFC 4566).

4., Whether the media data for the application format shall be sent over a streaming trans-
port method or a datagram transport method (or, if both, which is preferred).

5. If the chosen transport handles "components”, define how the components shall be
identified and assigned.

6. Exactly how the media data is to be sent and received over a streaming or datagram
transport.

12.2 Transport Methods

A document that specifies a Jingle transport method (e.g., raw UDP) MUST define:

1. How successful transport negotiation occurs.

Y7XEP-0115: Entity Capabilities <https: //xmpp.org/extensions/xep-0115.html>,

38

https://xmpp.org/extensions/xep-0115.html
https://xmpp.org/extensions/xep-0115.html

\/ 13 SECURITY CONSIDERATIONS

2. A <transport/> element and associated semantics for representing the transport
method.

3. Whether the transport is a streaming method or a datagram method.

4, If the transport supports multiple components.

12.3 Security Preconditions

A document that specifies a Jingle security precondition MUST define:

1. A <security/> element and associated semantics for representing the security precondi-
tion,

2. Whether the security precondition applies to streaming transport methods, datagram
transport methods, or both.

3. When the precondition is met so that application data can be sent over the negotiated
transport.

13 Security Considerations

13.1 Transport Security

It is strongly recommended to protect the transport method using an appropriate security
precondition (e.g., Transport Layer Security). However, methods for doing so are out of scope
for this specification.

13.2 Denial of Service

Jingle sessions can be resource-intensive. Therefore, it is possible to launch a denial-of-service
attack against an entity by burdening it with too many Jingle sessions. Care MUST be taken to
accept sessions only from known entities and only if the entity’s device is able to process such
sessions.

13.3 Communication Through Gateways

Jingle communications can be enabled through gateways to non-XMPP networks, whose
security characteristics can be quite different from those of XMPP networks. (For example,
on some SIP networks authentication is optional and “from” addresses can be easily forged.)
Care MUST be taken in communicating through such gateways.

39

\/ 15 XMPP REGISTRAR CONSIDERATIONS

13.4 Information Exposure

Mere negotiation of a Jingle session can expose sensitive information about the parties (e.g.,
IP addresses, or even the full JID of the responder). Care MUST be taken in communicating
such information, and end-to-end encryption SHOULD be used if the parties do not trust the
intermediate servers or gateways.

13.5 Redirection

The ’initiator’ and 'responder’ attributes can be used to redirect a session from one JID to
another JID (i.e., the ’initiator’ or 'responder’ attribute might not match the 'from’ or ’to’
attribute of the sender). An application SHOULD NOT accept the redirection unless the bare
JIDs match (i.e., the session is being redirected from one authorized resource to another
authorized resource associated with the same account).

14 IANA Considerations

This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
28

15 XMPP Registrar Considerations

15.1 Protocol Namespaces

This specification defines the following XML namespaces:

* urn:xmppijingle:1
« urn:xmpp:jingle:errors:1

The XMPP Registrar # includes the foregoing namespaces in its registry at <https:
//xmpp.org/registrar/namespaces.html>, as governed by XMPP Registrar Function (XEP-
0053) °,

*The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

»The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

3XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>,

40

http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/registrar/namespaces.html
https://xmpp.org/extensions/xep-0053.html
https://xmpp.org/extensions/xep-0053.html
http://www.iana.org/
https://xmpp.org/registrar/
https://xmpp.org/extensions/xep-0053.html

\/ 15 XMPP REGISTRAR CONSIDERATIONS

15.2 Namespace Versioning

If the protocol defined in this specification undergoes a revision that is not fully backwards-
compatible with an older version, the XMPP Registrar shall increment the protocol version
number found at the end of the XML namespaces defined herein, as described in Section 4 of
XEP-0053.

15.3 Jingle Application Formats Registry

The XMPP Registrar maintains a registry of Jingle application formats at <https:

//xmpp.org/registrar/jingle-apps.html>. All application format registrations shall
be defined in separate specifications (not in this document). Application types defined within
the XEP series MUST be registered with the XMPP Registrar, resulting in protocol URNs of the
form "urn:xmpp:jingle:app:name:X” (where "name” is the registered name of the application
format and ”X” is a non-negative integer).

In order to submit new values to this registry, the registrant shall define an XML fragment of
the following form and either include it in the relevant XMPP Extension Protocol or send it to
the email address <registrar@xmpp.org>:

<application>
<name>The name of the application format.</name>
<desc>A natural-language summary of the application format.</desc>
<transport>
Whether the media can be sent over a ”streaming” transport,
a ”datagram” transport, or ”both”.
</transport>
<doc>The document in which the application format is specified.</doc
>
</application>

15.4 Jingle Transport Methods Registry

The XMPP Registrar maintains a registry of Jingle transport methods at <https:
//xmpp.org/registrar/jingle-transports.html> All transport method registrations
shall be defined in separate specifications (not in this document). Transport methods defined
within the XEP series MUST be registered with the XMPP Registrar, resulting in protocol
URNS of the form "urn:xmpp;jingle:transport:name” (where "name” is the registered name of
the transport method).

In order to submit new values to this registry, the registrant shall define an XML fragment of
the following form and either include it in the relevant XMPP Extension Protocol or send it to
the email address <registrar@xmpp.org>:

<transport>

41

https://xmpp.org/registrar/jingle-apps.html
https://xmpp.org/registrar/jingle-apps.html
https://xmpp.org/registrar/jingle-transports.html
https://xmpp.org/registrar/jingle-transports.html

/16 XML SCHEMAS

<name>The name of the transport method.</name>
<desc>A natural-language summary of the transport method.</desc>
<type>
Whether the transport method can be ”streaming”, ”datagram”,
or ”both”.
</type>
<doc>The document in which this transport method is specified.</doc>
</transport>

16 XML Schemas

16.1 Jingle

<?xml version=’1.0’ encoding=’UTF-8’7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="urn:xmpp:jingle:1’
xmlns="urn:xmpp:jingle:1’
elementFormDefault="qualified’>

<xs:annotation>
<xs:documentation>
The protocol documented by this schema is defined in
XEP-0166: http://www.xmpp.org/extensions/xep-0166.html
</xs:documentation>
</xs:annotation>

<xs:element name=’jingle’>
<xs:complexType>
<xs:sequence>
<xs:element name=’content’
type="contentElementType’
minOccurs=’0’
maxOccurs=’unbounded’/>
<xs:element name=’reason’
type=’reasonElementType’
minOccurs=’0’
maxOccurs="1"/>
<xs:any namespace="##other’ minOccurs=’0’ maxOccurs=’unbounded
;/>
</xs:sequence>
<xs:attribute name=’action’ use=’required’>
<xs:simpleType>
<xs:restriction base=’xs:NCName’>
<xs:enumeration value=’content-accept’/>
<xs:enumeration value=’content-add’/>

42

/16 XML SCHEMAS

<xs:enumeration value=’content-modify’/>
<xs:enumeration value=’content-reject’/>
<xs:enumeration value=’content-remove’/>
<xs:enumeration value=’description-info’/>
<xs:enumeration value=’security-info’/>
<xs:enumeration value=’session-accept’/>
<xs:enumeration value=’session-info’/>
<xs:enumeration value=’session-initiate’/>
<xs:enumeration value=’session-terminate’/>
<xs:enumeration value=’transport-accept’/>
<xs:enumeration value=’transport-info’/>
<xs:enumeration value=’transport-reject’/>
<xs:enumeration value=’transport-replace’/>
</xs:restriction>
</xs:simpleType>

</xs:attribute>

<xs:attribute name=’initiator’ type=’xs:string’ use=’optional’/>

<xs:attribute name=’responder’ type=’xs:string’ use=’optional’/>

<xs:attribute name=’sid’ type=’xs:NMTOKEN’ use=’required’/>

</xs:complexType>
</xs:element>

<xs:complexType name=’alternativeSessionElementType’>
<xs:sequence>
<xs:element name=’sid’
minOccurs="0’
maxOccurs="1"
type=’xs:NMTOKEN’/>
</xs:sequence>
</xs:complexType>

<xs:complexType name=’contentElementType’>
<xs:sequence>
<xs:any namespace="##other’ minOccurs=’0’ maxOccurs=’unbounded’/
>
</xs:sequence>
<xs:attribute name=’creator’
use=’required’>
<xs:simpleType>
<xs:restriction base=’xs:NCName’>
<xs:enumeration value=’initiator’/>
<xs:enumeration value=’responder’/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
<xs:attribute name=’disposition’
use=’optional’
type=’xs:NCName’
default=’session’/>

43

/16 XML SCHEMAS

<xs:attribute name=’name’
use=’required’
type=’xs:string’/>
<xs:attribute name=’senders’
use="optional’
default="both’>
<xs:simpleType>
<xs:restriction base=’xs:NCName’>
<xs:enumeration value=’both’/>
<xs:enumeration value=’initiator’/>
<xs:enumeration value=’none’/>
<xs:enumeration value=’responder’/>
</xs:restriction>
</xs:simpleType>
</xs:attribute>
</xs:complexType>

<xs:complexType name=’reasonElementType’>
<xs:sequence>
<xs:choice>
<xs:element name=’alternative-session’
type="alternativeSessionElementType’/>
<xs:element name=’busy’ type=’empty’/>
<xs:element name=’cancel’ type=’empty’/>
<xs:element name=’connectivity-error’ type=’empty’/>
<xs:element name=’decline’ type='empty’/>
<xs:element name=’expired’ type=’empty’/>
<xs:element name=’failed-application’ type=’empty’/>
<xs:element name=’failed-transport’ type=’empty’/>
<xs:element name=’general-error’ type=’empty’/>
<xs:element name=’gone’ type=’empty’/>
<xs:element name=’incompatible-parameters’ type=’empty’/>
<xs:element name=’media-error’ type='empty’/>
<xs:element name=’security-error’ type=’empty’/>
<xs:element name=’success’ type=’empty’/>
<xs:element name=’timeout’ type='empty’/>
<xs:element name=’unsupported-applications’ type=’empty’/>
<xs:element name=’unsupported-transports’ type=’empty’/>
</xs:choice>
<xs:element name=’text’ type=’xs:string’ minOccurs=’0’ maxOccurs
=’1/>
<xs:any namespace=’##other’ minOccurs=’0’ maxOccurs=’1"/>
</Xs:sequence>
</xs:complexType>

<xs:simpleType name=’empty’>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’'’/>
</xs:restriction>

44

\J 17 HISTORY

</xs:simpleType>

</xs:schema>

16.2 Jingle Errors

<?xml version=’1.0’ encoding=’UTF-8’7?>

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema’
targetNamespace="urn:xmpp:jingle:errors:1’
xmlns="urn:xmpp:jingle:errors:1’
elementFormDefault="qualified’>

<xs:annotation>
<xs:documentation>
The protocol documented by this schema is defined in
XEP-0166: http://www.xmpp.org/extensions/xep-0166.html
</xs:documentation>
</xs:annotation>

<xs:element name=’out-of-order’ type=’empty’/>
<xs:element name=’tie-break’ type=’empty’/>
<xs:element name=’unknown-session’ type=’empty’/>
<xs:element name=’unsupported-info’ type=’empty’/>

<xs:simpleType name=’empty’>
<xs:restriction base=’xs:string’>
<xs:enumeration value=’’/>
</xs:restriction>
</xs:simpleType>

</xs:schema>

17 History

Until Jingle was developed, there existed no widely-adopted standard for initiating and
managing peer-to-peer interactions between XMPP entities. Although several large service
providers and Jabber client teams had written and implemented their own proprietary XMPP
extensions for peer-to-peer signalling (usually only for voice), those technologies were not
open and did not always take into account requirements to interoperate with SIP-based
technologies. The only existing open protocol was A Transport for Initiating and Negotiating
Sessions (XEP-0111) 3!, which made it possible to initiate and manage peer-to-peer sessions,

SIXEP-0111: A Transport for Initiating and Negotiating Sessions <https://xmpp.org/extensions/xep-0111.htm

1>

45

https://xmpp.org/extensions/xep-0111.html
https://xmpp.org/extensions/xep-0111.html
https://xmpp.org/extensions/xep-0111.html
https://xmpp.org/extensions/xep-0111.html

\/ 18 ACKNOWLEDGEMENTS

but which did not provide enough of the key signalling semantics to be easily implemented in
Jabber/XMPP clients. 3

The result was an unfortunate fragmentation within the XMPP community regarding sig-
nalling protocols. Essentially, there were two possible approaches to solving the problem:

1. Recommend that all client developers implement a dual-stack (XMPP + SIP) solution.
2. Define a full-featured protocol for XMPP signalling.

Implementation experience indicates that a dual-stack approach might not be feasible on all
the computing platforms for which Jabber clients have been written, or even desirable on
platforms where it is feasible. 3* Therefore, it seemed reasonable to define an XMPP signalling
protocol that could provide the necessary session management semantics while also making
it relatively straightforward to interoperate with existing Internet standards.

As a result of feedback received on XEP-0111, the original authors of this document (Joe
Hildebrand and Peter Saint-Andre) began to define such a signalling protocol, code-named
Jingle. Upon communication with members of the Google Talk team, 3 it was discovered
that the emerging Jingle approach was conceptually (and even syntactically) quite similar
to the signalling protocol used in the Google Talk application. Therefore, in the interest of
interoperability and adoption, we decided to harmonize the two approaches. The signalling
protocol specified herein is, therefore, substantially equivalent to the original Google Talk
protocol, with several adjustments based on feedback received from implementors as well as
for publication by the XMPP Standards Foundation.

18 Acknowledgements

The authors would like to thank Rohan Mahy for his valuable input on early versions of the
Jingle specifications. Thiago Camargo, Diana Cionoiu, Olivier Créte, Dafydd Harries, Antti Ijés,
Tim Julien, Lauri Kaila, Justin Karneges, Jussi Laako, Steffen Larsen, Marcus Lundblad, Dirk
Meyer, Anthony Minessale, Akito Nozaki, Matt O’Gorman, Mike Ruprecht, Rob Taylor, Will
Thompson, Matt Tucker, Justin Uberti, Saku Vainio, Unnikrishnan Vikrama Panicker, Brian
West, Jeff Williams, and others have also provided helpful input. Thanks also to those who

*’It is true that TINS made it relatively easy to implement an XMPP-to-SIP gateway; however, in line with the
long-time Jabber philosophy of simple clients, complex servers”, it would be better to force complexity onto
the server-side gateway and to keep the client as simple as possible.

*For example, one large ISP decided to switch to a pure XMPP approach after having implemented and deployed
a dual-stack client for several years.

*Google Talk is an instant messaging and voice/video chat service and client provided by Google; see <http:
//www.google.com/talk/>.

46

http://www.google.com/talk/
http://www.google.com/talk/

\/ 18 ACKNOWLEDGEMENTS

have commented on the Standards SIG ** and Jingle *° mailing lists.

»The Standards SIG is a standing Special Interest Group devoted to development of XMPP Extension Protocols.
The discussion list of the Standards SIG is the primary venue for discussion of XMPP protocol extensions, as
well as for announcements by the XMPP Extensions Editor and XMPP Registrar. To subscribe to the list or view
the list archives, visit <https://mail.jabber.org/mailman/listinfo/standards/>.

*Before this specification was formally accepted by the XMPP Standards Foundation as an XMPP Extension Pro-
tocol, it was discussed on the semi-private <jingle@jabber.org> mailing list. This list has since been resurrected
as a special-purpose venue for discussion of Jingle protocols and implementation; interested developers can
subscribe and access the archives at at <http://mail.jabber.org/mailman/listinfo/jingle/>.

47

https://mail.jabber.org/mailman/listinfo/standards/
https://mail.jabber.org/mailman/listinfo/standards/
http://mail.jabber.org/mailman/listinfo/jingle/

	Introduction
	How It Works
	Requirements
	Terminology
	Glossary
	Conventions

	Concepts and Approach
	Overall Session Management

	Session Flow
	Resource Determination
	Initiation
	Responder Response
	Acknowledgement
	Errors

	Negotiation
	Acceptance
	Modifying an Active Session
	Termination
	Informational Messages

	Formal Definition
	Jingle Element
	Action Attribute
	content-accept
	content-add
	content-modify
	content-reject
	content-remove
	description-info
	security-info
	session-accept
	session-info
	session-initiate
	session-terminate
	transport-accept
	transport-info
	transport-reject
	transport-replace
	Tie Breaking Related to Jingle Actions

	Content Element
	Reason Element

	Transport Types
	Datagram
	Streaming

	Security Preconditions
	Error Handling
	Determining Support
	Conformance by Using Protocols
	Application Formats
	Transport Methods
	Security Preconditions

	Security Considerations
	Transport Security
	Denial of Service
	Communication Through Gateways
	Information Exposure
	Redirection

	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Namespace Versioning
	Jingle Application Formats Registry
	Jingle Transport Methods Registry

	XML Schemas
	Jingle
	Jingle Errors

	History
	Acknowledgements

