
XEP-0013: Flexible Offline Message Retrieval

Peter Saint-Andre
mailto:xsf@stpeter.im
xmpp:peter@jabber.org
http://stpeter.im/

Craig Kaes
mailto:ckaes@jabber.com

xmpp:ckaes@corp.jabber.com

2005-07-14
Version 1.2

Status Type Short Name
Draft Standards Track offline

This specification defines an XMPP protocol extension for flexible, POP3-like handling of offline mes-
sages. The protocol enables a connecting client to retrieve its offline messages on login in a controlled
fashion, without receiving a flood of messages. Messages can also be left on the server for later retrieval.

mailto:xsf@stpeter.im
xmpp:peter@jabber.org
http://stpeter.im/
mailto:ckaes@jabber.com
xmpp:ckaes@corp.jabber.com

Legal
Copyright
This XMPP Extension Protocol is copyright © 1999 – 2018 by the XMPP Standards Foundation (XSF).

Permissions
Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the
”Specification”), to make use of the Specification without restriction, including without limitation the
rights to implement the Specification in a software program, deploy the Specification in a network
service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi-
cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition
that the foregoing copyright notice and this permission notice shall be included in all copies or sub-
stantial portions of the Specification. Unless separate permission is granted, modified works that are
redistributed shall not contain misleading information regarding the authors, title, number, or pub-
lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any
organization or project to which the authors belong, or the XMPP Standards Foundation.

Warranty
NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI-
TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of
TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. ##

Liability
In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing,
shall the XMPP Standards Foundation or any author of this Specification be liable for damages, includ-
ing any direct, indirect, special, incidental, or consequential damages of any character arising from,
out of, or in connection with the Specification or the implementation, deployment, or other use of the
Specification (including but not limited to damages for loss of goodwill, work stoppage, computer fail-
ure or malfunction, or any and all other commercial damages or losses), even if the XMPP Standards
Foundation or such author has been advised of the possibility of such damages.

Conformance
This XMPP Extension Protocol has been contributed in full conformance with the XSF’s Intellectual
Property Rights Policy (a copy of which can be found at <https://xmpp.org/about/xsf/ipr-policy>
or obtained by writing to XMPP Standards Foundation, P.O. Box 787, Parker, CO 80134 USA).

https://xmpp.org/
https://xmpp.org/about/xsf/ipr-policy

Contents
1 Introduction 1

2 Use Cases 2
2.1 Discovering Server Support . 2
2.2 Requesting Number of Messages . 2
2.3 Requesting Message Headers . 3
2.4 Retrieving Specific Messages . 5
2.5 Removing Specific Messages . 6
2.6 Retrieving All Messages . 6
2.7 Removing All Messages . 7

3 Protocol Flow 8

4 Security Considerations 9

5 IANA Considerations 9

6 XMPP Registrar Considerations 9
6.1 Protocol Namespaces . 9
6.2 Service Discovery Identities . 9
6.3 Well-Known Service Discovery Nodes . 10
6.4 Field Standardization . 10

7 XML Schema 11

1 INTRODUCTION

1 Introduction
Although not required to do so by XMPP Core 1 and XMPP IM 2, many existing Jabber/XMPP
instant messaging servers will store messages received while a user is offline and deliver them
when the user is next online. Such messages are commonly called ”offline messages”. The
current means of retrieving one’s offline messages is simple: one sends available presence to
the server and, as a consequence, the server sends a one-time ”flood” of all the messages that
have been stored while one was offline. This simplification has the following deficiencies:

1. It can be overwhelming, which is undesirable for the vacationer or heavy user. Many
individuals upon returning to work from a weeklong vacation spend the first few hours
wading through the dozens, even hundreds, of emails that they received during their
absence. Unlucky, however, is this user who then logs onto their Jabber server and
is bombarded by hundreds of instant messages, possibly in scores of popup dialogs,
simultaneously. Should their client crash, they have lost all communication that
occurred while they were away.

2. It can be difficult to integrate with web-based email clients, which is undesirable for
some portals. Several large portals are currently trying to blur the distinction between
IM and email -- providing both through one web interface. With offline retrieval
semantics so vastly different between the two, this is quite difficult.

What is needed is a flexible semantic for offlinemessage handling, similar to POP3 in the email
world (see RFC 1939 3). This would enable the wireless user to view header information for all
offline messages and select only those from their boss and important clients for viewing. It
would enable the vacationer to read and delete their messages one at a time, minimizing the
possibility of losing all correspondence. And it would provide for seamless integration with
existing web-based email clients.
In particular, such a protocol should support the following use cases:

1. Client determines server support for this protocol.

2. Client requests number of messages.

3. Client requests message ”header” information (thereby choosing flexible offline mes-
sage retrieval as opposed to old-fashioned ”flood” mode).

4. Client retrieves specific messages.

1RFC 6120: ExtensibleMessaging and Presence Protocol (XMPP): Core <http://tools.ietf.org/html/rfc6120>.
2RFC 6121: Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence <http://tool
s.ietf.org/html/rfc6121>.

3RFC 1939: Post Office Protocol - Version 3 <http://tools.ietf.org/html/rfc1939>.

1

http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc1939
http://tools.ietf.org/html/rfc6120
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc6121
http://tools.ietf.org/html/rfc1939

2 USE CASES

5. Client removes specific messages.

6. Client retrieves all messages.

7. Client removes all messages.

2 Use Cases
2.1 Discovering Server Support
In order to discover whether one’s server supports this protocol, one uses Service Discovery
(XEP-0030) 4.

Listing 1: User Requests Service Discovery Information
<iq type=’get’ to=’montague.net’>

<query xmlns=’http: // jabber.org/protocol/disco#info’/>
</iq>

Listing 2: Server Reply to Discovery Request
<iq type=’result ’

from=’montague.net’
to=’romeo@montague.net/orchard ’>

<query xmlns=’http: // jabber.org/protocol/disco#info’>
<feature var=’http: // jabber.org/protocol/offline ’/>

</query >
</iq>

If the server supports this protocol, it MUST return a <feature/> element in the
disco result with the ’var’ attribute set to the namespace name for this protocol:
’http://jabber.org/protocol/offline’.

2.2 Requesting Number of Messages
RFC 1939 includes a feature (the ”STAT” command) that enables a user to determine how
many messages are waiting to be retrieved (without retrieving all of the headers). Such a
feature would be helpful in Jabber/XMPP as well, especially if the client is constrained with
regard to storage capacity or available bandwidth.
In order to determine the number of messages in the offline message queue, the user sends
a disco#info request without a ’to’ address (i.e., implicitly to the user himself) and with the
disco node specified as ’http://jabber.org/protocol/offline’:

4XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.

2

https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html
https://xmpp.org/extensions/xep-0030.html

2 USE CASES

Listing 3: User Requests Information About Offline Message Node
<iq type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#info’
node=’http: // jabber.org/protocol/offline ’/>

</iq>

If the server supports retrieval of the number of messages, it MUST include Service Discovery
Extensions (XEP-0128) 5 data specifying the number of messages:

Listing 4: Server Returns Information About Offline Message Node, Including Number of
Messages

<iq type=’result ’ to=’romeo@montague.net/orchard ’>
<query xmlns=’http: // jabber.org/protocol/disco#info’

node=’http: // jabber.org/protocol/offline ’>
<identity

category=’automation ’
type=’message -list’/>

<feature var=’http: // jabber.org/protocol/offline ’/>
<x xmlns=’jabber:x:data ’ type=’result ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >http:// jabber.org/protocol/offline </value >

</field >
<field var=’number_of_messages ’>

<value >66</value >
</field >

</x>
</query >

</iq>

Upon receiving a service discovery request addressed to a node of
”http://jabber.org/protocol/offline” (either a disco#info request as in this use case or a
disco#items request as in the next use case), the server MUST NOT send a flood of offline
messages if the user subsequently sends initial presence to the server during this session.
Thus the user is now free to send initial presence (if desired) and to engage in normal IM
activities while continuing to read through offline messages. However, once the user sends
presence, the user’s server MUST deliver in-session messages as usual; this document applies
to offline messages only. In addition, if the user authenticates and provides presence for
another resource while the first (non-flood) resource still has an active session, the server
MUST NOT flood the second resource with the offline message queue.

2.3 Requesting Message Headers
In order to retrieve headers for all of the messages in the queue, the user sends a disco#items
request without a ’to’ address (i.e., implicitly to the user himself) and with the disco node
5XEP-0128: Service Discovery Extensions <https://xmpp.org/extensions/xep-0128.html>.

3

https://xmpp.org/extensions/xep-0128.html
https://xmpp.org/extensions/xep-0128.html
https://xmpp.org/extensions/xep-0128.html

2 USE CASES

specified as ’http://jabber.org/protocol/offline’.

Listing 5: User Requests Offline Message Headers
<iq type=’get’>

<query xmlns=’http: // jabber.org/protocol/disco#items ’
node=’http: // jabber.org/protocol/offline ’/>

</iq>

The server now MUST return headers for all of the user’s offline messages. So that the user
may determine whether to view a full message, the header information provided MUST in-
clude the full Jabber ID of the sender (encoded in the ’name’ attribute) and a unique identifier
for the message within the user’s ”inbox” (encoded in the ’node’ attribute), so that the user
may appropriately manage (view or remove) the message.

Listing 6: Server Provides Offline Message Headers
<iq type=’result ’ to=’romeo@montague.net/orchard ’>

<query xmlns=’http: // jabber.org/protocol/disco#items ’
node=’http: // jabber.org/protocol/offline ’>

<item
jid=’romeo@montague.net’
node=’2003 -02 -27 T22:49:17 .008Z’
name=’mercutio@shakespeare.lit/pda’/>

<item
jid=’romeo@montague.net’
node=’2003 -02 -27 T22:52:37 .225Z’
name=’juliet@capulet.com/balcony ’/>

<item
jid=’romeo@montague.net’
node=’2003 -02 -27 T22:52:51 .270Z’
name=’juliet@capulet.com/balcony ’/>

<item
jid=’romeo@montague.net’
node=’2003 -02 -27 T22:53:03 .421Z’
name=’juliet@capulet.com/balcony ’/>

<item
jid=’romeo@montague.net’
node=’2003 -02 -27 T22:53:13 .925Z’
name=’juliet@capulet.com/balcony ’/>

</query >
</iq>

If the requester is a JID other than an authorized resource of the user (i.e., the user@host of the
requester does not match the user@host of the user), the server MUST return a <forbidden/>
error. If the requester is authorized but the node does not exist, the server MUST return
an <item-not-found/> error. If there are no offline messages for this user, the server MUST
return an empty query as defined in XEP-0030. (For information about the syntax of error

4

2 USE CASES

conditions, refer to Error Condition Mappings (XEP-0086) 6.)
The syntax and semantics of the attributes are as follows:

• The ’jid’ attribute is the Jabber ID with which the item nodes are associated, i.e., the user
himself.

• The ’name’ attribute is the full JID of the sender as received in the ’from’ address of the
message itself.

• The ’node’ attribute is a unique identifier for themessage. The value SHOULD be consid-
ered opaque, but applicationsMAY perform character-by-character dictionary ordering
on the values. This enables applications to implement ordering onmessages, such as that
shown above, wherein the node values areUTC timestamps (if timestamps are used, they
MUST conform to the ’Datetime’ profile defined in XMPP Date and Time Profiles (XEP-
0082) 7).

2.4 Retrieving Specific Messages
Messages are viewed based on the value of the ’node’ attribute as provided for each item
returned by the server in the header information. A user MAY request one or more messages
in the same IQ get.

Listing 7: User Requests Offline Messages
<iq type=’get’ id=’view1 ’>

<offline xmlns=’http: // jabber.org/protocol/offline ’>
<item action=’view’

node=’2003 -02 -27 T22:52:37 .225Z’/>
</offline >

</iq>

If the requester is a JID other than an authorized resource of the user, the server MUST return
a <forbidden/> error. If the requester is authorized but the node does not exist, the server
MUST return an <item-not-found/> error. Otherwise, the server MUST send the requested
message(s) plus an IQ result:

Listing 8: Server Provides Offline Messages
<message to=’romeo@montague.net’ from=’juliet@capulet.com/balcony ’>

<body>O Romeo , Romeo! wherefore art thou Romeo?</body>
<offline xmlns=’http: // jabber.org/protocol/offline ’>

<item node=’2003 -02 -27 T22:52:37 .225Z’/>
</offline >

</message >

6XEP-0086: Error Condition Mappings <https://xmpp.org/extensions/xep-0086.html>.
7XEP-0082: XMPP Date and Time Profiles <https://xmpp.org/extensions/xep-0082.html>.

5

https://xmpp.org/extensions/xep-0086.html
https://xmpp.org/extensions/xep-0082.html
https://xmpp.org/extensions/xep-0082.html
https://xmpp.org/extensions/xep-0086.html
https://xmpp.org/extensions/xep-0082.html

2 USE CASES

<iq type=’result ’ to=’user@domain/resource ’ id=’view1 ’/>

In order to distinguish incoming messages, each message MUST contain the node value. It is
RECOMMENDED for the server to include Legacy Delayed Delivery (XEP-0091) 8 information
in the message.

2.5 Removing Specific Messages
A server MUST NOT remove a message simply because it has been requested by and delivered
to the user; instead, the user must specifically request to remove a message. This further
implies that the user’s offline message queue SHOULD NOT be automatically cleared out by
the server if there are offline messages remaining when the user’s session ends. However,
an implementation or deployment MAY remove messages according to its own algorithms
(e.g., storage timeouts based on a ”first in first out” rule) or policies (e.g., message queue size
limits) if desired.
As with viewing, messages are removed based on the value of the ’node’ attribute as provided
for each item returned by the server in the header information. The user MAY request the
removal of one or more messages in the same IQ set.

Listing 9: User Requests Removal of Offline Messages
<iq type=’set’ id=’remove1 ’>

<offline xmlns=’http: // jabber.org/protocol/offline ’>
<item action=’remove ’

node=’2003 -02 -27 T22:49:17 .008Z’/>
<item action=’remove ’

node=’2003 -02 -27 T22:52:37 .225Z’/>
</offline >

</iq>

If the requester is a JID other than an authorized resource of the user, the server MUST return
a <forbidden/> error. If the requester is authorized but the node does not exist, the server
MUST return a <item-not-found/> error. Otherwise, the server MUST remove the messages
and inform the user:

Listing 10: Server Informs User of Removal
<iq type=’result ’ to=’romeo@montague.net/orchard ’ id=’remove1 ’/>

2.6 Retrieving All Messages
The user retrieves all message by sending the ”fetch” command:

8XEP-0091: Legacy Delayed Delivery <https://xmpp.org/extensions/xep-0091.html>.

6

https://xmpp.org/extensions/xep-0091.html
https://xmpp.org/extensions/xep-0091.html

2 USE CASES

Listing 11: User Retrieval of All Offline Messages
<iq type=’get’ id=’fetch1 ’>

<offline xmlns=’http: // jabber.org/protocol/offline ’>
<fetch/>

</offline >
</iq>

If the requester is a JID other than an authorized resource of the user, the server MUST return
a <forbidden/> error. If the requester is authorized but the node does not exist, the server
MUST return a <item-not-found/> error. Otherwise, the server MUST retrieve all messages
and inform the user:

Listing 12: Server Sends All Messages and Informs User of Successful Fetch
<message to=’romeo@montague.net’ from=’juliet@capulet.com/balcony ’>

<body>O Romeo , Romeo! wherefore art thou Romeo?</body>
<offline xmlns=’http: // jabber.org/protocol/offline ’>

<item node=’2003 -02 -27 T22:52:37 .225Z’/>
</offline >

</message >

<iq type=’result ’ to=’romeo@montague.net/orchard ’ id=’fetch1 ’/>

A client MAY retrieve all messages without first requesting message headers. In this case,
the server MUST return all of the user’s offline messages and also MUST NOT send a flood
of offline messages if the user subsequently sends initial presence to the server during this
session. That is, the semantics here are the same as for requesting message headers.

2.7 Removing All Messages
The user removes all message by sending the ”purge” command:

Listing 13: User Requests Removal of Offline Messages
<iq type=’set’ id=’purge1 ’>

<offline xmlns=’http: // jabber.org/protocol/offline ’>
<purge/>

</offline >
</iq>

If the requester is a JID other than an authorized resource of the user, the server MUST return
a <forbidden/> error. If the requester is authorized but the node does not exist, the server
MUST return a <item-not-found/> error. Otherwise, the server MUST remove all messages
and inform the user:

7

3 PROTOCOL FLOW

Listing 14: Server Informs User of Successful Purge
<iq type=’result ’ to=’romeo@montague.net/orchard ’ id=’purge1 ’/>

3 Protocol Flow
This section shows the flow of protocol between client (C:) and server (S:) for the existing
(flood) scenario and the improved (POP3-like) scenario.

C: <stream:stream ...>

S: <stream:stream ...>

C: authentication (SASL in XMPP , non -SASL in older systems)

S: acknowledge successful authentication

C: <presence/>

S: send message flood to Client

C: receive flood , send and receive messages , etc.

... and so on

The semantics change with POP-like offline message handling, and server behavior changes
as well...

C: <stream:stream ...>

S: <stream:stream ...>

C: authentication (SASL in XMPP , non -SASL in older systems)

S: acknowledge successful authentication

C: request message headers

S: send message headers to Client

NOTE: Server now MUST NOT flood Client with offline messages.

C: <presence/>

NOTE: Server does not flood Client with offline messages , but
sends in-session messages as usual.

8

6 XMPP REGISTRAR CONSIDERATIONS

C: request and remove offline messages , send and receive messages , etc
.

... and so on

4 Security Considerations
A server MUST NOT deliver a user’s offline messages to any JID except one of the user’s
authorized resources.

5 IANA Considerations
This document requires no interaction with the Internet Assigned Numbers Authority (IANA)
9.

6 XMPP Registrar Considerations
6.1 Protocol Namespaces
The XMPP Registrar 10 includes ’http://jabber.org/protocol/offline’ in its registry of protocol
namespaces.

6.2 Service Discovery Identities
The XMPP Registrar includes ”automation” in its registry of Service Discovery categories
for use for any entities and nodes that provide automated or programmed interaction. This
document specifies the following new types for the ”automation” category:

Type Description
message-list The node for the offline message queue; valid only for the node

”http://jabber.org/protocol/offline”.
message-node A node for a specific offline message if service discovery is provided for

messages.

9The Internet Assigned Numbers Authority (IANA) is the central coordinator for the assignment of unique pa-
rameter values for Internet protocols, such as port numbers and URI schemes. For further information, see
<http://www.iana.org/>.

10The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

9

http://www.iana.org/
https://xmpp.org/registrar/
http://www.iana.org/
https://xmpp.org/registrar/

6 XMPP REGISTRAR CONSIDERATIONS

The registry submission is as follows:

<type>
<name>message -list</name>
<desc>

The node for the offline message queue; valid only for the
node

”http: // jabber.org/protocol/offline”
</desc>
<doc>XEP -0013</doc>

</type>
<type>

<name>message -node</name>
<desc>

A node for a specific offline message if service discovery is
provided for messages

</desc>
<doc>XEP -0013</doc>

</type>
</category >

6.3 Well-Known Service Discovery Nodes
The XMPP Registrar includes ”http://jabber.org/protocol/offline” in its registry of well-
known Service Discovery nodes.

6.4 Field Standardization
Field Standardization for Data Forms (XEP-0068) 11 defines a process for standardizing the
fields used within Data Forms qualified by a particular namespace. There is one uses of such
forms in offline message retrieval as described in the Requesting Number of Messages section
of this XEP. The registry submission is as follows:

<form_type >
<name>http:// jabber.org/protocol/offline </name>
<doc>XEP -0013</doc>
<desc>

Service Discovery extension for number of messages
in an offline message queue.

</desc>
<field

var=’number_of_messages ’

11XEP-0068: Field Data Standardization for Data Forms <https://xmpp.org/extensions/xep-0068.html>.

10

https://xmpp.org/extensions/xep-0068.html
https://xmpp.org/extensions/xep-0068.html

7 XML SCHEMA

type=’text -single ’
label=’N/A’/>

</form_type >

7 XML Schema

<?xml version=’1.0’ encoding=’UTF -8’?>

<xs:schema
xmlns:xs=’http: //www.w3.org /2001/ XMLSchema ’
targetNamespace=’http: // jabber.org/protocol/offline ’
xmlns=’http: // jabber.org/protocol/offline ’
elementFormDefault=’qualified ’>

<xs:annotation >
<xs:documentation >

The protocol documented by this schema is defined in
XEP -0013: http://www.xmpp.org/extensions/xep -0013. html

</xs:documentation >
</xs:annotation >

<xs:element name=’offline ’>
<xs:complexType >

<xs:sequence >
<xs:element ref=’item’ minOccurs=’1’ maxOccurs=’unbounded ’/>

</xs:sequence >
</xs:complexType >

</xs:element >

<xs:element name=’item’>
<xs:complexType >

<xs:attribute name=’action ’ use=’optional ’>
<xs:simpleType >

<xs:restriction base=’xs:NCName ’>
<xs:enumeration value=’remove ’/>
<xs:enumeration value=’view’/>

</xs:restriction >
</xs:simpleType >

</xs:attribute >
<xs:attribute name=’jid’ type=’xs:string ’ use=’optional ’/>
<xs:attribute name=’node’ type=’xs:string ’ use=’required ’/>

</xs:complexType >
</xs:element >

</xs:schema >

11

	Introduction
	Use Cases
	Discovering Server Support
	Requesting Number of Messages
	Requesting Message Headers
	Retrieving Specific Messages
	Removing Specific Messages
	Retrieving All Messages
	Removing All Messages

	Protocol Flow
	Security Considerations
	IANA Considerations
	XMPP Registrar Considerations
	Protocol Namespaces
	Service Discovery Identities
	Well-Known Service Discovery Nodes
	Field Standardization

	XML Schema

