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Abstract

We study the threat that passive logging attacks pose
to anonymous communications. Previous work analyzed
these attacks under limiting assumptions. We first describe
a possible defense that comes from breaking the assump-
tion of uniformly random path selection. Our analysis
shows that the defense improves anonymity in the static
model, where nodes stay in the system, but fails in a dy-
namic model, in which nodes leave and join. Additionally,
we use the dynamic model to show that the intersection
attack creates a vulnerability in certain peer-to-peer sys-
tems for anonymous communciations. We present simu-
lation results that show that attack times are significantly
lower in practice than the upper bounds given by previous
work. To determine whether users’ web traffic has com-
munication patterns required by the attacks, we collected
and analyzed the web requests of users. We found that,
for our study, frequent and repeated communication to the
same web site is common.

1. Introduction

Designing systems for anonymous communications is
a complex and challenging task. Such systems must be se-
cure against attackers at a single point in time; less obvi-
ously, they must also protect users from attacks that seek
to gain information about users over the lifetime of the
system.

In our prior work [21], we analyzed such an attack: the
predecessor attack. In this attack, a set of nodes in the
anonymous system work together to passively log possible
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initiators of a stream of communications. With sufficient
path reformations — which are unavoidable in practice
— the attackers will see the initiator more often than the
other nodes. In that prior work, we showed that this attack
applied to a class of protocols that included all protocols
for anonymous communications that were known at the
time. We also gave an analysis that placed bounds on how
long the attacks would take to run for a number of specific
protocols.

In constructing the attack and analysis in that paper, we
made several simplifying assumptions about how the pro-
tocols operated. Here we examine the effects of relaxing
each assumption. Specifically, we assumed:

1. The subset of nodes that forward an initiator’s mes-
sages are chosen uniformly at random;

2. Users make repeated connections to specific respon-
ders, which are outside points of communication;

3. Nodes do not join or leave the session;

These assumptions were necessary for the proof we pro-
vided that showed that the attack works in all cases, and
they were also critical to our analysis of the bounds on the
time required for a successful attack. We argued in that
paper that the assumptions are reasonable based on exist-
ing protocols.

In this paper, we examine more closely the univer-
sal applicability of predecessor attacks against anonymous
protocols. We examine our assumptions and the effect that
relaxing those assumptions has on the effectiveness of the
attack. Our specific contributions are:

e First, we show that defenses that use non-random se-
lection of nodes for path creation offer significant
protection for the initiator in a stable system.



e Second, we show that the design of some exist-
ing peer-to-peer systems for anonymous communi-
cations leads to a practical and efficient intersection
attack.

e Third, we examine the practical effectiveness of
the attacks through simulation. Our previous work
proved analytical upper bounds on the number of
rounds required; the simulations in this paper demon-
strate that attackers can be successful in significantly
fewer rounds than the maximums guaranteed by the
bounds. E.g., attacks on Onion Routing and Crowds,
with 1000 nodes and 100 attackers, succeed in a
time one-fifth of the rounds guaranteed by the upper
bounds.

e Fourth, we characterize measurements taken from
two web proxies to show the actual frequency and
duration of user activities on the Web. This study
allowed us to make some observations about user be-
havior with regard to our assumptions.

The body of this paper is organized around those goals.
In Section 2, we review related work. We then present
and analyze the effectiveness of new techniques for avoid-
ing predecessor attacks in a static model in Section 3. In
Section 4 we use a dynamic model to study the intersec-
tion attack and the defenses introduced in Section 3. We
describe the results of our simulations of the predecessor
attack in Section 5. In Section 6, we show how often users
go to the same website from data obtained by tracking real
users. We offer concluding remarks in Section 7.

2. Background

In this section, we review the results from our prior
work that serve as the foundation of this paper. We also
describe related material.

2.1. Our Prior Work

Our previous work described the predecessor attack,
first discovered by Reiter and Rubin as an attack against
Crowds [15]. The primary purpose of our current work
is to extend our previous results in the analysis of anony-
mous protocols. In this section, we review the definitions,
methods, and results of that work, and we refer the reader
to the full paper if greater detail is desired [21].

The first contribution of our previous work was to de-
fine a class of protocols, which included all known pro-
tocols for anonymous communication, and to prove that

the class degrades against the predecessor attack. We de-
fined an active set as the set of nodes used by the initiator
of a communication to propagate its message through the
network. This can be, for example, a path in Crowds or
the set of nodes that share coin flips with the initiator in a
DC-Net.

For any protocol inside our class, we required that the
active set be chosen uniformly at random many times. In
current protocols, that assumption holds because active
sets change each time a node is allowed to join the net-
work. If active sets did not change, then messages from
recently joining nodes are easily identified. However, it
is not necessary that the new active sets are chosen uni-
formly at random — in Section 3, we explore ways to
choose paths that exploit this fact, with the intention of
defending against degradation of anonymity.

The second major result in our prior work was a set of
analytic bounds describing how long it might take for at-
tackers using the predecessor attack to effectively degrade
the anonymity of a user in Crowds, Onion Routing, and
Mix-Nets. We gave bounds on the number of rounds, i.e.,
periodic changes in the active set, that guarantee for the
attackers a high probability of success in guessing the ini-
tiator. We use the following notation: n is the number
of nodes in the network, ¢ is the number of those nodes
that are attackers, and [ is the fixed path length of Onion
Routing or Mix-Nets.

Against Crowds, the attackers require 8 Inn rounds
to identify the attacker with high probability ”7*2 For

the same level of confidence, the attackers need 82—22 Inn

rounds against Onion Routing and 8’0‘—11 In n rounds against
Mix-Nets. In Section 5, we provide simulation results that
are tighter than these bounds and show how the confidence
of the attackers grows over time.

In the prior work, we also assumed that rounds oc-
curred regularly, and that the initiator communicated with
the responder in every round. If nodes are allowed to leave
and join the protocol, then attackers can force rounds to
occur as often as the system allows by simply having cor-
rupt nodes join and leave. However, they cannot force
the initiator to communicate with the responder during a
round, which is necessary for the attackers to get data on
the identity of the initiator. If the initiator rarely communi-
cates with the responder, then the amount of time it takes
for the attackers to get data from enough rounds can be
very large. In Section 6, we use logs of Web usage to ex-
amine how many rounds attackers can expect to get data
from over time.



2.2. Related Work

A number of papers have addressed attacks against
systems of anonymous communications. The creators
of Crowds [15], Onion Routing[20], Hordes [12], Free-
dom [1], Tarzan[8], Stop-and-Go Mixes [10], and others
have provided analysis of their protocols against some at-
tacks.

Only a few of these analyses consider the degrada-
tion of anonymity over time, including Reiter and Rubin’s
seminal work [15]. Berthold, et al., discuss an intersec-
tion attack against the anonymity groups that arise when
multiple mix routes are chosen [3]. In this attack, the dif-
ferent anonymity groups are intersected with each other to
shrink the number of possible initiators.

Raymond also discusses an intersection attack based on
observations of user activity [13]. Only the active users
can be the initiator, and the set of active users changes
over time. Intersecting the sets of active users reduces the
set of possible initiators. We explore this idea further in
Section 4.1.

More recently, Shmatikov used formal analysis and
model checking to verify the efficacy of the predecessor
attack against Crowds [19]. Due to the high process-
ing requirements of model checking, he was only able
to demonstrate probabilities of attacker success for small
numbers of nodes, i.e., twenty or fewer. In this paper,
we use simulation to extend these results to thousands of
nodes with an acceptable loss of precision.

One part of our work is to study users’ web surfing be-
havior to determine whether users visit the same site re-
peatedly over time. Given the large number of studies on
the World Wide Web and user behavior on the web, one
might believe that this work would be done already. We
are unaware of any studies that show longer-term user be-
havior at the level of detail that we require.

Work by Baryshnikov, et al., tries to predict traffic
patterns based on content, but from the point of view of
servers handling load and not considering single users [2].
Other papers on traffic prediction, including work by
Duchamp [6] and work by Davison [5], model users based
on recent content. In Duchamp, only the last 50 requests
are used, while the newer work by Davison only uses the
last five HTML documents. In this work, we seek patterns
over much longer periods.

2.3. The Predecessor Attack on Recent Protocols

Recently, several significant protocols for anonymous
communications have been published. In this section, we

discuss some of these protocols and their resistance to the
predecessor attack.

One of these is P5, by Sherwood, et al [18]. This proto-
col is designed for anonymity between peers connecting to
each other, rather than outside responders. It could, how-
ever, be adapted to outside communication by using des-
tination peers as the final proxy to the rest of the Internet.
P5 uses a tree-based broadcast protocol, where a user’s
anonymity is based on the sizes of the different broadcast
groups in which she is in.

The authors assume that “users do not leave once
they join” to prevent a decline in users’ anonymity [18].
Without this assumption, anonymity groups would shrink,
leading to degradation of anonymity within the groups.
We expect that this assumption does not hold well in to-
day’s networks, in which nodes may frequently shut down.
When anonymity groups become too small, users must
recreate a new communication tree, including a new key.
This expensive step keeps the protocol from being vulner-
able to the predecessor attack when the number of attack-
ers is less than the size of the user’s anonymity group.

The second protocol, Tarzan, by Freedman, et al. [8],
is a peer-to-peer system built at the network layer. From
the perspective of our analyses, which assume a peer-to-
peer setting, Tarzan may be considered a variant of Onion
Routing, as it uses Onion Routing-style layered encryp-
tion.

Tarzan achieves a higher level of practical security in
some scenarios by having nodes select relays according
to random domain selection. This means that attackers
cannot overload the network with malicious nodes from
within the same domain, as initiating nodes will not se-
lect proxies from that domain with any greater frequency.
Attackers can gain an advantage, however, when the num-
ber of honest domains represented in the Tarzan group is
small. An attacker may be able to operate nodes from do-
mains with no honest Tarzan participants. With attackers
in a few such domains, attackers could make it likely to
appear on an initiator’s path despite only operating a few
corrupt nodes.

Another protocol, MorphMix, is also a peer-to-peer
path-based protocol [16]. It allows honest participants to
find attackers in the system, with the unacceptable cost of
allowing attackers to create paths with only attackers, with
high probability. Unlike in Tarzan, the peers do not need
to know all other peers in the network to operate correctly.
We will see how this property is desireable for anonymity
in Section 4.1.

Additionally, two mutual anonymity protocols have
been presented recently [22, 11]. These protocols, like P5,
are designed to hide the identities of both communication



parties from each other and from third parties. Both of
these protocols are, like Tarzan, variants of Onion Rout-
ing, but with anonymity for both the client and server.
Since they are designed for file sharing, paths are not
maintained. This makes them highly vulnerable to the pre-
decessor attack as new paths create more opportunities for
attackers to be on the path. However, repeated connec-
tions to the same responder may not be as common for
file-sharing as in other applications, and in fact easier to
avoid.

3. Path Selection in Static Systems

In this section, we examine the assumption of our pre-
vious analysis of anonymous protocols that nodes are se-
lected by the initiator uniformly at random for forwarding
messages in the protocol.

We show the effects of non-uniform selection of nodes
during path selection. We consider a static set of nodes
and attackers using passive logging and review three dif-
ferent path creation strategies.

This model is based on the Onion Routing proto-
col [14]. We study Onion Routing because it provides
an intermediate level of both security and performance
among path-based protocols. It is significantly more se-
cure than Crowds against the predecessor attack, as de-
scribed in our previous work. Fully-connected DC-Net
and Mixnets both provide higher security than Onion
Routing, but they have significant additional costs, both
for initiators and for intermediate nodes.

Briefly stated, the predecessor attack for Onion Rout-
ing is to use two attackers. When the attackers occupy the
last node on the path and one earlier node, they log the
node before the first attacker. The intuitive reason that the
predecessor attack is successful is that the initiator is ob-
served in more rounds than other nodes as the node before
the first attacker.

3.1. Model

We assume a set of nodes N, where the size of N is
fixed at n. We also assume a set of attackers C C N,
consisting of ¢ < n attackers. The remaining n — ¢ nodes
in N are not trusted, but do not share information with
the set of attackers. All nodes follow protocol forwarding
rules correctly.

In our static model, the membership of C' and N does
not change. This property is not true in the dynamic model
that we consider in Section 4.

Each node in N communicates uniquely with one cor-
responding responder, a node that is not a member of N.

The responder does not collaborate with other attackers
but it tracks the identity of nodes with which it communi-
cates and should not be trusted. In each round, each node
creates a path of proxies, consisting of other nodes in NV,
between itself and its corresponding responder. It sends
at least one message in each round. For the rest of this
section we only consider a single initiator I, whose com-
munications with responder R are being tracked by the
attackers.

In this model, attackers may only passively log infor-
mation obtained while running the protocol in the normal
fashion. They have no ability to eavesdrop on or corrupt
any other nodes in V. Nor do they disrupt the protocol by
modifying messages, failing to deliver messages, or per-
forming other denial-of-service attacks.

Within this model, we consider fixed-node defenses, in
which the initiator selects some nodes to always appear in
certain positions on the path.

For this model, no mix-like techniques are used.
Specifically, we assume a cost-free attack exists that al-
lows attackers to determine if they are on the same path;
e.g., by analysis of the timings on packet arrivals.

Note that the attackers may be able to force rounds to
occur with short, regular intervals by simply leaving and
rejoining the system. The system must start a new round
to allow a returning node to resume communications. If
the system delays the start of the next round for very long,
it will be a great inconvenience to the user of a returning
node.

We considered a set of defenses for the static mem-
bership model that contrast the assumptions of our previ-
ous work of uniformly random path selection. We consid-
ered the following cases: The initiator fixes placement of
nodes: fixed first position; fixed last position; fixed first
and last positions; nodes fixed in other positions.

A summary of our results is presented in Table 1.

3.1.1 Fixed First Node Defense

In the static model, we study the idea of fixing nodes in
certain positions on the path as a defense against predeces-
sor attacks. There are several variations of this technique
that depend on the positions that the initiator chooses to
fix: first position, last position, or first and last positions.
Fixing the first position is equivalent to the setup attack
of our previous work [21]; thus, this subsection describes
a generalization of that technique. For all scenarios, we
assume that the nodes for all other positions are selected
uniformly at random from all of N. Additionally, the fixed
nodes also are selected uniformly from all of IV at the cre-
ation of the first path.



Defense Technique

Prob. of Success

If successful, | If successful,

rounds req., rounds req.,

expectation Bounded w.h.p.

Static node member ship model:

[21] O.R. model 1 (2)? O((2)?Inn)
Fixed placement of nodes
First < n-l O(2=t1nn)
Last < 2 O(Z1nn)
First and Last 2—22 1 1

Table 1. The probability of success and the number of rounds for a successful predecessor attack
against various defenses in the static membership model.

The first approach to a fixed-node defense is to use one
other node continually in the first position on the path. We
call the node selected for the purpose the helper node, H.
This defense protects the initiator from ever being tracked
by the attackers, except if the node picked as H is unfor-
tunately an attacker. If H is not an attacker, then when
the attackers run the predecessor attack on messages to R,
they will see H as the initiator instead of I.

We now consider what happens when H is an attacker.
We note that the initiator is not immediately exposed. An
attacker must appear at the end of the path to see the initia-
tor’s messages to the responder and determine jointly with
H that the two attackers are on the same path. Only then
will the initiator be exposed.

The last node is selected at random from N, except-
ing H, and there is a gj chance that the node selected
is an attacker. Note that I should never select H for the
last position, as it allows H to immediately expose | as
the initiator. Thus, in an expected Z%% rounds, I will be

exposed as the initiator.

Since the probability of H being an attacker is ;:11,
that serves as an upper limit on the probability that the
initiator is ever exposed. Due to the changing last node,
the probability of I’s exposure grows towards that upper
limit as it becomes more likely that the last node on the
path has been an attacker. This compares favorably with
choosing all nodes on the path uniformly at random ev-
ery round, which results in a probability of exposure that
grows, albeit more slowly, towards one. We demonstrate
this by simulation in Section 5; see Figure 8.

3.1.2 Fixed Last Position

A slight variation on this approach is to put H statically
as the last proxy in the path. This approach also keeps
node I from being exposed, as long as H can be trusted,
since all of the communications to R are hidden from the
attackers. If, however, H is an attacker, then all of the
initiator’s messages will be observed by the attackers.

As with the fixed first position, an attacker selected as
H will require another attacker to be selected as well be-
fore the initiator can be exposed. In this case, it is the
first node, which will be an attacker with probability .
In 8% Inn rounds, the initiator is identified by attackers,
given that H is an attacker, with high probability ”T*Z

Again, there is a limit of =~ on the probability of the
attackers being successful, based on the chance of select-
ing an attacker for H. So the probability of the attackers
being successful again grows towards it’s maximum value
of £ and becomes very close to that bound in fewer than
87 Inn rounds. (See Figure 8.)

3.1.3 Fixed First and Last Position

The third variation is to keep both the first and last posi-
tions on the path fixed to the same nodes. The two po-
sitions should be set to different nodes in N because if
they were the same, then a single node could expose I as
the initiator. In this scenario, if either the first or the last
node is not an attacker, then I is safe from attack. If, how-
ever, both nodes are attackers, then I is exposed in the first
round.

The probability of I having been exposed, then, is only

;E;’_ll)) and stays constant for all rounds of the protocol.




Since fixing only one node leads to an eventual ;- prob-
ability of exposure, this makes fixing nodes in both posi-
tions the best known choice for the initiator in the static
model, given sufficient rounds. (See Figure 8.)

We study the effect of node instability on this approach
in Section 4.

4. Attacks Against Dynamic Systems

In this section, we examine the effects on initiator
anonymity of membership changes to the set of proxies.
We find that membership dynamics of the system greatly
affect initiator anonymity. Using the same model assump-
tions as in the static case, we add the notion that nodes
leave the system with independent and identical distribu-
tions. We call the length of the time they are active in the
system their uptime.

This model attempts to capture the consequences of
having users that stop making communications or stop the
peer service on their local nodes. This occurs if users do
not leave their systems turned on and connected to the net-
work all the time. It is not clear whether users of anony-
mous communications systems would leave their systems
on and available for long, uninterrupted periods.

Studies of peer-to-peer file-sharing systems, however,
show that most users of these systems do not stay con-
nected for long periods of time. According to Sariou, et
al. [17], peers using either Napster or Gnutella were not
often available for IP-level connections, much less for file-
sharing. Only 20% of these peers were available for 93%
or more of the time. For actual file-sharing availability,
the median session time was only 60 minutes. If users
of anonymous communications system behave similarly,
then system designs must account for a dynamic user set.

4.1. I nter section Attack

If an attacker can obtain a collection of disjoint sets of
nodes that each contain the initiator, then simply intersect-
ing those sets can greatly narrow the attacker’s search. If
the intersection leaves only one node, this technique can
completely expose the initiator. We refer to this technique
as the intersection attack [13]. This attack is well-known
and there are few known means of defending against it.
The designers of the Java Anon Proxy incorporated an
“anonym-o-meter,” to show users their current level of
vulnerability to this attack [7, 3].

Some peer to peer systems are particularly vulnerable
to this attack, including Tarzan and Crowds. In these two
protocols, each participating peer knows the other avail-

able peers’ IP addresses. This is critical for proper oper-
ation, because in these protocols peers communicate di-
rectly. In describing Tarzan, Freedman, et al. [8], argue
that having an incomplete list leaves the initiator vulner-
able to other attacks in the peer selection process. This
list of peers, however, gives the attacker exactly what she
needs to perform the intersection attack.

To conduct this attack, the attacker only needs to keep
a single peer in the system to obtain these lists. For every
round in which the initiator contacts the responder, the at-
tacker can add the list of peers to her collection of sets of
nodes. As nodes leave and join the system, the intersec-
tion of those lists becomes smaller. In each round in which
the initiator does not communicate with the responder, the
attacker does not take a list for intersection. This increases
the total attack time by one round each time it occurs.

The attacker can, over time, use the intersection at-
tack to uniquely identify the initiator. Alternatively, when
the attacker has reduced the set of possible initiators to a
few nodes, the attacker can use other techniques to distin-
guish the initiator from the other nodes in the intersection.
For example, the attacker could eavesdrop on the commu-
nications of the remaining nodes to identify the initiator
through packet timing.

411 Analysis

We now show that that the attack works efficiently in our
model, given our assumptions about users leaving the net-
work. We discuss other assumptions of our model in Sec-
tion 4.1.2.

We model the uptime of users first with an exponential
distribution and then a Pareto distribution. Pareto distribu-
tions have heavy-tailed behavior that corresponds roughly
with the uptime of nodes observed in peer-to-peer file-
sharing systems [4]. A Pareto distribution corresponds to
some nodes remaining active for very long periods, while
many other nodes join the system for only a short time.

We do not consider nodes that leave and join the sys-
tem in the same round (i.e. if they become available in
the next round) as having left at all. Our distributions are
constructed such that such short-term failures are not con-
sidered events. Note that nodes newly joining the system
do not affect the intersection attack, nor do nodes that in-
termittently re-join.

In the exponential model, we say that the average up-
time for a user is % Therefore, A can be thought of as
the failure rate of the user’s node. The probability that a
given node has left after 7' rounds is given by the prob-
ability distribution function, F(T) = 1 — e 7. We
model the nodes as independent and identically distributed



Defense Technique

Rounds for high probability
€ = (n — 2)/n of attacker success

Dynamic node member ship model:
Intersection attack:

Pareto dist. session with parameter a
Fixed first and last:
Constant session length p

Exponential dist. session with parameter A

—+ln(1— et/

1 1/a
(1—51/" )

In(1—e)

m(1- 265)

Table 2. Number of rounds for a successful predecessor attack for various defenses.

(i.i.d.) processes. Thus, the probability that all n — 1
nodes other than the initiator have left after T' rounds is
P(T) = (1—e )™, We can also find the number
of rounds, T, required for the attacker’s chance of ex-
posing the initiator to reach a value p. This is given by
T = —%in (1 — p'/(=1)). Note that T is linearly depen-
dent on the average uptime, %

As we see in Figure 1, the probability of all nodes leav-
ing rises quickly to one. We show curves for the exponen-
tial distribution when the average uptime is one and four
weeks, or 168 and 672 rounds, respectively. The round
length is one hour, though the clock time required for the
attack does not change with the round length. Longer
round lengths may mean longer average uptimes, though,
as it is more likely that a node that disconnects will be able
to reconnect before the next round starts. For this reason,
the round length must be significantly less than the aver-
age uptime for the analysis to hold. We show results for a
system with 1,000 total nodes.

After ten weeks, with an average uptime of one week,
there is a 0.956 probability that all nodes have left except
the initiator. When the average uptime is four weeks, the
time to reach the same 0.956 chance that all nodes have
left is 40 weeks. This agrees with the linear relationship
between the average uptime and 7'.

The Pareto distribution gives us a different picture for
how quickly the intersection attack works. For this model,
we say that the average uptime is given by E[T] = -2,
where parameter a can be set give the desired average
time. (We chose a = 167/168 so that E[T] = 168 hours,
i.e., 1 week.) The probability that a node leaves before
time T is F(T) = 1 — 4. Again, the nodes can be con-
sidered i.i.d. processes, and the probability that all n — 1
nodes leave by time T is given by P(T) = (1 — %)"_1.

We can rearrange this formula to find the number of
rounds the attacker requires to expose the initiator with

1/a
probability P(T) = p: T = (m) . From Fig-

ure 1, we see that the probability of total exposure, when
all other nodes have left, grows much more slowly than in
the exponential model. The chance of exposure becomes
non-negligible in far fewer rounds, but the attacker is not
guaranteed a high probability of success for a very long
time. This is due to the heavy-tailed property of the Pareto
distribution. Many nodes will leave the system early in the
course of the attack, but it is likely that a few nodes will
remain in the system for a long time. Also, the average
time to leave makes little difference for the averages we
used. We believe that this is because the chance of expo-
sure mostly depends on whether other nodes remain for a
long time, regardless of how much longer that time may
be.

The possibility of long periods without complete expo-
sure does not make the initiator safe from the intersection
attack. This is because the number of possible initiators
will quickly narrow to a small fraction of the remaining
nodes. The probability that £ < n — 1 nodes will leave the
system after 7' rounds is given by the binomial P(T") =
D)y (ngl)ai(l —o)" 1 whereo = (1 - ).

In Figure 2, we compare the probabilities that all but
five and all but ten nodes leave the system, along with the
probability that all nodes leave the system. We observe
that the attacker reduces the list of possible initiators to a
small fraction of the original nodes much faster than she
can isolate the initiator completely. The attacker has a list
of ten or fewer nodes with probability 0.999 in less than
two weeks, when the average time for node failure is one
week. In the same two weeks, the attacker can get a list of
five or fewer nodes with probability 0.828.

41.2 Caveats

The intersection attack does not reveal the initiator in all
situations, because the technique requires that the com-
munication between the initiator and the responder be
uniquely identifiable. In other words, the initiator must
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Figure 1. Dynamic member ship model: The in-
tersection attack. The probability, for n =
1,000 nodes, of all nodes other than the ini-
tiator being intersected out of the set of pos-
sible initiators.

be the only node in the system communicating with the
responder, or there must be some identifying information
in their communications. Two initiators to the same re-
sponder can cause each other to be removed from the in-
tersection, as one node communicates with the responder
in a round while the other node is not in the system. While
it is possible to extend the attack to pairs of nodes and to
even larger groupings, it makes the attack more compli-
cated and time consuming.

Another caveat is that the attacker’s list must include
all currently participating nodes for the intersection to be
accurate. The lists do not need to be exact, but they must
not omit any participating nodes. A reasonable implemen-
tation of most protocols does not require such a complete
list. The attacker can address this issue in some proto-
cols by placing more corrupt nodes in the system. This
can help to make the list of currently participating nodes
more complete. Also, attackers would not want to elimi-
nate nodes unless they are known to be unavailable.

4.2 Fixed Nodeswith I nstability

In Section 3.1.3, we described a method in which an
initiator selects two nodes to permanently occupy the first
and last positions on its path. This allows the initiator to
keep attackers from linking it to any responder, as long as
at least one of the selected nodes was not an attacker. This
defense has different properties in the dynamic model as it
depends on the stability of nodes: it requires the two cho-

0.8 [

0.6

Pareto Distribution, All Nodes Leave
areto Distribution, 99% of Nodes Leave --—+--
Pareto Distribution, 99.5% of Nodes Leave ---x---

Probability of Nodes Leaving

0.2

- L L
10 100 1000 10000 100000
Rounds

Figure 2. Dynamic membership model: The
probability of having less than ten and less
than five nodes other than the initiator re-
maining in the system, and the probability
of having no other nodes remaining, over
time, where the system starts with n = 1,000
nodes.

sen nodes to remain in the system as long as the initiator
continues to contact a given responder. If the nodes leave,
the initiator must select new nodes to take their place. Ev-
ery replacement of the nodes increases the chances that
two attackers hold both positions simultaneously. The
probability of exposure, then, grows closer to one over
time.

We assume that nodes leave the network after a fixed,
constant amount of time. In order to make comparisons
with prior work and with results from Section 5, we mea-
sure time in rounds. Let us say that a node remains in the
system for exactly p rounds. Also suppose that all nodes
join the system at the same time. Then it is as if the system
resets and forces new path selection every p rounds.

Every time the new first and last nodes must be se-
lected, the initiator selects the new nodes uniformly at
random from N. This creates a P, = ;g;:ll)) probabil-
ity of selecting attackers for both positions. We want to
know the number of resets, R, such that the probability
of attacker success, Pg, is at least some value p. Since

Prp=1-(1- Pl)R, then substituting values of P,
In(1—Pg)
n(1-5520)

By using Pr = p, we get the number of resets, R,,
sufficient to make the attackers successful with probability
p. If resets occur every p rounds, then R,p rounds are
required for the attackers to be successful with probability

p (See Table 2).
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Figure 3. Dynamic Model: Probability of at-
tackers’ success when first and last nodes
are fixed. The time is given in the num-
ber of resets needed. We show results for
n = 1,000 nodes, and ¢ = 50, ¢ = 100, and
¢ = 200 attackers.

In Figure 3, we see that the probability of the attack-
ers succeeding grows towards one as the number of resets
increases. The similarity to simulation results for the pre-
decessor attack in Section 5, for uniformly random path
selection, suggests that fixing the first and last nodes may
not provide significantly stronger security over time when
nodes leave the system frequently. This is in contrast with
the results shown for the static model in Figure 8, in which
fixing the first and last nodes appears to be the best strat-
egy. In general, fixing nodes on the path is only a good
strategy when nodes leave the system only after long stays
or not at all.

5. Simulating the Predecessor Attack

In our prior work, we provide upper bounds on the
number of rounds required for attackers to perform the
predecessor attack against nodes running Crowds, Onion
Routing, and Mix-Nets. While these bounds helped to in-
dicate the relative performance of each protocol against
the attacks, we did not show them to be tight bounds.

In this section, we present simulation results showing
the number of rounds required for attackers to have con-
fidence that they have found the initiator. Additionally,
we have simulated a number of the methods for selecting
Onion Routing paths described in Section 3 and compare
those results against uniform path selection.

5.1. Simulation M ethodology

We simulated long-running Crowds-based and Onion
Routing-based sessions. We chose these protocols as
models of systems with relatively low overhead. More
costly protocols, such as fully-connected DC-Net and P5,
do not fall to the predecessor attack under reasonable at-
tacker models, e.g. with fewer nodes than the size of the
anonymity set. With path lengths of five and greater, the
expected time to attack Mix-Nets also falls far outside the
times we see in these simulations [21].

In our simulations, one initiator sets up a path each
round by selecting the nodes in the path. For each round,
if attackers appear on the path, then they log the predeces-
sor of the first attacker. Attackers in the Onion Routing
model know if they are on the same path (e.g., by timing
analysis in a real implementation).

Each data point of our graphed results are based on
the average of ten runs. Each run consisted 10,000 sep-
arate simulations of path formation for a given numbers
of nodes and collaborating attackers. Each run used a dif-
ferent seed for random number generation. For each of the
10,000 simulations in a run, the attackers waited a given
number of rounds and then made their guess of the initia-
tor’s identity based on their current logging information.
We then determined the percentage of the 10,000 simula-
tions in which the attackers guessed correctly. This ap-
proach provides a confidence level for the attackers after
any given number of rounds.

Performing this ten times enabled us to give an aver-
age and determine variation in the results. In all, we ran
over 66.8 million simulations. For all graphs we computed
standard deviations, however they are not shown in most
figures as they are too small to be significant (less than one
percent for all data and less than one tenth of one percent
for high probabilities of attacker success), and they would
clutter the graphs.

5.2. Results

Figure 4 compares simulation results of attacker suc-
cess for Crowds and Onion Routing when the static mem-
bership model is used. The graph shows for both pro-
tocols the average number of simulations of 10,000 that
correctly determined the initiator for a given number of
rounds. In all simulations, there are n = 1, 000 total nodes
and the average path length is 10. We show a dotted-line at
y = 0.50, as that is the dividing line between Probable In-
nocence, where the attackers’ best guesses are more than
50% likely to be wrong, and Possible Innocence, where
the attackers best guesses are more than 50% likely to be
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Figure 4. Static membership model: Simu-
lation of the predecessor attack against
Crowds and Onion Routing, for varying
numbers of attackers.

correct [15]. Although this line is arbitrary, it represents
a point at which the initiator’s anonymity is compromised
beyond an acceptable level, although the attackers cannot
yet be highly confident in their guess.

We compare Onion Routing paths and Crowds paths of
approximately equal length. It is not clear that the perfor-
mance of each protocol with the same path length is equiv-
alent, and Crowds path lengths will vary. If, however,
network transfer times dominate the delay along paths for
systems using either protocol, then equal path lengths pro-
vide a useful comparison. To make the path lengths simi-
lar, we selected several path lengths in Onion Routing and
matched each of those with a Crowds’ probability of for-
warding (py) that gave the same average path length.

From Figure 4, we see that Onion Routing lasts longer
against the predecessor attack than a similar configura-
tion of Crowds. The leftmost three lines at the 50% point
are all for Crowds, while the three rightmost lines are for
Onion Routing. For example, with ¢ = 100, which gives
us 2 = 10, the attackers require only 14 to 16 rounds
against Crowds to get a 50% chance of exposing the initia-
tor. For the same value of ¢ = 100 in Onion Routing, the
attackers require between 140 and 160 rounds. This ten-
fold increase in the number of rounds appears to match the
additional factor of % found in the analytical results from
our previous paper. This trend can be seen throughout the
graph.

We also see from Figure 4 that the larger the value of 7,
the longer the predecessor attack takes. For example, with
Onion Routing, ¢ = 50 attackers require between 576 and
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Figure 5. Static membership model: The pre-
decessor attack against Onion Routing, top
one percent.

640 rounds to find the initiator with 50% or better proba-
bility. This is about four times longer than for ¢ = 100,
for which 2 is half as large. This is also in line with our
analytical results for Onion Routing, which show that the
number of rounds required has a squared dependence on
. This dependence holds for most values, but the differ-
ences are greater for low numbers of rounds. The linear
dependence on = for Crowds also holds for most values,
again excepting the lowest counts.

In Figure 5, we show the predecessor attack against
Onion Routing as in Figure 4, but only for when the prob-
ability of attackers guessing the initiator is greater than
0.99. A line is drawn where the attacker probability of
success is ”T—Z which is the standard of high probabil-
ity we set in the analysis from our previous paper and in
Section 3.

From the figure, we see that the number of rounds guar-
anteed by the analytic bounds are much higher than the
simulation results. The number of rounds required for the
attackers to be logged with high probability "T‘Z is be-
tween 5.7 and 6.2 times less for the simulation than guar-
anteed by the bounds from our prior work.

We also see from the figure that the relationships be-
tween the numbers of rounds required for different val-
ues of £ holds as the attackers get closer to being certain
that they have found the initiator. We use linear extrapola-
tion between points to find how many rounds have passed
when the lines cross the "7*2 probability of attacker suc-
cess line. With ¢ = 100, approximately 4.3 times as many
rounds are required than with ¢ = 200 to reach the line.
Between ¢ = 50 and ¢ = 100, the ratio is 4.1. The ratio
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Figure 6. Static Model: The predecessor at-
tack against Onion Routing, for varying n.

predicted by the bounds is exactly four for each of these
relationships.

We present simulation results for Onion Routing in
Figure 6 with a fixed ratio of 2 = 0.1 and a fixed path
length of [ = 10, but with three values for n: n = 100,
n = 1,000, and n = 10,000. Also, we show the bound
for % = 0.1, calculated from the formula of our previous
paper.

As in Figure 5, we see the significant difference be-
tween the predicted values of the bounds and the simula-
tion results. We also see the slight, but significant, dif-
ference in the upper half of the graph between the line for
n = 100 and the lines for n. = 1,000 or n = 10, 000. This
difference is not shown in the line given by the bounds and
is not reflected in the insignificant difference in the results
between n = 1,000 and n = 10, 000.

When there are fewer nodes to select from, other nodes
may be logged as often as the initiator for more rounds
than when there are many nodes to select from. This effect
can be seen in the bounds from our prior paper, although
it does not effect the curves shown in our graphs. This is
because the standard for high probability of attacker suc-
cess, ”T‘2 has an inverse dependence on n. The number
of rounds required to reach a high probability that the at-
tackers correctly identify the initiator is not dependent on
n because the value of the probability changes with n.

The other significant parameter in these simulations is
the average path length. In Onion Routing, this path length
is fixed, while in Crowds, the path length depends on the
probability of forwarding. We compare the two protocols
with the same average path length in Figure 7.

From the figure, we see that Onion Routing signif-
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Figure 7. Static Model: The predecessor at-
tack against Onion Routing and Crowds, for
varying average path lengths.

icantly outperforms Crowds for all path lengths. We
also see that longer path lengths outperform shorter path
lengths. For example, after 96 rounds, attackers against
Onion Routing with path lengths set to five have a 49.4%
chance of identifying the initiator. With path lengths set
to 20, however, the attackers only have a 30.3% chance of
success.

Also in Figure 7, we see that average path length is
more significant before the probability of attacker success
has reached 50% than afterwards. Also, the difference be-
tween different path lengths is larger for Onion Routing,
while largely insignificant for Crowds.

The success of fixing nodes in the path in the static
model can be seen in Figure 8. After only ten rounds,
the fixed first and last strategy is already a better defense
than allowing these nodes to vary with each round. All
three fixed strategies stay at a relatively low probability
of attacker success, while attackers see significant gains
in the probability of their success against ordinary Onion
Routing.

6. A Study of User Behavior

For the attacks we have studied to be successful, they
require that initiators communicate with responders over
long periods of time. To determine whether real user ex-
hibit such behavior, we obtained traces of communica-
tions from a web proxy in the Department of Computer
Science at the University of Massachusetts, Amherst. \We
separately analyzed data collected previously at the Uni-
versity of California at Berkeley.
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Figure 8. Static Model: Predecessor attack
against Onion Routing when paths are se-
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first and/or last node is fixed. We show re-
sults for n = 1,000 nodes, ¢ = 100 attackers,
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We sought two important results from the data. First,
we wanted to know the frequency that users contact the
same web site (i.e., the responder) and the extent to which
that contact continues to occur. It is critical to note that the
predecessor attack works in rounds of a specific length.
For example, when rounds last one day it does not matter
how many times the user contacts the same site during that
day. Shorter round lengths allow new users to join more
frequently, but increase the vulnerability of existing users.

Second, sites that are contacted most frequently (i.e., in
the most number of rounds) are also the most vulnerable.
Therefore, we wanted to know what percentage of a users’
web traffic was vulnerable to passive logging attacks.

One could argue that users of anonymous communi-
cations systems would be more careful to not behave in
trackable ways than the volunteers of our study. We be-
lieve that this is unlikely. The users of our study knew that
their web usage was being tracked in a linkable way. Users
of anonymous communications systems might be inclined
to behave cautiously, but would have reason to believe that
their patterns of communication are mostly hidden. Some
of these users might even seek systems for anonymity with
the intention of using them for repeated communications
to a specific responder or set of responders, rather than for
general privacy.

In any case, users should know what patterns of com-
munications can be tracked in this way as to be able to
avoid them when communicating anonymously.
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Figure 9. Length of time each user employed
the web proxy.

Figure 10 tracks whether users in the study revisted the
same responder over time. If we set the round length to
15 minutes long, the 214-day study divides into 20,549
rounds. Of 7,418 initiator-responder pairs, 103 were seen
in 80 or more rounds; 45 pairs in 160 or more rounds;
and so on. Values for longer round lengths are also shown
in Figure 10. In other words, only a small percentage of
connections are long-lasting. However, Figure 12 shows
what percentage of all traffic is represented by long last-
ing sessions. The longest-lasting sessions make up ap-
proximately 10% of all traffic, representing a significant
fraction of users’ behavior.

In our simulation results from Section 5, we found that
in an Onion Routing system with 1,000 nodes and path
lengths of 10, a set of 100 attackers required approxi-
mately 960 rounds to identify the initiator with an 99.8%
probability of being correct. This matches the results for
the five connections in our study seen in more than 1,284
fifteen-minute rounds. Thus, these five connections could
have been tracked by attackers with a high probability of
determining the initiators. Those connections make up
19% of all traffic, so a significant portion of the users’
privacy would be compromised by such an attack.

If we relax the probability that the attackers are correct
to 80%, we see that 15 different initiator-responder pairs
can be tracked in the same time frame. These connections
make up 36% of all the users’ traffic. Thus, over one-third
of the traffic that went through the web proxy faced an
80% chance of linkage to the initiator.

In addition to the study at the University of Mas-
sachusetts, we also used data collected from the University
of California at Berkeley’s Home IP service [9]. This data
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Figure 10. Survivor plot of users contact-
ing the same website over increasing num-
bers of rounds, from the University of Mas-
sachusetts data.

has the advantage of having more users, but only tracks
users over 18 days. For that time, however, the users also
showed patterns of repeated communications in signifi-
cant numbers of rounds, as shown in Figure 11.

7. Conclusion

In our prior work, we presented the first full analysis
of the predecessor attack, an attack which seeks to iden-
tify the initiator of an anonymous connection over time.
This work was important because it showed that all known
anonymous protocols were subject to this attack; in some
cases no attack against the protocol had been known.

In this paper, we have demonstrated several things.

We have shown that the churn in group membership of
anonymous protocols provides additional leverage for at-
tackers to degrade the anonymity of initiators who stay
in the anoymous group. Specifically, both Tarzan and
Crowds are particularly vulnerable to the intersection at-
tack, since lists of current users are readily available. We
note that other peer-to-peer protocols, such as MorphMix,
may not be as vulnerable to this attack, since awareness of
all other peers is not needed for operation of the protocol.

We have shown by simulation that the upper bounds
obtained in our prior work were fairly loose, and that the
attack can potentially succeed much more quickly than
previously described.

We have also shown, through study of real network
traffic, that users may follow the necessary communica-
tion patterns for the attacks to be successful over time.
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Figure 11. Survivor plot of users contacting
the same website over increasing numbers
of rounds, from the University of California
at Berkeley data

These results are important for both the designers and
users of anonymous protocols. It appears that designing
a long-lived anonymous protocol is very difficult, and that
users of current protocols need to be cautious in how often
and how long they attempt to communicate anonymously.
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