
Conscript Your Friends into
Larger Anonymity Sets with JavaScript

Henry Corrigan-Gibbs
∗

Stanford University
henrycg@stanford.edu

Bryan Ford
Yale University

bryan.ford@yale.edu

ABSTRACT

We present the design and prototype implementation of Con-
Script, a framework for using JavaScript to encourage casual
Web users to participate in an anonymous communication
system. When a Web user visits a cooperative Web site,
the site serves a JavaScript application that instructs the
browser to create and submit “dummy” messages into the
anonymity system. Users who want to send non-dummy
messages through the anonymity system use a browser plug-
in to replace these dummy messages with real messages.
Creating such conscripted anonymity sets can increase the
anonymity set size available to users of remailer, e-voting,
and verifiable shuffle-style anonymity systems. We outline
ConScript’s architecture, we address a number of potential
attacks against ConScript, and we discuss the ethical issues
related to deploying such a system. Our implementation
results demonstrate the practicality of ConScript: a work-
station running our prototype ConScript JavaScript client
generates a dummy message for a mix-net in 81 millisec-
onds and it generates a dummy message for a DoS-resistant
DC-net in 156 milliseconds.

Categories and Subject Descriptors

K.4.1 [Computers and Society]: Public Policy Issues—
privacy ; C.2.0 [Computer-Communication Networks]:
General—security and protection

Keywords

anonymity; conscripted; traffic analysis; dummy messages

1. INTRODUCTION
Although anonymity systems based on verifiable shuffles [27]

and delayed message forwarding [8] may offer strong privacy
guarantees, the high end-to-end latency that these systems

∗Work conducted while author was a staff member at Yale
University.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

WPES’13, November 4, 2013, Berlin, Germany.

ACM 978-1-4503-2485-4/13/11.

http://dx.doi.org/10.1145/2517840.2517866.

impose makes them relatively unpopular. Thus, users of
Mixmaster [14], Mixminion [8], and other such systems may
enjoy strong anonymity, but only amongst a small number
of users. In many real-world situations, being an anony-
mous within a small set of users is almost as bad as having
no anonymity at all, especially since surveillance agencies
may give extra scrutiny to an anonymity system’s encrypted
traffic flows [17]. In contrast, low-latency anonymity sys-
tems such as Tor [9], have relatively large user bases but
provide no protection against ISP-level adversaries [16]. A
whistleblower trying to“leak”documents anonymously is left
to choose between unpopular anonymity systems with rela-
tively strong security properties and more popular systems
which are vulnerable to low-cost traffic-analysis attacks.

To help increase the size of anonymity sets in strong ano-
nymity systems—and thus to make these systems more use-
ful in practice—we propose forming conscripted anonymity
sets using JavaScript. Our framework, called ConScript,
is compatible with a number of anonymity systems, so we
describe the high-level ideas in the context of a generic an-
onymity system. Later on, we discuss how to apply the
generic framework to popular anonymity systems.

Like AdLeaks [22], an independently developed architec-
ture focusing on document leaking, ConScript leverages Java-
Script programs served by Web servers to increase anonym-
ity set size. In contrast with AdLeaks, ConScript is compat-
ible with existing anonymity systems, ConScript offers some
protection against active attacks by malicious insiders, and
ConScript avoids the problem of message collisions and the
need for error-correcting codes in AdLeaks.

In ConScript, cooperative Web servers host a JavaScript
application containing the anonymity system’s client code.
Whenever a user browses to a cooperating Web site, the
JavaScript application instructs the user’s browser to func-
tion as a client of the anonymity system. The browser per-
forms the encryption and processing necessary to create a
“dummy” client message, then it submits the message to
the underlying anonymity system via the XMLHttpRequest

mechanism. To avoid enlisting users against their will, the
Web server may obtain the explicit consent of Web users
before running the ConScript JavaScript.

Actual users of the anonymity system, who want to send
messages anonymously through the system, use a browser
plug-in to intercept the JavaScript client’s dummy message
and replace it with a real message for the anonymity system.
If these “real” messages are indistinguishable from the con-
scripted user’s “dummy” messages, the effective number of
participants in the anonymity system (from the perspective



Figure 1: Overview of ConScript’s system architecture.

of an adversary) is equal to the number of honest real users
plus the number of conscripted users. Thus, actual users
can hide amongst a much larger set of casual users browsing
the Internet. Careful construction of the plug-in protects
against arbitrarily malicious Web servers (who try to distin-
guish real users from conscripted users), eavesdroppers, and
adversarial clients.
When paired with a compatible anonymity system, using

ConScript can only increase the anonymity given to a par-
ticular client. In the worst case, the anonymity that a client
gets is equal to the total number of real users—i.e., no worse
than it would have been without using ConScript.
To demonstrate the practicality of ConScript, we have im-

plemented proof-of-concept JavaScript clients for two differ-
ent underlying anonymity systems: a mix-net and a DoS-
resistant client/server DC-net [7]. These proof-of-concept
applications are not wire-compatible with the correspond-
ing deployed systems—we use them only to approximate the
performance of the client application in a deployed system.
Section 2 outlines ConScript’s architecture. Section 3 de-

scribes how ConScript defends against a number of possible
attacks. Section 4 addresses ethical issues related to con-
scripted anonymity, Section 5 summarizes the results of our
implementation and evaluation, Section 6 describes related
work, and Section 7 concludes.

2. ARCHITECTURE

2.1 Participants
ConScript’s architecture consists of three components: an

underlying anonymity system, a number of cooperative Web
servers, and Web users. Figure 1 provides a pictorial repre-
sentation of the interaction of the system’s participants.

Anonymity system nodes. At the core of ConScript’s
architecture is a pre-existing anonymous messaging system.
ConScript is, in principle, compatible with a number of ex-
isting anonymity systems, but to make the system design
concrete, we will first describe how to use ConScript with a
mix-net consisting of single cascade of timed mixes [4].
A mix cascade consists of a set ofM dedicated mix servers,

with each server i having a well-known public key pki. Over
the course of a day (or some other time period), each of
N users submits a fixed-length message to a message pool
hosted by the first mix-server. Users serially encrypt each
message m with each of the servers’ M public keys:

E(pk1, . . . E(pkM ,m) . . . )

At the end of the day, the first server shuffles the set of
ciphertexts in the message pool, removes duplicate messages,

decrypts a layer of encryption, and forwards the messages
to the second server. This process continues until the last
server holds the N plaintext messages in permuted order.
At this point, the last server could, for example, post the
anonymized messages on a public bulletin board. If at least
one server does not collude with the others, then an honest
sender’s message is anonymous amongst the h ≤ N honest
senders (provided that we ignore the possibility of active
attacks by the mix servers).

An important property of a timed cascade mix-net, and
similar systems, is that the anonymity of a single sender
increases monotonically with the number of other senders
who have submitted a message to the system. That is, the
anonymity set size of a given message in the timed mix-net
system never decreases when an additional sender adds a
message to the message pool.

ConScript takes advantage of the monotonicity of the an-
onymity in mix-net-style systems. Since adding more users
to an anonymity system cannot decrease a user’s anonym-
ity, it does not hurt to gather messages from conscripted and
unauthenticated senders and insert them into the anonymity
system.

Web servers. ConScript requires the cooperation of a
number of Web servers, each of which serves a ConScript
JavaScript application to its Web clients alongside the Web
content it would normally serve. Individuals and organi-
zations interested in supporting Internet privacy or in pro-
tecting whistleblowers might agree to embed the ConScript
JavaScript application in their Web sites. For example, the
Electronic Frontier Foundation, Wikipedia, and the Guardian
newspaper might each agree to serve the ConScript client
script to users visiting their Web sites.

The JavaScript application, embedded in a normal Web
page, contains the client code for the anonymity system in
use. For example, if the anonymity system were a mix-net,
the JavaScript code would contain everything that a user
would need to generate a dummy message for the mix-net.

In the case of a mix-net, the JavaScript would contain
the public keys of the M servers, a method to generate a
dummy plaintext message of the correct length, and the
public-key encryption routines for encrypting the plaintext
message with each of the M public keys.

All clients’ plaintext messages in the mix system must be-
gin with a single control bit indicating whether the message
is a dummy message (control_bit=0) or a real message
(control_bit=1). In this way, the recipient of a message
can determine whether to discard the message as a dummy
or process it as a real plaintext. The client-side ConScript
JavaScript application encrypts the control bit alongside the
clients’ plaintext message. (We describe how users send non-
dummy messages into the anonymity system later in this
section.)

We assume that the mix-net uses an IND-CCA2-secure
public key encryption scheme [21] to ensure that the en-
crypted ciphertexts leak no information about the plaintext
even under an adaptive chosen ciphertext attack. In partic-
ular, the encryption of a dummy message (a string of zeros)
and the encryption of a real message (an arbitrary string
beginning with a control bit set to one) must be indistin-
guishable under an adaptive chosen ciphertext attack. A
number of standard cryptosystems, including RSA-OAEP,
provide IND-CCA2 security under standard hardness as-
sumptions [11]. All IND-CCA2-secure cryptosystems use



randomized encryption routines, so the ciphertexts gener-
ated by encrypting two dummy plaintexts (strings of zeros)
will be different with overwhelming probability.
The JavaScript application also contains the code to sub-

mit the final message to the first mix server using the XML-

HttpRequest API. This HTTP request will be a cross-origin
request, since the script issuing the GET request was served
by the cooperative Web server, but the target of the GET

request is the mix server. The “same-origin policy” would
normally prevent the Web browser from communicating di-
rectly with the mix servers, but the mix nodes can include
the Access-Control-Allow-Origin header in their HTTP
response to allow this sort of cross-origin request [15, 26].

Casual users. Casual users, the first class of ConScript
users, are normal Internet users using standard JavaScript-
enabled Web browsers with no special browser extensions or
modifications.
When a casual user visits the target Web page (hosted

by a cooperative Web server as described above), the user’s
browser will download the page content, which includes the
ConScript client JavaScript application.
Once the casual user’s browser downloads the ConScript

client application, the script will cause the browser to send
mix-net-encrypted dummy messages into the anonymity sys-
tem. In practice, the script might ask for the user’s permis-
sion before starting to send messages into the anonymity
system (see Section 4). After the script begins running, the
casual client will not notice any out-of-the-ordinary behav-
ior, except for perhaps a slight drop in browser performance
due to the computational burden of generating the mix-net
messages.
In this way, the casual user becomes a client of the un-

derlying anonymity system without needing to download a
browser extension or install any software tools. Casual users
need not know how to generate a public key, install a pro-
gram, or configure anonymity system client software. Since
the casual users’ browsers submit genuine client messages
into the anonymity system, these casual users are (with
caveats explained in Section 3) indistinguishable from real
users, from the perspective of an eavesdropping adversary.

Savvy users. Savvy users, the second class of ConScript
users, send non-empty messages through the anonymity sys-
tem, as opposed to the dummy messages that the casual
users send. The only difference between a casual user and
a savvy user is that every savvy user has a plug-in installed
in their Web browser that monitors the browser’s outgoing
HTTP requests.
To send a message through the anonymity system, the

savvy user enters their secret message into the plug-in and
then browses to a cooperating Web site. When a savvy
user visits a Web page that contains our system’s JavaScript
client, the plug-in will transparently intercept the outgoing
message from the browser and will replace the dummy mes-
sage (generated by the JavaScript client) with a content-
carrying message generated by the plug-in.
The effectiveness of ConScript relies on the difficulty of

distinguishing savvy users from casual users, so we take a
number of steps to prevent side-channel and equivocation
attacks that would allow a malicious Web server or an eaves-
dropper to identify which users have the plug-in installed.
Section 3 describes these defenses.

2.2 Trust Assumptions
We say that a participant is “honest” if it executes opera-

tions as the system design dictates and if it does not collude
with other nodes or an external adversary.

To guarantee that using ConScript does not reduce the
level of anonymity provided by an underlying system, we
must assume that honest savvy ConScript users can access
at least one honest ConScript-enabledWeb server. This Web
server must, in turn, be able to communicate with the un-
derlying anonymity system. If savvy clients cannot access
any cooperative Web server, then these clients cannot sub-
mit their messages to the underlying anonymity system, and
the anonymity set size provided will be smaller than the to-
tal number of savvy users.

To guarantee that using ConScript has the potential to
increase the anonymity set size of the underlying anonymity
system, we must additionally assume that at least one honest
casual client must be able to communicate with at least one
honest Web server. This honest Web server must be able to
communicate with the underlying anonymity system.

We make no additional assumptions about user or server
behavior, though the underlying anonymity system might
require additional trust assumptions over and above those
we must make. For example, a mix-net cascade requires that
at least one of the mix servers is honest.

2.3 Underlying Anonymity System
ConScript is compatible with any anonymity system that

has a certain set of properties, which we enumerate below.

Anonymity set size is monotonic w.r.t. users. The
anonymity provided to a particular user of the anonymity
system must increase monotonically with the number of to-
tal users of the system. If the anonymity of a particular user
can decrease when the system has more (potentially adver-
sarial) users, then conscripting many users into the anonym-
ity system might actually hurt the anonymity of the system
overall.

Simulatable traffic streams. It must be possible to
simulate the behavior of a real user such that the behavior
of the simulated user and the real user are indistinguishable
from the perspective of an adversary. For example, the mix-
net client simulator generates an onion encryption of a string
of zeros using an IND-CCA2-secure cryptosystem.

Easy to identify malformed messages. The anonym-
ity system should be able to identify and reject malformed
user messages (to prevent a malicious user from disrupting
communication).

Messages do not depend on the set of active users.

To submit a message to the anonymity system, a user should
not need to know the identities of the system’s other users.
A traditional DC-net [5], for example, would not be suitable
because it requires every user to share a secret with every
other user of the system. In contrast, the client/server DC-
net we use only requires users to know the public keys of the
system’s servers [7].

2.4 Compatible and Incompatible Anonymity
Systems

We now briefly describe which anonymity systems are
compatible with ConScript.



Yes: Timed Cascade Mixes and Verifiable Shuffles.

Timed cascade mixes (introduced in Section 2.1) and ver-
ifiable shuffles [3, 19] satisfy all properties necessary to be
compatible with ConScript.

Probably Yes: Anonymous Remailers. Any anony-
mous remailer using fixed-length messages which has the
monotonic anonymity property described above is compat-
ible with ConScript. Not all anonymous remailers exhibit
the monotonic anonymity property, however, and determin-
ing whether or not a particular remailer system has this
property is not necessarily straightforward in general. To
create a dummy message for an anonymous remailer, the
client JavaScript application follows a process very similar
to the process used to create a dummy message for the mix
net (described earlier in this section). We discuss other
design issues related to using remailers in Section 5.

Probably No: Tor. It is not clear whether any an-
onymity gain would result from conscripting users into the
Tor network. If a Tor user picks a route through the Tor
network with an adversarial first and last node, that user’s
anonymity is compromised. If some fraction of the relays in
the Tor network are dishonest, adding more clients to the
Tor network does not change the probability that a new cir-
cuit selected through the network will begin and end at an
adversary-controlled relay [25]. Conscripting users into the
Tor network might actually harm real users, since the con-
scripted users would consume Tor’s scarce network resources
with dummy messages, leaving less network bandwidth for
real users’ messages.

2.5 Effective Anonymity Set Size
Consider a deployment of ConScript that has j (honest)

savvy users and k (honest) casual users, whose messages
reach the anonymity system servers. ConScript provides
a level of anonymity equivalent to the level that would be
offered by the underlying system when run with j real users
plus k users who submit “dummy”messages into the system.
In the simple cascading mix-net we described earlier, the
effective anonymity set size would be j + k.

3. ATTACKS AND DEFENSES
In this section, we consider possible attacks against Con-

Script, leaving attacks against the underlying anonymity
system out of scope.

3.1 Malformed JavaScript
An adversarial Web server might modify the JavaScript it

sends to the client in an attempt to distinguish savvy users
(who have the conscripted anonymity set browser plug-in
installed) from casual users (who do not have the plug-in).
The extended version of this paper [6] shows a sample of
malicious JavaScript that a malicious Web server might send
to try to distinguish savvy users from casual users.
To defeat these attacks, the browser plug-in must only re-

place the dummy message with the savvy user’s real message
when the JavaScript on the relevant page exactly matches
the JavaScript that the plug-in expects to see. To per-
form this check, the browser plug-in must have a copy of
the JavaScript code that it expects the Web server to send.
If the Web server sends JavaScript code that does not match
the expected code, the plug-in should simply run the served
JavaScript as a casual user would.

The requirement that the plug-in have a copy of the Web
server’s expected code is somewhat burdensome—it restricts
the type of content that the Web server can serve alongside
the ConScript JavaScript application. A modern Web page
often has tens of linked scripts, iframes, Flash movies, and
other dynamic content but a malicious Web server could ex-
ploit any of these objects running alongside the JavaScript
client to mount a distinguishing attack. Preventing the dis-
tinguishing attack requires the plug-in to have a copy of all
content on the page (except for static text and images). In
this way, the plug-in can detect when the server has served
malicious or incorrect JavaScript to the user.

3.2 Selective Denial of Service
A malicious Web server could try to distinguish savvy

users from casual users by selectively denying service to users
of to the anonymity system, in an attack analogous to the
trickle attack against mix-nets [23]. For example, if the at-
tacker wants to determine if a particular user is a savvy
user, the Web server could serve incorrect JavaScript to all
users except a particular target user and a set of users that
the attacker controls. If the anonymity system outputs a
real message when fed messages from only the target user
as input, then the malicious Web server both learns that
the target user is a savvy user and the attacker learns the
content of the savvy user’s message.

One technique to prevent such attacks is to maximize the
number of cooperating Web servers serving the JavaScript
application. Every savvy client could visit a number of Web
servers (instead of just one) to ensure that a single malicious
Web server cannot block communication between users and
the anonymity system. Other techniques for preventing the
trickle attack could also apply here [23].

3.3 Dangers of Cryptography in the Browser
The application that generates casual clients’ dummymes-

sages must implement public-key cryptography algorithms
in JavaScript. (In contrast, the savvy clients’ messages are
constructed by the browser plug-in, which presumably can
access standard cryptography libraries.)

The Web browser environment is not the ideal place to
run cryptographic software: many browsers do not offer a
source of cryptographic randomness, it is difficult to prevent
side-channel attacks in the browser—perhaps mounted by a
script running in another tab—and client-side cryptography
libraries are less mature than their server-side counterparts.
Even so, these limitations may not be fatal. In the worst
case, a flaw in or a side-channel attack against the client-side
cryptography library will allow an adversary to distinguish
the savvy from the casual clients but such an attack will not
allow the adversary to read the savvy clients’ messages or to
otherwise violate the anonymity of the underlying system.

Since the savvy clients’ messages are generated using the
browser plug-in, and since modern Web browsers allow plug-
ins to execute native code through the Netscape Plugin Ap-
plication Programming Interface (NPAPI), the savvy clients’
messages will be encrypted using cryptographic routines pro-
vided by conventional cryptography libraries (e.g., GPG).
Thus, in the worst case of an adversary who can distinguish
all casual clients from savvy clients, a savvy client will be
still be anonymous amongst the set of savvy clients, all of
whom use the plug-in to encrypted their messages.



3.4 Other Attacks
The extended version of this paper [6] describes how a

ConScript deployment could defend against a number of
other possible attacks.

4. ETHICAL ISSUES
Up to this point, we have considered only the technical

questions related to the deployment of ConScript, but we
have not addressed the equally important ethical issues that
deployment of such a system would raise. The fundamental
question is whether it is ethical to “conscript” an unsus-
pecting Web user into participating in an anonymity system
without the user’s consent. Instead of trying to resolve this
ethical question here, we will outline three possible deploy-
ment scenarios of ConScript (with varying levels of “con-
scription”) and we will make an ethical argument for each.

User opt out. One possible way to deploy ConScript
would be to require the cooperating Web server to display
a conscripted anonymity “badge” on any Web page that
serves the ConScript JavaScript client. Web users could“opt
out” of participation in the ConScript by clicking the badge.
FlashProxies [10], a system for using Web browsers for cen-
sorship circumvention, takes this approach.
A utilitarian argument in favor of an “opt-out” approach

is that the total social benefit of ConScript is much greater
than the total social cost of conscription to the unsuspecting
Web users. This argument would be most persuasive in areas
where the probable risk to a conscripted Web user is low
but where the social benefit of anonymous communication
is high. For example, in a country with a judicial system
that would not imprison a conscripted Web user just for
being conscripted, and with an invasive Internet surveillance
regime, an “opt-out” policy might be the most ethical one.

User opt in. Another possible deployment strategy would
be to require the explicit consent of Web users before con-
scripting their browsers into the anonymity system. For ex-
ample, a pop-up window appearing after the Web page loads
could explain the anonymity system to the user, including
the potential effects on the user’s bandwidth and power us-
age, and then ask whether the user wants to participate.
An ethical argument in favor of an “opt-in” deployment

strategy is that a Web user should have the choice of whether
or not to participate in ConScript, especially if participation
could consume the user’s bandwidth or drain the battery on
the user’s mobile device. Giving the user a choice to opt in
to the network allows those users who want to participate
the option to do so, but does not force participation in an
anonymity system on those who do not. If users could
be imprisoned without trial for being suspected of using an
anonymity system, then an opt-in strategy might be the
most ethical one.

Unethical even with opt in. Yet another ethical posi-
tion is that deploying conscripted anonymity is not ethical
under any circumstances, even when using an opt-in mech-
anism. One argument supporting this position is that the
risks of being conscripted into an anonymity system might
not be clear to a novice Web user, even after the user is
presented with a description of the conscripted anonymity
system. If the user does not have the technical understand-
ing to make an informed decision about the risks of opting
in to the system, then it might not ever be ethical to offer
users the option to participate in ConScript.

ConScript is compatible with both “opt out” and “opt in”
policies, so the decision of which policy to use can be left to
the organization deploying such a system. Different policies
will be appropriate in different societal contexts. In con-
texts where the risks to conscripted users are high, using
ConScript may not be appropriate at all.

5. IMPLEMENTATION AND EVALUATION
To evaluate the performance of ConScript, we have im-

plemented the JavaScript client applications for two ano-
nymity systems: a timed cascade mix-net and a verifiable
client/server DC-net. Our prototypes perform all of the
cryptographic operations that a full-featured JavaScript client
would perform but they do not yet produce messages that
are wire-compatible with the underlying anonymity systems.

To be useful, the ConScript JavaScript client must be able
to produce at least one dummy message before the user
browses away to another page. One recent survey of Web
usage finds that the median time spent on a Web page is 11
seconds [13], so the JavaScript application should generate
at least one dummy message every few seconds.

We tested each prototype on four platforms: a modern
Linux workstation (Ubuntu 13.04), a Mac laptop (Mac OS
10.6), an iPhone 4 (iOS 6), and a Motorola Android phone
(Android 2.2). We tested the JavaScript client on each de-
vice using the Chrome 26, Firefox 21, Safari 5, and Opera
Mobile 12 browsers, where available.

Mix-net and Remailer. To simulate the casual user
workload for a mix-net or anonymous remailer, we created
a JavaScript application that encrypts a 256-byte message
with five layers of RSA-2048 public key encryption using
the OpenPGP.js JavaScript library [20]. Table 1 presents
results for the mix-net client. Our results demonstrate that
even a CPU-limited mobile device can generate a mix-net
dummy message in fewer than 10 seconds, which is less time
than the median time spent on a Web page (11 seconds, as
explained above). The extended version of this paper [6]
sketches a method for distributing the mix servers’ public
keys to ConScript users.

Verifiable DC-net. To simulate a casual user’s workload
when using a more computationally intensive anonymity sys-
tem, we implemented the client functionality for a verifiable
DC-net [7, 12] using the Stanford JavaScript cryptography
library [24]. Our evaluation uses the NIST P-256 elliptic
curve group [18] and requires the client to generate a 32-byte
dummy message. The performance results (Table 1) for the
verifiable DC-net suggest that the ConScript JavaScript ap-
plication is arguably practical on faster machines, since both
the workstation and laptop were able to generate a dummy
message in less than four seconds each. Performance on the
CPU-limited iPhone is less impressive—generating a single
message took at least 30 seconds.

6. RELATED WORK
The FlashProxy system [10], which was one of the inspira-

tions for this work, uses a JavaScript application to coerce
Web users into serving as bridges into the Tor anonymity
network [9]. Every additional Web browser that runs the
FlashProxy application increases the access to the Tor net-
work in regions where Tor relays are blocked. In contrast,
every additional Web browser that runs the ConScript Java-
Script application increases the anonymity available to users



Mix-net DC-net
Workstation Chrome 81 156
Intel W3565 3.20 GHz Firefox 73 1,781
Laptop Chrome 133 231
Intel Core 2 Duo 2.53 GHz Firefox 171 3,062

Safari 669 3,338
Apple iPhone 4 Chrome 9,009 62,973
Apple A4 (speed unknown) Safari 7,280 32,972
Motorola Milestone Opera † 63,504
ARM Cortex-A8 600 MHz
† Opera Mobile does not support the getRandomValues API
required by OpenPGP.js.

Table 1: Time (milliseconds) to generate a ConScript
“dummy” user message in JavaScript using different hard-
ware and browser combinations.

of the anonymity system. Anonymity systems have used
dummy messages in the past to deter traffic analysis at-
tacks [2, 14]. However, these systems use dummy messages
only inside of the anonymity network and they do not have
“dummy users” send messages into the system to increase
the effective number of total users of the system.
Bauer [1] describes a system for using a specially crafted

banner ads served to an unwitting user’s Web browser to
create a covert channel between two servers in a mix net-
work. Bauer considers only passive adversaries, whereas we
consider active adversaries that also can monitor all network
traffic. Since ConScript considers a stronger threat model,
we address a number of security issues in Section 3 that
Bauer’s work did not consider.
AdLeaks [22]—a system design published independently

while this work was in preparation—uses JavaScript served
by online advertising networks to conscript users into partic-
ipation in an anonymity system. Unlike ConScript, which is
general and compatible with a number of existing anonym-
ity system, AdLeaks conscripts users only into AdLeaks’ own
anonymity system. In addition, the AdLeaks anonymity sys-
tem is not designed to prevent active attacks by dishonest
participants in the system, whereas ConScript can protect
against such attacks.

7. CONCLUSION
We have presented ConScript, general architecture for

conscripted anonymity, we discuss a number of attacks against
ConScript (and possible defenses), we consider ethical issues
of deploying such a system, and we implement and eval-
uate a proof-of-concept prototype on a variety of devices.
ConScript can increase the user base of formally analyzable,
but unpopular, anonymity systems, which allows the few
security-sensitive users of these systems to hide amongst a
larger group of casual Internet users.

Acknowledgements

We would like to thank David Fifield, David Wolinsky, and
the anonymous reviewers for their helpful comments on the
draft. This material is based upon work supported by the
Defense Advanced Research Agency (DARPA) and SPAWAR
Systems Center Pacific, Contract No. N66001-11-C-4018.

8. REFERENCES
[1] M. Bauer. New covert channels in HTTP: adding unwitting

Web browsers to anonymity sets. In WPES, pages 72–78,
2003.

[2] O. Berthold and H. Langos. Dummy traffic against long
term intersection attacks. In PET, 2002.

[3] J. Brickell and V. Shmatikov. Efficient
anonymity-preserving data collection. In KDD, pages
76–85, Aug. 2006.

[4] D. Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM,
Feb. 1981.

[5] D. Chaum. The dining cryptographers problem:
Unconditional sender and recipient untraceability. Journal
of Cryptology, pages 65–75, Jan. 1988.

[6] H. Corrigan-Gibbs and B. Ford. Conscript your friends into
larger anonymity sets with JavaScript (extended version).
http://arxiv.org/abs/1309.0958, Sept. 2013.

[7] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford.
Proactively accountable anonymous messaging in Verdict.
In USENIX Security, Aug. 2013.

[8] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion:
Design of a Type III anonymous remailer protocol. In IEEE
SP, pages 2–15, May 2003.

[9] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the
second-generation onion router. In USENIX Security, Aug.
2004.

[10] D. Fifield, N. Hardison, J. Ellithorpe, E. Stark, D. Boneh,
R. Dingledine, and P. Porras. Evading censorship with
browser-based proxies. In 12th PETS, pages 239–258, 2012.

[11] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern.
RSA-OAEP is secure under the RSA assumption. In
CRYPTO, pages 260–274. Springer, 2001.

[12] P. Golle and A. Juels. Dining cryptographers revisited.
Eurocrypt, pages 456–473, May 2004.

[13] R. Kumar and A. Tomkins. A characterization of online
browsing behavior. In WWW, pages 561–570, 2010.

[14] U. Moeller and L. Cottrell. Mixmaster protocol: Version 2.
http://freehaven.net/anonbib/cache/mixmaster-spec.
txt, Jan. 2003.

[15] Mozilla Developer Network. HTTP access control (CORS).
https://developer.mozilla.org/en-US/docs/HTTP/
Access_control_CORS.

[16] S. J. Murdoch and P. Zieliński. Sampled traffic analysis by
Internet-exchange-level adversaries. In PETS, pages
167–183, 2007.

[17] E. Nakashima, B. Gellman, and G. Miller. New documents
reveal parameters of NSA’s secret surveillance programs.
June 2013. Washington Post.

[18] National Institute of Standards and Technology. FIPS PUB
186-3: Digital Signature Standard (DSS), 2009.

[19] C. A. Neff. A verifiable secret shuffle and its application to
e-voting. In CCS, pages 116–125, Nov. 2001.

[20] OpenPGP.js. http://openpgpjs.github.io/.
[21] C. Rackoff and D. R. Simon. Non-interactive

zero-knowledge proof of knowledge and chosen ciphertext
attack. In CRYPTO, pages 433–444, 1991.

[22] V. Roth, B. Güldenring, E. Rieffel, S. Dietrich, and L. Ries.
A secure submission system for online whistleblowing
platforms. In FC, Apr. 2013.

[23] A. Serjantov, R. Dingledine, and P. Syverson. From a
trickle to a flood: Active attacks on several mix types.
Information Hiding, pages 36–52, 2003.

[24] Stanford Javascript crypto library - ECC branch. https://
github.com/bitwiseshiftleft/sjcl/tree/ecc.

[25] P. Syverson. Why I’m not an entropist. In 17th
International Workshop on Security Protocols, Apr. 2009.

[26] Cross-origin resource sharing. http://www.w3.org/TR/
2013/CR-cors-20130129/, Jan. 2013.

[27] D. I. Wolinsky, H. Corrigan-Gibbs, A. Johnson, and
B. Ford. Dissent in numbers: Making strong anonymity
scale. In OSDI, pages 179–192, Oct. 2012.

http://arxiv.org/abs/1309.0958
http://freehaven.net/anonbib/cache/mixmaster-spec.txt
http://freehaven.net/anonbib/cache/mixmaster-spec.txt
https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS
http://openpgpjs.github.io/
https://github.com/bitwiseshiftleft/sjcl/tree/ecc
https://github.com/bitwiseshiftleft/sjcl/tree/ecc
http://www.w3.org/TR/2013/CR-cors-20130129/
http://www.w3.org/TR/2013/CR-cors-20130129/

	Introduction
	Architecture
	Participants
	Trust Assumptions
	Underlying Anonymity System
	Compatible and Incompatible Anonymity Systems
	Effective Anonymity Set Size

	Attacks and Defenses
	Malformed JavaScript
	Selective Denial of Service
	Dangers of Cryptography in the Browser
	Other Attacks

	Ethical Issues
	Implementation and Evaluation
	Related Work
	Conclusion
	References

