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ABSTRACT

Low-latency anonymization networks such as Tor and JAP
claim to hide the recipient and the content of communica-
tions from a local observer, i.e., an entity that can eaves-
drop the traffic between the user and the first anonymiza-
tion node. Especially users in totalitarian regimes strongly
depend on such networks to freely communicate. For these
people, anonymity is particularly important and an analysis
of the anonymization methods against various attacks is nec-
essary to ensure adequate protection. In this paper we show
that anonymity in Tor and JAP is not as strong as expected
so far and cannot resist website fingerprinting attacks under
certain circumstances. We first define features for website
fingerprinting solely based on volume, time, and direction
of the traffic. As a result, the subsequent classification be-
comes much easier. We apply support vector machines with
the introduced features. We are able to improve recognition
results of existing works on a given state-of-the-art dataset
in Tor from 3% to 55% and in JAP from 20% to 80%. The
datasets assume a closed-world with 775 websites only. In a
next step, we transfer our findings to a more complex and
realistic open-world scenario, i.e., recognition of several web-
sites in a set of thousands of random unknown websites. To
the best of our knowledge, this work is the first successful
attack in the open-world scenario. We achieve a surpris-
ingly high true positive rate of up to 73% for a false positive
rate of 0.05%. Finally, we show preliminary results of a
proof-of-concept implementation that applies camouflage as
a countermeasure to hamper the fingerprinting attack. For
JAP, the detection rate decreases from 80% to 4% and for
Tor it drops from 55% to about 3%.
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1. INTRODUCTION

Anonymous communication aims at hiding the relation-
ship between communicating parties on the Internet. Thereby,
anonymization is the technical basis for a significant number
of users living in oppressive regimes [15] giving users the op-
portunity to communicate freely and, under certain circum-
stances, to evade censorship. For these people, anonymity
is particularly important, and an analysis of anonymization
methods against various attacks is necessary to ensure ad-
equate protection. Users must be able to trust the meth-
ods and know their limits. If the governmental bodies in
totalitarian regimes could find out the content of commu-
nication and evasion of censorship, this might lead to se-
vere consequences for the users such as imprisoning or even
life-threatening ones. For that reason, reliable and secure
anonymization methods are of high importance.

Anonymization networks such as Tor [7] and Jap [1] promise
anonymity by routing data through several overlay nodes
and using layered encryption of the content. They promise
to strengthen a user’s civil rights, to protect the privacy, or
even to give a user the opportunity to evade the censorship.
Clearly it is vital to know the networks’ level of protection
and to enforce their promised protection.

Several attacks against anonymization networks have been
discovered, e.g., [6, 17, 19, 18], most notable the traffic con-
firmation attack. All of them require a particular power,
i.e., access to particular data. Often, an attacker must ob-
serve both ends of the communication at the same time [6,
7]. Totalitarian regimes such as China or Iran usually do
not have control over the communication party located in
western countries precluding a traffic confirmation attack.
Still, they are able to observe the connection between the
user and the first anonymization node. A so-called local
eavesdropper can be for example a local system adminis-
trator, an ISP, or anybody who is able to monitor the link
between the original message sender and the first node of the
anonymization network (e.g., everyone in the sending range
of a victim communicating via a wireless link). Since local
eavesdropping is one of the weakest attacks one can imag-



ine, this attack is very realistic and anonymization networks
must by all means be secure with respect to local attacks.

Website fingerprinting (WFP) [12] is an attack that can
be performed by a local attacker. WFP is a special form
of traffic analysis where a local attacker observes the en-
crypted data and tries to draw conclusions from certain fea-
tures of the traffic, such as the volume of transferred data,
the timing, or the packet sizes. The method does not aim
at breaking the cryptography, but even if an attacker does
not understand a message’s semantic, he can try to match
observed patterns to known patterns of, e.g., web pages. If
successful, website fingerprinting destroys the whole protec-
tion and anonymity promised by, e.g., Tor and JAP as it
can be carried out by local attackers.

Previous approaches [11] applying WEP only achieve recog-
nition rates of less than 3% in a closed-world setting for a
limited set of 775 web pages. Closed-world means that all
web pages are known in advance. At 3%, one can assume
that many websites are not sufficiently recognizable, and
therefore the protection still seems ensured. In this work,
we consider closed-world to ensure the comparability of our
results to related works. We show the superiority of our
methods and that anonymization networks do not provide
sufficient protection against website fingerprinting in closed-
world.

Much more interesting though is the open-world scenario
where a real attacker does not know in advance which URLs
are ordinarily visited by the victim. One of the most promi-
nent examples for the open-world scenario of WFP is the
authorities that monitor a small set of censored web pages
and try to find out whether a victim visits one of them,
whereas they are not interested in other (uncensored) web
pages visited by the victim. Hence, the classifier should be
able to first detect access to censored web pages (this prob-
lem is hard due to the large background class) and second
to classify the corresponding censored web pages. In order
to achieve this, the training data needs to contain both cen-
sored and uncensored instances. Despite the attack’s sim-
plicity and the problem’s complexity in open-world, we show
that website fingerprinting is stronger than expected so far
and is a major risk for users that rely on the protection of
anonymization networks.

The contributions of this paper are as follows: (¢) we show
that Tor and JAP, the largest anonymization networks used
today, do not offer sufficient security against WFP. We first
define and analyze features for WFP solely based on vol-
ume, time, and direction of the traffic. We apply support
vector machines with the introduced features. We are able
to improve recognition results in closed world on a given
state-of-the-art dataset of 775 websites in Tor from 3% to
55% and in JAP from 20% to 80%. (ii) We extend the web-
site fingerprinting attack under the closed-world assumption
to the much harder problem in open-world. We achieve a
surprisingly high true positive rate of up to 73% for a false
positive rate as low as 0.05%. To the best of our knowledge,
we are the first who show the feasibility of website finger-
printing in the more complex open-world setting; (iii) we
study the influence of the proposed features on the recog-
nition results. This analysis is the basis for camouflage as
a practical countermeasure. We provide preliminary results
on how camouflage effectively hampers the attack along the
introduced features without modifications in the underlying
anonymization protocols. Therefore, we provide a proof-

of-concept implementation showing how camouflage can en-
hance the anonymity.

The paper is structured as follows. Section 2 summarizes
related work in the paper’s context. In Section 3 we de-
scribe the experimental setup and the data set of our anal-
ysis. Section 4 introduces our method including features for
WFP and standard machine learning algorithms. Section
5 summarizes the experimental results. Finally Section 7
concludes and discusses the contributions of this paper.

2. RELATED WORKS

The term website fingerprinting was coined by Hintz in
[12], even though there are earlier works that pursued the
same goal. Back in 1996, Wagner and Schneier pointed out
that traffic analysis could be used to draw conclusions about
content of encrypted SSL packets [23]. Two years later,
the attack was successfully mounted against a single server
offering different URLs [16, 4].

Several related works are based on a very strong assump-
tion that web objects can be differentiated by examining the
TCP connection between the user and the proxy, which only
holds true for HT'TP/1.0. For the first time, Sun et al. [20]
presented a fingerprinting attack that particularly targeted
the deanonymization of users of an SSL encrypted connec-
tion to a proxy server. The detection rate of about 75% was
achieved while recognizing 2,000 pages in the set of 100,000
pages. As similarity metric the authors used the Jaccard co-
efficient [21]. By applying padding, the authors achieved a
depression of the detection rate to 4% at the cost of tripled
data volume. Hintz [12] presented a similar attack on the
SafeWeb' web proxy. In his proof-of-concept experiment,
the author distinguished between 5 websites based on simi-
larities of the object sizes and achieved detection rates of 45
up to 75%.

As protocols applied nowadays make use of persistent con-
nections and pipelining (e.g., HT'TP /1.1 [8], Tor circuits), no
new TCP connection is opened for each object and, hence,
it is no longer possible to trivially distinguish between sin-
gle objects in HTTP requests. Therefore, the above men-
tioned techniques based on object sizes are no longer feasi-
ble. Bissias et al. [3] were the first ones to perform the attack
based on IP packet sizes and packet inter-arrival times in-
stead of object sizes. The investigated setup consisted of an
OpenSSH? tunnel to a proxy server. The authors computed
correlation coefficients for both the temporal and packet size
data sets of 100 web pages and achieved detection rates of
about 20%.

Liberatore and Levine [14] carried out a more extensive in-
vestigation. They extended the attack on OpenSSH tunnels
to a large scale and used a sample of 2,000 web pages. In-
stead of a simple metric based on the correlation coefficient,
the authors applied more sophisticated methods from data
mining, namely the Jaccard’s coefficient and a naive Bayes
classifier [13]. The only considered feature is the packet size
of the transmitted data whereas timing and order informa-
tion is neglected. The success rate of correct classification
in both methods is roughly 70%.

Recently, Wright et al. [24] analyzed the influence of mor-
phing as a countermeasure against statistical traffic analysis.

1 SafeWeb was a free web-based proxy service with SSL sup-
port. The service was discontinued in late 2001.
“http://www.openssh.org/



Morphing software transforms one class of traffic so that it
looks like another class. The technique was evaluated for
protection of VoIP and web traffic. While morphing against
the naive Bayes classifier in a web traffic data set of 50 URLs,
the recognition rate fell from 98% to 64% while having only
39% overhead. Instead of transforming websites, we obfus-
cate the page by loading another page in parallel.

Besides recognition of websites, several works deal with
detection of other characteristics, e.g., the language of a
VoIP call [25], or even of phrases in encrypted VoIP calls [26]
using hidden Markov models. Gong et al. [10] applied re-
mote traffic analysis to show the feasibility of website fin-
gerprinting in a small scale (distinguishing between 12 and
24 URLs).

The most recent publication in the area of website fin-
gerprinting is by Herrmann et al. [11]. The authors in-
vestigated recognition of 775 websites by many different
anonymization techniques: OpenSSH, OpenVPN, Stunnel,
Cisco [Psec-VPN as well as the onion routing based systems
Tor [7] and JAP [2]. Besides the classifiers used by Liber-
atore and Levine, the authors also apply the multinomial
naive Bayes classifier. The latter achieves detection rates of
more than 90% in all single hop systems. The results for the
multi hop systems, however, differ considerably. Whereas
for JAP only 20% of the pages could be classified correctly,
the detection rate for Tor is only 2.95%.

Given the results of Herrmann, it might seem as if anonymi-
zation networks are still secure due to low recognition rate
in closed-world. In this paper, we increase the correspond-
ing detection rate to an alarming degree. We show that
padding is not a sufficient countermeasure in the way it
is already included in Tor and JAP. In addition to exist-
ing approaches, we provide a detailed analysis of features
serving as a basis for the definition and the design of ad-
ditional countermeasures. We provide preliminary work on
camouflage as a promising countermeasure in anonymization
networks. To the best of our knowledge, we finally provide
the first approach for successful website fingerprinting in the
open-world setting.

3. DATA SETS

In practice an attacker first retrieves a certain amount of
relevant web pages by himself as training data for finger-
printing, using the anonymization network that he assumes
his victim uses as well. He records the transferred packets
with a traffic analyzer tool such as tepdump® which provides
information about IP layer packets, e.g., the length of the
packet, the time the packet was sent or received, the order
in which the packets were sent and received, etc. The at-
tacker can make use of various information contained in the
dumps to create a profile of each web page, the so-called
fingerprint. Later, wiretapping on the victim’s traffic, the
attacker similarly collects data which we call test data. The
test data resembles the fingerprints, but it usually differs
from them due to a number of reasons, e.g., indeterministic
packet fragmentation, updates in web pages, etc. Hence, the
attacker needs to apply statistical methods to compare the
recorded information to the fingerprints and to probabilisti-
cally match it to a certain web page.

In this paper, we simulate an attacker’s practical pro-
cedure. In doing so, we evaluate our methods for finger-

Shttp://www.tcpdump.org/

printing (Section 4) in Section 5 and our countermeasures
in Section 6 by collecting three different data sets. For
fetching the websites, we use lab computers running un-
der Debian GNU/Linux. As browser, we use Firefor in
version 3. Active contents (e.g., Flash, Java, JavaScript)
as well as the browser cache are disabled*. If such active
content is enabled, detection rates probably go up because
more unique and therefore distinguishing data is transmit-
ted, hence, pages become more distinguishable. To auto-
mate the retrieval of web pages, we use the Firefox plugin
Chickenfoot®. Chickenfoot features a script language and
is primarily written to enable the automated execution of
typical user actions such as typing a URL into the browser’s
address bar. The experiments were performed in the begin-
ning of 2010 using Tor in version 0.2.0.35 and JAP in version
00.11.012.

The Closed-World Dataset is taken from the recent related
work of Herrmann et al. [11] in order to compare our results
to previous best achieved results. Based on this data set,
we show superiority of our features and methods compared
to the state-of-the-art work (see Section 5.2.1). Next, we
extend this proof-of-concept scenario — which uses a closed
world assumption — to an open world one. To make it re-
alistic we use 1,000,000 most popular Internet pages from a
well-known web statistics service to collect our Open-World
Dataset (see Section 5.2.2 for the results in open-world). Fi-
nally, we collect a Countermeasures Dataset in order to eval-
uate camouflage as a suitable countermeasure (see Section 6
for results).

3.1 Closed-World Dataset

To ensure comparability of our detection rates with most
recent works, we take the list of 775 URLs used by Herrmann
et al. [11] and first improve the detection under the closed-
world assumption: the victim retrieves only web pages from
the predefined set and the attacker knows the set of possible
web pages. This set of URLSs is built from the most popular
URLs according to a proxy server used for 50 schools in
Germany [11].

To collect training and test data, we retrieve 20 instances
per website from our list of 775 sites. For each fetch of a
URL, we store the sizes of packets in the observed order
while recording incoming packets as positive, outgoing ones
as negative numbers. This representation contains the se-
quence in which the packets were sent or received.

We collect datasets for two popular anonymization net-
works. For Tor we collect only one data set with the URLs
mentioned above. JAP offers two different cascade types,
namely free cascades and premium (paid) cascades. The
service operators promise a higher degree of anonymity for
the premium cascades, which shall be accomplished by hav-
ing at least three mix servers in one cascade, and these being
spread across several countries. Moreover, the premium cas-
cades offer guaranteed uptime and higher performance than
the free cascades. To evaluate protection of both types of
cascades in JAP, we use two different configurations: a free
cascade which consists of only one mix (with more than 2,000
users) and a commercial cascade consisting of three mixes
(with few dozens of users). This number of users is typical
for each configuration of JAP.

4For privacy reasons it is recommended to disable active con-
tents while using anonymization techniques such as Tor [9].
Shttp://groups.csail.mit.edu/uid/chickenfoot/



Herrmann et al. [11], using their best classifier - MNB —
achieved a 2.96% detection rate on the Closed-World Dataset
in the Tor network. We achieved similar results. In addi-
tion, we found out that in the real Tor network a significant
amount (36.4%) of pages was not completely loaded. The
default browser timeout of 90s as proposed by Herrmann
was not sufficient because of a poor performance in Tor. In
the experiments of this paper, we try to include only fully
loaded pages. This behavior is rather natural since in real-
ity, most users would initiate a reload if a load fails or takes
too long. To achieve the effect of completely loaded pages
in our script, we simply increase the timeout to 600s for all
data sets. This does not mean that in practice a user would
wait 600s for loading a page. This modification already leads
to an increase of the detection rate to 7.08% for MNB on
the Closed-World Dataset. Applying SVMs, we obtain an
increase of detection rate from 11.09% to 30.98%.

3.2 Open-World Dataset

Besides the comparison with existing methods in closed-
world, the impact of website fingerprinting in an open-world
setting is especially important. Contrary to 775 URLs only
in the closed-world, the user can now access any possible
URL. The attacker such as a totalitarian regime, however,
is interested in finding out whether the victim accesses one
of the censored URLs. The attacker is not interested which
of the uncensored URLs are visited. Since in this scenario
an attacker does not have a possibility to find out which
URLs are ordinarily visited by the victim, the website fin-
gerprinting becomes much more difficult. We need a large
and representative data set in order to evaluate our meth-
ods and features. Ideally, such a data set includes realistic
uncensored and censored pages of arbitrary formats.

For uncensored web pages, we use the list of the 1,000,000
most popular Internet pages from the web statistics service
Aleza®. Out of this list, we randomly choose 4,000 URLs as
uncensored and include 1 instance each to the training data.
Furthermore, we include 1,000 random URLs (disjunct from
training) as uncensored with one instance to the test data.

In practice, the censored web pages contain real illegal
websites. Clearly, we had to choose an alternate and le-
gal approach to not break the law in order to evaluate our
method. Therefore, we decided to use three different lists
of URLs for open-world to testify to the universality of our
results: The first set of interesting pages is chosen to contain
sexually explicit content (we call this set Sexually Ezplicit),
which is legal in EU and US, but illegal in many other coun-
tries, e.g., in many countries in Asia and in the Middle East.
The second dataset contains the most popular pages from
the Alexa list (called Alexa Top Ranked). The third set
contains pages that are randomly chosen from the Alexa
URLs (called Aleza Random). We expand the training set
by 5 censored URLs with 35 instances each (for Sexually
Explicit, Alexa Top Ranked and Alexa Random). Finally,
we add new 25 instances of the same censored URLs to the
test data.

3.3 Countermeasures Dataset

Section 6 summarizes the effect of camouflage in anonymiza-

tion networks. To demonstrate the strengths of camouflage,
we apply the method to the more difficult case which is the
closed-world. In this case the protection is harder than in the

Shttp://www.alexa.com/

open-world. If we manage to hamper the attack in this set-
ting, it is intuitively hampered even more in the open-world
scenario. We collect the Countermeasures Dataset similar
to the closed-world dataset based on 775 sample URLs. Un-
like in the closed-world, web pages are not loaded separately.
Instead, we at the same time load a random website. This
leads to confusion of data. Please refer to Section 6 for
a detailed description of camouflage and the effects on the
recognition results.

In summary, we collect three representative data sets,
namely the Closed-World, the Open-World and the Counter-
measures Dataset. We deliberately did not select the corre-
sponding URLs in the datasets on our own, but used state-
of-the-art representative lists including a great number of
diverse possible web page types with a high probability. In
open-world, we even consider the worst case scenario where
the attacker has never seen (i.e., does not train on) the or-
dinarily URLs visited by a victim. Note that we have a
disjoint dataset for tuning the features and optimizing the
SVM parameters. This is done in order to obtain repre-
sentative results. The following sections will introduce our
algorithms for website fingerprinting, camouflage as coun-
termeasure and the corresponding results.

4. A NEW APPROACH

In this section we describe our new approach for website
fingerprinting. Our contributions are twofold. First, we de-
fine general and powerful features (Section 4.1) that facili-
tate the subsequent classification. Second, we apply state-of-
the-art machine learning technique for pattern recognition
(Section 4.2). We compare our approach with Herrmann et
al. [11] using Naive Bayes. Later, we show that the results
can significantly be improved by applying the more powerful
support vector machines on the defined features.

4.1 Features

In data mining, general and powerful features are defined
in order to facilitate the subsequent classification. In doing
so, certain characteristics that are already implicitly in the
data are made explicit to increase the accuracy of classifica-
tion. The subsequent machine learning algorithm practically
disregards features with little or no predictive information
while considering features with great predictive information.

Previous works on website fingerprinting, e.g., [11, 14],
only used the packet size and whether packets are incoming
or outgoing as features. In the following, we define addi-
tional features that help to heavily improve the detection
rates both in closed- and open-world. Clearly, feature engi-
neering is far from trivial. In this paper, we define features
by exploiting additional characteristics of the data. Since
the power of features cannot easily be predicted, we empiri-
cally tested a large set of features. For the paper’s sake, we
restrict ourselves solely on the most powerful features that
are described in the following:

e Without Packets Sized 52: In data mining, fea-
ture values often cannot be used to typify a classifica-
tion problem. For the given problem, packets of length
52 occur for all possible classes (web pages). Usually,
these packets are used to send acknowledgments be-
tween sender and receiver (TCP ACK packets with no



payload). The feature Without Packets Sized 52 filters
the corresponding packets as noise.

Size Markers: We introduce markers (special text
labels) at each point in the traffic flow where the di-
rection changes, i.e., where a package with positive size
follows one with negative or vice versa. At each direc-
tion change, a marker is inserted reflecting how much
data was previously sent into the respective direction.
We sum up the size of all packets of a similar direc-
tion to obtain the Size Markers. Subsequently, the
values are rounded. Several rounding increments were
tested, and an increment of 600 yielded the best de-
tection rates. The results show that both size markers
and number markers have an impact on the classifica-
tion results. Note that this feature improved the re-
sults only in combination with feature Without Pack-
ets Sized 52 as otherwise the direction of traffic flow
changes almost after each packet.

HTML Markers: When a browser retrieves a web
page, the HTML document is requested, received and
parsed. Subsequently, the browser requests embedded
objects such as pictures. The order of object retrieval
is indeterministic, but the HTML document certainly
has to be accessed first because it contains the links to
the embedded objects. Counting the size of incoming
packets between the first outgoing packet (request for
the HTML document) and follow-up outgoing pack-
ets (requests for embedded objects), we can extract
the HTML document’s size and use it as a feature
which obviously contributes to the discrimination be-
tween pages. To this end we use a special marker while
using the same rounding increment of 600 as in feature
Size Markers.

Total Transmitted Bytes: Even though the amount
of transmitted data is already implicitly represented
by the raw data and feature Size Markers, we addi-
tionally include the explicit markup of the total trans-
mitted bytes. Practically, we add the size of all packets
separately for incoming and outgoing packets. These
numbers are rounded in increments of 10,000 and then
appended to each instance, prefixed by a certain let-
ter. We also examined the use of other rounding in-
crements, but the best results were achieved using the
above mentioned increment.

Number Markers: As mentioned before, markers
are introduced in order to indicate direction changes
in the traffic flow. For each direction change, a marker
is inserted reflecting how many packets were previously
sent into the respective direction. The feature Num-
ber Markers performed best when grouping the packet
size as follows: 1, 2, 3-5, 6-8, 9-13, 14. Once more,
this feature improved the results only in combination
with feature Without Packets Sized 52 as otherwise
the direction of traffic flow changes almost after each
packet.

Occurring Packet Sizes: For each instance of a
website, we counted the number of occurring packet
sizes. Subsequently, the number was rounded in incre-
ments of 2 and added explicitly as an additional fea-

ture. Incoming and outgoing packets are considered
separately.

e Percentage Incoming Packets: This feature adds
the percentage of incoming/outgoing packets rounded
in steps of 5.

e Number Of Packets: This feature represents the to-
tal number of packets. In a similar way to the total
size of transmitted data, the Number Of Packets is
calculated separately for incoming and outgoing pack-
ets. The best results were achieved when rounding the
result in increments of 15.

As mentioned before, we restricted ourselves solely on the
most powerful features in the preceding itemization. A num-
ber of features did not improve the results. Among oth-
ers, we considered incoming/outgoing packets only, leaving
out frequent/rare packet sizes, including TLS/SSL record
sizes (which can be up to 2'* bytes long) or leaving out
empty TLS records’, preserving the packet order with n-
grams (subsequence of n packets from a given sequence is
joined together as a single attribute), rounding packet sizes,
and rounding packet frequencies. A detailed discussion of
these features is out of scope of this paper.

4.2 Support Vector Classification

Unlike Herrmann et al. using the Naive Bayes classifier,
we apply the more powerful support vector machines (SVM).
SVMs are state-of-the-art supervised learning methods used
in data mining which are well-known for their high perfor-
mance in terms of the classification accuracy. The technique
dates back to the work of Vapnik and Chervonenkis [22] in
1974. The key idea is the interpretation of instances as vec-
tors in a vector space. In the case of website fingerprinting,
the features and raw data are derived for one page retrieval
and represented as a vector. Based on training data, the
classifier tries to fit a hyperplane into the vector space which
separates the instances that belong to different classes. The
plane is fitted such that the accumulated distance between
the closest instances (support vectors) and the plane is as
high as possible to ensure a clear distinction between the
classes. In cases where the vectors are not linearly sepa-
rable, the vector space is transformed into a higher dimen-
sional space by the so-called kernel trick. In this higher
dimension, a hyperplane can be fitted again, while this was
not possible in the lower dimension. An interested reader
is pointed to [5] for thorough information about SVMs. We
applied the SVM implementation in the data mining soft-
ware collection Weka® in version 3.5.8. It is highly modular
and provides a wide range of possibilities for transforming,
evaluating, and visualizing data.

To successfully apply the SVM, some parameters have to
be optimized first. The choice of these parameters strongly
influences the quality of the results. Using a script, we have
evaluated and optimized following parameters. We obtained
the best results using a radial basis function (RBF) kernel
with parameters C' = 2'7 (cost of errors if no perfectly sep-
arating hyperplane can be found: the vectors which are on
the wrong side of the plane are multiplied by this factor) and
v = 271 (kernel parameter that determines the smoothness

"http://archives.seul.org/or/dev/Dec-2008/
msg00005.html
Shttp://www.cs.waikato.ac.nz/ml/weka/



of the hyperplane, i.e., size of the region influenced by a
support vector). Note that the chosen parameters led to
improved results on all datasets including open- and closed-
world as well as Tor and JAP. The largest computational
effort (which takes several days on AMD Athlon 64 3000+
CPU) was in the tuning of the features and optimization of
the SVM parameters. Due to large and representative num-
ber of websites in our datasets we assume that the found
parameters are good in general. Therefore, for new web-
pages we only need to train the SVM only once for the
found parameters (which takes about two hours). The fi-
nal classification (recognition of webpages) takes only few
milliseconds.

S. EXPERIMENTS AND RESULTS

In this section, we evaluate the introduced method for
WEP (see Section 4). The section starts with a short de-
scription of the experiments’ setup in Section 5.1 followed
by a presentation of the results. Section 5.2.1 will summa-
rize the algorithm’s superior performance to state-of-the-art
works [11] in the closed-world setting. This part includes
a detailed analysis of the features. Section 5.2.2 will apply
the algorithm to the harder open-world scenario. We once
more achieve alarming detection rates motivating the need
for additional countermeasures for anonymization networks
as discussed in Section 6.

5.1 Experiments

Section 3 introduces the Open-World and Closed-World
Dataset that will be used in the following in order to evaluate
the proposed algorithm and features. Before the classifier
can be applied and evaluated, the given data sets have to be
split into training and test data. For the 775 different web
pages of the Closed-World Dataset, we use cross-validation
in order to obtain representative and comprehensive test and
training sets based on data set in Section 3. Cross-validation
is a common method employed in data mining. It is often
used for small data sets and works as follows: the data is
split into n evenly large parts, the folds. Then, the entire
process of training and testing is repeated n times, using one
of the n folds as test data and the remaining n — 1 folds as
training data in turn. The results are averaged and therefore
more solid and meaningful. In this paper, n is set to 10
with 2 instances per fold and per class. Additionally, the so-
called stratification is used, which ensures that the instances
within a class are represented as balanced as possible in each
fold. The entire procedure is called ten-fold stratified cross-
validation. If not stated otherwise, we used 18 instances for
each censored page as training and 2 for testing applying our
algorithm with support vector classification on the proposed
features.

For the Open-World Dataset, an application of cross-vali-
dation was not necessary due to a sufficient amount of data.
Instead, we collect enough instances for training and test
data in advance and give those data separately to the classi-
fier. For each of the five censored web pages and for Sexually
Explicit, Alexa Top Ranked and Alexa Random (see Section
3), we use 35 instances as training and 25 disjunct instances
as test. For uncensored web pages, we use the list of the
1,000,000 most popular Internet pages from the web statis-
tics service Alexa. Out of this list, we randomly choose 4,000
uncensored URLs and include 1 instance each to the train-
ing data. Furthermore, we include 1,000 random uncensored

URLs (disjunct from training) with one instance to the test
data.

We additionally increase the classification’s complexity by
a disjoint definition of the training and test sets for uncen-
sored web pages. Note that the recognition task is much
harder since instances of the web pages in the test phase
have never been seen by the system in advance. This is
more realistic because the attacker usually does not know
what other common web pages the victim usually accesses
(see Section 3 for more details). We repeated the measure-
ments on the Open-World Dataset 20 times. In each of these
runs, the uncensored pages are randomly chosen, while the
censored pages remain the same (we only replace the in-
stances of censored pages in every run). We performed the
recognition using the SVM classifier with enabled additional
features and plotted averaged results including 95% confi-
dence intervals.

As mentioned before, both the feature tuning as well as
optimizing the SVM parameters is done on a disjoint data
set. For neither the open- nor the closed-world setting, test
data is included during training. This avoids that learned
features may perfectly fit a specific test data set by acci-
dent (over-fitting), but generally be not representative for
the considered classification problem. The next step applies
the support vector machine with our designed features as
introduced in Section 4. The SVM determines a score for
each test instance with respect to all classes and assigns the
test instance to the class with the highest score. To com-
pare ourselves with Herrmann et al. [11] on the Closed-World
Dataset, we determine the detection rate as the percentage
of correctly classified instances divided by all instances. On
the Open-World Dataset, it is not only important what per-
centage of censored web pages can be classified, but also how
many uncensored web pages will be classified as censored.
In our motivating example (see Section 1), innocents would
be wrongly accused. Therefore, we calculate the true pos-
itive rate as the percentage of correctly classified censored
instances divided by all censored instances. Additionally, we
provide the false positive rate as the percentage of wrongly
classified uncensored instances divided by all uncensored in-
stances. The following section summarizes the results for
closed- and open-world scenario.

5.2 Results

This section first evaluates the proposed algorithm on the
Closed-World Dataset. Particularly we show that we achieve
the recognition rates of 54.61% on Tor and 80% on JAP
which are much higher than previously thought [11]. We
then consider the more difficult Open-World Dataset. The
algorithm is robust enough that even in this case, we can
achieve alarming results of a true positive rate of up to 73%.

5.2.1 Results on Closed-World Dataset

Using Bayes Nets, Herrmann et. al. [11] achieve a recog-
nition rate of 3% on the Tor Closed-World Dataset (see
Section 3.1). We have implemented the algorithm of Herr-
mann as described in [11] and achieve similar results on the
dataset. A recognition rate of less than 3% might appear
non-threatening for many users. Figure 1 provides a visual
impression of our recognition results and gives an overview
of the features’ impact on the detection rate. In this paper,
we propose to use Support Vector Machines (SVM) instead
of Bayes Nets as the first major expansion. The more power-
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Figure 1: Influence of additional features on the de-
tection rates for the Tor Closed-World Dataset

ful SVMs directly lead to an improved recognition of almost
31% (annotated as Our basic approach). By considering the
proposed features (see Section 4.1), we increase the recog-
nition rate to 47.36%, an increase by 17% (annotated as
Number of packets, named after the feature that leads to
this result). Note that the results for single features are
shown in a cumulative way, i.e., the follow up features in-
clude all the prior features. The itemized list of the results
for each feature indicates that each feature is important and
contributes to the final recognition rate.

During the analysis of the results, we discovered that the
Closed-World Dataset used by Herrmann contained several
web pages that had a redirect to another URL. The practical
problem with redirects is that between the loading processes
of the original and the redirected page there is a small break.
During this break, the browser displays a page with the in-
formation about the pending redirection and considers the
web page as loaded. If the Chickenfoot script checks the
value of the loading property at this point in time, the web
page is regarded as loaded and the next URL is retrieved.
Clearly, this leads to a corrupt data set, because the target
web page has not been loaded yet. Hence, we disregard web
pages with a redirect statement and add the URLs of the
final web pages instead. It also turned out that there were
a few cases of two different URLs redirecting to the same
page. Clearly, this only disturbs the detection accuracy as
practically there is no difference between the sites. Hence,
double entries are removed from the list.

Additionally, we found instances of URLs that were not
completely loaded even though Firefox regarded the web
page as completely loaded. Triggering successful loading of
web pages is vital as incomplete pages and errors in page
loading lead to a deterioration of the detection rates. Au-
tomated detection of this property, however, is not trivial:
sometimes pages have the status loaded, but remain empty.
Hence, only pages with adequate size are considered. Prac-
tically, we initiat the reload of a page if its size changed by
more than 20% from its mean size. Using these improve-
ments we obtain our final result of 54.61%.

The proposed algorithm improves the previously known
detection rate of Herrmann by more than 51%. A detection
rate of almost 55 % on average is alarming. The anonymiza-
tion using Tor is less robust as previously assumed. This
indicates the need to take appropriate countermeasures.

I} 2,96 Approach of Herrmann et al.
$30.98 Our basic approach
$35.07 Without packets sized 52
b 43.7 Size markers
b 44.18 HTML markers
b 44.75 Total transmitted bytes
4 45.7 Number markers
4 46.5 Occurring packet sizes
4 47.06 Percentage incoming packets
}47.36 Number of packets
} 54.61 Our final result

The analysis of the detection results reveals that there
are certain pages which are correctly classified in the ma-
jority of cases, whereas there are others which are hardly
ever recognized by the classifier. Figure 2 shows this ra-
tio in form of two complementary cumulative distribution
functions (CCDF) for the experiments in Tor.

The blue squared curve shows the distribution of cor-
rectly classified instances (true positives). For 91% of all
web pages, at least five instances were correctly classified.
Instances of four pages only — about 0.5% — were never
correctly classified. The results suggest that for almost all
pages, at least some instances were correctly classified. This
fact further illustrates a user’s risk who relies on the anonymity
when using Tor. The brown crossed curve shows the num-
ber of instances that were wrongly assigned to each class as
the respective share of web pages (false positives). At least
ten wrong instances were erroneously assigned to 47% of all
web pages. 20 or more wrong instances were assigned to only
a few pages (less than 5%), whereas only one page stands
out with more than 60 wrongly assigned instances. Those
numbers prove that the chosen set of URLs is rather repre-
sentative and realistic. We do not expect much differences
for an alternate set of URLs.

CCDF of classified instances
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Figure 2: Complementary cumulative distribution
functions (CCDF) of correctly and erroneously clas-
sified instances for the Tor Closed-World Dataset

We also applied our improved methods for website fin-
gerprinting on the JAP Closed-World Dataset (see Section
3.1). The results are visualized in Figure 3. Herrmann et
al. [11] achieved a detection rate of 20% in the JAP net-
work. Their study is limited to a premium cascade only (see
Section 3). Using Bayes Nets, we achieve similar results of
26% in premium cascade. With our algorithm, we boost
the detection rate to almost 80%. Our results confirm that
the JAP framework also does not provide the anonymity as
previously thought. In addition, we investigated the accu-
racy of recognition in free cascades. Using Bayes Nets, we
achieve 3.5% only. The application of our approach leads to
a recognition rate of 60%. The overall result is surprising
because JAP operators claim that premium cascades (paid)
offer more anonymity to their users than free cascades. The
surprising effect can be explained by less users in premium
cascades due to higher costs. This fact leads to a lower
workload. As further investigations experiments confirm,
less workload directly leads to an increase in recognition
rate of about 30%.

For both cascade types in JAP, we achieve higher detec-
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Figure 3: Detection rates for the JAP Closed-World
Dataset

tion rates compared to Tor. Therefore JAP seems to be more
vulnerable against fingerprinting in the considered scenario.
Similar to Tor, the selected features play an important role
for the high detection rates. Both for premium and free cas-
cades, the features boost the results by at least 11%. The
high recognition rates on the Closed-World Dataset confirm
the generality and importance of the selected features and
our method for the whole domain of website fingerprinting.
In future work we plan to further explore features and alter-
native rounding increments to increase the recognition rates.
This exploration provides the basis for the development of
additional countermeasures as a prerequisite for an increased
anonymity of Tor and JAP.

5.2.2  Results on Open-World Dataset

This section summarizes alarming results of our algorithm
on the three introduced Open-World Datasets, namely Sez-
ually Ezplicit, Aleza Top Ranked, and Alexa Random (see
Section 3.2). In a first experiment (Ezperiment 1), we fix
the number of censored pages to 5 and use 35 training in-
stances each (in future work we will extend our experiment
to include more URLs in the set of censored web pages).
For the uncensored web pages, we use one instance for each
of 4,000 random URLs from the Alexa statistics for train-
ing (Experiments 24 at the end of this section justify the
selection of these numbers). For the testing phase, we con-
sider 1,000 URLs that differ from the 4,000 URLs used for
training. Hence, the classifier is not trained on the URLs
that are used in the test phase (worst-case and challenging
scenario for the attacker).

Page Set True Positives False Positives
Sexually explicit 56.0% 0.89%
Alexa top ranked 73.0% 0.05%
Alexa random 56.5% 0.23%

Table 1: True and false positive rate for Sexually
explicit, Alexa top ranked and Alexa random of the
Open-World Dataset

Table 1 shows the average of 20 runs for the three intro-
duced data sets. For each, the true positive rate is higher
than 56% for a false positive rate of less then 1%. For Alexa
Top Ranked, we even achieve a true positive rate of 73% for a
false positive rate of only 0.05%. These results are alarming
because anonymization networks such as Tor do not provide
sufficient anonymity in the open-world setting with respect

to a local attacker — one of the weakest attacker in the threat
model of low-latency anonymization techniques.

Apparently, the top ranked pages can be distinguished
more easily than the pages from the two other sets. One
indicator could be the fact that google.com is contained in
the set of top pages, which is an exceptionally small page
and therefore easy distinguishable.
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Figure 4: Influence of growing number of uncen-
sored web pages on the true and false positive rates
in the Open-World Setting

A second experiment (Ezperiment 2) shows how the num-
ber of uncensored URLs used for training influences true
positive and false positive rates. Here, the number of cen-
sored pages is fixed to 5 URLs with 20 training and 2 testing
instances each. Figure 4 suggests that at least 2,000 uncen-
sored instances have to be used in the training phase to
achieve a false positive rate of less than 1%. For a training
on 4,000 instances, the false positive rate even drops below
0.5%. However, this low rates are achieved at the expense
of falling detection (true positive) rates. Whereas for 2,000
instances, 67.5% of the censored instances are classified cor-
rectly, this number decreases to 55.5% for 4,000 instances.
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Figure 5: Influence of growing number of censored
web pages on the true and false positive rates in the
Open-World Setting

A third experiment ( Ezperiment 3) analyzes how the num-
ber of censored URLs influences the true and false positive
rates. To this end, we randomly selected censored URLs
with 35 training instances each from the whole set of Alexa
URLs. For training of uncensored pages, we randomly used
4,000 URLs with one instance each. As Figure 5 shows,
a higher number of censored pages entails increasing false
positive rates. This is because more censored pages increase
the probability of confusion. The false positive rate does
significantly increase from 0.08% for one censored page to
2.27% for 50 of them. Therefore, a high number of censored
pages can lead to more confusion of the classifier thereby



ensuring a greater anonymity. Interestingly, the number of
censored pages has only a minor impact on the true positive
rate. The confidence interval for only a few censored web
pages is rather high because in this case the result is easily
influenced by outliers. For higher number of web pages, the
mean and covariance values become more representative.
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Figure 6: Influence of growing number of instances
of censored web pages on the true and false positive
rates in the Open-World Setting

A fourth experiment (Ezperiment /) evaluates how the
number of censored instances used for training influences
the result (see Figure 6). In this experiment, the number
of censored URLs is fixed to 5. The number of uncensored
URLSs used for training is fixed to 4,000 with one instance
each. The results clearly prove that a higher number of
training instances leads to a better true positive rate. If
more than 35 instances are used, the true positive rate con-
verges, and hence 35 is a reasonable choice of censored train-
ing instances. The false positive rate slightly increases for
a higher number of censored training instances. In this set-
ting, the false positive rate amounts to less than 1% for 35
censored training instances.

The presented results for the Closed-World and Open-
World Datasets show that an attacker can spoil the anonymity
of Tor and JAP through careful selection of parameters and
training data. Using the proposed algorithm, website fin-
gerprinting can be mounted by a local observer (e.g., an
ISP of a victim) — one of the weakest attackers low-latency
anonymization networks deal with. Since many users on
anonymization networks rely and strongly depend on the
provided anonymization, researchers in the security domain
must identify adequate countermeasures. The next section
summarizes preliminary results of camouflage as a successful
countermeasure against fingerprinting attacks in anonymiza-
tion networks.

6. COUNTERMEASURES

The previous Section 5 summarizes the results of the pro-
posed algorithm on the Closed-World Dataset and Open-
World Dataset. In both cases, the given anonymity is much
lower than expected. Obviously, the results reinforce the
necessity for adequate countermeasures.

Padding is the most common technique which is employed
to impede traffic analysis. The sender appends a certain
amount of dummy data to the actual application data before
performing the encryption. Typically, padding is performed
either to achieve a fixed packet size or a random one. Even
though padding entails a slight decrease of detection rates

(compare our results on Tor and JAP that use padding to
ssh tunnels without padding [11]), the given rate in Tor and
JAP is still too high to provide sufficient anonymity rising
the necessity for more sophisticated countermeasures. In
this section, we describe preliminary work on using camou-
flage as a more successful countermeasure. Camouflage is
a smarter way to intentionally change the patterns of the
data traffic. In this work, we load a randomly chosen web
page (background page) simultaneously with the actually re-
quested one. In doing so, we obfuscate the traffic by loading
several pages simultaneously. This extension is used in both
training and testing (no background page during training
leads to worse detection rate). The suggested approach is
easy to implement and can be used without any modifica-
tion to the anonymization services Tor and JAP. Practically,
the protection can be realized by, e.g., a web browser plug-in
that, whenever the user requests a page, automatically loads
an additional randomly chosen page in the background. An-
other great advantage is that this protection can be em-
ployed solely on the user side without any modifications to
the anonymization network.

We tested camouflage for real Tor and JAP networks on
the Countermeasures Dataset as introduced in Section 3.3.
Keep in mind that due to an easier classification, a successful
application of camouflage on the Closed-World Dataset will
also lead to a better anonymity on the Open-World Dataset.
The results are illustrated in Figure 7. In both networks, the
overhead between anonymization as it is and with camou-
flage is about 85%. The effect of this simple countermeasure
is very notable. For JAP, in which we used a free cascade
for the tests, the detection rate decreases from 60% to 4%
and for Tor it drops from 54% to about 3%. It should be
clear that camouflage greatly reduces the features’ signifi-
cance because descriptive statistics of simultaneously loaded
pages are mixed.

Influence of camouflage in Tor and JAP
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JAP. JAP Tor . Tor
(as it is) (using camouflage) (as it is) (using camouflage)
Figure 7: Effect of camouflage as countermeasure in
the Tor and JAP Closed-World Datasets

Although the detection rate is on average about 3%, the
classification of some web pages might still be easy. Success-
ful countermeasures should decline the detection rates of all
web pages to a level that is almost similar to random guess
and at the same time cause only little performance losses.
Clearly, the additional traffic generated by already one back-
ground page leads to a serious confusion of the classifier. We
expect even better obfuscation for additional background
pages as it will be more challenging for the attacker to ex-
tract the original statistics from the merged packets. Still,
it has to be explored whether more sophisticated statisti-
cal measures can achieve this extraction. In future, we plan
to analyze this specific effect of camouflage on diverse web



pages in detail. In the end, a user can decide how much
overhead he will accept for the sake of a higher anonymity.
However, the detection rate heavily depends on the loaded
web page. In future we plan to provide tools to facilitate an
assessment of anonymity per web page.

7. CONCLUSION AND FUTURE WORK

In this paper we showed that anonymity in Tor and JAP
is not as strong as expected so far and cannot resist website
fingerprinting attacks under certain circumstances. We first
defined features for website fingerprinting solely based on
volume, time, and direction of the traffic. As a result, the
subsequent classification became much easier. We applied
support vector machines with the introduced features. We
were able to improve recognition results of existing works on
a given state-of-the-art dataset in Tor from 3% to 55% and
in JAP from 20% to 80%.

In a next step, we transferred our findings to the more
complex and realistic open-world scenario, i.e., recognition
of several websites in a set of thousands of random unknown
(not previously seen) websites. To the best of our knowledge,
this work is the first successful attack in the open-world
scenario. We achieved a surprisingly high true positive rate
of up to 73% for a false positive rate of 0.05%.

Finally, we showed preliminary results of a proof-of-concept
implementation that applies camouflage as a countermea-
sure to hamper the fingerprinting attack in the open- and
closed-world settings. For JAP, the detection rate decreased
to 4% and for Tor it dropped to about 3%. Our camouflage
strategy can be adapted without any changes in the under-
lying anonymization protocol. This countermeasure can be
simply implemented in the form of a browser plug-in.

Future work will include additional feature selection to
further boost the quality of recognition, study the influence
of enabled active content, as well as consider clicking on em-
bedded links. Moreover, we will provide an analysis of recog-
nition results for specific and single web pages in addition to
the given average results. Even if standard countermeasures
are applied, it is possible that some web pages can easily be
recognized. We aim to empower users with tools that would
provide the feedback about the level of anonymity per web
page. The countermeasures could then be dynamically ad-
justed based on this information. Therewith it would be
possible to provide adequate anonymity for every possible
web page.
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