
Jack: Scalable Accumulator-based Nymble System

Zi Lin
Computer Science & Engineering

University of Minnesota
Minneapolis, MN 55455

lin@cs.umn.edu

Nicholas Hopper
Computer Science & Engineering

University of Minnesota
Minneapolis, MN 55455
hopper@cs.umn.edu

ABSTRACT
Anonymous blacklisting schemes enable online service pro-
viders to block future accesses from abusive users behind
anonymizing networks, such as Tor, while preserving the
privacy of all users, both abusive and non-abusive. Several
such schemes exist in the literature, but all suffer from one of
several faults: they rely on trusted parties that can collude
to de-anonymize users, they scale poorly with the number
of blacklisted users, or they place a very high computational
load on the trusted parties.

We introduce Jack, an efficient, scalable anonymous black-
listing scheme based on cryptographic accumulators. Com-
pared to the previous efficient schemes, Jack significantly re-
duces the communication and computation costs required of
trusted parties while also weakening the trust placed in these
parties. Compared with schemes with no trusted parties,
Jack enjoys constant scaling with respect to the number of
blacklisted users, imposing dramatically reduced computa-
tion and communication costs for service providers. Jack is
provably secure in the random oracle model, and we demon-
strate its efficiency both analytically and experimentally.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; E.3
[Data Encryption]: Public key cryptosystems

General Terms
Algorithms, Security

Keywords
Anonymous Authentication, Anonymous Blacklisting, Privacy-
Enhancing Revocation

1. INTRODUCTION
Network anonymity providers enable users to connect to

online services while concealing which users communicate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0096-4/10/10 ...$10.00.

with which servers. These providers typically achieve this
goal by having one or more hosts act as a proxy that relays
traffic between clients and servers, using layered encryption
and multiple hops to conceal the correlation between in-
coming and outgoing traffic. For example, the most popular
anonymity provider, Tor [16], is comprised of over 1700 vol-
unteer “onion routers” from around the world, and provides
service to roughly 200,000 users at any time [1].

From the point of view of service providers such as website
operators – especially those that rely on contributions from
users – anonymity services pose an unfortunate dilemma:
anonymity can extend the range of users who are able to
access and willing to contribute to the service, since they
can do so without fear of monitoring, isolation or punish-
ment. However, the ability to access a service anonymously
can also be abused by those who wish to vandalize or oth-
erwise behave inappropriately when accessing the service.
In several cases, notably Wikipedia and Slashdot, service
providers have opted in favor of abuse prevention and proac-
tively block contributions from known anonymity providers,
at the expense of potentially valuable contributions.

To address this problem, Johnson et al. [21] proposed the
notion of an anonymous blacklisting scheme, which allows
service providers (SPs) to maintain a “blacklist” that allows
non-abusive users to access the service anonymously; users
on the blacklist are unable to access the service, but remain
anonymous. If deployed, an anonymous blacklisting scheme
would allow the SP to enjoy the benefits of anonymity –
increased participation – while limiting abuse. Widespread
adoption of the schemes would also benefit anonymity pro-
viders by reducing the “collateral damage” these users incur
from the actions of others. (For example, Tor exit node op-
erators are currently banned from contributing to Wikipedia
as a result of the behavior of abusive Tor users) Thus deploy-
ment of anonymous blacklisting schemes would be beneficial
to SPs, anonymity providers, and users alike.

Several anonymous blacklisting schemes have appeared in
the literature [21, 31, 30, 27, 28, 29, 9, 20]. All of them
are based on the notion of an anonymous authentication
token. Nymble [21, 31, 30] constructs a hash-chain based
unlinkable token scheme to maintain user anonymity while
a pair of Trusted Third Parties (TTPs) – the Nymble Man-
ager (NM) and the Pseudonym Manager (PM) – help the
SP to link future tokens of abusive users to block them.
However, the TTPs in Nymble can easily collude together
to de-anonymize all users, and the SP and NM can collude
to link the actions of a single user. Such a strong trust
assumption is undesirable in an anonymity scheme.

1

Following the proposal of Nymble, several schemes that
trade efficiency and scalability for a weaker trust model have
been introduced, including BLAC [27, 28], PEREA [29], and
Nymbler [20]. At one extreme, BLAC [27, 28] and EPID [9]
support anonymous blacklisting of misbehaved users with
no TTP at all, by directly adding authentication tokens to
a blacklist. The trade-off here is that when a user produces
a new authentication token t, she must prove, for each to-
ken b in the blacklist, that t is not linked to b. As a result,
the communication and computation cost of authentication
scale linearly with the size of the blacklist. PEREA [29] im-
proved the scalability of BLAC’s authentication by introduc-
ing a universal dynamic accumulator for the blacklist, and
having each user maintain an unforgeable queue of its last k
tokens; upon authentication, the user proves that none of its
k tokens are in the accumulator and then updates the queue
with the aid of the SP. This scheme introduces a poten-
tial “race condition” in which the SP must catch an abusive
user “in time” before the token is flushed out of the queue.
Larger values of k reduce the likelihood of the the condition
but increase the cost of the authentication. Nymbler [20]
uses a pair of TTPs like Nymble, while preventing colluding
TTPs from de-anonymizing users. However the blacklisting
procedure in Nymbler requires the NM to compute discrete
logarithms in a trapdoor group, making real-time blacklist-
ing unscalable.

1.1 Our Contribution
Jack be nimble, Jack be quick. . .

In this paper, we introduce Jack, an anonymous blacklist-
ing scheme that is secure against TTP collusion and pro-
vides improved scalability compared to previous schemes.
Similar to the original Nymble scheme, the architecture of
Jack separates user identities from online activities by in-
troducing two TTPs. However, the TTPs in Jack are en-
gaged in fewer interactions with the user, are unable to de-
anonymize users, and cannot link user activities across SPs
or “linkability windows.” All interactions in our scheme are
communication- and computation- efficient for all parties,
and scale independently of the size of the blacklist, number
of users, and number of authentication periods. Jack also
supports several useful extensions, including objective black-
listing, anonymous rate-limiting, and fine-grained blacklist
duration management.

1.2 Paper Outline
We briefly discuss related work in section 2. We give a

high-level overview on our system in section 3. We further
describe the cryptographic building blocks in section 4, fol-
lowed by a detailed description of our protocols in section
5. In section 6 we present both analytical and experimental
evaluations of our system, followed by a discussion of several
practical extensions to our system in section 7.

2. RELATED WORK
Group Signatures Group signature schemes allow any

member of a group to sign a message on behalf of the group,
while concealing the identity of the signer [14, 3, 7]. By
design, group signature schemes have the ability to revoke
the anonymity of misbehaved users. They feature a trusted
third party, called the Group Manager (GM), with the abil-
ity to trace the identity of a signer from a transcript and

revoke the signer from the group. This revocation can be
very expensive because the updated group public key must
be broadcast to all SPs and all other members of the group.
Instead of global membership revocation, many systems sug-
gest the SP keep a local blacklist [11, 8, 22, 24]. In such
schemes, the GM gives an SP a user pseudonym or linking
token extracted from a transcript. The offending user is then
revoked only at that SP, making revocation more efficient.

Because the GM assigns each user a pseudonym when the
user registers, the GM in the above schemes has all the in-
formation required to link users with their provider accesses.
Further, SPs with a local blacklist can link users with their
misdoings, breaking user anonymity. Such powerful TTPs
represent a significant security threat to anonymity schemes.

Anonymous Blacklist Systems Nymble, along with its
enhanced versions [21, 31, 30], was proposed to prevent GMs
from linking tokens to a pseudonym and SPs from linking
user accesses. Nymble introduces the concept of linkability
window. SPs no longer keep linking information about user
pseudonyms. Instead they are given a linking token that is
only valid within the current linkability window. A TTP
called the Nymble Manager (NM) is in charge of issuing
unlinkable access tokens, called “nymbles,” to users. The
NM assists SPs in discovering the linking token encrypted
in each nymble to unmask misbehaving users. However, the
NM retains the ability to link user activities.

Being aware of this, the authors of Nymble proposed BLAC
[27, 28] to eliminate the NM. BLAC enables SPs to blacklist
a user without assistance from a TTP, but the communi-
cation complexity grows linearly with the size of the black-
list. EPID [9] is similar to BLAC, except EPID originated
from the perspective of TPM authentication and blacklist-
ing. In an effort to reduce the complexity of BLAC and
EPID, PEREA [29] adopted an accumulator to represent
the blacklist. In PEREA, users produce one-time random
authentication tokens and must prove that none of the last
K authentication tokens is revoked. The communication
and computational complexity of PEREA is linear in a fixed
constant K. However, larger values of K, while favorable,
make PEREA considerably slower [29].

Recently, Nymbler was proposed by Henry et al. [20] to
improve Nymble using Nymble’s existing framework. In
Nymbler, users construct nymbles based on user credentials.
Nymbler makes use of Verifier-Efficient Restricted Blind Sig-
natures (VERBS) which allow the NM to sign a nymble
without really seeing it. The NM is able to recover the link-
ing token embedded in each nymble, but linking tokens are
linkable neither to user credentials nor to linking tokens from
past linkability windows. Therefore, security is strengthened
since the NM has no way to keep track of user activity. How-
ever, Nymbler still requires heavy computation from the NM
which leads to system scalability concerns.

3. OVERVIEW OF OUR APPROACH
In this section, we briefly give a high-level overview of

Jack. Further details are discussed in section 4 and section 5.
We model Jack after the original Nymble system. Jack’s

fundamental architecture is shown in Figure 1. Jack builds
entirely upon a public key infrastructure that binds each
user to a public/secret key pair. In our scheme, there are
two TTPs, the Credential Manager (CM) and the Nymble
Manager (NM), which run independently.

Our CM replaces the Pseudonym Manager (PM) from pre-

2

TORTOR

Credential

Issuing

Nymble Connection

Filing

Complaint

NM CM

User SP

Figure 1: The architecture of Jack

vious schemes. In Jack, a user Alice requests a credential
derived from her public key from the CM. The CM acts like
a group manager and only enrolls legitimate users by issuing
them credentials, ensuring each user is only issued a single
credential.

The NM in Jack has a different role than in the original
Nymble system. Instead of issuing nymble tickets to Alice,
the NM is only concerned with the nymble opening proce-
dure, allowing discovery of the underlying user pseudonym.

Upon receiving a credential, Alice constructs her nymbles
based on her pseudonym with respect to SP Bob. Alice’s
pseudonym is determined by her own secret key and Bob’s
public pseudonym generator. In each nymble, Alice encloses
a blinded version of her pseudonym and encrypts the blind-
ing trapdoor by the public encryption key of the NM. Before
Alice initiates a connection to Bob, Alice obtains the latest
version of Bob’s blacklist from a trusted source (e.g. the
NM), and make sure her pseudonym is not in the blacklist.
When Alice connects to Bob via an anonymizing network
like Tor, Alice presents a nymble to Bob and proves its va-
lidity using zero-knowledge proofs of knowledge of discrete
logarithm equalities and verifiable encryption of discrete log-
arithms. Bob will grant service after verifying a valid proof
and will keep the nymble for later reference.

In case Alice abused Bob’s service, Bob files a complaint
against the related nymble to the NM. The NM will open the
nymble and decrypt the underlying pseudonym. The NM
returns the pseudonym to Bob, who then blacklists Alice by
adding the pseudonym to a dynamic universal accumulator
for Decisional Diffie-Hellman (DDH) groups.

Unlike the original Nymble, Jack’s NM does not have the
ability to link Alice with all of her activities. Alice is able
to compute a new nymble, which is unlinkable to old ones,
without registration. When Bob’s pseudonym generator pe-
riodically changes, Alice’s pseudonym changes unlinkably as
well. Therefore, the NM and Bob together can only link
Alice’s online activity within one time window, preserving
her forward anonymity (i.e. blacklisting Alice will not reveal
Alice’s past activities). Likewise, collusion between the NM
and the CM does not reduce user anonymity.

Jack is also highly scalable. Since none of the protocols
involved depend on any parameters that grow with the num-

ber of time periods or users, Jack’s protocols enjoy constant
computation and communication costs.

4. BUILDING BLOCKS
Below, we give an overview of the cryptographic primitives

we use in our scheme.

4.1 Preliminary

4.1.1 Bilinear Pairing
Let G1, G2 and GT be cyclic multiplicative groups of

prime order p. Let g1 and g2 be generators of G1 and G2

respectively. Let a function ê : G1 ×G2 → GT be a bilinear
pairing with the following properties:

• Bilinearity: ê(P a, Qb) = ê(P,Q)ab for all P ∈ G1, Q ∈
G2, and a, b ∈ Zp

• Non-degeneracy: ê(g1, g2) 6= e where e is the identity
element of GT

• Computability: ê(P,Q) can be computed in polyno-
mial time for all P ∈ G1 and Q ∈ G2.

4.1.2 Hardness Assumptions
The security of our scheme relies on the following two

assumptions.
Strong RSA Assumption. Suppose p, q are λ-bit safe

primes, that is, (p − 1)/2, (q − 1)/2 are also primes. Let
N = pq. The Strong RSA assumption states that there does
not exist a probabilistic polynomial time algorithm that,
given N and v ∈R Z∗N , computes u and e such that ue ≡ v
mod N with non-negligible probability in λ.

DDH Assumption over a subgroup modulo p. Sup-
pose Gq ⊂ Z∗p is the subgroup of kth residues modulo the
`-bit prime p, and q = |Gq| = (p−1)/k is also a large prime.
Let g ∈ Gq be a generator of Gq. The DDH assumption over
Gq states that there does not exist a probabilistic polynomial
time algorithm that distinguishes between instances of the
form (g, ga, gb, gab) from instances of the form (g, ga, gb, gc),
where a, b, c ∈R Zq are independently and randomly chosen,
with non-negligible advantage in `.
q-Strong DH assumption Suppose G = 〈g〉 has order

a large prime p. The q-strong DH assumption states that it is

infeasible, given as input the (q+1)-tuple (g, gα, gα
2
, . . . , gα

q

),
to find a pair (w, y) ∈ G× Z∗p such that wα+y = g.

4.1.3 Proof of Knowledge
A Zero-Knowledge Proof of Knowledge (ZKPoK) [18] is

an interactive protocol via which a prover convinces a ver-
ifier that the prover knows a value w satisfying some pred-
icate, without giving the verifier any information about w.
More formally, the protocol is zero-knowledge if there exists
a simulator that allows the verifier to forge transcripts (with-
out access to w) that are indistinguishable from the ZKPoK
protocol’s transcripts. A statistical ZKPoK is a variant of
ZKPoK, in which the distribution of forged transcripts is
statistically close to the distribution of actual transcripts.

Σ-protocols are a type of statistical ZKPoK protocol which
can be converted into Signature Proof of Knowledge (SPK)
schemes [19] by the Fiat-Shamir heuristic [17], that are se-
cure under the Random Oracle Model [6].

Like many anonymous credential schemes, we follow the
notation introduced by Camenisch and Stadler [13]. We use

3

PK{(x) : y = gx} to denote a Σ-protocol proving knowl-
edge of x ∈ Zp such that y = gx for some g, y ∈ G. The
corresponding SPK is denoted as SPK{(x) : y = gx}(m)
where m is an initial challenge message sent by the verifier.

4.2 Accumulator-based Blacklist
Our scheme employs a specific dynamic universal accumu-

lator (DUA) scheme, first introduced by Nguyen [24], and
later enhanced by Au et al. [4] and Damg̊ard and Trian-
dopoulos [15]. An accumulator scheme allows a manager to
accumulate a set of elements into a value and compute wit-
nesses that demonstrate that an element has not been accu-
mulated. An accumulator is called “universal” if it supports
both efficient zero-knowledge membership proofs and effi-
cient zero-knowledge non-membership proofs. An accumu-
lator is called “dynamic universal” if the accumulator value,
membership witnesses and non-membership witnesses can
be updated efficiently with newly added elements. A mem-
bership proof (or a non-membership proof) can be carried
out in constant time independent of how many elements have
been accumulated.

Au et al. [4] describe a DUA scheme for DDH groups,
which has the additional property that one user, with a sin-
gle secret key x, can create many unlinkable (under the DDH
assumption) pseudonyms (ElGamal public keys) of the form
(h, hx) with different generators h. We can further extend
the use of this property: if a DUA manager changes its own
generator h to a new h′, its accumulator is essentially emp-
tied: Now any user with an accumulated pseudonyms can
compute a new non-membership proof under h′, and has a
new pseudonym (h′, h′x), which is unlinkable to (h, hx) as
long as the discrete logarithm logh(h′) is unknown. In our
scheme, SPs uses DUAs for DDH groups in a novel way to
implement blacklists, accumulating user pseudonyms. Since
we only require non-membership proofs for a blacklist, we
will only refer to non-membership witnesses.

We present our construction of blacklists based on the
DUA construction by Au et al. [4]. Our construction is a
slight simplification of theirs due to the fact that we only
require non-membership proofs. We omit the algorithms
for witness computation and simplify the public key of the
accumulator so that witness computations can be reduced
to a series of witness updates.
Key Generation. Let λ be security parameter. Let ê :
G1 ×G2 → GT be a bilinear map such that |G1| = |G2| = p
for some λ-bit prime p. Let g0 ∈ G1 be a generator of G1

and h0 ∈ G2 be a generator of G2. Let Gq ⊂ Z∗p be a cyclic
multiplicative group of prime order q, such that q|(p − 1),
in which the DDH problem is intractable. All the above are
inputs to the initialization procedure shown in Algorithm 1,
which generates a public key and private key, (pkacc, skacc)
for the accumulator manager (the SP), as well as the initial
value v for an empty accumulator.
Accumulating pseudonyms. Let t ∈ Gq be a pseudonym
to be accumulated, and v ∈ G1 be the current accumulator
value. The new accumulator value ṽ can be computed by
the SP as ṽ = vs+t . The SP publishes u = (t, ṽ) as the
accumulator update, and the blacklist is updated as well:
BL := BL ∪ {t}.

In case there are n pseudonyms to be accumulated, the
above algorithm is performed n times. Suppose BL = {t1,
. . . , tn}, and let P (s,BL) =

Q
ti∈BL(s+ ti). Then the new

accumulator value will be v = g
P (s,BL)
0 .

Non-membership witnesses For every pseudonym t we
call the pair w = (f, d) ∈ G1×Z∗p a witness for accumulator
v if it satisfies the nonmembership relation

NonMembership(v, w, t) =

(
1, if v = f (s+t) · gd0 ,

0, otherwise.

The intuition behind the witness is that if t 6∈ BL, then if
we interpret s as a formal variable, (s+ t) 6 |P (s,BL). Thus
when t 6∈ BL, there exists polynomial q(s) and constant rem
satisfying q(s)(s + t) + rem = P (s,BL) . It is easy to see
that we can use q and rem to construct the witness (f, d),

wheref = g
q(s)
0 and d = rem . When the blacklist is initially

empty, w = (0, 1) is the non-membership witness for any t.
With the aid of the bilinear mapping ê, a user can check

the validity of her witness (f, d) with the pseudonym t by
verifying that ê(v, h0) = ê(f, θ ·ht0)ê(g0, h

d
0) . Similarly, using

bilinear mapping, we will see later that the witness can be
used to produce a zero-knowledge proof of non-blacklisting,
without revealing either t or w. The proof convinces the SP
that the user is in possession of a pseudonym that is not
blacklisted.
Non-membership Update. Let v and ṽ denote the old
and the updated accumulator value respectively. Let u =
(t̃, ṽ) be an accumulator update published by the accumu-
lator. For a non-accumulated pseudonym t 6= t̃, its wit-
ness w = (f, d) can be updated to w̃ = (f̃ , d̃) with f̃ =

vf t̃−t and d̃ = d(t̃ − t). It is straightforward to extend this
procedure to handle multiple updates.
Zero-knowledge Proof of Non-blacklisting. User Alice
with secret key x ∈ Zq can prove her pseudonym t = hx

is not accumulated in the accumulator v with the following
zero-knowledge signature proof,

SPK{(f, d, t, x) : f (s+t)gd0 = v ∧ d 6= 0 ∧ t = hx}

with knowledge of w = (f, d). An efficient protocol for this
relation is given by Au et al. [5].

4.3 Nymble Construction
A nymble in Jack is essentially a pseudonym encrypted

under an ephemeral public key together with the verifiable
encryption of the secret key under the NM’s public key. The
user Alice needs to prove to the SP Bob that this encryption
is properly formed so that Bob can later ask the NM to
decrypt Alice’s pseudonym if needed.

We employ Camenisch and Shoup’s Verifiable Encryption
of Discrete Logarithms (VEDL) scheme [12] to construct
the nymble. The construction is similar to the key escrow
scenario mentioned in [12]. The only difference is here the
encryption doesn’t need to include a label L specifying the
condition under which decryption can be carried out.
VEDL Key Generation. Let p, q be safe primes of ` bits,
such that p = 2p′+ 1, q = 2q′+ 1 for some primes p′ and q′,
and let n = p ·q and n′ = p′ ·q′. Let Bn′ be a subgroup of Z∗n
of order n′, and H : {0, 1}m × {0, 1}∗ → {0, 1}` be a secure
cryptographic keyed hash function where m = m(`) is an
auxiliary security parameter. These parameters are used to
generate a key pair (pkNM , skNM) as shown in Algorithm 2.
Let abs : Z∗n2 → Z∗n2 map a ∈ (n2/2, n2) to n2 − a and map
a ∈ (0, n2/2] to a itself.

In addition to Bob’s pseudonym generator h, Bob pub-
lishes a generator hb of Gq. Both h and hb are public infor-
mation to both the NM and user Alice.

4

Algorithm 1 ACC-KeyGen

Input: ê : G1 ×G2 → GT , g0 ∈ G1, h0 ∈ G2,
p, q,Gq ⊂ Z∗p

Execution:
s←R Gq

Choose a random generator h ∈R Gq.
θ = hs0
pkacc ← (h, g0, h0, θ)
skacc ← (s)
v ← g0
BL← ∅

Algorithm 2 VEDL-KeyGen

Input: p = 2p′ + 1, q = 2q′ + 1, n = pq, n′ = p′q′, Bn′ ,
H : {0, 1}m × {0, 1}∗ → {0, 1}`

Execution:
hk←R {0, 1}m
x1, x2, x3 ←R [n2/4]
g′ ←R Z

∗
n2

g = (g′)2n

y1 = gx1 , y2 = gx2 , y3 = gx3

Choose random generators g,h ∈R Bn′
pkNM = (hk, n, g, y1, y2, y3,g,h).
skNM = (hk, n, g, x1, x2, x3).

Nymble Production. A nymble consists of three com-
ponents, B, C, and E, which will be computed as follows.
Alice chooses randomly r ∈ Zq. Alice then computes B =
hr and C = hxhrb . Furthermore, Alice chooses a random
µ ∈R [n/4], and computes E = (u, e, v) as the encryption of
r with the following algorithm:

u = gµ1 , e = yµ1 (n+ 1)r, and v = abs((y2y
Hhk(u,e)
3)µ) .

The computation of E is denoted as V erEnc(r). Together
(B,C,E) form a nymble.
Nymble Opening. Bob sends the NM the tuple of (h,B,C,E).
The NM parses (u, e, v) from E. The opening algorithm is
performed as follows:

1. Check abs(v) = v. Otherwise return with “failure”

2. Check u2(x2+Hhk(u,e)x3) = v2. Otherwise return with
“failure”

3. Let t = 2−1 mod n and compute m̃ = (e/ux1)2t

4. Check n|(m̃− 1). If so, compute r = (m̃− 1)/n. Oth-
erwise, return with “failure”

5. Check (n+1)r = m̃. If so, return r. Otherwise, return
with “failure”.

Upon getting r, the NM computes i = (hrb)
−1 mod p. The

NM computes pseudonym hx = C · i if hr = B. Otherwise,
the NM returns “failure”.
Proof of Verifiable Encryption. Alice should prove that
E is an encryption of r. We rely on the following protocol
described in [12]:

1. Alice chooses randomly s ∈R [n/4] and computes l =
grhs. Alice sends l to Bob.

2. Alice and Bob engage in a ZKPoK protocol.

PK{(ρ, r, s) : u2 = g2ρ ∧ e2 = y2ρ
1 (n+ 1)2r∧

v2 = (y2y
Hhk(u,e)
3)2r ∧ l = grhs ∧B = hr}

Alice must also include a proof that the nymble indeed
contains a blinded copy of her pseudonym.

PK{(x, r) : B = hr ∧ C = hxhrb}

We can thus combine the above protocol with proof of
equality of discrete logarithms to produce a protocol that
proves that the nymble is correctly constructed based on a
valid pseudonym.

5. OUR CONSTRUCTION
In this section, we describe our construction in detail and

analyze its security and efficiency. Our construction achieves
all security goals of Nymble under a weaker trust model with
more scalable performance.

There are two trusted third parties called the Credential
Manager (CM) and the Nymble Manager (NM). The CM
is in charge of issuing an anonymous credential which en-
dorses the validity of the user’s public key/private key. The
NM is in charge of converting a nymble into a pseudonym,
which is in turn blacklistable w.r.t. one service provider
(SP). Users connecting to an SP via an anonymizing network
must present a valid nymble, proving that the nymble is con-
vertible to an authentic pseudonym and that the pseudonym
is not blacklisted. The nymble is recorded with the associ-
ated session. In the case of a misbehaving user, the nymble
will be sent to the NM to be de-anonymized.

5.1 Parameters
Let λ, `, k, k′ be security parameters, and let ê : G1×G2 →

GT be a bilinear map such that |G1| = |G2| = p for some
λ-bit prime p. Also let g0, g1, g2 ∈ G1 be generators of G1

and h0 ∈ G2 be a generator of G2. Let Gq ⊂ Z∗p be a
cyclic group of prime order q in which the DDH problem
is intractable. Let H0 : {0, 1}∗ → Gq, H1 : {0, 1}∗ → Zp,
and H2 : {0, 1}∗ → {0, 1}k be secure cryptographic hash
functions.

Let p, q be safe primes of ` bits, such that p = 2p′ +
1, q = 2q′ + 1 for prime p′ and q′, and let n = p · q. Let
H : {0, 1}m × {0, 1}∗ → {0, 1}` be a secure cryptographic
keyed hash function where m = m(`) is an auxiliary security
parameter.
Keys. The CM randomly chooses γ ∈R Zp as secret key for
credential generation and computes the public key ρ = hγ0
for pseudonym validation. The NM generates a set of pub-
lic/private keys by Algorithm 2, as mentioned previously.
Each user is tied to a private key x ∈ Zq and a public key
PK = gx1 .

Our construction makes use of the concept of a linkabil-
ity window, just as the original Nymble does. A linkability
window prevents the SP and NM from colluding to link all
of a user’s sessions. The length of linkability window, w,
can be set to a value that is reasonable for an individual SP,
such as one day, one week or one month. Each linkability
window has an index j which should be easily derived from
the calendar, such as “the j-th month in the year 2010”.

Each SP maintains a blacklist of user pseudonyms, an ac-
cumulator and an update log of the accumulator. The public
and private keys of the accumulator, along with the initial

5

value v0, are generated by Algorithm 1. The update log con-
sists of an ordered list of tuples (ti, vi), where ti is the ith
element added to the accumulator and vi = Update(ti, vi−1).
As aforementioned, each SP is tied to a unique pseudonym
generator h, contained in the public key.

We note that each SP’s pseudonym generator h changes
for each linkability window. As a consequence, the black-
list will be emptied as well. It is required that the relative
discrete logarithm between h values across different SPs and
different linkability windows is unknown. To implement this,
we take h = H0(id, j) where id is the canonical name of the
SP and j is the linkability window index.

5.2 Registration
This protocol enables a user Alice to obtain a CL-credential

from the CM upon successful completion. The credential is
of the form (A, e, x, y) such that Ae+γ = g0g

x
1 g
y
2 . The CM

makes sure that only one valid credential is issued corre-
sponding to any given private key x. An alternative ap-
proach is let the CM issue only one CL-credential to any IP
address, similar to the treatment in Nymbler [20].

This protocol can be seen as a simplified version of the
registration protocol in BLAC [27, 28] except that the user
is not anonymous here.

1. The CM sends m to Alice, where m ∈R {0, 1}l is a
random challenge.

2. Alice sends to the CM a tuple (pkA,Π1), where pkA =
gx1 ∈ G1, and Π1 is a signature proof of knowledge of:
SPK1{(x) : pkA = gx1}(m) .

3. Alice and the CM engage in some protocol to ensure
that each user is issued only a single credential. For
example, Alice could present a certificate for pkA from
a strong CA, or the CM could locally bind pkA to
Alice’s IP address and refuse to issue new credentials
to a bound IP address.

4. The CM verifies Π1. It returns “failure” if the valida-
tion failed. Otherwise, the CM sends a tuple (A, e, y)

to Alice such that A = (g0g
x
1 g
y
2)

1
e+γ

5. Alice returns “failure” if ê(A, ρhe0) 6= ê(g0g
x
1 g
y
2 , h0).

Otherwise, she stores (A, e, x, y) as her credential.

5.3 Authentication
This protocol lets SP Bob grant access privileges to a

user Alice and obtain a nymble token from Alice upon suc-
cessful completion. The private input to Alice is her cre-
dential cred = (A, e, x, y) and her non-membership witness
nwit = (w, d, pnym) for Bob’s blacklist accumulator such
that ê(v, h0) = ê(w, hpnym0 θ)ê(g0, h0)d and pnym = hx ∈
Z∗p .

1. Alice obtains a list of recent blacklist updates, ∆L from
Bob through an anonymizing network, or from other
reliable sources.

2. Alice parses ∆L as {(p1, v1), . . . , (pn, vn)} where each
pi is a blacklisted pseudonym and vi is the new ac-
cumulator value after adding pi. If ∃i, pnym = pi,
Alice knows she is blacklisted, she returns “failure”
and aborts the protocol. Otherwise, Alice updates her
(w, d) with ∆L, and initiates a fresh anonymized ses-
sion with Bob.

3. Bob sends a random challenge m to Alice, where m ∈R
{0, 1}l.

4. Alice randomly selects r ∈R Zq, computes B = hr and
commits to her private key x with C = hxhrb . Alice
commits her pnym to a commitment D = gpnym0 gt1
where t ∈R Zp. Alice produces a verifiable encryption
of r under the NM’s public key, E = V erEnc(r).

5. Alice sends to Bob a tuple (B,C,D,E,Π2), where Π2

is a signature proof of knowledge:

SPK2{(r, x,A, e, y, pnym,w, d) :

B = hr ∧ C = hxhrb ∧Ae+γ = g0g
x
1 g
y
2 ∧ pnym = hx∧

v = wpnym+sgd0 ∧ E = V erEnc(r) ∧ x ∈ [0, p]}(m)

6. Bob returns “failure” if SPK2 doesn’t verify. Other-
wise, Bob grants Alice access and retains (B,C,E) in
the log.

The instantiation of SPK1 and SPK2 is omitted due to
space restrictions and is specified in the full version of this
paper.

5.4 Filing Complaint and Blacklist Update
If Bob finds Alice has misbehaved, Bob executes this pro-

tocol to obtain Alice’s pnym from the NM and update the
blacklist. The private input to the NM is SKNM .

1. Bob sends (h,B,C,E) to the NM.

2. The NM extracts r from the decryption of E. It checks
if B = hr. If so, pnym = C(hrb)

−1 is computed. Other-
wise the NM returns “failure”. Further, the NM checks
if pnym has been computed before within the same
linkability window. If so, the NM returns a random
pseudonym with respect to h. Otherwise, pnym is re-
turned to Bob.

3. Bob updates the accumulator value with pnym. The
new value ṽ and pnym together will be added to the
blacklist update log.

The reason for checking whether pnym has already been
computed is to ensure that any SP cannot use the NM as an
oracle to link a user’s authentications. Note that different
nymbles from the same user for the same SP and linkability
window decrypt to the same pseudonym.

Also, because of the involvement of the current pseudonym
generator h in the transcript, Bob cannot abuse the NM to
do meaningless jobs such as decrypting transcripts for past
linkability windows.

5.5 Security Analysis
Jack achieves the four security goals of the original Nymble:

Blacklistability, Non-frameability, Anonymity, and,
through extensions, Rate-limiting. In the full version of
this paper, we prove the following

Theorem 5.1. Jack is secure under the strong RSA as-
sumption, the q-SDH assumption, and the DDH assumption
over the subgroup of k-th residues modulo a prime p.

6

Authentication Nymble Issuing
Schemes Communication Computation Communication Computation

Downlink Uplink User Check User Prove SP Downlink Uplink User NM
Nymble O(L) O(1) O(∆L) O(1) O(1)∗ O(W) O(1) O(1) O(W)

BLAC/EPID O(L) O(L) O(∆L) O(L) O(L) - - - -
PEREA O(L) O(K) O(K∆L) O(K) O(K) - - - -
Nymbler O(L) O(1) O(∆L) O(1) O(1)∗ O(W) O(W) O(W) O(W)

Jack O(L) O(1) O(∆L) O(1) O(1) - - - -

∗Requires O(L) preprocessing per time period

Table 1: Jack only requires constant computation cost for SP and constant size of signature for the user in
authentication while it doesn’t require the NM to issue nymbles. Without help from the NM, Jack achieves
the best asymptotic complexities in all aspects, compared to previous schemes.

6. EVALUATION
We asymptotically analyze the computation and commu-

nication complexity of Jack, and in addition we experimen-
tally evaluate the efficiency of a prototype implementation
of Jack.

6.1 Complexity Analysis
The core component of Jack, which has the most impact

on performance, is the user authentication protocol. We
summarize the complexity of the authentication protocol of
Jack in Table 1 and show comparisons with existing schemes.
In all schemes, the authentication has five steps:

1. (Downlink) The user downloads the blacklist from the
SP.

2. (User Check) The user inspects the new entries to the
blacklist, optionally updating its non-membership wit-
ness.

3. (User Prove) The user prepares a proof showing that
she’s not blacklisted.

4. (Uplink) Alice sends the proof to the SP.

5. (SP Verify) The SP verifies the proof the user sent.

In Nymble and Nymbler the authentication is very efficient
while the actual computation is shifted to the NM in the
Nymble Issuing protocol. To be fair, we list the cost of
issuing Nymbles as well.

The analysis is based on the following variables: L is the
total size of the blacklist while ∆L is the number of newly
added entries in the latest blacklist with respect to the user’s
local copy of the blacklist. K is the length of the user queue
in PEREA and W is the number of time periods within a
linkability window in Nymble and Nymbler. We note that K
is in some sense a SP security parameter for PEREA (longer
K decreases the likelihood of the race condition mentioned
previously), whileW is in some sense a user security parame-
ter for Nymble/Nymbler (larger W means that linkable time
periods are shorter, given a fixed linkability window).

As in previous schemes, Jack requires Alice to download
the whole blacklist so the communication cost of Downlink is
of course O(L). Similarly, in all schemes, the complexity of
User Check is at least O(∆L), with a simple linear search.
The only exception is the PEREA scheme where the user
has K witness to update with. In Jack, Alice only needs to
update one witness, making computation cost grow linearly
with ∆L.

In Jack, Alice only proves to the SP her knowledge of a
single non-membership witness against the blacklist, with
O(1) computation. Therefore, the uplink bandwidth cost
and the verification cost are O(1) as well. In contrast, in
PEREA, Alice proves the validity of K witnesses, while in
BLAC Alice produces a proof of L inequalities. The costs of
producing, transferring and verifying such proofs are O(K)
and O(L) in BLAC and in PEREA respectively. In the case
of Nymble and Nymbler, Alice only presents a valid nymble
token with negligible computation and constant uplink cost.
The SP in these schemes checks the nymble against the“link-
ing tokens” in the blacklist; this can be done in O(1) time,
with a pre-processing cost of O(L) per time period.

It is easy to see that the computational complexity and
the communication cost of Registration is constant for all
schemes. It is also easy to see that access revocation in all
schemes only requires the NM computation of O(1) to open
a nymble and return the pseudonym/linking token to the
complaining SP.

6.2 Prototype Implementation
We implement a prototype of Jack in C to evaluate the

performance. In our prototype, the client produces SPKs
for nymble connections, which are verified by the server.
We make use of the Pairing-Based Cryptography (PBC) Li-
brary (version 0.5.7) 1 for the elliptic-curve and pairing op-
erations. The GNU MP Bignum (GMP) Library (version
5.0.1) 2, from which PBC Library is built, is also used di-
rectly in our implementation. We also rely on OpenSSL for
cryptographic functions, such as its SHA-1 hash function,
and HMAC function family for realizing the cryptographic
hash functions and HMACs in our system.

6.3 Parameter Choice
The choice of curve parameters is worth elaboration. We

use two types of pairings (instead of one) in our prototype.
First, we choose a pairing over Type-A curves, defined in
the PBC library, to implement the user credential system.
Type-A curves have the form E : y2 = x3 + x over the field
Ft for some prime t and have embedding degree 2. So GT is
a subgroup of Ft2 . G1 and G2 in this type-A pairing have
order of the form p = 2a + 2b + 1, which is a prime factor of
t+ 1. Currently t and p in Type-A pairings are 512-bits and
160 bits respectively. The user’s secret key x is a 160-bit
random number.

1http://crypto.stanford.edu/pbc/
2http://gmplib.org/

7

Operation Host Mean Time (ms) Trials
Witness Update User 12.5 100

SPK2 Signing w/o prep. User 263.8 100
SPK2 Signing w/ prep. User 2.0 100
SPK2 Verification SP 207.7 100
Blacklist Update SP 2.0 100
Nymble Opening NM 26.1 100

Table 2: The timing for critical computations in Jack

Type-A pairings have the fastest pairing speed among
PBC-defined pairings. However, since p − 1 has prime fac-
tors of size up to (a− b) bits (56 in this case), it is not safe
to to implement DUAs for DDH groups on a type-A pairing.

Instead, we choose a pairing over Type-D curves [23], also
defined in the PBC library, for the implementation of our
accumulator. Such curves have the form E : y2 = x3 +cx+d
and have embedding degree 6. G1 are defined over E(Fs)
and have order p where s and p are 248-bits and 224-bits
respectively. Furthermore, p−1 = 16 · q where q is a 220-bit
prime.

The security parameter ` for verifiable encryption is set to
512 and m(`) = 160. Thus the safe primes p and q are 512-
bits. The modulus n of the underlying Paillier encryption
scheme is 1024-bits. Security parameters k and k′ are both
set to 160. For the proof of knowledge of double discrete
logarithm, the number of rounds is set to 80.

6.4 Experimental Performance
The prototype is tested on a Dell Precision T3500 machine

with a quad-core 2.67 GHz Intel Xeon W3550 CPU and 12
GB RAM, running Ubuntu 9.04.

We record the average timing of major operations in Jack,
illustrated in table 2, taken over 100 trials. The SPK signing
procedure allows the user to pre-process expensive commit-
ments in advance, thus optimizing the performance as shown
in “SPK2 Signing with prep.” The data shows that the bot-
tleneck of the performance is as expected the verification
of SPK2 on the SP side, which is around 208 milliseconds.
However, there are ways to speed up this operation, e.g. par-
allel processing with multi-core, or nymble pre-verification
by a TTP (discussed in §7.4).

First, we compare the performance of Jack with BLAC in
terms of communication cost. As expected, the communica-
tion cost for Jack stays constant at around 80KB while that
for BLAC grows linearly. Wikipedia currently lists between
20,000 and 25,000 IPs that are permanently blocked 3, which
equivalently translates to about 6 to 7.5 MB of uplink cost.

Next, we compare the authentication time at the SP side
for Jack, BLAC, Nymble and Nymbler for various blacklist
sizes L. Although the SP in Nymbler has very efficient signa-
ture verification on nymbles, the fact is the NM takes on the
computational load of nymble verification for each SP [20]
in the Nymble Issuing Protocol. It is reasonable to compare
the total computational resources consumed per authenti-
cation across different schemes, assuming a constant rate of
1 anonymous authentication per second. In Nymbler and
Nymble, the NM has to compute a series of linking tokens
for each blacklisted nymble, in addition to issuing nymbles.
Therefore, the total computation for the NM per authenti-

3http://en.wikipedia.org/wiki/Special:BlockList, accessed
at Apr. 15th 2010

0 5000 10000 15000 20000 25000

of entries in BL

0

1

2

3

4

Ti
m

e
 (

se
c)

Computation cost per auth. vs. Blacklist size

BLAC Jack Nymbler Nymble

Figure 2: We compare the average computation load
per authentication at the server side across the four
schemes. Jack has the best scalability while the
CPU consumption of the other three schemes scales
linearly with the size of the blacklist. (Note the
growth of Nymble is very small and thus invisible in
the graph.)

cation is ta + tlL/A where ta is the time needed for nymble
issuing, tl is the time to compute one linking token and A
is the number of authentications in one time period. We
choose a time window of 1 day with 288 time periods as the
original Nymble does.

In Figure 2 we show the computation load on the SP and
NM per authentication. As expected, BLAC, while requir-
ing the least trust in outside parties, doesn’t scale. On the
other end, Nymble offers superb efficiency, however, with
the strongest trust model. Jack consumes less CPU than
Nymbler, and both Jack and Nymbler work under a common
moderate trust model. As the size of the blacklist grows, the
performance gap between Jack and Nymbler widens linearly.

7. DISCUSSION
In this section, we briefly discuss several easy extensions

to Jack.

7.1 Objective Blacklisting
As mentioned in [25], in certain circumstances where ob-

jective blacklisting is preferred, users may call for a third-
party arbitrator other than SPs for the judgement of misbe-
havior and anonymity revocation. In that case, the NM in
our scheme can play the role of arbitrator. The only change
is that a policy needs to be incorporated into each nymble,
specifying under what conditions the nymble can be opened.
When a SP complains about a nymble, she will provide the
policy as well. The NM will judge if the policy is satisfied
and react accordingly.

Luckily, our construction of nymbles provides this for us
by design. Users can specify the policy in the currently
unused tag L in the verifiable encryption of E(r). When the
NM makes the judgement, it can look up the policy L with
E(r) and decide whether the user has violated the policy.

7.2 Rate Limiting
There are many existing protocols that enforce limits on

the total number of anonymous authentications within a

8

time period. For example, users can obtain at most k e-
cash coins from the SP and spend one coin every time the
user wants to authenticate. In k-times anonymous authenti-
cation (k-TAA) [26], users will keep their anonymity unless
they authenticate more than k times. In periodic n-times
anonymous authentication [10], a token dispenser will give
out at most n one-time tokens in one time period and the
dispenser automatically renews itself every time period.

Our scheme is compatible with any of the above rate-
limiting protocols. To realize a rate-limiting Nymble con-
nection, a user first authenticates with the SP with one
rate-limiting protocol. Once that authenticates, the user can
further execute the authentication protocol in our scheme to
obtain the service.

7.3 Blacklist Duration Management
For some SPs, it is desirable to have flexibility in the du-

ration of a user’s blacklisting. It is reasonable and common
in Wikipedia to block users for different durations [2]. The
current design of our scheme only allows SPs to blacklist a
user for up to the fixed duration w, the length of the linka-
bility window. However, we can introduce an easy extension
to solve this problem.

To support bans of different durations, SPs in our scheme
could maintain multiple blacklists with different scales of
linkability window. As an illustration, a SP can have three
blacklists, one for the current month, one for the current
week and one for the current day. To authenticate, the user
must present a non-membership proof for all three blacklists.
And the SP can choose to block a misbehaving user for the
rest of the month, or until the end of the week, or for the
day, according to the severity of the damage the user caused.
In other words, with the extension of multi-blacklists, SPs
have freedom to block a die-hard vandal for as long as they
want, and to cool down an edit war by temporarily blocking
the editors involved for a short time period.

7.4 Speeding-up Nymble Verification
The procedure of verifying a nymble and the attached

signature proof is so expensive that deploying Jack on a
popular SP seems difficult. To address this problem, we
propose the following extension. Similar to the treatment in
Nymbler, the computational expense of nymble verification
at the SP side could be relieved by a public TTP [20]. Let’s
call this TTP the Authentication Manager (AM). In this
case, the authentication breaks down into three steps:

1. Instead of sending the entire nymble (B,C,D,E,Π2)
to the SP, user Alice sends (B′, C′, D′,Π′2) to the AM
where (B′, C′, D′) is a blinded version of (B,C,D) and
Π′2 proves the integrity of (B′, C′, D′). Once AM ver-
ifies Π′2, AM gives Alice a (blinded) RSA signature
σ′ = sigAM (B′, C′, D′) .

2. Alice unblinds σ′ to yield σ = sigAM (B,C,D).

3. Alice sends (B,C,D,E, σ,Π3) to the SP where Π3 is
a signature proof of knowledge:

SPK3{(r) : B = hr ∧ E = V erEnc(r)}(m)

The SP authenticates Alice if σ verifies against (B,C,D)
and Π3 verifies with (B,E).

Because of the efficiency of RSA signature verification and
VEDL, the computational load at the SP side is greatly

reduced, to several milliseconds. The AM could even be
implemented by nodes within the anonymization service; for
instance, Tor nodes already have RSA public keys. We note
that all computation by the AM can be verified by any other
node, minimizing the trust placed in this party: a cheating
AM can be caught by a single SP and distrusted by all SPs.

8. CONCLUSION
We have presented Jack, a new anonymous blacklisting

scheme which provides scalable performance with an im-
proved TTP trust model, wile providing identical function-
ality and privacy security guarantees to other TTP-based
schemes. The system is constructed from dynamic univer-
sal accumulators for DDH groups, verifiable encryption of
discrete logarithms and CL-signatures. Compared to pre-
vious work such as BLAC, where the time and bandwidth
required for signature generation and verification grows lin-
early with the size of the blacklist, our scheme stands out
with a constant cost in both time and bandwidth.

9. ACKNOWLEDGMENTS
We thank Jan Camenisch for helpful explanation of the

VEDL scheme, Apu Kapadia for a helpful discussion about
Nymble, and Ian Goldberg for several helpful clarifications
of Nymbler. We also thank several anonymous reviewers for
their constructive feedback. This work was supported by
the NSF under grant 0546162.

10. REFERENCES
[1] The Tor Project. https://www.torproject.org/.

[2] Wikipedia:Blocking policy.
http://en.wikipedia.org/wiki/Wikipedia:

Blocking_policy.

[3] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A
practical and provably secure coalition-resistant group
signature scheme. In Proceedings on Advances in
Cryptology - CRYPTO ’00, pages 255–270, London,
UK, 2000. Springer-Verlag.

[4] M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu.
Dynamic universal accumulators for DDH groups and
their application to attribute-based anonymous
credential systems. In Topics in Cryptology CT-RSA
2009, volume 5473 of Lecture Notes in Computer
Science, pages 295–308. Springer Berlin / Heidelberg,
2009.

[5] M. H. Au, P. P. Tsang, W. Susilo, and Y. Mu.
Dynamic Universal Accumulators for DDH Groups
and Their Application to Attribute-Based Anonymous
Credential Systems. Technical report, Dartmouth
Computer Science TR2009-643, 2009.

[6] M. Bellare and P. Rogaway. Random oracles are
practical: a paradigm for designing efficient protocols.
In CCS ’93: Proceedings of the 1st ACM conference
on Computer and communications security, pages
62–73, New York, NY, USA, 1993. ACM.

[7] D. Boneh, X. Boyen, and H. Shacham. Short group
signatures. In Advances in Cryptology - CRYPTO ’04,
volume 3152 of Lecture Notes in Computer Science,
pages 41–55. Springer Berlin / Heidelberg, 2004.

[8] D. Boneh and H. Shacham. Group signatures with
verifier-local revocation. In CCS ’04: Proceedings of

9

the 11th ACM conference on Computer and
communications security, pages 168–177, New York,
NY, USA, 2004. ACM.

[9] E. Brickell and J. Li. Enhanced privacy id: a direct
anonymous attestation scheme with enhanced
revocation capabilities. In WPES ’07: Proceedings of
the 2007 ACM workshop on Privacy in electronic
society, pages 21–30, New York, NY, USA, 2007.
ACM.

[10] J. Camenisch, S. Hohenberger, M. Kohlweiss,
A. Lysyanskaya, and M. Meyerovich. How to win the
clonewars: efficient periodic n-times anonymous
authentication. In CCS ’06: Proceedings of the 13th
ACM conference on Computer and communications
security, pages 201–210, New York, NY, USA, 2006.
ACM.

[11] J. Camenisch and A. Lysyanskaya. Dynamic
accumulators and application to efficient revocation of
anonymous credentials. In Proceedings on Advances in
Cryptology - CRYPTO ’02, pages 61–76, London, UK,
2002. Springer-Verlag.

[12] J. Camenisch and V. Shoup. Practical verifiable
encryption and decryption of discrete logarithms. In
Proceedings on Advances in Cryptology - CRYPTO
’03, volume 2729 of Lecture Notes in Computer
Science, pages 126–144. Springer Berlin / Heidelberg,
2003.

[13] J. Camenisch and M. Stadler. Efficient group
signature schemes for large groups (extended
abstract). In Proceedings on Advances in Cryptology -
CRYPTO ’97, pages 410–424, London, UK, 1997.
Springer-Verlag.

[14] D. Chaum and E. van Heyst. Group signatures. In
Advances in Cryptology - EUROCRYPT ’91, volume
547 of Lecture Notes in Computer Science, pages
257–265. Springer Berlin / Heidelberg, 1991.

[15] I. Damg̊ard and N. Triandopoulos. Supporting
non-membership proofs with bilinear-map
accumulators. Cryptology ePrint Archive, Report
2008/538, 2008. http://eprint.iacr.org/.

[16] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
the second-generation onion router. In SSYM’04:
Proceedings of the 13th conference on USENIX
Security Symposium, pages 21–21, Berkeley, CA, USA,
2004. USENIX Association.

[17] A. Fiat and A. Shamir. How to prove yourself:
practical solutions to identification and signature
problems. In Proceedings on Advances in cryptology -
CRYPTO ’86, pages 186–194, London, UK, 1987.
Springer-Verlag.

[18] S. Goldwasser, S. Micali, and C. Rackoff. The
knowledge complexity of interactive proof systems.
SIAM J. Comput., 18(1):186–208, 1989.

[19] S. Goldwasser, S. Micali, and R. L. Rivest. A digital
signature scheme secure against adaptive
chosen-message attacks. SIAM J. Comput.,
17(2):281–308, 1988.

[20] R. Henry, K. Henry, and I. Goldberg. Making a
nymbler nymble using verbs. Technical report,
University of Waterloo Technical Report CACR
2010-05.

[21] P. C. Johnson, A. Kapadia, P. P. Tsang, and S. W.

Smith. Nymble: Anonymous IP-address blocking. In
Proceedings of The Seventh International Symposium
on Privacy Enhancing Technologies (PET), Ottawa,
Canada, volume 4776 of LNCS, pages 113–133.
Springer-Verlag, June 2007.

[22] J. Li, N. Li, and R. Xue. Universal accumulators with
efficient nonmembership proofs. In ACNS ’07, pages
253–269, Berlin, Heidelberg, 2007. Springer-Verlag.

[23] A. Miyaji, M. Nakabayashi, and S. Takano. New
explicit conditions of elliptic curve traces for
fr-reduction (special section on discrete mathematics
and its applications). IEICE transactions on
fundamentals of electronics, communications and
computer sciences, 84(5):1234–1243, 20010501.

[24] L. Nguyen. Accumulators from bilinear pairings and

applications. In Topics in Cryptology âĂŞ CT-RSA
2005, volume 3376 of Lecture Notes in Computer
Science, pages 275–292. Springer Berlin / Heidelberg,
2005.

[25] E. J. Schwartz, D. Brumley, and J. M. McCune.
Contractual anonymity. In Proceedings of the 17th
Annual Network and Distributed System Security
Symposium, San Diego, CA, February 2010.

[26] I. Teranishi, J. Furukawa, and K. Sako. k-times
anonymous authentication (extended abstract). In
Advances in Cryptology - ASIACRYPT 2004, volume
3329 of Lecture Notes in Computer Science, pages
81–95. Springer Berlin / Heidelberg, 2004.

[27] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith.
Blacklistable anonymous credentials: blocking
misbehaving users without ttps. In CCS ’07:
Proceedings of the 14th ACM conference on Computer
and communications security, pages 72–81, New York,
NY, USA, 2007. ACM.

[28] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith.
BLAC: Revoking Repeatedly Misbehaving Anonymous
Users Without Relying on TTPs. Technical report,
Dartmouth Computer Science TR2008-635, 2008.

[29] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smith.
Perea: Towards practical ttp-free revocation in
anonymous authentication. In CCS ’08: Proceedings of
the 14th ACM conference on Computer and
communications security, pages 333–344. ACM, 2008.

[30] P. P. Tsang, A. Kapadia, C. Cornelius, , and S. W.
Smith. Nymble: Blocking Misbehaving Users in
Anonymizing Networks. IEEE Transactions on
Dependable and Secure Computing (TDSC), Sept.
2009.

[31] P. P. Tsang, A. Kapadia, C. Cornelius, and S. W.
Smith. Nymble: Blocking misbehaving users in
anonymizing networks. Technical report, Dartmouth
Computer Science TR2008-637, 2008.

10

