
On the risks of serving whenever you surf

Vulnerabilities in Tor’s blocking resistance design

Jon McLachlan
University of Minnesota
Minneapolis, MN 55455
mcla0181@umn.edu

Nicholas Hopper
University of Minnesota
Minneapolis, MN 55455
hopper@cs.umn.edu

ABSTRACT
In Tor, a bridge is a client node that volunteers to help censored
users access Tor by serving as an unlisted, first-hop relay. Since
bridging is voluntary, the success of this circumvention mechanism
depends critically on the willingness of clients to act as bridges. We
identify three key architectural shortcomings of the bridge design:
(1) bridges are easy to find; (2) a bridge always accepts connections
when its operator is using Tor; and (3) traffic to and from clients
connected to a bridge interferes with traffic to and from the bridge
operator. These shortcomings lead to an attack that can expose the
IP address of bridge operators visiting certain web sites over Tor.
We also discuss mitigation mechanisms.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and Protection

General Terms
Security

Keywords
Anonymous Communication, Blocking Resistance

1. INTRODUCTION
Tor [12] is a popular low-latency anonymity network. As of early

2009, the Tor network consists of roughly 2000 “Onion Routers”
that voluntarily relay traffic between approximately 200,000 clients
and the rest of the Internet. The goal of Tor is to conceal who
communicates with whom: servers should not be able to determine
which clients they are servicing, and “local” adversaries who can
observe a Tor client’s network connections and even control some
Onion Routers should not be able to control or determine who the
client communicates with.

While a common use of Tor is to preserve the privacy of a user
accessing web services, Dingledine and Mathewson [11] have noted
that a growing set of Tor users seem to be using it as a tool for cen-
sorship resistance. Since Internet censorship, the use of technical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

means by censoring agents to block access to sites with objection-
able content, is an increasingly widespread practice [10, 7], this
trend is not surprising. Because a Tor client’s destination is hard
to control or determine, Tor can be an effective mechanism for ac-
cessing and contributing to sites with content that some regimes
may wish to censor.

However, Tor has a known weakness as a censorship resistance
tool: Given that the centralized relays of Tor experience extremely
little churn and are listed publicly, blocking access to Tor is as
simple as downloading this list and blocking connections to the
hosts it contains. While the ability to block connections exiting Tor
is an important feature to prevent abuse complaints, the ability to
block connections entering Tor has no corresponding justification,
and means that as its popularity for providing censorship resistance
grows, the likelihood that it will be blocked also increases.

To counteract this situation, the designers of Tor introduced a
new method of accessing the Tor network: bridges. A bridge is
essentially an end-user who wishes to help people who can not oth-
erwise access the Tor servers, “bridge” themselves into the Tor net-
work by serving as an unlisted, first-hop relay. This means that
censoring adversaries now have to blacklist not only every Tor re-
lay, but also every Tor bridge. Given the large numbers and high
churn of end-users in Tor, and the goal that end-users will become
bridges by default, the task of blocking Tor becomes more cumber-
some.

An important question about the bridge design, raised by Dingle-
dine and Mathewson [11], is whether running a bridge will expose
clients to additional privacy risks. This is clearly a central con-
cern, because if the cost, in terms of privacy, of running a bridge is
too high, then few users will operate them, and the design will not
provide the desired level of blocking resistance.

In this paper, we report on experiments that suggest that the cur-
rent bridge architecture allows improved attacks on the anonymity
of bridge operators. Our experiments show that two attacks previ-
ously proposed against other peer-to-peer anonymity schemes can
be adapted and combined to apply successfully to Tor clients op-
erating as bridges. We also suggest possible mechanisms to miti-
gate these attacks, at the expense of the level of service provided to
the clients of a bridge, and show that these mechanisms effectively
counteract the known attacks.

1.1 A Brief Overview
Our attacks, described in Section 3, rely on three architectural

weaknesses of the bridge design:

1. Bridges are easy to find. Although it is a requirement that
(nearly) everybody should be able to find some bridge, the
current bridge design makes it relatively easy for an attacker
to find many bridges. We used the Tor network to find a list

of 247 bridges; we also describe several other methods of
finding a more comprehensive list of bridges.

2. A bridge always accepts connections when its operator is
using Tor. Because of this, an attacker can compile a list
of times when a given operator was either possibly or cer-
tainly not using Tor, by repeatedly attempting to connect to
the bridge. This list can be used to eliminate bridge operators
as candidates for the originator of a series of connections ex-
iting Tor. We demonstrate empirically that typically, a small
set of linkable connections is sufficient to eliminate all but a
few bridges as likely originators.

3. Traffic to and from clients connected to a bridge inter-
feres with traffic to and from a bridge operator. We demon-
strate empirically that this makes it possible to test via a
circuit-clogging attack [17, 15] which of a small number of
bridge operators is connecting to a malicious server over Tor.
Combined with the previous two observations, this means
that any bridge operator that connects several times, via Tor,
to a web-site that can link users across visits could be identi-
fied by the site’s operator.

In Section 4 we discuss and evaluate mechanisms for decreasing the
impact of, or eliminating, each of these architectural shortcomings:
give “tokens” to access a bridge; decouple the bridge status from
the operator’s Tor use; and implement a scheme that isolates bridge
operator traffic from bridge-relayed traffic.

1.2 Outline
The remainder of this paper proceeds as follows. We discuss

the Tor anonymity scheme and related work in section 2 and the
results of our experiments on Tor Bridges in section 3. We then
present our mitigation mechanism and experiments analyzing its
effectiveness in section 4. Finally we briefly discuss implications
of these findings in section 5.

2. BACKGROUND

2.1 Tor and Bridges
Tor’s main objective, like most low-latency, relay-based anonymity

schemes, is to provide anonymity by concealing which client is
communicating with which server [12]. Tor attempts to provide
this anonymity against “local” adversaries that can observe at most
one endpoint of a client-server connection, and control a small frac-
tion of Tor nodes.

For our purposes, the Tor system consists of four node “types, ”
depicted in Figure 1 as well as several distinguished nodes. Relays
(ORs) are the publicly-listed nodes that help to relay traffic between
end-users and the rest of the Internet. Clients are nodes that connect
to Tor through public relays. Bridges are clients that also operate as
unlisted relays to allow censored nodes to access Tor; we call the
“user” of a bridge the bridge operator. Bridge clients are clients
who access Tor using a bridge as a first-hop relay.

Tor attempts to achieve anonymity against these local adversaries
with the help of “onion relays,” a collection of servers. Every OR
publishes a “descriptor” listing its IP address, port, and public key,
to the centralized Directory Service, which collects and manages
the information of all ORs. Clients contact the DS, download a list
of all ORs, and construct anonymous circuits (or tunnels) through
a randomly selected set of relays.

These tunnels are built to obscure their initiator by iteratively
contacting each successive relay only through the current end of

Figure 1: Tor Node types: (Public) Relays forward connections
for others; clients connect to Tor using public relays; Bridges
are clients that act as (unlisted) relays for censored nodes;
Bridge clients access Tor via bridges.

the tunnel, and performing half-authenticated key exchange to es-
tablish a shared symmetric key between each relay in the path and
the initiator. When a message traverses a tunnel from the initiator,
each hop along the way removes one layer of encryption before
passing the message to the next hop. At the final node, the message
is in plain-text, as it has completed the entire journey through the
circuit. The “exit” node of these anonymous circuits is responsible
for forwarding these messages to arbitrary Internet hosts on behalf
of the initiator. Responses travel back up through the sequence,
with each relay encrypting the message with a new layer of encryp-
tion, back to the initiator. When the initiator receives a message
from the tunnel, she removes all n layers of encryption yielding the
message from the remote server.

Since the list of relays is public and centrally available, it is triv-
ial to block access to Tor – network administrators that wish to do
so can simply block traffic to the ORs’ IP addresses. To counteract
this, the Tor developers designed and released the bridge service in
December 2007.

The bridge itself is just that: a “bridge” for otherwise blocked
users which may be used to enter the Tor network. In terms of
raw functionality, it is identical to an OR that does not publish
its descriptor to the Directory Service. Instead, bridges publish
their Bridge Descriptors to a Bridge Authority. As such, bridges
can be discovered only by communication between end-users and
the bridge authority. The Tor development team has provided end-
users with basic means of discovering a small number of registered
bridges via a website, an email, or a direct query to the Bridge
Authority. Distribution of bridge information must be limited, be-
cause if the bridges are easily enumerable, then they are subject to
the same blockage that the Onion Relays are subject to. However,
if a given host is suspected of being a bridge, the protocol does not
prevent an adversary from attempting to connect to standard ports
on the host and establish a circuit.

2.2 Surfing vs. Serving
Since a bridge, in particular, supports tunnels for bridge oper-

ators and bridge clients, we distinguish two relevant states of a
bridge node. A bridge is surfing whenever it is relaying streams
over Tor that originate from its operator. A bridge is serving when-
ever it will accept connections from third party bridge clients and
relay those connections over Tor. We note that functionally, bridge
clients, clients, bridges, and relays all run the same Tor software,
and configuration options are used to determine which role a given
Tor instance will take. In particular, this means that whenever a
bridge operator starts the Tor software so that she can surf anony-

Figure 2: Circuit clogging.

mously, then her Tor instance will also be available to serve other
clients as a bridge. Thus, architecturally, she must “serve others”
in order to “surf.”

2.3 Related Work
A variety of attacks have been proposed both against low-latency

anonymity schemes such as Tor [1, 8, 20, 19, 17], higher-latency
mixing schemes [9, 3, 14], and “peer to peer” anonymity schemes
like Crowds and Salsa [22, 5, 16]. Among these, the two most
closely-related attacks are Intersection Attacks and Circuit-Clogging.

2.3.1 Intersection attacks
The general concept of an intersection attack seems to have been

first published by Berthold et al. [4]. The core idea of these attacks
is that a global adversary can see which users contribute messages
to a mix in each round, and which users receive messages in each
round. If Alice always sends messages to Bob, then by taking the
intersection of the sets of users that receive messages in rounds
when Alice contributes a message, the adversary will eventually
reduce the set of possible recipients to Bob. Danezis [9] extended
this attack to deal with the case where Alice sends to multiple re-
cipients, and Mathewson and Dingledine [14] observed that even in
the presence of cover traffic, periods when a possible sender is of-
fline can lead to the discovery of a sender’s correspondents. These
attacks assume a global adversary and were tested by simulations
with synthetic output distributions and availability data. Wright et
al. [22] extended the attack to the case of a single malicious server
that could witness how long the users of an anonymity scheme were
online. They showed that under certain assumptions about the be-
havior of users, many users of a scheme will “churn out” before
a connection terminates, eliminating them as possible originators,
and tested their attack with real output distributions and synthetic
availability data. Note that this version of the attack critically re-
quires knowledge of the session length.

2.3.2 Circuit Clogging
Proposed first by Murdoch and Danezis [17], circuit-clogging

works as follows. Suppose that a Tor client, whom we call the
“victim,” connects to a malicious server over Tor. First the victim
constructs an anonymous tunnel in Tor. Next the victim connects,
via this tunnel, to the malicious server. To conduct the clogging at-
tack, the server begins sending a long stream of data, modulated in
an alternating pattern of long (on the order of 30 seconds) high-rate
bursts of data (called “active” periods) followed by equally long
“silent” periods with no traffic at all; we call the malicious server
acting in this capacity the “burst server.” If the data rate during ac-
tive periods is high enough, then the load on the nodes of the Tor
circuit will differ considerably during active and silent periods.

While the “burst server” is alternating between active and silent
periods, a colluding node, the “probe” carries out the second part
of the attack. The probe’s job is quite simple: find all the re-
lays whose packet-processing latency is correlated with the burst-

server’s on/off periods. To collect this performance data, the probe
creates a one-hop anonymous circuit to itself through the targeted
node. Through this one hop circuit, the probe sends simple time-
stamp messages. When the probe notices that the targeted node’s
latency consistently increases during the “active” period when com-
pared to the “silent” periods, then this high correlation is used to
probabilistically identify it as supporting the victim’s anonymous
circuit.

In a closely related clogging attack described by Back et al. [1],
relay clogging, the roles of the probe and malicious server are
swapped: the server times the latency of the client’s anonymous
tunnels, and sends high-bandwidth “clogging” streams to various
relays. These streams can be sent at the network level, making the
attack difficult to defend against under the current Internet architec-
ture. However, the attack also has higher bandwidth requirements,
since the high-bandwidth “clogging” packets must be sent to all
suspected relays, rather than a single tunnel.

3. ATTACKING A BRIDGE

3.1 Attack Scenario
The basic scenario of our attack is as follows: suppose a Tor

client, the “initiator,” contributes frequently to the same website
via Tor, and furthermore an attacker can link these multiple contri-
butions, for example because the website is a pseudonymous wiki,
blog, or discussion forum. We suppose that the initiator is using
Tor because she wants to preserve her anonymity, and furthermore
that the attacker is someone she would not want to identify her.
We assume that the attacker can (1) collect a list of times that the
pseudonymous operator has contributed, and (2) cause the operator
to connect at least once to a server controlled by the attacker, and
(3) access the Internet with moderate upload bandwidth, around
500 Kbps1. We note that in the case of wikis, as well as many blog
and forum packages, points (1) and (2) do not requires the attacker
to control the server since editing/posting times are public infor-
mation and private messages or “talk” pages allow sending image
URLs that are likely to be accessed by only the initiator.

Our attack proceeds in three phases, corresponding to the three
architectural weaknesses identified in Section 1. In the Bridge Dis-
covery phase, the attacker compiles a list of bridges using one of
several methods described in Section 3.2. Since the bridge design
envisions most Tor clients as bridge operators, the initiator will be
in this set with reasonable probability.

In the Bridge Winnowing phase, many bridges are eliminated as
candidate initiators. This phase exploits the observation that the
nature of the bridge design – on by default – allows a remote, non-
global adversary to observe whether an arbitrary bridge operator is
possibly surfing at an arbitrary time. Several works have observed
that this knowledge, along with the knowledge of some links exit-
ing an anonymity service, could be used to conduct an intersection
attack [14, 22]. We test the effectiveness of this technique with
data collected from bridges and users’ behaviors on Wikipedia. We
show how to extend this technique so that an attacker can effec-
tively reduce the set of possible initiators of a repeated connection
to a smaller, more manageable number.

Given this smaller, set of possible initiators, we observe that
the circuit-clogging attack, proposed and empirically validated by
Murdoch and Danezis [17], can be applied to bridges, forming the
Bridge Confirmation phase. In an extension of circuit clogging,
McLachlan and Hopper [15] previously demonstrated that when a

1Assuming all 200K Tor clients become bridge operators; the band-
width required scales linearly with the number of bridges

P2P anonymity scheme is circuit clogged, that the results are even
more devastating than when applied to a centralized scheme: in
P2P schemes, the victim’s physical machine is also a relay, can be
probed directly, and in at least one scheme has a level of correla-
tion that is distinguishable from “middle” relays [15]. We empir-
ically demonstrate that a slightly modified circuit clogging attack
effectively confirms that a bridge operator is the true originator of
a connection, without needing to probe middleman relays.

We note that while the second and third phases of our attack are
similar to previously known attacks, their application to this context
has several interesting aspects. In particular, the winnowing phase
is similar to the long-term intersection attack, which is normally
discussed in the context of a global eavesdropper, but because of
the bridge setting our attack can be inexpensively mounted by a
remote adversary that in many cases does not require the coopera-
tion of either endpoint. Similarly, combining candidate identifica-
tion with circuit-clogging drastically reduces the bandwidth cost of
the attack, since, given a small set of candidate nodes that can be
probed directly, there is no need to discover the other nodes partic-
ipating in the circuit.

3.2 Discovery
It is a requirement of the bridge design that every bridge client

should be able to discover some small number of bridges; otherwise
the fact that bridges are hard to block does not improve the ability
of censored users to circumvent blocking. On the other hand, it
should not be too easy to find the list of bridges, or they become
as convenient to block as the public relays. The current bridge
authority design attempts to resolve this conflict by rate-limiting
each 24-bit IP prefix to discover a small set of distinct bridges each
week. At this rate, an attacker with few prefixes would require
many discovery trials to collect a large pool of bridges.

Unfortunately, several flaws in the design of bridges and the
bridge authority make it possible to quickly enumerate a larger set
of bridges using a single IP address. Tor Exit nodes are not treated
as sharing a single IP prefix, despite the fact that this is explicitly
mentioned in the bridge design [11]. This allowed us to connect the
bridge authority through each Tor Exit node and obtain a distinct
set of bridges. We repeated this attack on a weekly basis from De-
cember 3 2008 through December 17 2008 and obtained 247 bridge
descriptors, which form the input set for the evaluation of the win-
nowing attack in the next section. Note that since the set of bridges
given to a single IP prefix changes weekly, and we conducted the
experiment for 2 weeks, we would expect to collect only 6 bridges
if the bridge authority correctly classified all Tor Exit nodes with
the same IP address. A similar, one-time experiment in Decem-
ber 2008 using 47 open HTTP proxies found by a search engine
discovered 129 of these bridge descriptors.

While we do not claim that this particular experiment represents
a serious attack against bridges, an obvious question to ask about
our experiment is what fraction of the available bridges it discov-
ered. During the two-week period in which our list of bridges
was discovered, 1716 distinct bridges were listed as running by
the bridge authority; our experiment identified 59 of these and 140
of the 13479 additional bridges that were not available during the
discovery phase but were available for contact at some earlier time.

Assuming the bridge authority makes an effort to discover and
reclassify all such relay methods into a single IP prefix, a more
serious issue remains. Bridges do not attempt to “hide” the fact
that they are bridges. Any node that attempts to connect on a stan-
dard “bridge” port (of our 247 bridges, 197 ran on a port in the list
{80, 443, 8080, 9001}) and initiate a Tor connection is likely to
succeed. Thus, in the worst case a patient adversary could discover

all bridges by simply polling the Internet over the course of sev-
eral weeks. In addition, if the adversary has some reason to suspect
that the initiator of a particular series of contributions originates
in some smaller IP address range, such as the address block of a
specific organization or country, the discovery process can simply
poll this range instead. Another method of finding bridges that are
active frequently enough to provide service to blocked users is to
run a regular Tor relay that connects back to the standard “bridge
ports” of any non-relay node that contacts it; a bridge will accept
the connection while a regular (non-bridge) client will not. If the
adversarial relay R provides fraction p of the total Tor network
bandwidth (roughly 400 MBps as of June 2009) then we expect R
to see a bridge after it builds or relays 1/p circuits. A single relay
advertising the maximum 10 MBps of bandwidth2 would thus dis-
cover 63% of the bridges that relay at least 40 circuits and 87% of
the bridges that run for at least 80 circuits. Note that all Tor clients
pro-actively build circuits every 10 minutes, so if a bridge has even
one client it will be discovered with reasonable probability.

Finally, we note that even if an adversary does not obtain a com-
plete list of bridges, this only affects the false negative rate of our
attacks: if the initiator is in the set she can be identified but if she
is not it does not increase the probability of falsely identifying an-
other bridge. More precisely, because the adversary A cannot out-
put node s if s is not in its input list of bridges, the bayesian prob-
ability Pr[I = s|A(L) ⇒ s] does not depend on the probability
Pr[s ∈ L], since

Pr[I = s|A(L)⇒ s] =
Pr[A(L)⇒ s ∧ I = s|s ∈ L] Pr[s ∈ L]

Pr[A(L)⇒ s|s ∈ L] Pr[s ∈ L]

=
Pr[A(L)⇒ s ∧ I = s|s ∈ L]

Pr[A(L)⇒ s|s ∈ L]
.

3.3 Winnowing
The basic idea of the winnowing phase is very simple: if a Tor

user has configured her software to act as a bridge, then an attacker
who knows the user’s IP address and bridge port can contact the
bridge to determine whether the operator is “serving:” if not, she
can’t possibly be “surfing.” Thus a patient server can check the
status of a bridge at the time of each observed Tor connection. It
is easy to see that if every bridge has some independent, nonzero
probability of being offline, then the asymptotic probability that
any client other than the user is serving at the time of every con-
nection is 0. Furthermore, if we let ε be the minimum probability
of going offline among a group of N bridges, and let m denote the
expected number of observed Tor connections to identify a client
with confidence 1− δ, then we have m < lnN+ln(1/δ)

ln(1+ε)
.

In real life, of course, there are correlations between the online
and offline behaviors of both users and bridges, caused by phenom-
ena like “day” and “night” and “network outages.” These correla-
tions may make it impossible to differentiate between bridge op-
erators based only on their online/offline (i.e. serving/not serving)
status over a limited time frame. In order to determine the extent
of correlation between bridges, we conducted a survey of the status
of the 247 bridges we discovered in Section 3.2 over a 1.33Msec-
period in February 2009. We checked the status of each bridge on
the list every 300 seconds by attempting a connection to its bridge
port. Of the 247 bridges we discovered, only 87 were active dur-
ing the period of our experiment. Although we did not optimize
our experiment, the cost per bridge per status check can be made

2Note that at the moment, Tor does not attempt to determine
whether a relay can provide the level of bandwidth it advertises [2,
18], so the actual bandwidth cost can be much lower than 10MBps.

Figure 3: Results of winnowing. Each point corresponds to one user (perturbed to show density), and the black line represents the
average number of bridges matching all users with a given number of sessions. Overall, roughly 23% of users do not match any
bridges.

Figure 4: Results of the bridge survey. On average 29.6 of the
87 bridges surveyed were accessible.

as little 640 bits (a TCP “SYN” packet with no data, followed by
a TCP “RST” packet if a “SYN/ACK” is received.) Thus the ex-
pected bandwidth cost per bridge of this phase is less than 2bps.
The results of this survey are summarized in figure 4. Specifically,
notice that the average number of bridges that are “serving” at any
one time was only 29.6, just over 10% of the bridges returned by
the authority.

To realistically model the behavior of users, we used the
MediaWiki API to track the access patterns of 186,935 registered
Wikipedia users over the same time period as the bridge survey.
For each user, we computed the number of bridges that were “serv-
ing” at all of the times the user “touched” Wikipedia during the
survey. We then grouped these “touches” into “sessions” based on
their temporal proximity, in order to see the effect of repeated con-
tributions on anonymity. We would expect that users with more
contributions would have fewer matching bridges, on average. If

a user has no matching bridges, this means that, if she had been
editing Wikipedia while operating a Tor bridge, hers would be the
only bridge candidate remaining after the winnowing stage.

We note that Wikipedia was used for this experiment for a rea-
son: because Wikipedia blocks edits from Tor nodes, and has public
editing data, we did not violate the privacy of any users to evaluate
the effectiveness of our attack. Since the times are synchronized be-
tween the experiments the data do show the potential effect of cor-
relations between bridges’ and users’ uptimes. More importantly,
however, there are other online forums, such as the whistle-blower
site Wikileaks, which implement the Wiki API (allowing their users
to be observed) and strongly encourage postings via Tor due to the
strong privacy needs of their users. Thus the results of our analy-
sis should be of particular concern to users who contribute to such
sites.

The results of our analysis appear in Figure 3. As can be seen
from these results, even a few connections can significantly re-
duce the number of nodes that are candidate bridge operators for a
pseudonym. Among all users, 23.3% matched no bridges. Among
the 82274 users who were active for multiple sessions during the
survey, this fraction rises to 37.3%, and among users with 50 or
more sessions, 95.7% matched no bridges and only 97 of the 6204
users matched 9 or more of the 87 bridges.

Suppose the initiator uses Tor to pseudonymously blog once per
day for half a year (or tweet 12 times a day for 15 days). Among
our data, 2329 users had 180 or more sessions and the total num-
ber of false positives was 89; this yields a false positive rate of
0.000439. Thus even if 10000 Tor clients volunteer to bridge, on
average only 4.4 bridges would be left after the winnowing stage.
These data indicate that long-term use of a pseudonymous forum
while operating a bridge should be strongly discouraged.

Figure 7: ROC graph demonstrating the false positive/false
negative tradeoff when circuit clogging a bridge. AUC for
mean-normalized latencies is 0.549874, and AUC for median-
normalized latencies is 0.8840.

3.4 Confirmation
In this section, we describe our experimental environment and

empirically corroborate that connections originating at a bridge can
be confirmed using “circuit clogging” attack.

3.4.1 Setup
We deployed our experimental attack on Tor nodes running on

a random collection of continental US PlanetLab [6] machines.
All nodes were strictly disjoint from the live Tor service, except
when the “victim” constructed generic 3 hop Tor circuits, the de-
fault client behavior. We deployed a controller written in Python to
interface into Tor’s API. This abstraction layer provided a simple
means to exchange OR and bridge descriptors, construct circuits,
and attach streams to those circuits. The burst server and probe
were both written in C.

Figure 5 shows the basic attack scenario. In each run, a bridge
operator, the “initiator” builds a circuit and connects to the burst
server. The probe builds a two-hop circuit through a “victim” bridge
which is either the initiator or an innocent bridge, that is extended
to an exit server controlled by the attacker. The probe server then
collects latencies while the burst server modulates the client tunnel
workload. We call a run probing the initiator a “victim” run and
one probing an innocent bridge a “disjoint” run.

3.4.2 Results and Analysis
Overall we performed 9 batches of 20 runs, resulting in 180 vic-

tim runs and 180 disjoint runs. For each run, we computed the
correlation between the probe latency and the burst periods using
the same formula as Murdoch and Danezis, that is, the correlation
for bridge β was computed as

χβ =

P
tB(t)L′β(t)P

tB(t)
,

where B(t) is an indicator variable for the state of the burst server
at time t and L′β(t) is the normalized latency of the probe through
β at time t, e.g. L′β(t) = Lβ(t)/µβ , and µβ was the mean latency
of β,

µβ =
1

|T |
X
t∈T

Lβ(t) .

The results are shown in Figure 6(a). The distribution of MD
correlations for disjoint and victim runs appear to be quite similar.
Analyzing our data more closely, we found that victim runs often
experienced one or more large latency spikes during “off” periods

which artificially inflated the mean latency, decreasing the overall
correlation. To correct for this, we recalculated the correlation us-
ing normalized latency function L′′β(t), which was normalized by
the median, rather than the mean, observed latency, as in [15]. This
dramatically improved the distinguishability of the two run types,
as shown in Figure 6(b).

As with any classifier, using a correlation figure to distinguish
between victim and innocent bridges allows for a tradeoff in terms
of false positive and false negatives: setting a higher threshold for
confirmation will eliminate more false positives, but may also elim-
inate some true positives, and a lower threshold may expand the
set of true positives that are identified while also increasing the
false positive rate. Figure 7 shows the ROC curve for our results,
summarizing the false positive/false negative tradeoff. The mean-
normalized correlations are a weak tool for distinguishing victim
and disjoint runs, with an area under curve (AUC) of 0.55, which
is very close to the AUC for the nondiscriminating classifier that
flips coins. However, the AUC of the median-normalized corre-
lation classifier is 0.88 and the graph is very close to the perfect
classifier, an elbow at (0, 1). This indicates that circuit clogging is
an effective way to confirm that a bridge is the origin of a circuit.

Finally, we note that repeated applications of circuit clogging can
effectively amplify the false negative and positive rates in a stan-
dard way. For example, we note that the equal error rate measured
in our experiments is 0.2; thus there exists a correlation threshold
τ such that true positives produce correlation greater than τ with
probability 0.8 while true negatives produce correlation greater than
τ with probability 0.2. If the attacker repeats the clogging experi-
ment 10 times and outputs “true” only if at least 5 runs produce cor-
relation greater than τ , then the probability of a false positive (or, by
symmetry, a false negative) is at most

Pi=10
i=5

`
10
i

´
(0.2)i(0.8)10−i <

0.033. Combined with the low false positive rates of the winnow-
ing attack, these results suggest that if a bridge is discovered in the
discovery phase, it will be identified with high confidence by the
combined attack, and if it is not discovered, with high probability
the attack will detect this, and output zero matching bridges.

4. MITIGATION TECHNIQUES
In this section, we discuss strategies for mitigating all three at-

tack phases, without altering the architecture of the bridge service.
The discovery phase is difficult to address fully without more radi-
cal changes to the bridge architecture, but we discuss some “band-
aid” mechanisms that can be applied. The winnowing phase relies
on a bridge operator’s serving whenever she surfs – the default be-
havior for bridges – so we consider several strategies to weaken this
assumption. In the case of circuit clogging, it is well understood
that the attack works because of information leakage that occurs
at the relays in the form of interference between disjoint anony-
mous circuits (the “modulated stream” and “probe stream”) that
pass through the same relay. We describe a mechanism that greatly
reduces this interference in a bridge.

Before discussing these mechanisms in detail, however, we point
out that one “fool-proof” but unsatisfying solution exists: never
serve where you surf. Completely separating “server” activities
from “client” activities eliminates the threats to the bridge oper-
ator’s privacy, and extends to any other services a user might want
to offer on the public Internet, which might also serve as targets of
a winnowing attack. However, this also defeats the purpose of the
bridge design, which is to create a large, dynamic pool of nodes
that must be blocked: if the set of bridges is limited to a static set
of nodes, then bridges become nearly as easy to block as relays.

One seemingly obvious defense mechanism for circuit-clogging
is to enforce a strict “exclusive or” rule as follows: Either the bridge

(a) (b)

Figure 5: Bridge clogging experimental setup showing (a) intersecting and (b) disjoint configurations. Arrows indicate direction of
attack traffic flow.

(a) (b)

Figure 6: CDF of correlations from 180 runs: (a) mean-normalized, and (b) median-normalized.

can support a bridge client or a bridge operator, but not both. Of
course this always results in one unserviced user when both want
to use the system - not to mention a race condition to the construc-
tion of the first tunnel. Although this prevents the bridge from be-
ing used by the probe and malicious server simultaneously, the us-
ability implications are not acceptable, even if we were to give the
bridge operator priority.

Our mitigation mechanism still allows for bridge operators to
help censored users overcome various communicative repressions.
We minimize the amount of application level interference between
tunnels created by the bridge operator and tunnels created by bridge
clients. We (1) group together all circuits from the bridge operator
and all circuits from bridge client(s) and then (2) enforce strict ap-
plication level processing policies between the two groups of cir-
cuits to minimize the latency information leakage between them.

Notice that this bridge-specific mitigation mechanism allows the
bridge operator to specify the processing policies which will be en-
forced. We implemented one specific policy which gives the opera-
tor the ability to set the percentage of the CPU that will service local
anonymous circuits and the percentage of the CPU that will ser-
vice bridge circuits. It is interesting to note that while the defense
mechanism proposed by [15] merely increases the cost of attack
by stochastically separating the attacker’s streams, our mechanism
essentially eliminates the attack, and its variants, altogether.

4.1 Mitigating bridge discovery
One obvious step that the bridge authority can take to try to im-

prove rate-limiting is to attempt to classify all relaying nodes, in-
cluding Tor relays, other anonymity or caching services, and any
open proxies, as sharing a single IP prefix. Unfortunately, there
does not seem to be a foolproof method of discovering all such ser-

vices. One approach that seems promising would be a heuristic that
attempts a proxy connection to any IP address that makes a discov-
ery query. If the connection succeeds, then the requester is using a
proxy. We note that other heuristics with some false positive rate
should be permissible as well - if a node is misclassified as a proxy
it simply will get the same set of bridge descriptors as other proxy
nodes, which should still serve the purpose of bridging censored
users to the network.

The problem of a “polling” adversary could be partially miti-
gated by requiring a client that connects to the bridge port to “prove”
that it knows the bridge, by e.g. first sending a HTTP “GET” re-
quest with the hash of the bridge’s public key over the client-bridge
SSL connection.3 This would prevent attackers that have not dis-
covered the bridge’s descriptor through the Bridge Authority from
receiving absolute confirmation that a given IP address is a bridge.
We note that as described by Dingledine and Mathewson [11], fur-
ther measures may be necessary to resist statistical classification of
bridges based on their reaction to unauthenticated connections.

One method which would significantly raise the cost of scanning
or polling attacks would be to have bridges listen on random ports
rather than the standardized 443. The bridge design supports this
option, but running on the standard https: port is an import fea-
ture for blocking resistance: assuming the censor allows any web
connections at all, these ports are the least likely to be blocked at
the network level. Thus moving to other port numbers would not
appear to be a viable solution for the needs of most censored users.

3Clearly, adopting this suggestion means that a bridge MUST NOT
support Tor’s “certificates up front” TLS handshake mode, in which
the relay gives a two-certificate chain where the first certificate is
the relay’s self-signed public key. Fortunately, recent versions of
Tor support TLS handshaking with a TLS-only (single-key) cert.

4.2 Mitigating bridge winnowing
The “success” of the winnowing requires three factors:

• A user’s repeated visits to the malicious service are linkable.
Techniques to reduce linking across sessions, such as dis-
abling cookies, client-side scripting, refresh tags, and caching;
using privoxy or TorVM; and others can be applied, and are
recommended as standard practice when using an anonymity
service such as Tor, to limit the cases in which this is possi-
ble. However, for some services such as pseudonymous use
of online forums, this factor may be unavoidable.

• Different bridges will be serving when the user accesses the
malicious service at different times. We can of course en-
force a large “minimal anonymity set” of bridges which a
bridge operator requires to be serving before she anonymous-
ly surfs. However, this seems to be an unacceptable conse-
quence to the operator, since for even moderately large sets
we would expect the probability of all bridges being simul-
taneously online to be quite small.

• The malicious server can connect to the bridge service when-
ever the bridge operator is surfing via Tor. This is the sim-
plest assumption to invalidate from the operator’s point of
view: the bridge can sometimes choose not to serve other
clients while the operator is surfing. Implementing such a
mechanism would trade availability to bridge clients for pri-
vacy of bridge operators.

We did not implement any of these countermeasures, because
each seems to involve an unacceptable loss of usability to either
bridge operators or bridge clients, compared with somewhat un-
clear benefits in terms of privacy. However, we can sketch a so-
lution based on the third point above: The goal is to ensure that
the probability a user’s bridge is serving is the same in case she is
surfing and in case she is not. Thus, when a bridge is first enabled,
it would collect several weeks’ worth of data to measure the frac-
tion of time, f that the operator’s Tor instance is running but the
operator has no active connections over Tor. During this “trial pe-
riod” the bridge would never accept client connections, regardless
of whether the operator is surfing.

After the trial period, the bridge would function as usual, except
that when the operator begins surfing, the bridge flips a biased coin:
with probability f it continues to serve, and with probability 1− f
it shuts down until some time after the user has stopped surfing. In
this way, the operator’s “serving” status can be made independent
of her “surfing” status to the malicious web server. We note that the
critical detail here is that the probability of “going offline” is iden-
tical whether the operator is surfing or not. Thus the mere fact that
a bridge becomes unavailable does not signal to the adversary that
the operator is surfing. Formally, the trial period measures the prob-
ability f = Pr[serve|¬surf], and the biased coin flip ensures that
Pr[serve|surf] = f . Thus Pr[serve|surf] = Pr[serve|¬surf]
and since Pr[surf] + Pr[¬surf] = 1, we have Pr[serve|surf] =
Pr[serve], so that serving and surfing are statistically independent
signals. However, care must be taken so that second-order effects
are not introduced: for example, “not-serving” times caused by the
operator’s surfing activities should be reasonably consistent with
the length of the bridge’s downtimes during the trial period as well.

We note that several other possible methods of apparently de-
coupling surfing from serving are not effective. The first is to run
two separate Tor instances on the same machine, one to serve as a
bridge and the other as a client, and have the bridge run at all times.
The reason that this method does not work is that the client will

Figure 9: ROC graph demonstrating the predictive power of
latency correlations for an “unfairly queued” bridge. AUC is
0.5216 for mean-normalized latencies, and 0.4120 for median-
normalized latencies.

go offline ocassionally, due to hardware failures, network outages,
and so on, leading to periods where, because the bridge instance is
unavailable, the adversary can conclude that the client is not surf-
ing. Mathewson and Dingledine [14] show that this coarse level of
information is sufficient for statistical disclosure attacks even if the
fraction of time spent offline is relatively small. The second is to
configure the bridge to serve only with some fixed probability, for
example 0.25. In this case the winnowing attack can be modified to
become a search for a bridge that is serving during precisely 25%
of the observed sessions; assuming independence only the initiator
will satisfy this search given a sufficient number of observed ses-
sions. (We note however that this solution does increase the number
of observations necessary to obtain a given false positive rate.)

4.3 Mitigating bridge clogging
As emphasized by previous work on the circuit clogging attack [17,

15], the success of circuit clogging depends on the fact that disjoint
circuits interfere with the service provided to each other - when
one circuit is busy, other circuits exhibit higher latency. In the case
of the MorphMix P2P anonymity scheme, McLachlan and Hopper
proposed to deal with this by use of a “fair queuing” mechanism
that stochastically enforced noninterference of different streams go-
ing through a relay. However, in the bridge scenario there is no
reason to treat bridge operator and bridge client traffic fairly. Thus,
we propose to mitigate bridge clogging with an “unfair” queuing
mechanism that treats these two sources of traffic separately.

Specifically, we modified a bridge to include an “unfairness”
parameter τ ∈ (0, 1). The bridge then divides incoming cells
into two queues based on their stream ID, one that contains cells
from streams that terminate locally, and one for all other streams.
The bridge then allocates its processing time to these queues based
strictly on the system clock: for τ fraction of the time, only cells in
the local (operator) queue can be processed, and for 1− τ fraction
of the time, only cells in the other queue are serviced. If at some
point the currently active queue is empty, the system busy waits
until either it is nonempty or the active queue changes. This en-
forcement based on time allocation ensures that there is very little
interference between streams carried over the bridge and streams
originated by the bridge operator, and allows operators to adjust
the level of service they are willing to donate to help “blocked”
users access Tor.

4.3.1 Evaluation.
To test the effectiveness of our bridge clogging mitigation, we

conducted a batch of 20 distributed experiments on PlanetLab. Each

(a) (b)

Figure 8: CDF of correlations for mitigated bridge clogging. (a) Mean-normalized, (b) Median-normalized.

experiment involved a similar setup to the experiments described
in section 3.4: A “victim” bridge running our modified code with
unfairness τ = 0.9 was started on a randomly chosen PlanetLab
node, and a “disjoint” bridge with the same settings was started on
another randomly chosen PlanetLab node. The “probe client” made
single hop connections through each bridge to the “probe server,”
and collected latency data while the victim bridge built a Tor circuit
and connected to the “burst server.” After each run, the adjusted
correlation from section 3.4 was computed for both probe circuits.

The results of these experiments are summarized in Figure 9.
The ROC curve based on adjusted correlation gives an area under
curve of 0.41, and based on median correlation gives an AUC of
0.52, indicating that circuit clogging has only a slight advantage
over random guessing in distinguishing victim bridges from dis-
joint bridges running the same code. Further details in the form of
CDFs of median and mean-normalized correlations are shown in
Figure 8, which illustrate the difficulty of distinguishing between
victim and disjoint runs using “unfair queuing”.

4.3.2 Efficiency and limitations of mitigation.
One obvious drawback of this mitigation mechanism is that it can

lead to wasted resources. This can happen both when the bridge op-
erator has no active circuits and bridge clients are active, and when
the bridge has no active client circuits and the bridge operator has
many active circuits. Since bridge operators can choose to limit the
outgoing bandwidth to clients, it does not seem to be inconsistent to
allow them to also limit the computational resources expended for
clients; perhaps the bigger concern is the converse situation. How-
ever, the maximum loss in operator service is both easy to compute
(at most 1 − τ performance loss) and is adjustable based on the
operator’s preferences.

One natural question arising from our use of queuing-style mech-
anisms is whether other “quality of service” (QoS) resource alloca-
tion schemes can similarly mitigate the attack while resulting in
less wasted resources. Such a mechanism would clearly be desir-
able, but we believe it would be unlikely to provide the desired level
of security: any mechanism that both (a) gives priority to bridge
operator traffic and (b) attempts to maximize resource usage seems
likely to fall prey to some form of the clogging attack. This is be-
cause the “bursty” traffic from the server is destined to the bridge
operator, and thus will have high priority. So the service available

to “bridge clients” will differ between “on” and “off” periods, and
a mechanism that detects this availability will function similarly to
the “probe server” used by straightforward circuit clogging.

Another natural question that might arise is whether processing
time is the correct resource to allocate between the two types of
traffic; since they must share bandwidth as well this is another po-
tential resource to control. Unfortunately, the current architecture
of Tor prevents us from correctly using bandwidth controls in this
way: there is no method to throttle incoming flows, so we cannot
control the allocation of incoming bandwidth. And once a cell has
been processed, the two types of traffic no longer contend for the
same resource: operator traffic is destined for the local bus whereas
client traffic must leave on a network link.

We stress that this last point is crucial: traffic flowing to the
bridge operator does not contend for “upload” bandwidth. Thus
any traffic that an attacker “pulls” from a bridge cannot interfere
with the traffic the bridge operator downloads. In addition, the
bandwidth required for latency probes is very small, and bridges
are intended to be lightly loaded. Thus bandwidth-only controls on
bridge-to-client flows are unlikely to be an effective countermea-
sure to circuit clogging.

We do note however that our mechanism only divides service to
cells after they have been transmitted to the bridge and decrypted
over TLS. This leaves the possibility that other attacks could exist
based on interference between the bandwidth of incoming flows;
thus some upstream bandwidth-regulation method may be required
to ensure complete noninterference. The use of end-to-end conges-
tion mechanisms, as proposed by Reardon and Goldberg [21] may
allow such controls, but use of congestion control for this purpose
may expose other information leaks, such as allowing the bridge’s
entry node to distinguish between bridge-originated streams and
bridge-relayed streams. Determining the extent of this tradeoff is
an important question for future work.

5. CONCLUSION
In this paper, we have initiated the study of the impact of Tor’s

bridges on the privacy of bridge operators. We found that sev-
eral aspects of the design enable troubling attacks, which can be
partially mitigated by mechanisms described here. While bridges
have the potential to play a critical role in assuring freedom of
speech and freedom of information, this potential must be carefully

weighed against the negative implications they have for the privacy
of their operators.

It is interesting to note that all of the candidate mitigation mech-
anisms we have discussed fundamentally require a reduction in the
level of service provided to the clients of bridges in order to im-
prove the privacy of their operators. This is unfortunate, but the
mechanisms discussed also provide some minimum level of ser-
vice as well, and it seems that in this setting, “some uncensored
bits” are much better than “no uncensored bits.”

Acknowledgments
We thank our shepherd, Steven Murdoch, for helpful suggestions
regarding the presentation of our attack; Chris Arnold and Tim
Stucki for sharing the results of their open proxy survey; Roger
Dingledine and Nick Mathewson for clarifying some aspects of the
bridge design; and Karsten Loesing for providing detailed statistics
about the coverage of our bridge discovery attack. This research
was supported by the NSF under grant CNS-0546162.

6. REFERENCES
[1] BACK, A., MÖLLER, U., AND STIGLIC, A. Traffic analysis

attacks and trade-offs in anonymity providing systems. In
Proceedings of Information Hiding Workshop (IH 2001)
(April 2001), I. S. Moskowitz, Ed., Springer-Verlag, LNCS
2137, pp. 245–257.

[2] BAUER, K., MCCOY, D., GRUNWALD, D., KOHNO, T.,
AND SICKER, D. Low-resource routing attacks against Tor.
In Proceedings of the Workshop on Privacy in the Electronic
Society (WPES 2007) (Washington, DC, USA, October
2007).

[3] BERTHOLD, O., AND LANGOS, H. Dummy traffic against
long term intersection attacks. In Proceedings of Privacy
Enhancing Technologies workshop (PET 2002) (April 2002),
R. Dingledine and P. Syverson, Eds., Springer-Verlag, LNCS
2482.

[4] BERTHOLD, O., PFITZMANN, A., AND STANDTKE, R. The
disadvantages of free MIX routes and how to overcome
them. In Privacy Enhancing Technologies: Workshop on
Design Issues in Anonymity and Unobservability (July 2000),
H. Federrath, Ed., Springer-Verlag, LNCS 2009, pp. 30–45.

[5] BORISOV, N., DANEZIS, G., MITTAL, P., AND TABRIZ, P.
Denial of service or denial of security? How attacks on
reliability can compromise anonymity. In Proceedings of
CCS 2007 (October 2007).

[6] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A.,
PETERSON, L., WAWRZONIAK, M., AND BOWMAN, M.
Planetlab: an overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev. 33, 3 (2003), 3–12.

[7] CRANDALL, J. R., ZINN, D., BYRD, M., BARR, E., AND
EAST, R. Conceptdoppler: a weather tracker for internet
censorship. In CCS ’07: Proceedings of the 14th ACM
conference on Computer and communications security (New
York, NY, USA, 2007), ACM, pp. 352–365.

[8] DAI, W. Two attacks against freedom. online essay: http:
//www.weidai.com/freedom-attacks.txt.

[9] DANEZIS, G. Statistical disclosure attacks: Traffic
confirmation in open environments. In Proceedings of

Security and Privacy in the Age of Uncertainty, (SEC2003)
(Athens, May 2003), Gritzalis, Vimercati, Samarati, and
Katsikas, Eds., IFIP TC11, Kluwer, pp. 421–426.

[10] DEIBERT, R. J., PALFREY, J. G., ROHOZINSKI, R., AND
ZITTRAIN, J., Eds. Access Denied: The Practice and Policy
of Global Internet Filtering. MIT Press, 2008.

[11] DINGLEDINE, R., AND MATHEWSON, N. Design of a
blocking-resistant anonymity system.
https://www.torproject.org/svn/trunk/
doc/design-paper/blocking.html, May 2008.
Online Draft.

[12] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON,
P. F. Tor: The second-generation onion router. In 13th
USENIX Security Symposium (August 2004).

[13] LOESING, K. Measuring the Tor Network: Evaluation of
Bridges and Their Usage in Tor. published online:
http://git.torproject.org/checkout/
metrics/master/report/bridges/
bridges-2009-04-04.pdf, 2009.

[14] MATHEWSON, N., AND DINGLEDINE, R. Practical traffic
analysis: Extending and resisting statistical disclosure. In
Proceedings of Privacy Enhancing Technologies workshop
(PET 2004) (May 2004), vol. 3424 of LNCS.

[15] MCLACHLAN, J., AND HOPPER, N. Don’t clog the queue:
Circuit clogging and mitigation in P2P anonymity schemes.
In Proceedings of Financial Cryptography (FC ’08) (January
2008).

[16] MITTAL, P., AND BORISOV, N. Information leaks in
structured peer-to-peer anonymous communication systems.
In Proceedings of the 15th ACM Conference on Computer
and Communications Security (CCS 2008) (Alexandria,
Virginia, USA, October 2008), P. Syverson, S. Jha, and
X. Zhang, Eds., ACM Press, pp. 267–278.

[17] MURDOCH, S. J., AND DANEZIS, G. Low-cost traffic
analysis of tor. IEEE SP 00 (2005), 183–195.

[18] MURDOCH, S. J., AND WATSON, R. N. M. Metrics for
security and performance in low-latency anonymity
networks. In Proceedings of the Eighth International
Symposium on Privacy Enhancing Technologies (PETS
2008) (Leuven, Belgium, July 2008), N. Borisov and
I. Goldberg, Eds., Springer, pp. 115–132.

[19] MURDOCH, S. J., AND ZIELIŃSKI, P. Sampled traffic
analysis by internet-exchange-level adversaries. In
Proceedings of the Seventh Workshop on Privacy Enhancing
Technologies (PET 2007) (Ottawa, Canada, June 2007),
N. Borosov and P. Golle, Eds., Springer.

[20] RAYMOND, J.-F. Traffic Analysis: Protocols, Attacks,
Design Issues, and Open Problems. In Proceedings of
Designing Privacy Enhancing Technologies: Workshop on
Design Issues in Anonymity and Unobservability (July 2000),
H. Federrath, Ed., Springer-Verlag, LNCS 2009, pp. 10–29.

[21] REARDON, J., AND GOLDBERG, I. Improving Tor using a
TCP-over-DTLS Tunnel. In 18th annual USENIX Security
Symposium (2009). to appear.

[22] WRIGHT, M., ADLER, M., LEVINE, B. N., AND SHIELDS,
C. Defending anonymous communication against passive
logging attacks. In Proceedings of the 2003 IEEE
Symposium on Security and Privacy (May 2003).

