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Abstract. Traffic analysis is the best known approach to uncover rela-
tionships amongst users of anonymous communication systems, such as
mix networks. Surprisingly, all previously published techniques require
very specific user behavior to break the anonymity provided by mixes.
At the same time, it is also well known that none of the considered user
models reflects realistic behavior which casts some doubt on previous
work with respect to real-life scenarios. We first present a user behavior
model that, to the best of our knowledge, is the least restrictive scheme
considered so far. Second, we develop the Perfect Matching Disclosure
Attack, an efficient attack based on graph theory that operates without
any assumption on user behavior. The attack is highly effective when
de-anonymizing mixing rounds because it considers all users in a round
at once, rather than single users iteratively. Furthermore, the extracted
sender-receiver relationships can be used to enhance user profile estima-
tions. We extensively study the effectiveness and efficiency of our attack
and previous work when de-anonymizing users communicating through
a threshold mix. Empirical results show the advantage of our proposal.
We also show how the attack can be refined and adapted to different
scenarios including pool mixes, and how precision can be traded in for
speed, which might be desirable in certain cases.

1 Introduction

Traffic analysis exploits traffic data to infer information about observed commu-
nications. It is the most powerful known attack against anonymous networks.
More precisely, Disclosure (or Intersection) attacks use the fact that users’ com-
munication patterns are repetitive to uncover communication relationships be-
tween them [1,4].

Previous work on Disclosure Attacks [1,4,5] considers a very simplistic model,
where users send messages to a fixed set of contacts through a threshold mix.
Users choose amongst their communication partners with uniform probability
and the effectiveness of these attacks strongly relies on this model. In this paper
we present a new attack, the Perfect Matching Disclosure Attack, that requires
no assumption on the users’ behavior in order to reveal their relationships. Be-
sides its capability to uncover relations amongst users, i.e. their sending pro-
files, in an arbitrary scenario, we demonstrate the strength of our attack in
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de-anonymizing individual messages, i.e. finding the links between messages ar-
riving to the network and messages leaving it. Our method’s advantage stems
from the fact that it considers all users in a round at once, rather than single
users iteratively. This approach is likely to de-anonymize a large fraction of the
set correctly in scenarios where a per user approach fails with high probability.

We analyze and compare the Statistical Disclosure Attack (SDA) and the
Perfect Matching Disclosure Attack (PMDA) empirically in two scenarios. In
both scenarios, we chose a simple threshold mix as communication channel such
that we can focus on presenting our techniques. With respect to a simple user
behavior model we observe that the SDA and the PMDA perform very similar.
In a generic user model the PMDA outperforms the SDA for a limited increase
of computational cost. Simulation results show that our method is more accurate
when linking senders and receivers of de-anonymized messages and that it allows
to derive better estimations of users’ profiles. We also propose the Normalized
SDA, a trade-off between precision and speed, which yields results nearly as good
as the PMDA with a running time slightly higher than the one of the original
SDA.

This paper is organized as follows. Section 2 provides an overview of the
state-of-the-art of attacks on mix networks. We explain the system model and
our models for user behavior in Sect. 3. Section 4 describes the mathematical
background for our attack and its application to a threshold mix. In Sect. 5 we
show how our attack and the SDA can be applied in practice. An evaluation
of both methods is presented in Sect. 6. We explain in Sec. 7 how to construct
enhanced user profiles while Sect. 8 deals with further improvements and variants
of the PMDA. Finally, we pose some open questions and conclude in Sect. 9.

2 Related Work

Mixes were proposed by David Chaum [3]. Chaum’s proposal consists of a router
that receives a number of messages of fixed length, performs some cryptographic
operations on them changing their appearance and outputs the result in a ran-
dom order. This ensures that linking inputs and outputs based on timing infor-
mation is impossible. Mixes can be combined in networks, such that even if a mix
is compromised, the user’s anonymity is guaranteed. They are widely used in the
literature to implement anonymous email [6,17] or e-voting protocols [11,14].

Although mix networks provide good anonymity, they are vulnerable to long-
term traffic analysis attacks. An attacker who observes a mix network can collect
what is called traffic data: the identities of the messages’ senders and receivers,
together with the timing of these events. The family of Disclosure Attacks [1,12]
aims at identifying users’ communication patterns. It is assumed that the partic-
ipants communicate through a threshold mix. This mix collects a certain number
of messages per round, and outputs them in a random order. Applying the Dis-
closure Attack, an adversary observing the mix, i.e. senders and receivers per
round, over enough time can uncover the set of Alice’s friends. Nevertheless, the
Disclosure Attack is very expensive, as it relies on solving an NP-problem and
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is only feasible for very small systems. A more efficient approach to obtain the
exact solution, the Hitting Set Attack was proposed in [13].

Danezis presents a different efficient approach, the Statistical Disclosure At-
tack [4], which reveals the most likely set of Alice’s friends using statistical
methods and approximations assuming the same model as in [1]. The attack
model was extended to include anonymous replies in [5] and to consider a pool
mix instead of a threshold mix in [7]. More complex models are analyzed and
tested by simulation in [16]. Besides discovering a user’s set of friends, Danezis
proposes in [4] to use Alice’s sending profile derived in the attack to individually
trace each of the messages she sends to the network.

An approach to measure anonymity has been developed independently by
Edman et al. and was recently published in [9]. It is to some extent related
to our work as it applies the same fundamental notions of graph theory and
optimization problems. However, the goals of their and our work are different.
Edman et al. argue that anonymity metrics reflecting the perspective of a single
user have certain defects and define a metric that, as they claim, benchmarks
the system as a whole. However, they also make clear that their metric is only
supposed to complement entropy based metrics and that it can not express the
degree of anonymity provided to a single user.

By contrast, we look at mix networks and the anonymity they provide from
an adversarial point of view. We derive a robust attack that does not rely on
an assumption about the user behavior and focus on pinpointing the success
probability of an adversary.

Although the work of Edman et al. is supposed to support system designers
while our approach clearly reflects the adversarial side, both works have, to some
extent, a common conclusion: whether it is to measure anonymity or to derive
strong attack methodologies — considering the perspective of a single user is not
good enough. At the same time the works are separate. Their metric is not self-
contained and cannot express some necessary aspects of anonymity. Therefore, it
can only complement previously derived information-theoretic metrics. We seek
to put our proposal into context, empirically rate it against previous work, and
show that it is superior in relevant and generic scenarios.

3 System and User Models

In this section we introduce our notation to describe anonymous channels and
propose a new generic user model.

Consider a set of users U of cardinality u. We define the sending profile of a
user x ∈ U , say x is Alice, as the probability distribution PAlice of the same size.
A given element of the distribution expresses the probability that Alice sends
a message to a given user y ∈ U , say y is Bob. So for example, PAlice(Bob)
is the probability that Alice sends a message with Bob. The distribution as a
whole describes Alice’s sending behavior with respect to the entire population
(including herself). For completeness, we note that

∑
y Px(y) = 1 for all x.

As done in previous work [5], we model the sending rate of each individual user
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x ∈ U as a Poisson distribution with parameter λx. Further, we use the following
notion of friendship: we say y is a friend of x, if x sends a message to y with
non-zero probability. That is, if Px(y) > 0.

We consider two types of populations. The first one, U0, is a simple and
very restrictive user behavior model. Gradually relaxing assumptions on the
number of users’ friends and the user sending behavior, we construct a series of
populations U1 to U5. The latter is the most generic model considered in the
literature so far to the best of our knowledge and the second population we deal
with in this work. We define the models as follows:

U0: a single user, Alice, has k randomly selected friends; her sending behavior
toward her friends is uniform; PAlice contains k times the value 1

k and u − k
times the value zero; all other user profiles contain u times 1

u ;
U5: every user x has an individual number kx of friends that is chosen at random;

the sending probabilities toward the friends are randomly chosen from a
uniform distribution and normalized such that

∑
y Px(y) = 1 for all x;

The anonymous channel, used by both populations, is modeled as a threshold
mix. The mix’s sole parameter is the threshold t which defines the number of
messages in a round.

3.1 Comparison with Previous Models

The original Disclosure Attack and its first sequels [1,4,13] use a model that
is almost equivalent to our model with population U0. The sole difference is
that, in their model, Alice sends exactly one message per round in which she
participates, contrary to our model where this limitation does not exist.

Mathewson and Dingledine introduce in [16] a more complex model. First,
Alice is allowed to send more than one message per round in which she partic-
ipates and second, all the participants have a set of friends. Nevertheless, their
behavior toward them is still uniform. In some of their experiments they go a
step further and let Alice, but not the rest of the users, choose with non-uniform
probability amongst her friends, thus obtaining a model a bit closer to our U5.
A recently published attack, the Two-Sided Statistical Disclosure Attack [5], is
tested under U0 traffic and in a variant where all users have the same number of
friends to which they send with uniform probability. Both models permit several
messages of Alice per round in which she participates. The main drawback of
the aforementioned models is their narrowness. With the proposed model U5 we
aim at covering a wider range of scenarios, including previous work.

In particular, U5 requires no assumption about the number of users that have
friends, the number of friends they have, and the sending behavior toward their
friends.

4 Mathematical Background

In this section we recapitulate the required basic notions of graph theory and
introduce our optimization problem. Then we show how we model a threshold
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mix using these notions and in particular bipartite graphs. Next, we explain how
maximum weighted bipartite matchings can be used to efficiently de-anonymize
users communicating through a threshold mix. For further reading about graph
theory in an anonymity context we refer the interested reader to [10].

A graph G = (N, E) consists of a set of nodes N and a set of edges E. Without
loss of generality we assume N �= ∅. A bipartite graph G = (S ∪R, E) is a graph
whose nodes can be divided into two distinct sets S and R such that every edge
in E connects one node in S and one node in R. In other words, there exists no
edge between nodes from the same set. In this paper we focus on sets S and R
of equal and finite cardinality t > 1. A set of edges M ⊆ E is called a matching
in the bipartite graph G if no node in G is incident to more than one edge. A
perfect matching additionally requires that every node is incident to exactly one
edge. In a weighted bipartite graph G each edge ei ∈ E is associated with a
weight wi. Figure 1 illustrates the definitions.

Fig. 1. Bipartite graphs: matching, perfect matching, and perfect matching with
weights

A maximum weighted bipartite matching is defined as a perfect matching for
which the sum of the weights wi associated with the edges in the matching has
a maximal value, i.e. the perfect matching M maximizes

∑
i wi|ei ∈ M . If the

graph is not complete bipartite, i.e. edges which would not violate the require-
ments of a bipartite graph are missing due to other restrictions, one usually
inserts the missing edges with an associated weight of zero. In the rest of this
work we focus on maximum weighted bipartite matchings and assume complete-
ness of the graph.

In the literature, finding such matchings is often called the assignment prob-
lem. Usually it is assumed that i) the distinct sets of nodes are of equal and
finite size and ii) the total weight of the assignment (or matching) is equal to
the sum of the weights associated to the edges in the assignment. In this case
one deals with a linear assignment problem. Algorithms to solve linear assign-
ment problems include the Hungarian algorithm [15] with complexity O(N2E)
which can be optimized to O(N2 log(N)+NE), the Bellman-Ford algorithm [2]
O(N2E) and the Dijkstra algorithm [8] O(N2 log(N) + NE).

4.1 The Optimization Problem

Let S and R be sets of nodes of cardinality t in a complete bipartite graph
G = (S ∪ R, E). We define an assignment M as a perfect matching on G. Let
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P ′ be a t × t matrix containing weights ws,r, representing probabilities, for all
possible edges es,r in G. Applying Bayes theorem, the conditional a posteriori
probability p(M |S, R) can be computed as

p(M |S, R) =
p(S, R|M) · p(M)

p(S, R)
.

Given an assignment M , the sets of nodes S and R are implicitly fixed and thus
p(S, R|M) = 1. It follows that p(M |S, R) = p(M)/p(S, R). Since the sets S and
R are given in the condition, p(S, R) is a constant term and independent of a
considered assignment M . Therefore, the assignment M maximizing p(M) also
maximizes p(M |S, R).

An assignment M is a perfect matching on G, thus p(M) is the joint proba-
bility of the individual edges es,r ∈ M . Assuming that the edges es,r ∈ M are
independent, the joint probability p(M) is the product of the individual edge
probabilities

p(M) =
∏

es,r∈M

ws,r .

4.2 Mapping to a Threshold Mix

The t messages sent during one round of the mix form the set S. Each node
s ∈ S is labeled with the sender’s identity sen(s). That is, two messages from
one sender are represented by two different nodes with the same label (note that
a node does not represent a specific user, but a message sent by a specific user).
Equivalently, the t messages received during one round form the set R where
each node r is labeled with the receiver’s identity rec(r). An edge es,r in this
graph always connects a sent message s with a received message r, implying
that these two messages are the same (s = r) and therefore exhibiting the link
between sender and receiver. The nodes S∪R and the edges E form the complete
bipartite graph G = (S ∪ R, E). A perfect matching M on G links all t sent and
received messages.

The weights ws,r associated with the edges es,r ∈ E are derived from user
profiles Px. We discuss how to estimate these user profiles and practical issues in
a separate section. Recall that for each user x, Px describes the sending behavior
toward the entire population but, for a given round, only those x and elements of
Px associated with senders and receivers in the round are of interest. Therefore
we derive the t × t matrix P ′(s, r) := Psen(s)(rec(r)) , s ∈ S, r ∈ R.

In the bipartite graph G = (S ∪ R, E), an edge es,r between a message s ∈ S
sent by user sen(s) and a message r ∈ R received by user rec(r) is associated
with ws,r = P ′(s, r). Note that a priori the graph is complete bipartite as
every sent message can be linked to every received message. If the user profiles
exclude certain individuals from the list of possible communication partners due
to Psen(s)(rec(r)) = 0, the relation is represented by an edge of weight zero.

In our model, all senders send with the same sending rate such that all combi-
nations of senders sen(S) are equally likely to be observed. Each sender chooses
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the recipient(s) of her message(s) independently of the choice(s) of all other
senders. Further, if a user sends multiple messages, the receivers of these mes-
sages are also chosen independently. Therefore, we can model the case that a
user sends two (or more) messages by considering her two (or more) distinct
senders with identical profiles that each send one message to independently cho-
sen receivers.

Given a round observation, which consists of multisets of senders sen(S) and
receivers rec(R), the probability of each assignment M is

∏
es,r∈M ws,r. The

assignment M maximizing p(M) also maximizes p(M |S, R).

5 Attack Description

In this section we describe the profiling step and the de-anonymization step of
the Statistical Disclosure Attack and the improved de-anonymization step of the
Perfect Matching Disclosure Attack.

An attacker deploying a Disclosure Attack observes the system during ρ
rounds, collecting the identity of the senders and receivers in each of them.
We denote sen(Si) the set of the senders of the t messages arriving to the mix
in round i and rec(Ri) the set of the corresponding receivers. We denote the
whole set of ρ round observations as the trace T = (Si, Ri), 1 ≤ i ≤ ρ. We note
that both sen(Si) and rec(Ri) are multisets and may contain repeated elements,
meaning that users can send (or receive) more than one message in each round.

5.1 Profiling with the Statistical Disclosure Attack

The SDA, as presented by Danezis in [4], focuses on revealing the likely set of
friends of a target user, Alice. It was proposed for a scenario very close to our
U0 scenario, where Alice is the only user in the system that has a set of friends
(PAlice contains k positions with value 1/k corresponding to her k friends), and
the rest of the population choose their recipients uniformly amongst all the users
(Psen(s)(rec(r)) = 1

u for all s ∈ S, r ∈ R, sen(s) �= Alice). The sole difference of
Danezis’ model with respect to our definition of U0 is that in his model Alice
sends exactly one message per round in which she participates.

In each round where Alice is sending a message, an attacker deploying the
SDA considers the probability distribution O of the potential recipients of this
message as a combination of the profiles of all the participating senders

O =
1
t
PAlice +

t − 1
t

Px, x ∈ sen(Si) \ {Alice} . (1)

For a sufficient number i of observed rounds, the law of large numbers allows to
estimate Alice’s profile from the empirical mean over the observed rounds:

Ō =
1
t

∑

i

Oi ≈ PAlice + (t − 1)Px

t
⇒ P̃Alice ≈ t

∑
i Oi

t
− (t − 1)Px . (2)
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Using the round observations contained in T as input to this method, the
attacker estimates the profiles of all the users in the system. We denote the
estimated profile of user x obtained in this phase P̃x,SDA, for each user x in the
population, and we denote the whole set of these profiles as P̃SDA.

5.2 De-anonymization with the Statistical Disclosure Attack

As suggested in [4,5], the estimated profile can be used to rank the potential
receivers of a message from Alice according to the likelihood that Alice would
send to them. The most likely receiver rec(r) of her message in a round i can
thus be easily identified as

rec(r) = argmaxrec(r) P̃Alice,SDA(rec(r)), r ∈ Ri . (3)

When de-anonymizing the receivers of several messages in one round, the most
obvious, though näıve approach is to repeat this procedure for each individ-
ual sent message. Figure 2 depicts the entire de-anonymization process, where
the box marked as SDA profiling represents the profiling step described in the
previous section, and the output DSDA is the de-anonymization result of the
attack.

Fig. 2. De-anonymization with the Statistical Disclosure Attack

5.3 De-anonymization with the Perfect Matching Disclosure Attack

In a nutshell, our idea is to link all messages sent and received during one
round such that each message is linked and the joint probability of all links
is maximized. Thus, we aim at finding a maximum weighted bipartite matching
on the underlying graph, which in terms of algorithmic computer science is an
assignment problem. We denote the space of all perfect matchings on the graph
G by M and require that an eligible set of edges belongs to this space, i.e. it
must be a perfect matching M ∈ M.

Given the trace T of round observations, the adversary first estimates sim-
ple user profiles P̃SDA as described in 5.1. Then she uses these profiles to de-
anonymize mixing rounds, see Fig. 3. For a round i, she derives the t × t matrix
P ′(s, r) := P̃sen(s),SDA(rec(r)) , s ∈ Si, r ∈ Ri. The joint probability of all t links
in an assignment M is pjoint =

∏
es,r∈M P ′(s, r) .

As derived in Sect. 4.1, the assignment M that maximizes pjoint is the ad-
versary’s best guess. Note that maximizing pjoint does not fit the definition of
a linear assignment problem because a maximum weight bipartite matching is
achieved by maximizing the sum of edge weights in a perfect matching. In order
to model our problem as a linear assignment problem one more step has to be



10 C. Troncoso et al.

taken. To linearize the problem, we replace each element of the matrix P ′(s, r)
with its logarithmic value log10(P ′(s, r)) before associating it to the edge es,r

linking message s to message r.
It is well known that the logarithm is a monotonically ascending function, if

the basis is greater than or equal to one. Thus maximizing log10(pjoint) is equiv-
alent to maximizing pjoint. The advantage is that log10(pjoint) can be calculated
as a sum

log10(pjoint) = log10(
∏

es,r∈M

P ′(s, r)) =
∑

es,r∈M

log10(P
′(s, r)) . (4)

Having each edge associated with a log-probability, the assignment problem is
linearized and can be solved efficiently. Using as input the matrix P ′, a suitable
algorithm to solve linear assignment problems outputs the most likely sender-
receiver combination for all t messages in the round as the perfect matching M ∈
M. It is a maximum weighted bipartite matching on the graph G = (S ∪ R, E)
and maximizes pjoint for this round. We summarize the approach for one round:

1. sent messages are nodes in Si and marked with their senders’ identities
2. received messages are nodes in Ri and marked with their receivers’ identities
3. derive the t × t matrix: P ′(s, r) := P̃sen(s),SDA(rec(r)) , s ∈ Si, r ∈ Ri

4. replace P ′(·, ·) with log10(P
′(·, ·))

5. solving the linear assignment problem yields the maximum weight bipartite
matching M .

Fig. 3. De-anonymization with the Perfect Matching Disclosure Attack

In order to implement the attack, a subtle detail needs to be considered.
Taking into account that, before applying the logarithm, 0 ≤ P ′(·, ·) ≤ 1 and
that log(0) is not defined, we need to define log(0) = −∞ in order for the
algorithm to maximize the joint probability. Note however, that i) this case is
rarely encountered in practical scenarios unless one has access to very precise
user profiles and that ii) replacing 0 with −∞ solely prevents numerical errors
and has no influence on the output M of the matching algorithm. Further, some
implementations of algorithms for linear assignment problems aim at minimizing
the sum of the edge weights (e.g. costs) in a perfect matching. However, a linear
maximization problem can be turned into a linear minimization problem by
substituting P ′(·, ·) = −P ′(·, ·).

6 Empirical Evaluation of De-anonymization Techniques

In order to evaluate the performance of the Perfect Matching Disclosure Attack,
we deploy it in different scenarios and compare it to the original Statistical
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Disclosure Attack. Our goal is to study the impact of system parameters on the
effectiveness and viability of both attacks.

6.1 Experimental Settings

Our experiments are carried out on populations U of size u = 1000 users that
send messages through a threshold mix with threshold t = 100, ensuring that a
considerable fraction of the users participate in each mixing round. Every user
x ∈ U chooses her recipients according to her profile Px, which depends on the
considered user behavior model (see Sect. 3), and initiates communications with
the same frequency λ. We note that, given that the attacks need full rounds
of mixing, the choice of this parameter’s value is arbitrary. As long as all users
send messages to the network with equal rate, their frequency of appearance
as senders does not depend on the precise sending rate. Although real users
are expected to send messages with different frequencies, we chose to fix this
parameter in order to create a scenario that allows us to clearly illustrate our
techniques.

We study how the number of rounds observed by the attacker affects the
performance of the PMDA and the SDA. Both from the adversarial and the
designer’s points of view, this consists of exploring the effectiveness, efficiency,
and scalability of the attacks. For the purpose of our studies we have generated
100 000 mixing rounds. An experiment consists of 1) estimating all user profiles
P̃SDA from ρ round observations, 2) de-anonymizing 5000 rounds with the SDA,
and 3) de-anonymizing the same 5000 rounds with the PMDA (except when
ρ = 1000, when we only de-anonymized 1000 rounds). Table 1 summarizes the
parameters and their values in the experiments.

Table 1. Parameters of the experiments (N=1000, t=100), μ is average number of
messages used to profile one user, γ is average number of de-anonymization trials per
user

�����Param
ρ 1k 5k 10k 25k 50k 100k

μ 100 500 1000 2500 5000 10000
γ 100 500 500 500 500 500

Population No of friends k Profile

U0 {5, 25, 50} Uniform
U5 random [5, 50] Non-uniform

6.2 Results

In this section we present the results of our experiments. To measure the effec-
tiveness of the attacks we define two metrics, the individual success rate and the
round success rate. The former expresses the accuracy of the attack when de-
anonymizing the receiver of a message from a particular sender, i.e. successfully
linking a specific sender to a receiver. It is computed by counting how many
messages sent by each user in the population have been correctly de-anonymized
during the attack, then deriving the success rate per sender by dividing by the
number of messages sent by this user. The latter shows the percentage of links
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correctly de-anonymized per round. We calculate it as the average number of
relations successfully identified per round. Both metrics are computed over all
5000 (1000) rounds.

It is important to note that we consider a message as de-anonymized correctly
if and only if the attack has identified the receiver of that message correctly. Note
that this does not necessarily require to match a sent message to the correct
received message. We apply a hard yes/no metric on whether the identity of
the matched recipient is correct. This is a more rigorous criterion than the one
used in [4,5] where the rank in the sorted probability distribution of potential
receivers is taken into account.

Population U0. We test both attacks in three U0 populations where Alice has
k friends. We look at the influence of the number ρ of rounds used in the profiling
step on the success rates of the attacks.

Figure 4 illustrates the individual success rates. As all users except for Alice
send uniformly to the entire population, no information can be inferred about
them. Therefore the results refer only to Alice’s messages and we only consider
her individual success rate. We see that the PMDA does not get any advantage
in these scenarios, and both attacks score similarly. On the one hand this is due
to the lack of information that the rest of senders in the round provide. Since
their profile is uniform, they give no hints about who Alice is not sending to.
On the other hand, Alice chooses uniformly amongst her friends. Therefore, if
two or more of her friends appear in the set rec(R), the best the algorithm can
do is choose randomly amongst them. This last problem also affects the SDA’s
effectiveness. One can observe in the graph that, the smaller the number of
friends (thus the smaller the probability that this difficulty appears) the higher
the success rate of both attacks. The graph shows that in some cases the PMDA
performs slightly worse/better than the SDA, but these small differences have
no statistical significance.

As expected, increasing the number ρ of rounds to profile users increases the
likelihood of successful attacks. It is remarkable, however, that this rate does

Fig. 4. Individual success rate in a U0

population
Fig. 5. Alice’s profile in a U5,1 and U5,2

scenario
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not increase constantly. When the number of Alice’s friends is small (k = 5),
not much improvement is achieved by increasing the number of profiling rounds
above 10 000. Nevertheless, having more rounds helps the attacker when the
number of friends increases, as more rounds, in which Alice participates, are
needed to observe her sending messages to all of her friends.

Population U5. For our second set of experiments, we prepared two bench
tests, U5,1 and U5,2, where users had a complex behavior corresponding to U5
populations. In both cases each user had a random number of friends chosen
uniformly from [5, 50]. However, the scenarios differ in the way the sending prob-
abilities are distributed amongst these friends. Users corresponding to the U5,1
example have a set of contacts where there are one or two very good friends
(which they choose as recipients in more than 60% of the cases) and the rest
have small probability of being chosen. The users forming the population for the
second test, U5,2, do not have strong preferences about their contacts, still, their
distribution is non-uniform. Figure 5 depicts Alice’s profile in the U5,1 and U5,2
scenarios.

Contrary to the U0 case, where the SDA and the PMDA performed similarly,
the PMDA achieves higher de-anonymization success rates when applied to a
U5 scenario. Figure 6 shows the percentage of users participating in the commu-
nication for which the attacks obtain a certain individual success rate in both
U5 scenarios. We represent different values for the number ρ of rounds used for
profiling with different line styles.

We see that the PMDA outperforms the SDA in both experiments, but there
is a significant difference between them. With respect to the U5,1 case (on the
left side of the figure) and ρ = 10 000 one can observe that the SDA achieves
an average individual success rate of 71.5% while the PMDA scores an average
individual success rate of 96.04% and de-anonymizes more than 90% of the
messages correctly for 99.6% of the users. With respect to the U5,2 case (right
side of the figure) and ρ = 10 000 the SDA achieves an average individual success
rate of 26% while the PMDA scores 55.35%.

Figure 7 presents the round success rates of the SDA and the PMDA. Like
in the individual success rate, our attack outperforms the SDA. In the U5,1 case
(left), the SDA has a high rate (71.5% in average) of round de-anonymization,
whichever is the number of rounds observed. However, the PMDA improves this
result de-anonymizing in average 96.05% of the messages in each round when
10 000 rounds have been used for profiling and correctly de-anonymizing the
full set of links in 17.22% of the cases. The success of both attacks diminishes
when the user’s sending patterns tend to be more uniform toward their friends
(case U5,2, right). For the same number of ρ = 10 000 observed rounds the SDA
achieves an average round success rate of 25.6% and the PMDA 55.3%.

It is important to note the influence of the number of rounds observed by the
attacker on the success rates of the attacks. Increasing the number of observa-
tions makes both attacks more accurate. However, there are notable differences
in the effect of this increase depending on the type of population attacked as
well as on the attack itself. Analyzing a higher number of rounds provides more
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Fig. 6. Individual success rate attacking U5 populations (U5,1 left, U5,2 right)
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Fig. 7. Round success rate attacking U5 populations (U5,1 left, U5,2 right)

information, a fact exploited by the PMDA. On the contrary, the SDA’s simple
decision algorithm takes little advantage of this extra information and we see
that almost no improvement is achieved by observing more than 5000 rounds.
Moreover, when the attacks are carried out in a U5,1 scenario, the users’ profiles
have a low entropy, thus the strong friends are early identified and no additional
information is extracted from new round observations.

6.3 Scalability of the Attacks

We evaluate the efficiency of both attacks in terms of time. We implemented
both attacks in the high-level interpreted language of a commercial numerical
computing environment without any optimizations. In our implementation of
the PMDA we use the Hungarian algorithm [15] to solve the linear assignment
problem of finding the most likely perfect matching between inputs and outputs
of the mix. We show in Table 2 the time it takes to carry out all the operations
depicted in Fig. 2 for the original SDA and in Fig. 3 for the PMDA in U5,2

scenarios with mix thresholds 100, 500 and 1000. In all cases the profiles P̃SDA
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have been derived from ρ = 50 000 rounds and have been used to de-anonymize
5000 rounds (i.e., find the recipients for all s in Si, 1 ≤ i ≤ 5000). The code
for scenarios with threshold 100 and 500 rounds was executed on a machine
with a processor running at 2.8 GHz and 512 KB cache and for the threshold
1000 scenario we used a machine with a processor running at 2.2 GHz and 1
MB cache. We include the success rates for t = 100 to illustrate the trade off
between accuracy and speed.

Table 2. Timings of the attacks: estimation of profiles from 50 000 rounds and de-
anonymization of 5000 rounds

Attack t = 100 t = 500 t = 1000
Time Success rate, mean (min) Time Time

SDA profiling 3.08m - 38.33m 66.16m

SDA de-anon 10m 25.6% (0.00%) 3.48h 12.91h
PMDA de-anon 10.2m 62.9% (38.8%) 12.9h 4.69days
NSDA de-anon 13.33m 60.2% (33.5%) 4.28h 15.3h

The PMDA de-anonymization is slower than the SDA de-anonymization and
the difference grows as the size of the threshold and thus the underlying bi-
partite graph increases. Nevertheless, it yields higher success rates. In Sect. 8.2
we propose the Normalized Statistical Disclosure Attack (NSDA), that com-
bines accuracy and speed. Table 2 includes the success rate and timings for the
operations shown in Fig. 12 inside the dotted line. Note that all of the attacks’
efficiencies would substantially benefit from optimized implementations. Further,
the PMDA in particular is suited for parallelization.

7 Enhanced Profiling with the Perfect Matching
Disclosure Attack

So far we have focused on the PMDA’s de-anonymization capability. In this
section, we show how the derived maximum weighted bipartite matchings Mi

can be used to better estimate user profiles.
A better estimation of a profile, say PAlice, is built by, instead of considering all

possible receivers of her message(s) in a round i as equally likely, considering the
receiver(s) indicated by the matching Mi as the most likely. Instead of assigning a
probability of 1/t to each receiver in rec(Ri), the attacker assigns z to the receiver
assigned to Alice’s message(s) by Mi and (1−z)/(t−1) to the rest of the elements
in rec(Ri). This step is marked with “PMDA profiling” in Fig. 8. The choice of
the weight z is not that crucial. It expresses the confidence one has in the perfect
matchings Mi. We experimented with different values for this parameter but ob-
served that the effect on the profile estimation is minor. However, there is one
hard bound. Choosing the weight z such that z = (1−z)/(t−1) turns the second
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Fig. 8. Obtaining enhanced profiles with the Perfect Matching Disclosure Attack

profiling step useless as this setting reflects the original SDA, and choosing z <
(1−z)/(t−1) will effectively hide the actual users’ relationships. We chose z = 0.5
without a specific motivation. Note that the same ρ round observations used
to construct the simple profile P̃Alice,SDA are reused to estimate the enhanced
profile P̃Alice,PMDA.

The same procedure can be applied to the decision Di of the de-anonymization
phase of the SDA, yielding a more accurate profile than the one estimated by
the original SDA and denoted by P̃Alice,eSDA.

For a U0 scenario where Alice has five friends, Fig. 9 shows the profile PAlice

we initially generated for Alice, her profile after the PMDA’s profiling step, the
approximation of her profile derived with the enhanced SDA, and her profile
estimated using the original SDA. Figure 10 shows the corresponding set of
profiles for a U5,2 scenario. We observe in both cases that the profile estimation
P̃Alice,eSDA is more precise than P̃Alice,SDA but not as good as P̃Alice,PMDA.

Fig. 9. Alice’s profile and estimations (logscale) for U0, ρ = 100 000. From left to right:
PAlice, P̃Alice,PMDA, P̃Alice,eSDA, and P̃Alice,SDA.

In the U0 scenario, all three estimations allow the adversary to easily identify
the set of Alice’s friends, even if the exact number k of friends is unknown.
However, the enhanced methods increase the contrast between friends and non-
friends. In the U5,2 scenario, P̃Alice,SDA does not allow to identify friends, and
even worse, there exist non-friends of Alice that have higher probability than
some of her friends. P̃Alice,eSDA improves the estimation and allows to identify
Alice’s best friends (those with high probability in PAlice), but it fails to show
more unlikely receivers as for example user 19. In P̃Alice,PMDA the estimation
is further improved and all of her friends have higher probabilities than her
non-friends.
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Fig. 10. Alice’s profile and estimations (logscale) for U5,2, ρ = 100 000. From left to
right: PAlice, P̃Alice,PMDA, P̃Alice,eSDA, and P̃Alice,SDA.

8 Extending the Perfect Matching Disclosure Attack

In this section we present variants and extensions of the Perfect Matching Dis-
closure Attack. The iterated PMDA and the normalized SDA are alternatives
with different trade-offs between precision and computational load. We also out-
line how the PMDA, and any of its variants can be applied to the more realistic
scenario of a pool mix.

8.1 Iterated PMDA

The profiles P̃PMDA can be used as input to a subsequent PMDA de-anonym-
ization step, yielding the perfect matchings M∗

i as output, which uncover the
actual relations between senders and receivers for each round with an even higher
rate of success than the PMDA, particularly in U5 scenarios. Further, the M∗

i

can be used for a subsequent PMDA profiling step, yielding user profiles that
are slightly better than the P̃PMDA. Figure 11 illustrates the chaining for two
iterations of the PMDA.

Fig. 11. Iterated Perfect Matching Disclosure Attack

In fact, the PMDA can be chained arbitrarily often, each time yielding a
(slight) improvement over the outputs of the previous iteration, and asymptot-
ically approaching the optimal result. The concept of this iterated approach is
know as expectation maximization.

Note, however, that each additional instance of the PMDA implies an increase
of computational cost. Again, it is possible to trade certainty for speed substi-
tuting the PMDA de-anonymization step by the SDA de-anonymization step.
Table 3 presents de-anonymization success rates of a two-instances PMDA and
a two-instances eSDA when applied to U0 and U5 scenarios.
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Table 3. Individual success rates of two-instances PMDA and two-instances eSDA
de-anonymization; all profiles are derived reusing the same set of ρ = 10 000 rounds,
success rates are evaluated from de-anonymization of 5000 rounds

U0 eSDA PMDA
k = 5 80.43 78.67
k = 50 10.47 12.15

U5,2 eSDA PMDA
26.56 60.24

8.2 Normalized Statistical Disclosure Attack

The Normalized Statistical Disclosure Attack, illustrated in Fig. 12, has a similar
structure as the SDA but it additionally constructs the matrix P ′ as in the
PMDA and it includes a matrix normalization step.

Fig. 12. Normalized Statistical Disclosure Attack

We transform P ′ into a doubly stochastic transition matrix that, by definition,
has the property that each row and each column sums up to one. We use the
method proposed by Sinkhorn in [19] in 1964. He showed that an arbitrary
positive N ×N matrix, i.e. each element is greater than zero, can be transformed
into a doubly stochastic matrix by iterative proportional fitting. This means
iteratively normalizing the rows and the columns of the matrix. Sinkhorn also
proved that the iteration converges and has a unique solution.

An element of the normalized transition matrix P ′ represents the probability
of a link between input messages (row) and output messages (column). This
ensures that each sent message is received (all rows sum up to 1) and each
received message was sent (all columns sum up to 1). The receiver of a given
message s is chosen as the one who maximizes the individual link probability
P ′(s, ·).

The normalization step has two important effects on P ′ that stem from the
fact that the iterative proportional fitting spreads the information contained in
each element of P ′ over the entire matrix. The first effect is best explained in a
noise-free toy example. Consider the matrix P ′ before and after normalization

P ′ =

⎛

⎝
0.5 0.5 0
1 0 0
0 0.5 0.5

⎞

⎠ normalize−→

⎛

⎝
0 1 0
1 0 0
0 0 1

⎞

⎠ .

The per sender maximum likelihood decision approach of the SDA achieves
66.66% success rate when assigning receivers to senders based on the original
version of P ′.
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The normalization process over the matrix P ′ implicitly takes interdepen-
dencies between the matrix elements in different rows and columns into ac-
count and eliminates impossible combinations. In the toy-example, the certainty
P ′(2, 1) = 1 implies P ′(1, 1) = 0. Hence, P ′(1, 2) becomes 1 to fulfill the doubly-
stochastic requirement in the first row. This implies that P (3, 2) becomes also
0 and hence P ′(3, 3) = 1. Therefore, a per sender maximum likelihood decision
approach based on the normalized matrix takes more information into account
and leads to the only correct assignment with success rate one.

To explain the second effect, we use a noisy version of the same initial matrix
P ′ that contains Gaussian noise with standard deviation 0.1

P ′ =

⎛

⎝
0.4006 0.4208 0.1786
0.7810 0.1432 0.0757
0.0997 0.4580 0.4424

⎞

⎠ normalize−→

⎛

⎝
0.2776 0.4369 0.2856
0.6673 0.1834 0.1494
0.0552 0.3798 0.5651

⎞

⎠ .

The per sender maximum likelihood decision of the SDA based on the initial
P ′ leads to the correct assignment for the senders 1 and 2 but to a wrong
assignment for sender 3. Based on P ′ after the normalization step, also the
third assignment is identified correctly. The estimated profiles obtained by an
adversary in a realistic scenario contain noise. The normalization step partially
eliminates this noise yielding more reliable data.

The combination of these two effects allow the NSDA to de-anonymize mes-
sages with a higher success rate than the original SDA. As we show in Table 2,
this attack runs faster than the PMDA for t = 500 and t = 1000, still it achieves
a lower success rate. It is a decision of the adversary which method suits her
purposes best.

8.3 Pool Mix

Finally, we outline how our attack can be applied to a pool mix scenario [17].
Figure 13 depicts a simple example with threshold t = 4 and internal memory of
size n = 4. It also shows the link probabilities between incoming and outgoing
messages according to the formula given by Serjantov and Danezis in [18] in
the upper table, and the relevant part of users’ profiles in the lower table. Such
profiles can be derived, for example, by applying the SDA [7]. We observe two
rounds of the mix. Initially the mix generates two dummy messages p1 and p2
and places them in the pool. After the first round two messages stay in the pool
participating in the second round. After the second round, two messages, p5 and
p6, remain in the pool.

Before one can apply the PMDA to a pool mix, the scenario needs to be
mapped to a bipartite graph. A simple approach for doing so maps each round
individually. The set of sent messages in one round is formed by the messages
actually sent in this round and the messages that remained in the pool after the
previous round. For the first round of our example that is S = {s1, s2, p1, p2}.
Equivalently, the set of received messages is composed of messages that left the
mix and the messages remaining in the pool, i.e. R = {r1, r2, p3, p4}. The initial
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Pmix r1 r2 r3 r4 p5 p6

s1 0.25 0.25 0.125 0.125 0.125 0.125
s2 0.25 0.25 0.125 0.125 0.125 0.125
p1 0.25 0.25 0.125 0.125 0.125 0.125
p2 0.25 0.25 0.125 0.125 0.125 0.125
s3 0 0 0.25 0.25 0.25 0.25
s4 0 0 0.25 0.25 0.25 0.25

rec(r1) rec(r2) rec(r3) rec(r4)
= Eve = Franklin = Charlie = Bob

sen(s1) = Alice 0.25 0.25 0.125 0.125
sen(s2) = Bob 0.25 0.25 0.125 0.125
sen(s3) = Charlie 0 0 0.25 0.25
sen(s4) = David 0 0 0.25 0.25

Fig. 13. Left: two rounds of a pool mix scenario; Right: mix probabilities (upper table)
and user profiles (lower table)

matrix P ′ can then be generated from the mix probabilities given in Fig. 13 on
the upper right side, i.e. P ′(s, r) = Pmix(s, r) for all s ∈ Si, r ∈ Ri, for each
round i. However, as observed from the experimental results in Sect. 6.2, the
uniformity of the entries in this P ′ are bad conditions for an attack to operate
in.

A better approach is to deal with several observed rounds at once and to
compute the probabilities for P ′ globally from starting point to end point. In
our example both rounds can be combined using S = {s1, . . . , s4, p1, p2} and
R = {r1, . . . , r4, p5, p6}. Still we do not expect the attacks to perform well due
to the same reasons as given above.

We propose to additionally combine both sources of information, mix proba-
bilities and user profiles, into P ′. The senders’ choices of their recipients and the
choice of the mix on which messages to output are independent. Therefore, one
computes the joint probability of two choices as the product of the individual
probabilities. We derive P ′ as

P ′(s, r) = Pmix(s, r) · P̃sen(s),SDA(rec(r)) , s ∈ S, r ∈ R .

For completeness we note that the senders of messages which are in the pool at
the beginning of the observation and receivers of messages which are in the pool
at the end of the observation need to be added to the population. The “virtual”
senders are best modeled with a uniform profile while the “virtual” receivers
need to be inserted into all senders’ profiles. Once the initial matrix P ′ has been
generated, the PMDA can be applied to this pool mix scenario.

9 Conclusions

The main drawback of previously published practical Disclosure Attacks is their
susceptibility to changes in the user behavior model. Each of them seems to
be optimized for a specific and restricted scenario. Our first contribution is a
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more general user behavior model, where the number of users’ friends and the
distribution of sending probabilities toward them is not restricted.

Our second contribution is the Perfect Matching Disclosure Attack, that
achieves a high rate of success when tracing messages sent through a thresh-
old mix in arbitrary scenarios. Its accuracy arises from the fact that it considers
information about all senders participating in a round simultaneously, rather
than focusing on individual users iteratively. We empirically compare it with
previous work in terms of effectiveness and show that our proposal yields better
results when de-anonymizing the sender of a given message in a generic scenario.

The second advantage of the PMDA over previous work is its enhanced ability
to estimate user profiles. Concerning a very restrictive user behavior model we
empirically confirm that the PMDA yields a better separation of friends and
non-friends than previous work. With respect to a generic scenario we show that
the PMDA reliably identifies users’ friends when previously proposed methods
fail.

Although the Perfect Matching Disclosure Attack is computationally more
expensive than previously proposed and practical methods, our study of its ef-
ficiency shows that it is indeed practical. A particular promising property of
our proposal is, that it can be parallelized to a high degree. Further, we show
how it can be adapted to different scenarios including pool mixes and how it
can be refined to achieve even better results. A significantly sped-up variant, the
Normalized Statistical Disclosure Attack, yields slightly worse accuracy than the
PMDA but is almost as fast as the original SDA.

Although the new user model presented in this work is more generic than
previous proposals, it is not as versatile as one would desire and most probably
far from real user behavior. More research needs to be performed on the influ-
ence of parameters like the users’ sending rate or its variance over time on the
effectiveness and efficiency of attacks in order to evaluate their impact on real
anonymous communications networks.

Perhaps the most closely related work to ours is the approach toward mea-
suring anonymity proposed in [9]. However, their metric is not self-contained
and can only complement entropy based metrics. Our work on the other hand
aims at pinpointing an adversary’s probability of success though it can also be
used as a complement for the evaluation of anonymous systems. Nevertheless,
both works allow a common conclusion: whether it is to measure anonymity or
to derive strong attack methodologies — considering the perspective of a single
user is not good enough.
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