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Abstract. We present a novel attack targeting anonymizing systems.
The attack involves placing a malicious relay node inside an anonymizing
system and keeping legitimate nodes “busy.” We achieve this by creating
circular circuits and injecting fraudulent packets, crafted in a way that
will make them spin an arbitrary number of times inside our artificial
loops. At the same time we inject a small number of malicious nodes that
we control into the anonymizing system. By keeping a significant part
of the anonymizing system busy spinning useless packets, we increase
the probability of having our nodes selected in the creation of legitimate
circuits, since we have more free capacity to route requests than the
legitimate nodes. This technique may lead to the compromise of the
anonymity of people using the system.
To evaluate our novel attack, we used a real-world anonymizing system,
TOR. We show that an anonymizing system that is composed of a series
of relay nodes which perform cryptographic operations is vulnerable to
our packet spinning attack. Our evaluation focuses on determining the
cost we can introduce to the legitimate nodes by injecting the fraudulent
packets, and the time required for a malicious client to create n-length
TOR circuits. Furthermore we prove that routers that are involved in
packet spinning do not have the capacity to process requests for the
creation of new circuits and thus users are forced to select our malicious
nodes for routing their data streams.

1 Introduction

Anonymizing systems have been steadily becoming popular as network users
that want to hide their identity are using them when accessing Internet services,
like Web browsing and Instant Messaging. Anonymity in networks dates back to
more than twenty years, when Chaum [7] introduced the concept of anonymous
communications. Over the last ten years there have been a series of proposals
for anonymizing systems for numerous services. We refer the reader to [18, 12,
19, 22, 8, 16, 20, 10] for some of the most popular anonymizing system proposals.

Following user needs, anonymizing systems have moved from being purely
academic proposals and have been deployed as real-world infrastructures. One



of the most popular existing solutions for using the Internet in an anonymous
fashion is the TOR system [11]. TOR has been specifically designed for providing
anonymity for low-latency services such as the World Wide Web.

TOR is composed of a collection of routing nodes that are available for circuit
creations between entities that want to communication in an anonymous fashion.
For example, if Alice wants to surf on Bob’s web site using TOR, she will have
to pick three or more available TOR routers, create a circuit that end’s at Bob’s
web site, and proceed to tunnel her requests over that circuit. Bob on his end
will never come in direct contact with Alice but only with a TOR router. This
way Alice’s anonymity is preserved.

Theoretically, it is possible for an attacker to place malicious nodes inside an
anonymity network that is circuit-based (like TOR) and manage to compromise
Alice’s anonymity, should those malicious nodes are selected in Alice’s circuits.
However, when such systems contain thousands of routers, the probability of
being selected is relatively low, unless the attacker injects large numbers of ma-
licious nodes. In this paper we present a novel attack in which a malicious user
injects just a few nodes in system like the above in order to keep legitimate
routers busy. At a later stage, the attacker can add malicious nodes that will be
relatively idle, and in this way increasing the probability of having them selected.

The rest of this paper is organized as follows. We discuss and compare to
prior work in Section 2. In Section 3 we give a detailed presentation of the basic
concept of the packet spinning attack. The evaluations of the attack and its
magnitude is presents in Section 4. Based on our experimental findings we show
how an attacker can actually compromise anonymity in TOR in Section 5. In
Section 6 we propose Tree Based Circuits, a countermeasure aimed at defeating
packet spinning attacks. Finally we conclude and discuss future work in Section 7.

2 Related Work

There are numerous research papers identifying possible attacks against modern
anonymizing systems. One fundamental attack against anonymizing systems is
based on traffic analysis (see, e.g., [17, 3]). Traffic analysis, in the context of
anonymizing, is the process of passively monitoring streams of an anonymizing
system and trying to correlate them by identifying specific patterns, aiming
to reveal the sender or the recipient of an anonymous communication. Traffic
analysis has evolved [14, 9] to a practical way of breaking the anonymity provided
by an anonymizing system. For example, Danezis et al. have shown how traffic
analysis can successfully break the anonymity provided by TOR [15].

Apart from traffic analysis, there are other possible attacks against anonymiz-
ing systems, and our work here is more closely related to those, since we don’t
use any traffic analysis to carry out our attack. More precisely, previous work has
presented a study on attacks against anonymizing systems which are based in
open MIX routers [5]. With respect to TOR, and not considering traffic analysis,
there are two major attacks on its anonymizing scheme. The first one suggests to
inject malicious nodes in a TOR overlay that lie about their available bandwidth



and consequently are selected for TOR circuits with higher probability [4]. In the
second one, Danezis et al. are taking advantage of the circuit creation process
to compromise TOR [6]. Specifically, when a malicious node realizes that it is
unable to compromise a TOR circuit, meaning it is not an entry or an exit node
in a TOR circuit, it breaks the circuit and it forces the user to initiate a new
one. It uses this technique repeatedly with the hope that the new circuit will
contain the malicious node as an entry or exit node.

Borisov et al. recently proposed an opportunistic bandwidth measurement
algorithm for TOR to replace self reported values [21]. This technique addresses
attacks like the one described above [4] and also has a good impact on TOR’s
overall performance because it achieves better load balancing. Surprisingly, this
technique is beneficial for our attack. In the current implementation of TOR the
ORs advertise the same bandwidth both under normal conditions and under the
LOOP phase (where our spinning cells consume most of their bandwidth). Using
the Borisov’s technique though, after the LOOP phase our idle malicious ORs
will be more likely to be chosen, because the legitimate ones will advertise less
available bandwidth.

3 Packet Spinning Attack

In this section we describe in details the packet spinning attack. First, we present
the basic idea and then we focus on the parameters which are critical and can
make the attack stronger. Even though the attack is feasible in any anonymizing
system which uses intermediate relay nodes for hiding the identity of a packet
sender, and each relay node is involved in some cryptographic operations, in this
analysis we will focus on the TOR anonymizing system.

Overview. The TOR anonymizing system is composed of a collection of
nodes1 that relay traffic from a user’s computer to a target service. These relay
nodes, which act as packet forwarders are called Onion Routers (ORs), since
Onion Routing[13] is used during the routing process. A user, who wants to
utilize TOR, runs a TOR client on their computer, called TOR Proxy (TP).
The TP contacts the TOR Directory Servers, which list all the available ORs,
and then builds TOR circuits. Typically, a TOR circuit comprises of three ORs,
the entry, the middle and the exit OR, but the system does not impose any
constraints in the length of a TOR circuit. As long as the user transmits data,
the TOR circuit remains functional. The information transmitted by the TP is
encapsulated in TOR cells. A TOR cell is considered as the base information
unit of transmission via TOR and it is 512 bytes long in size.

To provide stronger anonymity guarantees, the TOR system is designed so
that any OR except the last one, is unable to identify its position in the TOR

1 At the time of writing this paper the number had reached about 2500 nodes (http:
//torstatus.kgprog.com/).



circuit2. On the other hand, to avoid eavesdropping, each TOR cell is routed
using Onion Routing. That is, each TOR cell is multiply encrypted using sym-
metric cryptography. Each OR can decrypt only a single layer of the cell using
its shared session key. Thus, the TP must encrypt each cell with all the shared
session keys of the ORs that compose the TOR circuit.

The Packet Spinning Attack relies in two fundamental principles:

– Since the complete circuit is not known by every OR, circular circuits are
not detectable.

– A legitimate OR will always spend some time in cryptographic operations.

The attack consists of two two phases, (i) the LOOP phase and (ii) the
COMPROMISE phase. We continue by describing each phase in detail.

LOOP Phase. During the LOOP phase, an adversary attempts to keep a
significant amount of legitimate ORs busy in spinning fraudulent packets. For
an adversary to launch the attack in its simplest form, they need a malicious
TP and a malicious OR. The malicious TP colludes with the malicious OR. The
TP creates a TOR circuit which starts and ends at the malicious OR. The TP
creates a packet, which it encrypts layer by layer using the shared symmetric
session keys of the legitimate ORs composing the initiated TOR circuit, and
then forwards it to the malicious OR. The malicious OR does not decrypt the
packet but instead it immediately forwards it to the next legitimate OR of the
circuit. The OR decrypts a layer of the packet and forwards to the next one,
and so on. Finally, the packet completes a cycle and reaches the malicious OR
completely decrypted. Upon receipt, the malicious OR drops the packet and
re-injects the initial, fully encrypted packet, back into the circuit. This marks
an artificial spin of a packet inside a TOR circuit. The same operation can be
repeated indefinitely.

A schematic representation of the LOOP phase can be seen in Figure 1.
To further amplify the attack, the malicious TP can build a series of loops, in
various combinations, always using a single malicious OR, who is responsible for
maintaining the loop.

It is vital to observe, that one malicious OR can keep multiple legitimate
ORs busy. This is achievable for two reasons. First, the malicious OR spends
much less time in packet routing, since it is not involved in any cryptographic
operation. We evaluate this further in Section 4. Second, the malicious OR can be
part of a circular circuit of arbitrary length. The default length of a TOR circuit
is three ORs, but the protocol specification does not impose any constraints in
building larger circuits. The ability of building TOR circuits of arbitrary length
is also further explored in Section 4.

In addition, as we experimentally observe in Section 4 the difference in rout-
ing effort between the malicious OR and the legitimate ones increases as the
packet size (the number of cells composing the initial packet) grows.

2 Although the first one is also able to know its position by checking whether the IP
address of the node before it is in the set of the Tor nodes. This set is available
through the Directory servers. [4]
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Fig. 1. Schematic representation of the
packet spinning attack (LOOP phase).
In the top part of the figure we depict
the normal operation of a TOR circuit.
Each OR decrypts a layer of the incom-
ing packet and forwards it to the next
one, until the packet reaches the final
destination. In the lower part of the fig-
ure we depict the spinning packet at-
tack. A malicious OR (solid cell), part
of the circuit, injects again the initial
packet in the circuit. The legitimate
ORs continue to decrypt the packet in
each spin, but the malicious one is not
involved in any cryptographic opera-
tion.
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Fig. 2. Schematic representation of
how an adversary can compromise the
anonymity of a user by employing
the packet spinning attack (COMPRO-
MISE phase). In this figure, the adver-
sary has injected three malicious ORs
(solid cells) in the anonymizing system.
One of them has built circular circuits
with legitimate ORs in order to keep
them busy, and two of them are free of
resources in order to serve as routers
for new TOR connections.

COMPROMISE Phase. When the attacker completes the LOOP phase, they
are able to launch the COMPROMISE phase, in order to reveal anonymous
communications. The adversary injects malicious ORs, which are not selected as
part of any “spinning circuit.” That is, the injected ORs are idle and therefore
they can be selected for legitimate TOR circuits with greater probability. As
we investigate further in Section 4, even if legitimate ORs, which are part of a
spinning circuit, are selected in the creation of a new TOR circuit, most likely
they will not be able to join it. That is, if a legitimate TP selects ORs, which are
occupied in spinning circuits, there is a great probability for the TP to receive a
timeout from the selected ORs and continue building the circuits with new ORs.
Sooner, or later the legitimate TP will select idle ORs like the ones injected
in the system by the adversary. We schematically present the COMPROMISE
phase in Figure 2.



4 Attack Evaluation

In this section we estimate the firepower of the packet spinning attack. We
experimentally evaluate the attack magnitude by placing a malicious OR in a
TOR overlay on two fronts:

– The overhead for a malicious OR to forward spinning packets versus the
overhead of a legitimate OR to perform the same operation.

– The time required for a malicious TOR client to build arbitrary length TOR
circuits.

Routing Overhead. The spinning packet attack is based primarily on the fact
that a malicious OR may route packets faster than a legitimate one, because it
is not involved in any cryptographic operation. The malicious OR is positioned
in a circular TOR circuit and it is continuously injecting TOR cells inside the
circuit, without decrypting the cells it receives (see Figure 1).

To measure the effort spent by a malicious OR to conduct the attack, in
contrast to a legitimate OR, we conducted the following experiment. We placed
three ORs on three hosts. Each host was running a single OR and all the three
hosts were isolated from any external network traffic. One of the ORs was modi-
fied to be malicious. The same host that runs the malicious OR is also running a
modified TP to create the circular circuit, as well as another 20 TOR processes
and the directory servers needed for each OR to resolve the other available ORs.
That is, the host running the malicious OR was significantly more loaded than
the ones running the legitimate ORs. We used the default configurations of all
ORs and we used the latest version of TOR (0.1.2.18) at the time we conducted
the experiments.

We conducted several experiments for various numbers of spinning cells. In
each run we measured the time needed for an OR - legitimate or malicious -
to route the incoming cell. The time measured was from the point that the OR
received a packet, up to the point the OR had sent the packet to the next hop of
the circuit. For each experiment, the TP sends to the artificially made circuit a
packet of specific size in terms of number of cells. Recall from Section 3 that the
base information unit in TOR is the cell, which is equal to 512 bytes. That is,
the TP sends packets that are multiple of one cell in length. From the moment
the TP sends spinning packet to the circuit, the packet starts spinning with the
assistance of the malicious OR and the TP is never again involved in the process.
In Figure 3 we present the cost of routing the spinning cells for the legitimate
and the malicious ORs. Observe, that for each OR, malicious or legitimate, the
effort grows linearly to the packet size. In addition, the effort of the malicious
OR is significantly lower to the legitimate ORs, and the difference increases as
the cell number increases. More precisely, the difference in the effort can grow
from approximately 60% to nearly 85%. In Table 1 the relative percentage of
the difference during the routing effort is listed for each experiment.

As far as the spins achieved by each spinning packet are concerned, we show
the time required for a series of cell relays in Figure 4. Each OR can spin a cell
at a maximum rate of 25 relays per second.
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OR1 OR2 ORm
OR1−ORm

OR1

OR2−ORm

OR2

336.199 361.403 133.136 60% 63%

598.276 584.898 176.997 70% 70%

926.444 901.521 232.435 75% 74%

1629.16 1635.22 294.156 82% 82%

3140.73 3167.97 513.536 84% 84%

5798.09 5777.1 850.997 85% 85%

Table 1. The percentage difference of the routing effort spend by the malicious OR
(ORm) relatively compared with the routing effort spend by the legitimate ORs, (OR1,
OR2). Routing effort is recorded in µs, which is the period of time required for an OR
to send the packet to the next hop in the circuit after it has successfully received it.

Circuit Building. One fundamental property of the packet spinning attack
is that a malicious OR can occupy several legitimate ORs, by making circular
circuits of arbitrary length. Recall that the default length of a TOR circuit length
is three, but the protocol does not impose any constraints for larger circuits.

In Figure 5 we present real world experiments for the creation of long TOR
circuits over time. Notice that, even though the time needed for the circuit
creation increases exponentially in terms of the circuit length, we were able to
create TOR circuits of more than 30 hops. This means that using one malicious
OR we would be able to keep busy more than 30 legitimate ORs.3

5 Compromising Anonymity

Based on the results we highlighted in Section 4, we proceed to explore how
an actual packet spinning attack can compromise the anonymity of users that
utilize a real anonymizing system, namely TOR.

3 In reality, we can do even better. We can use one malicious OR to issue circular
circuits with several other ORs, as it is depicted in Figure 2.
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Experimental Setup. To conduct the experiments we used the TorFlow [2]
package which is a complementary package of the TOR project [1]. TorFlow is
written in Python, and it is composed of a series of scripts, which utilize the TOR
control channel to communicate with active ORs. The TOR software supports a
protocol for OR instrumenting. A client can connect to a specific port, bound to
the control channel of an OR and give commands in a request-response fashion.
Some operations that are allowed are: building circuits, attaching streams to
circuits and querying an OR for various statistics.

All experiments were held in a private and isolated from the rest of the
Internet TOR overlay. Using TorFlow we developed scripts that were creating
a malicious OR which was part of the overlay. The rest of the ORs were kept
intact in terms of software modifications. The only modification we did was the
bandwidth constraints of the legitimate ORs. We set all legitimate ORs to be
bounded to 1 Mbit per second. We did this to shorten the times it took to
conduct our experiments. As we will discuss later, an adversary could launch a
similar attack in a TOR overlay that is composed of ORs that experience greater
bandwidth, by injecting more spinning cells in the artificial made loops.

Our strategy was the following. We were starting a TOR overlay of a variable
number of ORs and we had a TorFlow-based Python script that was acting as a
malicious TP, by instrumenting a malicious OR, and a legitimate TP that was
trying to access the Internet using our isolated TOR. When our scripts weren’t
running, the legitimate TP could access the Internet using our TOR in a normal
fashion. On the other hand, as we explore in detail in the rest of this section,
when our scripts were running, the legitimate TP was experiencing side effects
that could potentially lead to anonymity compromising.

Packet Spinning Effects. The first evident behavior experienced by the legit-
imate TP was the inability of circuit building in time. When a TP tries to access
the Internet using TOR, it first selects three ORs and then tries to build the
circuit telescopically. That is, it first contacts and establishes connection with
the entry router, it then expands the circuit by tunneling the requests through



the entry router until the circuit is created. However, there is a timeout for the
creation of circuits, which is set by default at 60 secs. In addition, ORs that were
part of spinning circuits were unable to process the circuit creation requests fast
enough and thus most of the circuit creation operations issued by the TP were
failing.

In order to demonstrate this side effect more clearly, we contacted an exper-
iment with a TOR overlay that was running on a single host. We eliminated
out all network latencies since all communications between the TOR processes
were local. Using our scripts we created an artificial loop of length five (the ma-
licious OR was the first and last router and the legitimate ones were the three in
the middle) and we started spinning cells inside. We then forced another script
to create the same circuit. We proceeded in adding more spinning circuits and
trying to build a new circuit over them. In Figure 6 we present our results.

Notice, that when there are no spinning circuits the circuit creation is almost
spontaneous. However, as the spinning circuits increase, the circuit creation be-
comes a long process (recall that we have eliminated all network latencies, since
the overlay runs in a single host) exceeding a period of 10 seconds.

6 Countermeasures

An anonymizing system that is based on a series of in-between relay nodes, and
on TOR like circuits, is vulnerable to a packet spinning attack since it permits
the creation of circular circuits. An adversary could utilize these circuits, having
a malicious relay node that is not taking part in cryptographic operations and
thus it has time to flood the circular circuit with fraudulent packets. We carried
out all this analysis, using a real anonymizing system, TOR.

An obvious countermeasure would be to embed information of a circuit in all
participating relayers. This would prevent the creation of circular circuits, but
subsequently would decrease the anonymity level provided by the system. We
are against any countermeasure that degrades the anonymity level of existing
systems.

Instead of preventing circular circuits, our solution aims at reducing the ef-
fects of artificial loops in an anonymizing overlay. We propose existing anonymiz-
ing systems to employ Tree Based Circuits (TBCs). More precisely, instead of
having serial circuits, like the ones used in TOR, we propose that circuits will
expand from the entry node in a tree fashion targeting the final destination.
In Figure 7 we depict a TBC. The entry node issues two connections with two
middle nodes and each of the middle nodes issues two connections with two exit
nodes. In this example, one exit node is shared between the two middle nodes,
but this is not obligatory. The dashed lines present OR connections that are
ready to be utilized and the solid lines present an active TOR stream.

Introducing TBCs in an anonymizing system like TOR raises some important
questions. How fast a TBC can be constructed? Recall, that TOR is used for low-
latency communications. Does it degrades the level of anonymity? Notice, that
by employing TBCs will be impossible to make circuits with many levels in terms



of hops, since trees grow exponentially. Is a TBC vulnerable to packet spinning?.
In the rest of this section, we address each of this question in detail.

How fast a TBC can be constructed? Currently, TOR builds four circuits on
startup. This is done for redundancy. Each OR maintains these four circuits and
it is able to use any of them upon a circuit failure. Our proposal, follows the same
logic, but instead of creating four distinct circuits, we create a TBC. A TBC has
many circuits that can be used as alternatives upon a circuit failure. Moreover,
the TBC can be created asynchronously; the client does not need to wait for the
whole TBC creation in order to start transmitting information. The TP remains
responsible for the circuit creation, but for each expand operation, the circuit is
expanded towards multiple directions giving, schematically, the impression of a
tree structure.

Does it degrades the level of anonymity? The ability of building large circuits
in terms of hops gives the impression of higher anonymity, since the packet is
relayed more times, although the latency, for the same reason, is increased. By
employing TBCs the relay node number increases, but the latency does not,
since the hops from the entry node to the exit one are kept at a low level (again
there is no constraint for the depth of the TBC, but it is evident that large
TBCs are an expensive operation, since trees grow exponentially). Essentially,
the relay nodes involved in a transaction are of the same magnitude as of the
relay nodes involved in current TOR circuit, but the relay nodes involved in
the whole protocol negotiation are many more. The additive cost of a TBC in
contrast with a plain TOR circuit is that each OR has to maintain some state
in order to correctly route requests back to the TP.

Is a TBC vulnerable to packet spinning? A TBC can not contain loops, but
again an adversary can place some malicious nodes in order to create TBCs
that send requests back to the entry node and in this way create artificial loops.
However, the adversary has to own more than one node in order to compromise
a circuit, but, more of importantly, the users can escape more easily from loops
by routing their requests using TBCs instead of plain circuits. A TBC gives the
user more alternative circuits to the final destination, which in turn decrease the
probability of encountering nodes that are overwhelmed by spinning packets in
a circular circuit.

7 Conclusion and Future Work

In this paper we presented a novel attack against modern anonymizing systems,
in which a series of relay nodes route cryptographically wrapped packets. The
attack is based on inserting a malicious node in an anonymizing overlay, that is
able to construct circular circuits and forces packets to spin indefinitely inside
those loops. In this fashion an adversary can keep legitimate routers busy while
at the same time they can inject their own, unloaded, malicious nodes. Since
these nodes are not kept busy, they have a higher probability of being selected
by users wanting to utilize the anonymizing system. This way, new circuits are
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Fig. 7. Proposed solution. Tree based TOR circuits that are not vulnerable to circular
circuits.

more likely to contain malicious nodes, and the anonymity of the user can be
compromised.

We evaluated our attack using a real-world TOR system and our evaluation
showed that such an attack is feasible. Finally, we came up with a method to
counter packet spinning attacks and proposed Tree-Based Circuits. We showed
that TBCs can be constructed relatively fast, they do not degrade the anonymity
properties of the system and they are not vulnerable to packet spinning. Part
of our future work is to implement TBCs in the TOR system and evaluate their
performance, as well as further examining if a TBC is vulnerable to similar
attacks like the one presented in this paper.
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Appendix: Technical Discussion

Routing in Tor

Each Tor node has a routing table that contains entries in the form: (source
connection, source circuit id) - (destination connection, destination circuit id)4.
Upon a circuit establishment, each node adds an entry in its routing table to
forward cells for that circuit. In order for the last node (exit node) to know its
position, the routing entry for the specified circuit does not have a destination
connection (is has a NULL value of destination connection). After the circuit
establishment, Tor nodes are able to route cells in a circuit. The pseudo-code of
the function executed upon receiving a new cell is shown in Figure 8.

A simple way to make a cell spin in a circular circuit is to change the last
node’s routing entry’s destination connection from NULL to the connection with
the second node in the circuit. That way whenever the last node receives a packet
it will forward it again to the second node in the circuit.

function receive_cell(cell c)

decrypt_one_layer(c)

if (is_recognized(c)

//do exit node stuff

//...

else

next_conn, next_circ_id = get_route_info(c)

if (next_conn)

c.circ_id = next_circ_id

send_cell(c, next_conn)

else

//circuit stops here bu the cell wasn’t recognized

drop_cell(c)

Fig. 8. The receive cell Tor’s function pseudocode

Spin in Tor implementation

Keeping the previous in mind, we altered the source code of Tor in order to
implement the cell spin. The procedure to make a cell spin in in a Tor circuit
using a colluding TP and an colluding OR is comprised by the following steps:

4 Connection denotes a TLS connections with other Tor nodes. Many Tor circuits can
be multiplexed in a single connection.



1. Establish a circular circuit. Although Tor’s node selection algorithm
never selects a node twice (as an entry and as en exit) we used the control
component of Tor (through TorFlow [2]) to explicitly select the nodes for a
circuit. That way, we create a circular circuit with out colluding OR placed
at entry and exit positions.

2. Inform the colluding OR. In order to get the cell spin we have to inform
the colluding OR to change its routing table. So, the first thing to do is to
get the destination connection and destination circuit id pair that forwards
cells to the second OR. This is done by sending a cell (containing a special
message) encrypted only with the entry node’s key to the circuit. That way
our colluding OR (as an entry node) recognizes it, keeps the destination
connection and circuit id and forwards it down the circuit.

3. Change OR’s routing table. The previous cell that our colluding OR for-
warded will end up again to it but this time it wont be recognizable. So,
our colluding node will get an unrecognizable cell that stops there. That
time it will suppose that this cell is the one it forwarded before and will set
the destination connection and circuit id of the current routing entry to the
values kept at step 2.


