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Abstract. We show how to exploit side-channels to identify clients with-
out eavesdropping on the communication to the server, and without re-
lying on known, distinguishable traffic patterns. We present different
attacks, utilizing different side-channels, for two scenarios: a fully off-
path attack detecting TCP connections, and an attack detecting Tor
connections by eavesdropping only on the clients.

Our attacks exploit three types of side channels: globally-incrementing IP
identifiers, used by some operating systems, e.g., in Windows; packet pro-
cessing delays, which depend on TCP state; and bogus-congestion events,
causing impact on TCP’s throughput (via TCP’s congestion control
mechanism). Our attacks can (optionally) also benefit from sequential
port allocation, e.g., deployed in Windows and Linux. The attacks are
practical - we present results of experiments for all attacks in different
network environments and scenarios. We also present countermeasures
for these attacks.

1 Introduction

Internet communication is often sensitive, and security measures must be taken
to protect privacy against attackers. The exact measures depend on the exact
threat; in particular, encryption protocols such as TLS [9] are necessary to pro-
tect content from an eavesdropping attacker.

However, encryption is insufficient to prevent traffic analysis, and in partic-
ular, to prevent exposure of the identities of the communicating peers. Users
concerned against traffic analysis by eavesdropping attackers, use anonymizing
services such as Tor. Other users may simply assume that the adversary is off-
path (non-eavesdropping), and expect privacy against such (weaker) attackers.

We present three traffic-analysis attacks against these scenarios. Two at-
tacks identify clients that communicate to a specific server directly over TCP
(without anonymizing intermediaries such as Tor). Such attacks do not require
eavesdropping at all, and may be launched by weak, off-path attackers, even for
commercial motivations. In fact, since the attacks do not involve eavesdropping,
they may even be deemed to be legal (not wiretapping). We believe technical
measures should (and can) prevent such off-path traffic analysis.

Our third traffic analysis attack is against Tor users. It requires eavesdropping
abilities only on the client side, and only spoofing abilities on the server side. We



believe that this is an important scenario, since Tor clients are often concerned
about attackers which can eavesdrop on their connection to the Tor relay, since
the client-relay connection may be insecure (e.g., Internet cafe) or controlled by
a potential snoopy organization (employer, government, etc). Our evaluation of
this attack is yet incomplete; however, the preliminary results which we present
in this paper provide a warning about a new attack vector on the Tor anonymity
network.

Our attacks exploit different side-channels, providing useful information on
a TCP/Tor connection to an off-path attacker (for Tor, attacker can eavesdrop,
but only on the client). Side channels have been extensively used in attacks on
cryptographic systems, e.g., [22], but also in attacks on privacy, e.g., [13], and
more recently also applied to traffic analysis [6, 26, 35].

Our attacks on direct (i.e., non-anonymous) TCP connections can be viewed
as instances of an attack pattern which we call Query-Probe-Query, illustrated
in Figure 1; this is a generalization of the well-known idle (stealth) scan attack
[25, 34], and of the measurement method used in [5]. In the Query-Probe-Query
attack pattern illustrated in Figure 1, the first query measures some ‘pre-probe
state’; the probe may cause some change on the state, where the change depends
on the property measured, e.g., whether a specific client port is open; and the
final query measures the ‘post-probe state’. This attack pattern can be applied
with different queries and probes, to measure different values.

In our implementations, each
probe is a packet, or few packets, sent e S f e
to the client C. The probes test for e e e
some event e, such that if e holds ‘
then C will send some packet(s), and

. . 3a. Post-Probe Query Post-Probe
otherwise he will not send a packet B Phase
(or send less packets). We use the
pre/post probe response to infer on e:

we measure the increase in the IP-ID  Fig. 1. Query-Probe-Query off-path attack
pattern. Attacker uses spoofed source ad-

dress for probe.

2a. Probe 2b. Probe 2c. Probe Probe Phase

counter, or measure time between re-
ceipt of the two response packets (1b.
and 3b in Figure 1). Table 1 summa-
rizes our results for traffic analysis on direct TCP connections.

Side Adversary Location
Channel Local | Remote
IP-ID (Section 3) 1 0.92
Success Rate Timing (Section 4)] 0.74 | 0.58
Attack Duration (seconds)/ | IP-ID (Section 3) |14/0.6 38/2
Data Sent (MB) Timing (Section 4)| 70/5 50/4

Table 1. Results for probing direct (TCP) connections. Attacker location is relative
to the client (victim). Success rates can be improved by repeating the attack.

In the recent years, there is growth in the use of anonymity mechanisms such
as Tor [10]. Tor is a low latency, circuit based, anonymity network that is widely
used and increasing in popularity (according to [1], increase of about 70% in



recent year). Tor is designed to ensure traffic privacy, even when the adversary
is able to eavesdrop on either C or S. However, due to its low latency, Tor cannot
ensure traffic privacy against attackers eavesdropping at both ends (C and S),
see discussion on related works below.

We show how an adversary capable of eavesdropping on the client, C, but not
on the server, S, is able to detect that C is communicating with S. This attack
uses a side channel as well, but does not follow the query-probe-query pattern;
here the attacker causes a reduction in the rate of packets that would reach C
in case that he is communicating with S, and then tests whether reduction had
occurred.

Our attacks on Tor are active, i.e., involve sending packets to Tor exit relay.
When there is a known, distinct traffic pattern to the communication of specific
server (website fingerprint), then alternative passive attacks may be applicable
as well, e.g., [18,19, 28]. It may be possible to extend our techniques to also take
advantage of such site fingerprint, when available.

1.1 Related works

IP-ID side-channel and off-path traffic analysis. We show how the use of
globally-incrementing IP-ID field in IP headers, provides side-channel allowing
effective off-path traffic analysis. The use of globally-incrementing IP-ID is recog-
nized, in [17], as a common practice with known security implications; e.g., both
globally-incrementing and per-destination incrementing IP-ID allow intercep-
tion, injection and discarding of fragmented traffic [15]. Globally-incrementing
IP-ID can allow estimation of the number of packets sent [32], stealth-scan for
open ports (idle scan) [31] and counting hosts behind NAT [5].

The technique that we present for the case of a client that uses a globally-
incrementing IP ID and is not connected via a firewall/NAT (see Figure 1) is a
variant of idle-scan [25, 34]. The difference is that while idle-scan probes a server
for an open (i.e., ‘listening’) port, our attack probes a client for a connection
with a server.

The only other previous work we found that performs traffic analysis by off-
path attacker, using a side-channel, is [19]. Their attack is based on detecting
changes in the round trip delays from the attacker to the DSL router; this is a
rather crude side channel, much less efficient than both the IP-ID and the timing
side channels we use. Indeed, they only present detection of whether a client is
browsing or playing a video, based on the significant difference in bandwidth,
and assuming no other traffic. Our results dramatically improve the impact of
detection compared to theirs, provided that the attacker can communicate with
the clients.

Tor traffic analysis. Low-latency anonymity networks are known to be vulner-
able to traffic correlation attacks by an attacker that eavesdrops on both ends;
this problem, and possible countermeasures, was studied in several works, e.g.,
[7,24,36]; efficiency and accuracy can significantly improve if attacker can also



manipulate traffic at the exit relay, see [30]. Indeed, Tor designers are well aware
of its inability to properly protect against an attacker (eavesdropping) at both
ends of the circuit.

Other attacks manipulate the traffic at the server or the last (exit) relay in the
circuit, and use different techniques to detect the relay along the path based on
delays [6, 12, 27]. These works assume that the attacker controls the server or the
exit relay, but do not require client-side eavesdropping. In contrast, our attack
on Tor requires client-side eavesdropping, but does not require control over the
server or exit relay. An obvious challenge is to combine the results, and identify
clients without controlling server or exit relay, and without eavesdropping at all.
Our traffic detection attacks on TCP may be applicable.

1.2 Owur contributions

The main contribution of this paper is identification and analysis of side channels
in the TCP/IP suite and their practical implications on privacy, as we verify in
experiments. We provide practical countermeasures to the problems that we
identify, these allow quick patching at the firewall level and require no changes
to hosts or core operating system services.

This work motivates use of cryptography in lower network layers and in
particular IPsec [20] as we show that higher network layer solutions such as
SSL/TLS do not prevent blind traffic analysis.

1.3 Paper Organization

In Section 2 we present our attacker models and the scenarios that we consider,
we also present the criteria we use to measure the effectiveness of the attacks. Sec-
tions 3, 4 present the global-ID and timing side channels; both sections provide
results of empirical experiments. Section 5 presents our attack on Tor and cor-
responding experiments. Section 6 presents practical defenses. Finally, Section 7
presents our conclusions from this work, as well as future research directions.

2 Model

Let C and S be communicating TCP client and server (respectively). We consider
two types of adversaries, depending on how C and S are connected. In Sections
3 and 4, we consider the case that C and S have a direct TCP connection. In
Section 5, C connects to & through the onion routing anonymity network, Tor
[10]; i.e., C communicates with S via a circuit of relays (proxies). The goal of
the attacker is to identify clients who connect to a server S. We identify S using
its IP address and port.

We consider two types of attackers: Mallory, an off-path adversary, and Eve,
an eavesdropping adversary. The attackers can send spoofed packets, i.e., pack-
ets with fake (spoofed) sender IP address. Due to ingress filtering [4, 14,21] and
other anti-spoofing measures, IP spoofing is less commonly available than before,



but still feasible, see [2,11]. Apparently, there is still a significant number of ISPs
that do not perform ingress filtering for their clients (especially to multihomed
customers). Furthermore, with the growing concern of cyberwarfare and cyber-
crime, some ISPs may intentionally support spoofing. Hence, it is still reasonable
to assume spoofing ability.

We describe both adversary models in Sections 2.1 and 2.2 below. Section
2.3 presents the criteria we use to evaluate the attacks we present.

2.1 Mallory - Off-path Adversary

We assume that C visits a web-
site that Mallory controls, denoted C -« www.s.com

www.mallory.com. Mallory uses this Network m
(legitimate) connection, to probe 1 -
whether C has any connections S, see onnectlon

Figure 2

We consider three variants of
Mallory, as illustrated in Figure 3:
with-C, near-C and remote. These dif-
fer with respect to Mallory’s abilities
to communicate with C; the greater
the distance, the more likely it is that
packet loss or reordering occurs, de-
creasing the quality of the side channels.

The with-C and near-C attackers
are located near the client (C); the Clients

difference between them is that the Network

with-C adversary directly communi-

cates with the client, allowing Mallory 7-
to take advantage of Windows glob-

ally incrementing port allocation (if C With C Near_ Remote

runs Windows). When the adversary Attacker  Attacker  Attacker

and C communicate via a NAT (near-

C or remote), we assume that the NAT Fig. 3. Three variants of the Mallory adver-
uses per destination incremental as- sary.

signment of external ports (e.g., as in

the widely-used IP-tables NAT /Firewall provided in Linux). See in Section 3 how
we exploit different client port allocation techniques. Finally, the remote Mallory
attacker simulates an adversary that communicates with the clients from a re-
mote location, i.e., via a high latency, jittery and lossy channel.

www.mallory. com

Fig. 2. C is surfing in both Mallory and S’s
sites, Mallory tries to detect whether there
is a connection between C and S.

2.2 Eve - Adversary for Anonymized Connections

In the attacks on Tor, we consider the adversary Eve who is able to eavesdrop
on many clients that use Tor, however, Eve cannot eavesdrop on the servers
(see Figure 4). Such an adversary may include a government or an employer,



spying on citizens or employees. Eve’s goal is to detect which of the clients is
communicating (using Tor) with a particular watched/restricted site, S.

2.3 Attack Evaluation Criteria

In addition to measuring the success,

e . C, www.restricted.com
false positive and false negative rates, \ -

. .y C [}
we consider two additional measures. may

. . . Yo 4
The first measure is the time that an . ‘y' NSireiay
adversary (with some reasonable con- 1) azesssea. www.other.com
. 2 a restricted

stant bandwidth) needs to run the at- e 1 Sis

S

tack in order to reach a particular suc-
cess probability for detecting a con-
nection. This value also provides the
minimal detectable connection time.

Fig.4. Eve identifies that some of the
clients she eavesdrops on are using Tor and

Th d < th wants to detect which of them is commu-
e second measure 1s the average nicating with www.restricted.com. C (Cp,)

amount 9f data. per victim that the  conpects to www.restricted.com via a circuit
attacker is required to send to reach a  of 3 relays.

particular success rate.

3 Globally-Incrementing Identifier Based Traffic Analysis

This section presents a probing technique that allows an off-path (blind) adver-
sary, Mallory, to identify a connection between a client C and a server S when C
uses a globally incrementing IP identifier (IP-ID)!. This side channel is only ap-
plicable when the TCP connection is over IPv4, since in IPv6 [8] the IP-ID field
is only specified in fragmented traffic and TCP packets are rarely fragmented.
In the following section we introduce a general technique that does not rely on
IP-ID and also applies to IPv6.

A globally-incrementing identifier is not really hidden from Mallory, who can
usually learn its value simply by receiving some packet from the victim. A glob-
ally incrementing IP identifier is used in all Windows versions we tested (includ-
ing XP, Vista and 7) and is also the default configuration in FreeBSD; clients
running these systems are vulnerable to the attack below. The vast deployment
of Windows on client machines (more than 70% according to browser user-agent
based surveys, see [33]) makes IP-ID attack vector very practical.

Section 3.1 defines a port test that uses the leakage in the IP-ID field to detect
whether C is communicating with S through a tested port. The test depends on
whether C is connected to the network through a NAT or a stateful firewall that
keeps track of existing connections; the test used when C is connected through a
NAT /firewall device the attack is a bit simpler. We believe that this is the more
common scenario, since recent versions of Windows (XP SP2 and later) ship with
a built in (stateful) firewall that is enabled by default, and furthermore, use of

1 §’s IP-ID implementation does not influence the probing technique.



NAT devices in small local area networks connecting clients to the Internet is
common. Due to space limitations we describe only this test and include the test
for the complementary scenario (no firewall/NAT) in an online technical report
[16].

In Section 3.2 we describe how Mallory can identify a relatively small set of
client ports to test for a connection with S; Mallory performs the port-test for
all of them. Section 3.3 presents our experimental setup and empirical results.

3.1 Port-Test for a Client Behind a Firewall/NAT

According to the TCP specification [29] (Section 3.9, bottom of page 69), the
first check that a recipient conducts on an incoming packet, in case it belongs to
an established connection, validates that the sequence number is within the con-
gestion window. If this check finds the packet invalid, then the recipient discards
the packet and sends a duplicate Ack feedback. A stateful firewall or NAT device
connecting C to the network keeps track of existing connections and processes all
incoming packets before they reach C. We use the following observation: incom-
ing packets that do not belong to an established connection will be discarded
before reaching C (by firewall/NAT'), whereas packets that belong to an existing
connection, but specify arbitrary (probably invalid) sequence numbers will reach
C who replies with a duplicate Ack.
The port test for the case of fire-

. . . Mal t% i i
wall/NAT deploying client is accord- 1.1 Pre-Probe Query -
. 1.2. Prob: __RST K .. R
ing to the general query-probe-query 13 Post.probe Ouery (NAT enly)
t Response, id = i

pattern. The probe specifies S’s ad-
dress and port as source (i.e., probe is

[Process |Pro

Response, id = i,+1

spoofed) and C’s address as destina- 2.1 Pre-Probe Query ] R
tion, Mallory specifies a different desti- S Frateba Cunry :|§
nation port in each test. Figure 5 illus-  “* Response.id.=— g
trates two iterations of the port test: 5 [i)ﬁi Y
in the first iteration, the firewall/NAT "
blocks the probe packet (i.e., no con- % Response, [ =12 |a]

nection through the tested port). In
the second iteration, the probe spec-
ifies existing connection parameters
(IP addresses and ports) and therefore reaches C who processes the probe and
sends a duplicate Ack to S.

Notice that since the probe packet appears to be from S (in case it specifies
a valid 4-tuple), it is difficult to block the probe in firewalls without blocking
the legitimate connection that C has with S.

When C uses a global identifier, the difference in the IP-ID field in C’s re-
sponses to Mallory indicates whether C had sent a packet in response to the
probe (duplicate Ack). If Mallory identifies that C had sent a packet, then it is
likely that C is communicating with S via the tested port; however, the identifier
may have increased since C had sent an independent packet to some other peer.

Fig. 5. Two iterations of port test.



Repeating this test several times allows Mallory to efficiently detect whether C
is connected to S and reveal C’s, see empirical evaluation below.

We keep a ‘score’ for each possible port, and increment a specific port’s score
by 1 point for every test that seems to indicate that there is a connection through
that port. We conduct r > 1 rounds of the attack, where each port is tested.
Finally, we decide that there is a connection if there is a port with a score higher
than a threshold, TH.

Some firewalls have an option to randomize the IP-ID; our tests would, of
course, fail if the packets pass through such randomizing firewall. The attack
we describe in the following section applies even in this scenario (but is less
accurate).

Implementing Test Queries/Responses. Our attacks use packets that Mallory
receives from C to learn the effect of the (spoofed) probe packet. Mallory can cause
C to send her such packets by using the legitimate TCP connection that she has
with C: a query is some short data packet that Mallory sends to C, the response
is the C’s acknowledgment sent back to Mallory. This allows Mallory to bypass
typical firewall defenses (e.g., Windows), since all packets in the test appear to
belong to legitimate connections (requests to C-Mallory connection, probe to C-S
connection). See further details in the technical report [16].

3.2 Improving the Search: Client Port Allocation Algorithms

The port test that we presented allows Mallory to test whether the client has a
connection to some server via a specific port. There are 216 possible ports that
C might use to communicate with §. However, common client port allocation
paradigms allow more efficient attacks.

Below we present two common paradigms and methods to reduce the number
of tests for each of them.

Globally Incrementing: the client port is incremented for every new con-
nection (initialized to a random value) Algorithm 1 in [23] describes the imple-
mentation. This approach is used in Windows and FreeBSD. If C uses this port
allocation paradigm, then recent connections that the client forms are likely to
use ‘close’ ports to that C uses in the connection with Mallory. Hence, Mallory
can test only these ports.

Per-Server Incrementing: the client port is incremented for every new con-
nection with the server. Connections to different servers use different counters.
This approach is used in Linux; Algorithm 3 in [23] describes the implementa-
tion. The previous ‘trick’ we presented does not work in this case since the port
that C uses for the connection with Mallory does not correlate to that C uses
to communicate with §. However, we can still use the counter property of this
paradigm: Mallory causes C to create z ‘dummy’ connections to S (we explain
how below); since these connections all share the same counter, they are sequen-
tial. Hence, Mallory can test every port y = 0 (mod ) and identify p, a port C
that uses to communicate with §. Next, Mallory checks all ports in the interval



[p — x,p + z] and checks whether there are at least x + 1 connection ports. If
yes, then C has an ‘independent’ connection with S. In this method, the attacker
would test roughly % different ports.

In is left to describe how Mallory causes C to establish multiple connections
with S. Since C is in Mallory’s site, she can run a script (in the browser sand-
box) on C. This script, while very limited, can open connections with other
servers to dynamically embed remote objects. We use it to open connections to
www1l.mallory.com,. .. wwwx.mallory.com which are domains that Mallory con-
trols. Since Mallory controls the DNS records for these domains, she sets each of
these records to point to the same IP, that of S. Browsers open a new connection
for each domain (regardless of its IP address); hence, this technique, which we
verified on Internet Explorer, Firefox and Chrome, opens x new connections to
S.

The typical limitation of x is the number of connections that a browser can
have simultaneously; this limitation is typically one or few dozens; e.g., 16 in
Firefox. In our experiments below and in the following section, we use x = 10.

3.3 Empirical Evaluation

Setup. In our empirical evaluation, the client network is a class C subnet that
has 5 clients running Windows 7, each of them sends on average 64 packets
per second to other peers in the subnet (these packets are short, to simulate
clients that usually send Ack packets or short requests). Mallory probes one of
the clients in the network, C, who connects to her (malicious) website. Mallory’s
bandwidth is limited to 10 mbps. We used the network topology illustrated in
Figure 3, network nodes are connected through switch devices. The NAT device
in the network topology is a Linux machine (kernel version 2.6.35) running IP-
tables (version 1.4.4). The server machine runs Linux (kernel version 2.6.35) and
uses an Apache web-server (version 2.2.14). When we evaluate the attack for the
‘Remote Attacker’ scenario, the adversary communicates with the clients via
a traffic shaper that induces high latency (200ms), significant loss probability
(0.5%) and jitter (1-10 milliseconds).

Evaluation. We first evaluated the attack in case that C is communicating with
S. We compared between the score of the ‘connection port’ (i.e., port that C uses
for the connection) to that of the best appearing non-connection port (i.e., port
with the highest score that is not the connection port) in each round (repetition
of the attack, see discussion above); note that the highest scoring non-connection
port may change between rounds.

Figure 6 shows results for near-C and remote attackers. In both environ-
ments, the score of the connection port was well above 50% of the maximal
score, certainly after five or more reounds; hence, for efficiency, we can continue
testing only ‘high scoring’ ports in advanced rounds. Namely, a port is tested in
the next round only if its current score is above 50% of the maximal possible
score.
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We implemented an adversarial B :
website that presents its clients a re- e O
quest to arbitrarily decide whether to oL S
connect (‘surf’) to a third-party web-
site, S; our website attempted to de-
tect the clients’ choice. We used an

Score

automatic client, C, that chooses to I ‘:umwims e ow
connect to § with probability % and
implemented the port-test above. Fig. 6. Global-ID attack. Comparison of a

The choice of whether there is a connection port to that of the highest scor-
connection between C and § is accord- ing non connection port as a function of
ing to a threshold over the final score round number. Each measurement is an av-
of the ports. Namely, if there exists a €rage of 10 runs, error-bars mark the stan-
port with a score over this threshold, dard deviation values.
then we identify that there is a con-
nection. Figure 6 shows that a choice of 70% of the maximal possible score as
a threshold provides a good seperation between the connection port (in case it
exists) and other ports. Figures 7 - 9 show the success rate in detecting whether
C communicates with S for different adversary locations as a function of the du-
ration of the attack. Figure 10 compares the average amount of data that Mallory
sends (per victim) to reach different success rates and for different locations in
the network.

In Figures 7 - 10, the measurements are the average of 50 runs; error-bars
mark the standard deviation values (for readability, not all measurements specify
the error bars). Note that the thresholds that we have used in our evaluation
may not work as well in other scenarios, e.g., when the client sends much more
than 64 packets per second the thresholds should be higher.
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Fig. 7. Global-ID attack, with-C attacker. Fig. 8. Global-ID attack, near-C attacker.

4 Time-Based Traffic Analysis

The globally incrementing IP-ID side channel, presented in Section 3, exploits
an operating system flaw. In this section we explore a more generic, timing
based, side channel that is applicable when C is behind a firewall or a NAT. We
define below a new port test which resembles the IP-ID based port test and is
illustrated in Figure 5 as well.
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The timing attack is based on the following observation: if C is protected by
a firewall or connects through a NAT device, then in case that Mallory tests the
correct port, C sends an additional packet to S (response to the probe); this
delays processing of following packets, and in particular the post-probe query;
see illustration in Figure 5. We use this delay to identify the connection.

4.1 Timing-Based Port Test

A significant challenge is the jitter in the network, i.e., latencies may vary while
testing different ports. Thus, identifying the longest time difference between
two responses and testing whether it is over a threshold is likely to produce an
incorrect result. We cope with this challenge by relatively comparing ports: we
assign each port to a small group of s arbitrary ports.

Ports in each group are tested one after the other; we assume that jitter does
not vary much during the short time interval of testing a specific (small) group.
After testing a group, each port is assigned with a relative rank according to
the time difference between responses in the corresponding port-test; the lower
the (group-relative) rank, the greater the time difference and the more likely is
a connection through that port. We conduct several rounds of this attack (to
reduce the probability of errors).

Similarly to the attack presented in the previous section, we keep a score
for each port and after each round increase a port’s score according to its rank:
denote by o; the number of points that a port gains if it has rank ¢ within the
group, these weights are normalized; ie., Y ;_,0; = 1, and for every i < j,
0; > 0. The values of s and the vector o = (01, -+ ,05) depend on the channel
between Mallory and C. We employ a machine learning approach (genetic algo-
rithm) to learn appropriate value for the vector o; see details of the algorithm in
[16]. Let p, ' denote the expected scores of connection and non connection ports
respectively. The target function of the learning algorithm is to maximize u— '
In our empirical evaluation below we explain how Mallory obtains measurements
of u, p’ for different values of s, o.



4.2 Empirical Evaluation

The environment we used to evaluate the timing attack is as described in Section
3.3, except that the client machines run Linux (kernel version 2.6.35) instead of
Windows; hence, the attacker cannot employ the global IP-ID based attack. All
Linux distributions ship with IP-tables firewall, its rule-set is empty by default;
we therefore evaluated only the scenarios where Mallory is near-C remote (see
Figure 3), i.e., Mallory communicates with C and S via a NAT device.

The first task is to obtain a good

estimation of the optimal values of u ‘ ‘ ‘
—»— Connection Port (near-C)

s,o for the channel between C and 12 | -8~ BestNon-Conneciion Port (near-C) A
--+@--- Connection Port (remote)
-t Best Non-Connection Port (remote)

Mallory (this depends on Mallory rel- w0} N
ative location to C). The machine
learning algorithm we employ uses the

Score

connection that Mallory has with C ar

(see Figure 2): since for this connec- 2F B

tion Mallory knows the client’s port, om : 5 = P
he is able to obtain measurements for Number of Rounds

different group sizes (s) and weights
(the vector o), see more details in [16].
We found that these values signifi-
cantly differ between the two attacker
locations; e.g., in our setup we found
s = 31 to be suitable for a near-C at-
tacker while s = 4 appeared optimal
for the remote attacker. Figure 11 compares the connection-port score to that of
the highest scoring non-connection port as a function of the number of rounds.

Fig. 11. Timing Attack. Comparison of a
connection port to that of the highest scor-
ing non connection port as a function of
round number. Average of 10 runs, error-
bars mark the standard deviation values.

Next, we derive two thresholds for promoting ports to following rounds ac-
cording to their current score, this is similar to the experiments in Section 3.3.
According to the training set results, a choice of 60% of the maximal score for
the near-C attacker scenario and 40% in for the Interent attacker scenario appear
to be reasonable. As in Section 3.3, these thresholds require further research for
other scenarios, e.g., thresholds are effected by the victim’s transmission rate.

We implemented the timing attack and conducted an experiment similar
to that presented in Section 3.3. We set the threshold for deciding whether
a connection exists between C and S according to the difference between the
expected scores of a connection port (i) and a non connection port (') as
derived from our training measurements. See analysis in [16]; in this experiment
we set the threshold to 0.2y’ 4+ 0.8. We measured our success rate in probing
whether C is communicating with a (third-party) website, S. Results are in
Figures 12 - 14.

Comparing these results to those of the ID based attack, more time is required
to obtain similar success rates, and the maximal success rates reached are lower.
However, the results show that the timing attack does provide information on
the connection (since success ratio is greater than 0.5); but its hint is often



misleading (since success ratio is significantly less than 1). Attacker can repeat
the attack several times and select by the majority.

Figure 15 illustrates the average amount of data that Mallory needs to send
in order to reach a particular success rate for different locations in the network
and number of probes in each test.

In Figures 12 - 15, the measurements are the average of 50 runs; error-bars
mark the standard deviation values.
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5 Traffic Analysis for Tor Clients

In this section we consider the second scenario presented in Section 2, where C
uses an onion routing infrastructure to connect to S. We focus on the popular
Tor network, but similar attacks may apply to other low latency anonymity
networks. In this section we assume that the attacker, Eve, is able to eavesdrop
on C (but not on S).

Here, Eve actively interferes in the possible connection between C and S and
then tests whether a change in the rate of packets that C receives occurred. If
the result is positive, then it is an indication that C communicates with S. As of
writing this version of the paper, we only did preliminary testing of this attack;
more work is required to evaluate the practicality of this attack.



A Tor client connects to a remote
server via a chain of relays (proxies).
The last relay in the chain, i.e., the
exit relay, has a direct TCP connec-
tion with the server. The number of ‘ ‘ : :

0 50 100 150 200
possible Tor exit relays is important Number of Different Exit Nodes
for our attacks (since a direct con-
nection exists between the exit relay Fig.16. The portion of 2000 circuits we
and the server); the Tor network com- created using the Tor client as a function
prises of few thousand relays, about of the number of different exit relays used.
one thousand of which can perform as
exit relays (see [1]). However the number of different exit relays that a client is
likely to use is significantly lower: first, a client can only use online relays; sec-
ond, Tor clients typically choose the exit relays according to various parameters
such as stability and bandwidth. We have formed Tor circuits from two clients
in different geographic locations and kept track on the exit relay that was used.
The measurements show that 20% of the 2000 circuits which we created (using
Tor client version 0.2.2.35) had one of 7 specific exit relays. Figure 16 illustrates
our measurements.

Portion of Connections

5.1 The Indirect Rate Reduction Attack

In this section we present an attack that uses the following observation: if Eve
influences the rate of communication between S and the exit relay, then this, in
turn, will change the rate of the connection between C and the first (entrance)
relay. Eve sees the latter connection and is able to detect the change.

Since Eve can only observe the aggregated rate of data that C receives from
the entrance relay (since communication is encapsulated), this attack vector
weakens when C communicates with several other servers via one Tor circuit
and C’s connection rate with S is relatively small to that of the other servers.

The following attack uses TCP congestion control mechanisms to fake con-
gestion events; hence, reducing the communication rate. This attack is based on
the insight previously noted in Section 3.1: by sending a (spoofed) packet to an
exit relay, Eve would cause that relay to immediately send a duplicate acknowl-
edgment (Ack) in response to S, as long as Eve’s packet appears from an existing
connection between the exit relay and S. The duplicate Ack that the exit relay
sends to S in response, has a valid sequence number and S will accept it. A
sequence of three duplicate Acks is interpreted by TCP as a congestion event,
see [3]; when it occurs, S’ congestion window shrinks. The exact effect depends
on the TCP implementation that the server runs. Until recently, TCP Reno
variant was default in Linux (the common operating system of server machines);
for this variant each congestion event halves the size of the congestion window.
Recent Linux kernels use the TCP Cubic variant, where the TCP window size
is multiplied by a constant of 0.8 for each congestion event.
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The congestion window size di-

rectly effects the sender’s (S) trans-
mission rate: S only sends as much as
the congestion window allows. Thus, 22;’(’;3(5‘, o
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nificantly reduce its ‘sending’ rate.
This attack is illustrated in Figure 17,
which shows the effect when Eve sends
the spoofed packets to an exit relay
and port through which there is a con-
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Fig. 17. Eve causes the exit relay to send 3
duplicate Acks to S. S’ congestion window
is halved as a result.

Attack Process. We use the asym-

metry in the distribution of client choice for exit relays to reduce the number
of packets that the attacker needs to send to perform indirect rate reduction.
Namely, while there are many exit relays available, there are only few ‘likely’
exit relays that a client might use (see discussion above and Figure 16). For
every server IP address s and likely exit relay =, Eve can optionally employ one
of the attacks in the Sections 3 and 4 to identify those exit relays that commu-
nicate with the server. This optional step will reduce the effort in the following
steps of the attack. The techniques in Sections 3 and 4 do not only identify the
existence of a connection between two peers, but also identify the client port —
if a connection exists, then this is the port with the highest score; see details
on how Eve employs these techniques in [16]. Next, for each of the ‘suspected’
connections, she performs the indirect rate reduction attack described above
and checks which of the clients had experienced ‘rate reduction’. This process
repeats several times for statistical coherency; after each iteration the attack is
suspended to allow S’s congestion window to recover.

An important property of this attack is that the spoofed packets that Eve
sends to the exit relay in order to reduce the server’s rate, are not client specific.
Hence, in case that Eve eavesdrops on multiple clients (e.g., a government spying
on its citizens) this attack would simultaneously check which of these possible
clients has a connection with S.

Characteristics of vulnerable connections. Since the attack repeats for
several iterations with intermediate suspensions, this attack requires connections
lasting several minutes (see evaluation below). Furthermore, the connection must
be ‘active’, i.e., the server should send data to the client while the attack takes
place; this allows Eve to detect rate reductions and allows the congestion window
to recover when the attack is suspended. These type of connections include, for
example, file transfers (over FTP or HTTP).



5.2 Analysis

Our analysis in this subsection assumes that Eve does not try to detect a direct
connection between the exit relays and the server S (the optional step). Instead,
she performs the indirect rate reduction attack on every likely exit relay and all
possible ports.

When using Tor, clients connect to S via proxies; therefore, clients’ geo-
graphic location does not hint Eve on the server IP address that they will con-
nect to (in case S has multiple physical servers, e.g., for load balancing). As a
result, Eve must enumerate all the IP addresses of S during the attack.

For each of the n, server addresses and for every exit relay that Eve tries, she
performs 26 iterations, trying a different port in each iteration; for each port
she sends three packets that would cause the exit relay to send three duplicate
Acks to the server, if a connection exists through that port. These packets can
be short, with only one byte of data, i.e., 41 bytes long. Hence, the overall data
that Eve sends to a particular exit relay, using a particular source IP of S in
a single attack is 26 .3 -41 < 7.7MB. As shown in Figure 16, a small set of
exit relays allows a good ‘hit’ rate. If Eve enumerates on all ng possible server
addresses and the most likely seven exit relays, then by our measurements the
attack results in a ‘hit’ rate of about % (see Figure 16); in this attack, she sends
53 - ns MB in each round. As noted at the end of the previous subsection, Eve’s
effort is divided on the number of clients (victims) that she probes.

5.3 Empirical Evaluation

Setup. We used the Tor network to evaluate the indirect rate reduction attack.
To simplify the experiment and limit the effect on other Tor users, we performed
the following measures: the restricted web-site server, a Linux machine (kernel
version 2.6.35) which runs an Apache web-server (version 2.2.14), had only one
IP address; furthermore, when running the attack, Eve was aware of the exit relay
that is used and its port used for the connection. Given these three parameters,
Eve only sends 3 packets of 41 bytes, i.e., 123 bytes, to carry out a single rate
reduction iteration. Below, we describe the frequency of iterations and show that
we send about 0.5 KB per second; we believe that this did not load the exit relay
or caused damage for other Tor users. The client machine in our experiments
runs Windows 7 and uses Tor (version 0.2.1.30) to connect to web-servers. While
running our evaluation, we created Tor circuits using 12 different exit relays.

Evaluation. First, we observed the effect of the rate reduction attack (three
duplicate Ack technique). To measure this effect, C connects to one of our servers
through Tor; our server reports to Eve the IP address and port of the exit relay.
Eve sends her packets only to the reported exit relay and only to the specific
port used in the connection with our server. Eve performs three iterations of
rate reduction every second, aiming to fake three congestion events and decrease
the congestion window to about half of its size (in case of cubic variant). This
implies that in every second, Eve sends 369 bytes to the exit relay. In Figure



18 we compare between the rate of packets that the client receives (as observed
by Eve) on normal conditions and when Eve attacks the exit relay; our attack
reduces the average rate.

Incoming Packets In Last 100ms
Incoming Packets In Last 100ms

Time (seconds) Time (seconds)

(a) Normal Conditions (b) Under Attack

Fig. 18. Comparison between a rate of a TCP connection (via Tor) in normal conditions
and when under rate reduction attack.

We next tested the scenario considered in Section 2, i.e., of a client that con-
nects through Tor to one of two sites. Eve uses rate reduction to test whether the
client is communicating with the restricted site. We conducted the experiment
as follows: the victim C connects to one of two servers in each time, each server
is chosen with probability % Regardless of the choice that the client makes, the
‘restricted’ server sends Eve an IP address and port, allegedly describing the exit
relay connected to it. In case that the client does not connect to the restricted
server, these values specify an arbitrary exit relay and port. Eve then employs
the attack above, performing three rate reductions per second and sending a
total of 369 Bps to the specified exit relay.

If client rate decreased by at least

. T T T T

20% during the last 30 seconds, then —*— Success Rate

K L. 0.8 | ~—&-- False Positives
the client’s score is incremented. The wwe False Negatives
20% threshold is motivated by the re- & °°

. . o
sults in Figure 18, but may change e 04t .
in other scenarios, e.g., for a different 02 & 8-
server. This process is repeated; be- 0 =
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tween iterations there is a 30 seconds Attack Duration (seconds)
suspension that allows the TCP con-
nection between the server and exit
relay to recover to its normal rate (in
case the connection exists) and allows
Eve to obtain a recent measurement
of the average rate in C’s connection.
Eventually, Eve decides that C is com-
municating with the restricted site if C has more than half of the possible points.
Figure 19 shows Eve’s success rate as a function of the duration of the attack.
In these experiments, the servers run TCP Cubic variant; an improvement in
success rate is observed when server runs TCP Reno.

Fig.19. Eve’s success rate in detecting
client access to a restricted site via Tor.
Each measurement is the average of 20 runs.
Server runs TCP cubic variant.



6 Defense Mechanisms

The countermeasures that we propose in this section do not completely eliminate
the related side channel threat, however, they make it more difficult to exploit.
These defenses are suitable for deployment on firewalls to ease deployment.

The globally incrementing IP identifier side channel, as mentioned in Sec-
tion 3, is only relevant while still using IPv4. One way to avoid it is to use
random IP-ID values; however, this can result in collisions and loss for frag-
mented traffic. The attack in Section 3 can be prevented by simply moving from
globally-incrementing IP-ID to per-destination IP-ID; this would preferably be
done by hosts, but until hosts do so?, a firewall can implement this by adding
(pseudo)random per-destination offset to the IP-ID. See analysis and better ways
to fix the IP-ID in [15,17].

It is more challenging to block or reduce the timing side channels and cope
with the rate reduction attack presented in Section 5. The flaw that we iden-
tify is that a blind adversary is able to cause a TCP recipient an involuntary
reaction by sending arbitrary (spoofed) packets. We propose keeping a small
window of acceptable sequence numbers that may be processed. This window
resembles the receiver’s congestion window, but is more aggressive: while packets
outside the congestion window cause a duplicate acknowledgment (which we use
in the attacks described in Sections 3-5), packets that specify sequence numbers
outside the acceptable-window are silently discarded. The acceptable-window is
larger than the host’s congestion window and includes it. A congestion window
is usually up to 2'6 bytes, an acceptable-window that is twice as large, i.e., 27
bytes, will significantly degrade the attacker’s ability to conduct all the attacks
in this paper. Since the sequence number is 32 bits long, the attacker is required
to send g—?i = 2% times the number of packets to conduct similar attacks. How-
ever, this technique requires that the firewall will inspect the sequence numbers
in incoming TCP packets, which increases the packet processing overhead.

7 Conclusions and Future Work

Our primary conclusion is that TCP implementations leak information that
allows attackers to study the existence of connections via side channels as we
demonstrated in three attacks.

We leave several research directions for future work. Specifically, a more
extensive empirical study is required to complete the evaluation of the Indirect
Rate Reduction attack on the Tor network. Furthermore, it would be desirable
to provide an analytic analysis for the attacks presented in this paper.

An important question is, can we perform a more efficient and more accurate
attack on Tor anonymity by combining the indirect rate reduction attack pre-
sented in this paper with other existing attacks on Tor anonymity which exploit
other attack vectors, e.g., [12,18,19, 28].

2 We informed Microsoft to the IP-ID issues, but we are not aware of intention to fix
the IP-ID in Windows.
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