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Abstract. We introduce the concept of a group principal and present
a number of different classes of group principals, including threshold-
group-principals. These appear to naturally useful concepts for looking at
security. We provide an associated epistemic language and logic and use
it to reason about anonymity protocols and anonymity services, where
protection properties are formulated from the intruder’s knowledge of
group principals. Using our language, we give an epistemic characteriza-
tion of anonymity properties. We also present a specification of a simple
anonymizing system using our theory.

1 Introduction

Though principals are typically viewed as atomic, there is no reason we cannot
consider the knowledge and actions taken by a group. Hence, the basic notion
of a group principal. This notion appears to be a useful concept for reasoning
about various properties of electronic commerce and security protocols. One such
principal is a threshold-group-principal. Such a principal allows us to express
properties of threshold cryptosystems [13]. Although we do not pursue this in
the present paper, we believe we can give a straightforward characterization not
only of threshold cryptography including signatures and confidentiality, but also
(once time is introduced into our language) such things as proactive security [5]
and mobile adversaries [19]. Another group principal is the or-group principal.
It is useful for characterising security properties relating to anonymity.

We demonstrate the applicability of our theory by examining the issue of
anonymity and privacy. Studies have shown that privacy is a great concern for
users of electronic commerce. Numerous protocols have emerged for protecting
the anonymity of individuals. These protocols have been in the areas of pro-
tecting general Internet communications [23], commercial transactions [25], web
based communications [21,1], email [9, 18], and electronic cash [28]. However,
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little work has been done on formally representing or analyzing privacy in such
protocols.

In this paper, we provide an epistemic language and logic and use it to
reason about anonymity protocols and anonymity services. We also describe
an associated model of computation. Using our language, we give an epistemic
characterization of various anonymity properties. As far as we know, these basic
properties have not been set out previously.

We develop the idea of looking at the environment as not a single entity
for which all messages must pass, but one with individual components with
different characteristics. In our model, the environment principal is no different
from system principals. When you send a message you send it to an environment
principal, likewise for receiving messages. All uncertainty in communication is
represented in the environment principals; so, any sent message is immediately
received, and all received messages have been sent by some principal. In this
way, we are able specify environments particular to the threat model at hand.

We demonstrate our approach with a simple example. Typically, we have a
single intruder which is a distributed group principal, composed of environment
and/or (compromised) system principals. Each principal is specified by a knowl-
edge program. Compromised principals run distinct programs from their reliable
counterparts. It is also possible to have multiple intruders, each with their own
separate goals, though we do not present any examples of this in this paper.

This paper does not address temporal features directly, other than to differen-
tiate past and present (much as in [2]). Thus any timing attack on an anonymity
system is beyond its scope. Temporal reasoning is expected to be added in fu-
ture work, and there is no reason to expect difficulty in doing so. Indeed, the
knowledge programs set out in this paper are derived from the knowledge-based
programs of [11,12], and those include temporal operators by default.

The seminal work setting out properties, goals, and mechanisms for anonymity
in communication is that of Chaum (cf., e.g., [6,7]). Our work is the first we are
aware to give an epistemic characterization of anonymity properties. However,
anonymity properties have been formally defined in CSP [22]. And, in [20] a
formal notation was given for specifying anonymity protocols; however, that no-
tation was not designed to specify anonymity properties or to be used in formal
analysis. Also, others have defined interesting rigorous but informal notions of
security properties [21].

The remainder of this paper is as follows. In Section 2 we present our model
including the definitions of various types of group principals. In Section 3 we
present the formal language. In Section 4 we present the logic. In Section 5 we
present anonymity properties. In Section 6 we present our knowledge programs.
In Section 7 we present a specification of the anonymizer protocol. In Section 8
we present our conclusions.
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2 Model

Our system model is essentially built from and extends model elements described
in [11] and elsewhere. We give a sketch of our model here.

2.1 Atomic Principals

There is a set of atomic principals {Py,...,P,}. These are similar to the ‘ordi-
nary’ principals that one associates with distributed computing. However, unlike
others, we do not distinguish the environment in the model. Also, unlike others,
the environment may be several (possibly disconnected) principals. Environment
principals are made up of these atomic principals, just as system principals are.

2.2 Actions

Each principal can perform any one of a set of actions at each time. The ac-
tions that can be performed are send (M, P;, P;), receive(M, P;, P;), representing
the sending of a message M € M (the set of messages) from P; to P; and its
receipt by P; from P; respectively. Principals may also perform internal op-
erations, int_action({M, ..., M,}, P;). This represents principal P; performing
some internal operation on the messages in the set {Mi,..., M,}, for example
encryption, concatenation, decryption, etc. Principals may also do nothing at
a given time. This is indicated by the performance of the null action A. Two
particular internal actions, record and purge, will be discussed presently. We fol-
low the example of [10] and subsequent work, that all messages are sent to the
environment or received from the environment. We can thus make the simpli-
fying assumption that all sent messages are received immediately. Any message
loss, delay, modification, etc. can be represented by the actions of the environ-
ment. So, exactly one of P; and P; in any send(M, P;, P;) or receive(M, P;, P;)
is always an environmental principal.

2.3 States

Each principal has a local state. Local states are assumed to be unique; although
principals may not always be able to distinguish all of even their own local states.
A state s; local to principal P; at time ¢ is given by

S; 2 (state_id, history, log, facts, recent)

The history, is the sequence of actions that have been performed locally. The
log, is the sequence of local actions that have been logged. Similar to the local
history, the local log is complete in having an entry for each time. But, since the
log reflects the local time, entries are recorded as (a,t) where t = localtime(t')
is the time on the local clock when ¢’ is the actual time, and #' is the actual
time that a occurred. We assume that the real clock is fine enough to reflect
the occurrence of all events in the system. Thus, an advance of the real clock
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need not imply an advance on all local clocks, but an advance on any local clock
implies an advance on the real clock. Since principals may or may not keep track
of local actions, and may even ‘forget’ them, the log may contain a null-log-entry
L for any time ¢. This is not the same as a null-action A, which may occur in both
the local history and the local log and indicates that no action was performed
at that time. We also keep track of any facts that may be known by a principal,
such as the public key of a local server. These are collected in a set facts. In a
principal’s initial state all of the fields except state_id and facts should be empty
sequences.

We keep track of actions and of facts by means of a record action. record is
defined on recent U knowledge. (The constitution of both recent and knowledge
will be set out below.): For an action a € recent, record(a) has the effect of
placing (a, localtime(t,))) in the local log. For a known formula ¢, record(yp)
has the effect of placing ¢ in the set of facts facts. We also allow sets of recent
actions and sets of known formulae in the domain of record. The way that record
works for these sets should be obvious from the case for individual actions and
known formulae. purge is similarly defined on entries in log and facts in facts.
purge({{a;,,ti,}),. .., {a;,,ti,, )}) has the effect of removing those log entries from
the log and replacing them with L. purge({¢1,...,@m}) has the effect of remov-
ing those formulae from the set of recorded facts. The recent actions recent,
are actions that were effectively performed recently and are remembered even
though they have not been logged. recent is always a tail segment of history and
never includes record or purge actions.

We will introduce composite (group) principals presently. Nonetheless, each
global state is completely determined by a tuple of the local states of all atomic
principals. A run is a sequence of global states indexed by (actual) times, where
the any local state occurring in the global state at time ¢ is such that the relevant
principal is in that local state at (actual time) ¢.

2.4 Knowledge

In a given local state, knowledge is entirely determined by the log, the set of facts,
and the recent actions. We include in the set of formulae, knowledge, the clo-
sure of what is known from those three sources. More precisely we have: (1) If an
action is known to a principal because it is in the log or is recent, then the princi-
pal knows that he performed that action. So, for example, if receive(M, P;, P;) €
recent or if receive(M, P;, P;) € log then M received from P; P; € knowledge.
(2) If ¢ € facts, then ¢ € knowledge. (3) If ¢ can be derived from other members
of knowledge by the axioms, then ¢ € knowledge. That P knows ¢ is represented
in our language by Op . The dual of Op is Op . (There are certain generic
axioms for adding to the knowledge of principals, e.g., (Op @ A Op (p D
) D Op . So, if ,(p D ) € knowledge, then ¢ € knowledge. Axioms for
knowledge will be briefly discussed below in section 4.)
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2.5 Group Principals

Ordinarily, we think of principals atomically. In particular, when evaluating pro-
tocols in the Dolev-Yao framework, we view all communication as going through
a single environmental principal, typically identified as the intruder. For exam-
ple, anything sent between principals A and B is assumed to be known to the
intruder as is anything sent between principals C and D. However, the intruder
between A and B may not be able to directly communicate with the intruder be-
tween C and D. They may only be able to communicate via ‘honest’ principals,
e.g., one intruder can signal the other by causing an honest principal between
them to send certain messages to the other. (Cf. [26] for more discussion of
this model of computation in a hostile environment.) This naturally engenders
a view of the environment as a distributed group principal. Similarly, sets of
honest principals trying to solve some threshold computation (e.g., decryption
or signature) may be thought of in this way. We will find it useful to have various
types of group principals to model these and other circumstances.

There are four kinds of group principal, collective-group (xG), and-group
(&Q@), or-group (BG), and threshold-group(n — G). Each type of group principal
is distinguished by how the knowledge and actions of the principal is determined
by the knowledge and actions of the members of that principal. The set of group
principals G is defined as follows: for any nonempty set of atomic principals
G, *G, &G, and ®G are all groups (of the indicated type). And, n — G is a
(threshold) group provided that n < |G]|.

collective group principal: Given any set of atomic principals G, xG is a dis-
tributed group viewed collectively. What the group knows is what is known
by combining the knowledge of all the group members. (This is the concept
of distributed knowledge in [11].) The group actions are those taken by the
group collectively. For example, if something is sent or received by any mem-
ber of the group then it is sent (received) by the group. However, it may also
be the case that the group performs some action, e.g., elect a leader and
possible successors, that is not performed by any one of the members. In
this example, each member might vote for one leader, but the succession is
determined by the total number of votes received, in diminishing order.

and-group principal: written &G for an and-group of members of G, is a
distributed group viewed conjunctively. We also write (P, A ... A P,) for
the and-group of principals P; through P,. What the and-group knows is
what every member of the group knows. (This is the concept of everyone
knowledge in [11].) The group actions are those taken by each member of
the group. Thus, &G said (received) messsage M if each member of G said
(received) M.

or-group principal: written &G for an or-group of members of G, is a dis-
tributed group viewed disjunctively. We also write (P, V ... V P,) for
the or-group of principals P; through P,,. What the or-group knows is what
at least one member of the group knows. (This does not have a correlate
in [11].) The group actions are those taken by at least one member of the
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group. Thus, ®G said (received) messsage M if at least one member of G
said (received) M.

threshold group principal: written n — G for a given threshold n and group
G. What the n-threshold group n — G knows is anything known by any
collective subgroup contained in G of cardinality at least n. (This does not
have a correlate in [11].) Suppose two subgroups G',G" C G s.t. |G'| >
n and |G"| > n. Ordinarily, if g ¢ and Ogr (¢ D ), we cannot
conclude anything more specific than that O, (gugry . But, if G is an n-
threshold group, then it follows that O,_g . Thus, it follows that Og:
(and Og (¢ D %)) and Ogr ¥ (and Ogr ). Another way to characterize an
n-threshold group is as an or-group of collective groups, each with cardinality
of at least n. Thus if G' = {G1,...,G .} is the set of all collective subgroups
of G s.t. |G;| > n, then

n—G 2 oG (whichis (G1 V ... V Gn))
What the n-threshold group n — G does is what is done by any subgroup

contained in G of cardinality at least n. Thus, n — G said (received) anything
said (received) by any subgroup of cardinality at least n.

3 Formal Language

Let A and B be principals, M be a message, and ¢ be a formula. We assume
without explanation the usual logical connectives and formula building using
them. Any formula is also a message, though not vice versa.

Actions. There are send and receive actions. We can record and purge both send
and receive actions.

send(M, A, B)
receive(M, B, A)

Also, if s-r-actionis a send or receive action, then we also have the purging
and recording of send and receive actions.

purge(s-r-action)
record(s-r-action)

We will find it useful to have the following macro (eliminable definition):

action(X, A, B,remember);

is a macro for

action(X, A, B); record(action(X, A, B)) ;
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Said and Received Formula. These are formulae expressing the sending and
receiving of messages, as well as of any formulae implicit in the sending or
receiving of such messages.

A said M

A received M
Asaidto B M

B received from A M

That a formula represents the whole message sent or received is denoted
by the use of quotation marks. These refer not to the bit string, but to the
parsing of that string without any encryption, decryption, deconcatenation, etc'.
So, for example, were A to send the message {M}x (where A knew K), then
A said “{M}k” and A said M would be true, but A said “M” would not.

Message Extensions. Message fields may have an origin and destination. We
express this using either “to” or “from” or using both extensions.

(X from A to B)

We can further qualify certain features of a message that are common to
anonymity protocols. These features include an indication of the ultimate desti-
nation of a message using “for”.

(X for B)

Another feature common to anonymity protocols is referencing a prior mes-
sage. This is common for query-response (request-response) protocols.

R in response to @

Encryptions and Key Possession. Messages may also be encrypted. The encryp-
tion of M with K and A’s possession of K ! are expressed as follows.

{M}k
A has K~!

Runs Formula. A principal running a knowledge program is expressed.

A runs program name

Knowledge. If ¢ is a formula in the language, and A a principal, we can ex-
press that A knows ¢ and that A knows possibly ¢, by the following formulae
respectively.

Oa @
Cap

! In particular, this is not meant to be an opaque context. Thus, values may be sub-
stituted for variable names.
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Did Formula. The following allow us to express any action done by a principal,
as a formula. For example, suppose A, performed some action action. This
is expressed by the following. (It might be possible to replace the following two
types of formulae with one type and an appropriate temporal operator. However,
we choose to keep the number of modal operator types that we use to a minimum
for the present.)

A did (action)

If the action is being done now (i.e, recently according to our model), we can
express this as:

A does (action)

4 Logic

We set out here our axioms and rules. Those for knowledge and propositional
reasoning are standard. For background consult [11, 8, 16].

Propositional and Epistemic Logic. Knowledge is characterized by the S5 ax-
ioms. Our only rules are modus ponens and necessitation (knowledge general-
ization):

Modus Ponens: From ¢ and ¢ D 1 infer .
Knowledge Generalization: From F ¢ infer - Op .

It is important to recall that knowledge generalization does not allow us to
infer that P knows ¢ for arbitrary formulae ¢. Rather, if ¢ is a theorem (i.e.,
derivable from axioms alone with no assumptions) then Op ¢ is also a theorem.
In other words, all principals are expected to know all logical truths. Now for
the axioms.

Ax1. All tautologies of propositional logic are axioms.

As mentioned before, Op and Op are duals. This means that these are inter-
changeable according to the definition: Op ¢ <« —Op = (for any formula ).
Given formulae ¢ and v the knowledge axioms are as follows. (N.B. These ax-
ioms, together with the above rules and axiom, constitute S5, the most standard
and well understood knowledge logic for distributed computing. The axioms may
not all be ultimately necessary for intended applications. However, we begin with
S5 and leave the possible elimination of unnecessary axioms for future work.)

Ax2. Distribution Axiom, K: Op (¢ D ¢) D (Opp D Op1))
Ax3. Truth Axiom, T: Op ¢ D ¢

Ax4. Positive Introspection Axiom, 4: Op ¢ D Op Op ¢

Ax5. Negative Introspection Axiom 5: -Op ¢ D Op —Op
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Simplifying Said and Received Formulae. These formulae may be simplified in
the obvious ways. We do not list all of these, but simply give representative
examples:

Ax6. Asaidto B M D Asaid M
Ax7. B received from A M O B received M
Ax8. A said to B (My,...,M,) D Asaid to B M; (whereie€ {1,...,n})

Assume K is an encryption key and K~! the corresponding decryption key (in
the symmetric case K = K 1).

Ax9. (Asaid {M}x A Ahas K') O Asaid M
Ax10. (B received {M}x A B has K~') O B received M

Note that we do not have any axioms reflecting authentication principles, as in
[2] or its successors.

Message extensions may be removed in said and received formulae. Let extensions(y)

be the set of all messages that are extensions of ¢. Then, for any ¥ € extensions(y)
we have the following axioms:

Ax11. Asaidy D Asaid ¢
Ax12. B received ¢ D B received ¢

Thus, for example, the following is a theorem of our logic:

A said “(X for C) from A to B” D
(A said X from A A A said (X for C) to B A A said X)

Sending and Receiving. Message delivery is guaranteed. Sending corresponds to
saying exactly, and likewise for receiving.

Ax13. A did (send(M, A, B) ) < B did (receive(M, B, A))
Ax14. A did (send(M, A, B) ) + A said to B “M ”
Ax15. B did (receive(M, B, A) ) <+ B received from A “M”

Record Implies Did. This axiom expresses that an entity recording and action
implies that it performed the action.

Ax16. A did (record(s-r-action) ) D A did (s-r-action)

Doing and Knowing What Was Done. These axioms express the conditions
under which a principal knows what it has done as well as the relation between
does and did.

Ax17. A did (s-r-action, remember) A —A did (purge(s-r-action) ) D
O4 A did (s-r-action)

Ax18. A does (s-r-action) D Oy A does (s-r-action)

Ax19. A does (s-r-action) D A did (s-r-action)
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Group Azioms. These axioms relate to formulae involving group principals. We
mention here only the basic ones that will be useful in the rest of the paper. Let
G = {P,...,P,}. And, letp(G) be a formula with one or more (free) occur-
rences of G and ¢(P/G) be the formula that results from replacing every (free)
occcurrence of G in ¢ with P.

Ax20. p(&G) & (p(P1/G) A ... AN o(P,/Q))
Ax21. p(®G) < (p(P1/G) V ... V ¢(P,/Q))

5 Anonymity Properties

The goal of any system or protocol we will be examining is to provide some type
of anonymity, that is to hide some fact about a principal or set of principals from
some adversary. This can be broken into two parts. The piece of information to
be protected and the nature of that protection. In this section, we will set out a
characterization of both pieces.

5.1 Condenda (i.e., things to be hidden)

We might want to hide that a principal is the originator of a message or that
some pair of principals are the originator and intended recipient, respectively,
of a message, etc. For profile security, we may wish to hide that two messages
originating from the same principal in fact originated at that principal or more
strongly that they originated at any one principal.

5.2 Condens (i.e., types of hiding)

The various facts just described that are to be hidden from view may be hidden
to varying degrees. We will now set out the various types of anonymity that can
be achieved with respect to each of these. The principal from whom they are to
be hidden is always the intruder, I. The exact nature of the intruder will vary
from context to context; it may include insiders and/or outsiders to the system
running active or merely passive attacks. No matter how the intruder is imple-
mented, we are always able represent the types of anonymity with respect to an
abstract intruder, I. This allows for a succinct statement of properties; however,
since the following are not stated with respect to a particular principal, tech-
nically they are formula schemata rather than formulae. In practice we always
specify a particular principal for the condens. In the future, we might allow ac-
tual principal variables, but we do not attempt such here. Similarly, we might
consider existential quantification over principals, e.g., to reflect the hiding of
arbitrary profiles, whether or not they are associated with any given principal
(more generally, n-tuple of principals).

We first set out some assumptions. Our main assumption is that all con-
denda are of the form ¢(P). In other words, they are single formulae in which a
single principal name occurs (freely). Our restriction to single principals is just
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for simplicity and uniformity of presentation. The generalization from hiding
P said X to hiding P said to () X is straightforward. Our restriction to single
formulae is minimal. For example, if we wish to hide profiling information about
P, e.g., that several facts about P are associated, this is generally expressible
in a single formula, such as p(P) D ¢ (P). We do not attempt to represent
the hiding of arbitrary formulae of the language that do not involve principal
names at all. It is unclear what role these would play in anonymity protection.
However, we may explore this possibility in the future should need arise. Our
next major assumption is that condenda are true of only one principal. Thus,
for any formula ¢(P) for which we are considering the anonymity provided by a
system or protocol, we assume

Or (e(P) A p(Q) D P=Q)

We also assume that any condendum is actually true. That is, we are not worried
about trying to prevent the conclusion or even suspicion that P said X in the
case when P did not say X.

Unknown
(01 @(P))
In our current logic and language, this is basically impossible. It is logically
equivalent to Of —p(P). Thus, by axiom Ax3, this cannot be true if ¢(P) is
true (which we assume). Therefore, everyone is always a suspect. The only
possibility for a principal to be unknown would be if we partitioned the set
of principal names so that some were meaningless to the intruder. We do not
consider such an extension in this paper.

(> n)-anonymizable
Srp(P) D (Cre(P) A ... A O p(Pr-1))
We assume here and in the following definitions that distinct names denote
distinct principals. This says that if P is a suspect wrt ¢ then there are
n — 1 other principals (and possibly more) who are also suspects. If there
are precisely n — 1 other principals such that ¢ ¢(P;) when &f o(P), we
have the more exact property of being n-anonymizable. Similarly for the
properties below.

Possible Anonymity
Ore(P) A O —p(P)

The intruder cannot rule out ¢(P) but cannot rule out = (P). Basically, he
has no knowledge about this condendum.

(< n)-suspected
Or (p(P) V @(P1) V ...V ¢(Pa1))
The intruder has narrowed things down to no more than n suspects, one of
which is P.

(> n)-anonymous
Oy (,O(P) A Or (p(Pl) Ao ANOr Lp(Pnfl)
The intruder has narrowed things down to no fewer than n suspects, one of
which is P.
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(< m)-suspected implies (> n)-anonymous
Or (o(P) V o(P1) V ...V o(Pr_1)) D (Ore(P) A Ore(Pr) A ... A
O1 ¢p(Pa-1))
Here n < m. The idea is that even if the intruder has narrowed things down
to m or fewer suspects, he cannot narrow down who is ¢ to fewer than n.
In the case where n = m, proving this property is like saying “OK, let’s
assume for the sake of argument that the intruder has narrowed it down
to m suspects. By this property, he cannot do any better than that.” This
is stronger than a simple bound on intruder knowledge: it is a bound even
when we assume a given degree of knowledge for the intruder.

Exposed
We say a formula is exposed if the intruder knows the truth of the formula,
i.e., he knows exactly who it is that ¢.

5.3 Other Characterizations of Anonymity

Ours is by no means the first attempt to characterize anonymity. Reiter and Ru-
bin present a range of “degrees of anonymity” in [21] from “absolute privacy” to
“provably exposed”. There are two important differences between their approach
and ours. First, their definitions are not given in a formal language and are not
designed to have a formal specification or analysis. Second, their approach is
probabilistic while ours is possibilistic. We will return to this point presently.

A formal characterization of anonymity has been given in terms of CSP in
[22]. The basic idea there is to describe a system by means of a process P and
a renaming function f and to consider a system anonymous if mapping the pro-
cess to the image of f and back yields the same process. Space precludes a clear
setting out of their characterization. Put no doubt too succinctly, with respect
to our characterization above, the parameters allow one to vary the principal P
and the formula ¢ and perhaps the intruder doing the observation. Thus, one
can capture many different condenda and different intruders. However, it ap-
pears that there is only one condens that they consider. On the other hand, they
have the advantage of expressing things entirely in terms of CSP, which is a well
understood formalism. The logic in this paper is meant as an alternative, not
a replacement for the CSP approach. As different people have different tastes
regarding the approach with which they are comfortable, it is good to have al-
ternatives. One approach seems to have a more succinct and intuitive expression
of properties while the other has an existing framework and analysis tool. In
any case, they are not necessarily mutually exclusive. It is conceivable that one
could have a process algebra semantics for a logic such as in this paper. We
might thereby take a step towards combining the advantages of theorem provers
and model checker, such as in the NRL Protocol Analyzer.

Like Schneider and Sidiropoulos, our characterizations of anonymity are pos-
sibilistic rather than probabilistic. And, like them we would hope to bring in
probabilistic language at some point. However, there is reason to think that
most of the contributions will occur on the possibilistic front.
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First, it is often difficult to assign probabilities. In our case this is both
because we are concerned with the nonprobabilistic behaviour of users at the
system interface and because any assignment of probabilities based on expected
behavior may be altered by an active intruder. Assigning probabilities can also
be misleading if not done correctly. For example, if 99 out of 100 remailers only
forward messages from one client to a second remailer, we might be tempted
to think that messages coming through the second remailer have a 99 percent
chance of being from that client. But, a moments reflection will show this to be
incorrect. Second, even when probabilities can be assigned, adding probabilistic
expressiveness to a formal language usually greatly adds to the complexity of
specification and analysis.

Both of these points are well illustrated in the information flow security liter-
ature. The basic concept of noninterference as introduced in [15] is possibilistic,
and most of the analysis, system design, and development of related properties
that has gone on since then has been of a possibilistic nature. In fact, the only
substantial systems built to date that have been been designed to be noninterfer-
ing in any sense have taken a possibilistic approach. Nonetheless, it is possible to
give a probabilistic characterization of noninterference [4,17]. And,a system sat-
isfying these probabilistic properties is clearly more secure. Nonetheless, virtually
no significant design or analysis has been done in this area, no doubt due to the
complexity. (Some recent encouraging advances have been made by Volpano and
Smith [27].) This state of affairs has been mirrored on the formal level as well.
There have been possibilistic characterizations of many possibilistic noninterfer-
ence properties in a variety of formalisms, including notably epistemic logic [3,
14]. And, there have even been some epistemic characterizations of probabilistic
noninterference [24]. But, again, most of the development as well as discussion
of more complex systems has been in terms of possibilistic properties. Our ex-
pectation is that the situation is likely to be analogous when formally analyzing
anonymity. Probabilistic characterizations may still be applied to substantial
systems, for example Crowds, but it is unclear if these will prove both general
and amenable to formal specification or analysis.

6 Knowledge Programs

Systems and environments that we discuss will be specified via knowledge pro-
grams following the approach of Fagin et al. [11,12]. All our knowledge programs
have the following form:
case of

if [knowledge test #1]

do [action #1]

if [knowledge test #2]

do [action #2]

end case
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Knowledge tests are conjunctions of formulae where each conjunct is preceded
by Op or -Op for some principal P. Actions are performed by the principal
running the program. Each action given in the consequent of a clause may be a
series of actions to be performed by the principal. The knowledge test and action
given in any one clause are considered atomic. At any one time, at most one
clause of the program will fire. Also, in a properly specified knowledge program,
knowledge tests should be mutually exclusive. Thus, at any one time, only one
clause of a properly specified program can fire. In the execution of a knowledge
program, recent actions, defined in the model in section 2, are ones taken during
the execution of the current clause.?

As noted above in section 2, the system environment can be viewed as a group
principal made up of many smaller environments. We will now examine this point
in more detail. Our reasons are at least twofold: (1) The environment programs
we will set out presently are very simple. Thus, they serve as an accessible
introduction to knowledge programs. (2) The environment programs we will set
out are generic and will be used to describe the environment for subsequently
presented examples.

6.1 Generic Environment Programs

The following programs describe environments between the various principals.
Recall that we assume message delivery is guaranteed; all uncertainty, delay, etc.
is reflected in the behavior of the environment. Note also that the clauses for
environment principals are often simpler than for system principals. This is be-
cause the environments we set out here are not doing anything based on message
content, other than the to or from fields; they simply forward any message they
receive or block it, possibly recording the events. More sophisticated environ-
ments, e.g., doing selective forwarding based on message content or timing, are
possible. We will not describe them here.

We typically assume a single environment between any two system principals.
This we call a pairwise® environment. In some sense, the communication graph
for the system is fully connected, but with an environment principal between
any two system principals (much as in [26], although our environments need
not be hostile). However, in practice many of these environment principals will

? Unlike the “knowledge-based programs” of [11, 12], our knowledge programs do not
have “standard tests” (those not involving epistemic operators) because we have yet
to see a need for these tests in any of the examples we have looked at; although, there
is no reason they could not be added in if needed. There are also more important
differences. We have placed all uncertainty in the principals (including explicitly
represented environment principals). Thus, e.g., all sent messages are received, and
all received messages were sent by someone, albeit possibly an environment principal.
It is might seem natural to call these ‘atomic environments’. However, a complex
environment that, e.g., forwards messages between two principals based on the traffic
it sees between two others could not be reduced to such atomic principals. Hence,
this would be a misnomer. Detailed discussion of such environments is beyond the
scope of this paper.
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simply block any transmission they receive. And, we will not bother to specify
these in cases where there is obviously no direct communication between the
two principals or we do not care if there is (and so can assume that there is
not). Also, we are often more interested in an environment principal that is
a distributed group of the pairwise environment principals just mentioned, for
example, when we consider several distinct clients sending queries through the
Anonymizer. We now give some examples of basic environments, from which
more complex environments can be built.

A reliable environment between principals is one that simply passes any
messages sent between them without any alteration, delay, recording, etc.

Reliable_Environment_Program :
if [Og E received from P; “M to P;” A —-Og E said to P; “M to P; 7]
do [send(M to P;, E, P;) ]
A remembering environment between principals is just like the reliable envi-
ronment except that it keeps track of all messages it passes.

Remembering_Environment_Program :
if [Og E received from P; “M to P;” A -Og E said to P; “M to P; 7]
do [record(receive(M to P;, E, P;) ) ;
send(M to P;, E, Pj,remember) ]
A simple blocking environment is one that simply blocks (drops) all messages
that pass through it. It thus does no action, i.e., A. But, to explicitly contrast
it with the next environment, we give it the following redundant description.

Simple_Blocking_Environment_Program :
if [Og E received from P; “M to P;” A -Og E said to P; “M to P; 7]
do [4]
A remembering blocking environment is one that blocks (drops) all messages
that pass through it, but records the message receptions.

Remembering _Blocking_Environment_Program :

if [Og E received from P; “M to P;” A -Og E said to P; “M to P; ]

do [record(receive(M to Pj, E, P;)) ]

An environment may forward only messages sent from or to a selected princi-
pal (possibly a group principal). By selecting which traffic it forwards, the envi-
ronment may reveal traffic information to other parts of the intruder elsewhere,
e.g., in a system employing chained remailers or other forwarding mechanisms.
A pairwise environment that selects based on sender or receiver would be triv-
ial. It would simply block (or forward) all messages in one direction and block
or forward all messages in the other direction. This is thus the first presented
example of an environment that will typically only be used to describe an envi-
ronment that is a group principal. We set out an example of an environment that
selectively forwards only messages from a particular principal, Py. The program
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itself is virtually identical to that of the remembering environment, except that
it only forwards if the sending principal is the particular principal specified.

Sender_Selecting_Environment_Program(Fp) :
if [Og (£ received from P; “M to P;” A P;=1) A
_‘DE F said to Pj “M to Pj ”]
do [record(receive(M to P;, E, P;) ) ;
send(M to P;, E, Pj,remember) ]

Despite the fact that some environments are not reducible to pairwise en-
vironments, pairwise environments will serve as basic building blocks in many
cases. We therefore find it useful to refer to them succinctly. Let ‘Ep,p,” denote
the environment between system principals P; and P;. Thus, Ep, p; runs Program
means that messages between P; and P; are delivered according to Program.
Note also that this is meant to cover messages in both directions. Thus, we
assume Ep,p, = Ep,p,.

6.2 Theorems for Environment Programs

In the course of our analysis, we will have to assess what various principals have
or have not done and what they know or don’t know. This information comes
primarily from the program specifications, the assumptions about who is running
what program, and what initial messages are sent and facts known. A main way
we are able to formally derive things based on the knowledge programs is by
means of program theorems. These have the general form:

(P runs Program A precondition) D postcondition

However, for the purposes of the analysis we do in this paper, we can more
specifically assume that the only way for the postcondition to obtain is for the
principal to run the program and the precondition to hold. This allows us to
strengthen the form to:

(P runs Program A precondition) < postcondition

We present examples of these program theorems below. They can be generated
automatically from the corresponding knowledge programs. This will ultimately
be useful for automated analysis. For now we must be content to set them out
by hand.

Al. (E runs Reliable_Environment_Program A

E did (receive(M to P;, E, P;) ) ) + FE did (send(M to P;, E, Pj))
A2. (E runs Remembering Environment_Program A

E did (receive(M to P;, E, P;)))

record(receive(M to P;, E, P;) ) ; send(M to P;, E, P;,remember)
A3. (F runs Simple_Blocking Environment_Program A

E did (receive(M to P;, E, P;) ) ) « E did (A)
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A4. (E runs Remembering_Blocking_Environment_Program A
E did (receive(M to P;, E, P;)))
E did (record(receive(M to P;, E, P;) ) )

A5. (E runs Sender_Selecting_Environment_Program A
receive(M to P;, E, P;) did (A )P, =Fy)
E did (record(receive(M to P;, E, P;) ) ;
send(M to P;, E, P;,remember) )

7 Anonymizer Example

Space precludes presenting more than the knowledge programs for our example.
We here describe the standard analysis procedure to be followed if space permit-
ted. We would begin by setting out the knowledge programs that characterize
the system principals when operating properly (uncompromised). We would then
proceed to the analysis. This consists of (1) setting out the condenda, (2) giv-
ing the contexts, i.e., setting out the specific system and environment principals
and the programs they are running, and specifying the intruder (here is where
we would specify compromised principals if necessary), (3) giving the program
theorems (relating pre- and postconditions to the programs being run), and (4)
assessing the anonymity protections afforded by the given programs under the
given conditions.

7.1 Anonymizer Knowledge Programs

The Anonymizer [1] is a Web proxy service that receives queries submitted by
a client, strips off any identifying information, and forwards the query to the
relevant server. When replies are received from the server, it forwards these back
to the client. We will now give knowledge programs that specify an anonymizer,
a client, and a server. For our purposes, we assume multiple clients and possibly
multiple anonymizers; however, it is only necessary to assume one server.
Variables for principal names should be fairly intuitive. We assume that there
is one environment Egca; between an anonymizer A; and the set of clients C,
that use it and one environment E4;s between an anonymizer A; and a server
S. The variable @) represents a query and R represents a response to a query.
We also assume that communication between a client C; and the corresponding
user U; occurs without any intervening environment. For contexts where this is
not true, it should be clear how to add in the relevant environment principal.
Client_Programg, :
case of
if [O¢, C; received “(Q for S) from U;” A
—O¢, C; said to Egca; “(Q for S) from C; to A; 7]
do [send((Q for S) from C; to A;, C;, Egca;,remember) ]
if [Oc, (C; received from Egcs; “R in response to () from A;” A
C; said to Egca; “(Q for S) from C; to A; ) A
-0¢,; C; said to U; “R in response to @ from S 7]
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do [send(R in response to @ from S, C;, U;) ;
purge(send((Q for S) from C; to Aj, Cj, Egca;) ) |

end case

Anonymizer_Programy; :
case of
if [04; Aj received from Egca; “(Q for S) from C; to A;” A
-0y, Aj said to Ea;5 “Q from Aj to S 7]
do [send(Q from A; to S, A;, E4,s,remember) ;
purge(receive((Q for S) from C; to Aj, Aj, Egca;) ) ;
record(receive((Q for S) from C; to A;, Aj, Egca;) ) |
if [O4; (A received from E4,5 “R in response to @ from 57 A
Aj received from Egecq, “(Q for S) from C; to A;”) A
-0y, Aj said to Egca; “(R in response to () from S) from A; to C; 7]
do [send((R in response to () from S) from A; to C;, A;, Ex;c,) ;
purge(receive((Q for S) from C; to Aj, Aj, Ex,c;) ) ;
purge(send(Q) from A; to S, A;, Eyu;s)) ]
end case

Server_Programg :
case of
if [Og S received from E4;s “Q from Aj to S” A
-Og S said to Ea;s “R in response to () from S to A; 7]
do [send(R in response to @ from S to A;, S, Ex;s) ;
record(receive(Q from A; to S, S, Ea;s) ) |
end case
The above assumes the server logs queries (but not responses).

7.2 Anonymizer Condenda

As noted above, we have no space to set out our analysis. Nonetheless, we at
least state the condenda that the Anonymizer is expected to hide. The following
are examples of formulae that should be hidden from the intruder. The operating
environment and the nature of the intruder will be set out below, in addition
to demonstrations of the level of condendum hiding afforded against specified
intruders in specified environments.

G1 C; said (Q for S)

G2 () received R in response to Q from S
G3 (C; received R in response to @)

G4 S said R in response to Q D C; said

8 Conclusion

We have introduced the basic notion of a group principal and an associated
model, language, and logic. We have demonstrated the utility of these by defining
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anonymity properties and specifying an anonymity protocol. Space limitations
preclude presenting the analysis of that protocol with respect to anonymity.

Even if we had space to set it out, the assessment by hand of anonymity in the
example we have specified is tedious and complex. In fact it would be infeasible
to provide the quantitative by-hand assessments of anonymity we envision for
complex systems involving many principals. However, with the theory established
in this paper, we have a starting point for investigating suitable automated
analysis techniques such as incorporating the use of model checkers.

Another direction for future work is the analysis of other types of secu-
rity properties using our characterization of group principals. In particular, we
believe we can ultimately give a characterization of such things as threshold
cryptography and proactive security.
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