
A Verifiable Secret Shuffle and its Application to

E-Voting

C. Andrew Neff ∗

17 August, 2001

Abstract

We present a mathematical construct which provides a cryptographic
protocol to verifiably shuffle a sequence of k modular integers, and discuss
its application to secure, universally verifiable, multi-authority election
schemes. The output of the shuffle operation is another sequence of k
modular integers, each of which is the same secret power of a correspond-
ing input element, but the order of elements in the output is kept secret.
Though it is a trivial matter for the “shuffler” (who chooses the permuta-
tion of the elements to be applied) to compute the output from the input,
the construction is important because it provides a linear size proof of
correctness for the output sequence (i.e. a proof that it is of the form
claimed) that can be checked by an arbitrary verifiers. The complexity
of the protocol improves on that of Furukawa-Sako[16] both measured by
number of exponentiations and by overall size.

The protocol is shown to be honest-verifier zeroknowledge in a special
case, and is computational zeroknowledge in general. On the way to the
final result, we also construct a generalization of the well known Chaum-
Pedersen protocol for knowledge of discrete logarithm equality ([10], [7]).
In fact, the generalization specializes exactly to the Chaum-Pedersen pro-
tocol in the case k = 2. This result may be of interest on its own.

An application to electronic voting is given that matches the features
of the best current protocols with significant efficiency improvements. An
alternative application to electronic voting is also given that introduces
an entirely new paradigm for achieving Universally Verifiable elections.

Keywords: Electronic Voting, Universal Verifiability, Anonymous Credentials, Mix-

net, Permutation, Verifiable Mix, Verifiable Shuffle, Honest-verifier, Zeroknowledge.

∗aneff@votehere.net

1

1 Introduction

The notion of a shuffle of a collection of objects, records, or tokens is simple
and intuitive, and useful examples abound in various daily human activities. A
gambler in a casino knows that among the cards in his hand, each will be one
of 52 unique values, and that no one else at the table will have duplicates of
the ones he holds. He does not, however, have any knowledge of how the cards
are distributed, even though he may have recorded the exact card order before
they were shuffled by the dealer.

In the context of electronic data, the problem of achieving the same kind of
random, yet verifiable permutation of an input sequence is surprisingly difficult.
The problem is that the data itself is either always visible to the auditor, or it
isn’t. If it is, then the correspondence between input records and output records
is trivial to reconstruct by the auditor, or other observer. If it isn’t, then input
and output records must be different representations of the same underlying
data. But if the output is different enough (that is, encrypted well enough) that
the auditor cannot reconstruct the correspondence, then how can the auditor
be sure that the shuffler did not change the underlying data in the process of
shuffling?

Most of the paper is devoted to giving an efficient (linear) method for solving
this problem in an important context – ElGamal, or Diffie-Hellman encrypted
data. In order to make the exposition as clear and concise as possible, the ma-
jority of the paper explicitly refers to the specific case where the operations are
carried out in a prime subgroup of Z∗p, the multiplicative group of units modulo
a large prime, p. However, the only properties of the underlying (multiplicative)
group that we use is that the associated Diffie-Hellman problem is intractable.
Thus, the shuffle protocol is also useful when the ElGamal cryptosystem is im-
plemented over other groups such as elliptic curves.

The general Boolean proof techniques of [5] and [11] can also be used to
construct a proof with the same properties, however, the resulting proof size
(complexity) is quadratic, or worse, in the size of the input sequence.

The technique of this paper also offers several advantages over the cut-and-
choose technique used in [26]. In this approach, the size of proof is dependent on
the probability of a cheating prover that is required to satisfy all participants.
In the shuffle protocol of this paper, this cheating probability is essentially
k/q, where k is the number of elements to be shuffled, and q is the size of the
subgroup of Z∗p in which the elements are encrypted. Although no analysis of
the proof size dependence on cheating probability is done in [26], it appears that,
in order to obtain similarly low cheating probability, it will need to be orders of
magnitude larger than the size of the proof given in this paper. (Moreover, if the
[26] protocol is implemented non-interactively, the cheating probability would
need to be chosen exceedingly small, because a malicious participant might
use considerable off-line computation to generate a forged proof by exhaustive
search. This of course, could be the case with the protocol of this paper as well,
but the probability k/q is, for all practical values of k and q, certainly small
enough – even for offline attacks.)

2

The results of this paper provide for several ways to implement a universally
verifiable election protocol. Some of these are presented in the final sections. In
this context, it is worth comparing the elegant homomorphic election protocol
of [7]. That protocol works well when ballots have only questions of a simple
“choose (at most) m of n” type. This effectively precludes “write-in” responses,
as well as “proportional type” questions where the voter is expected to indicate
answers in preferential order, and questions are tabulated in accordance with
this preference. (Theoretically, proportional type questions can be handled by
mapping each valid permutation of selections to a single yes/no response. How-
ever, in practice this is infeasible unless the number of choices is quite small.)
A couple of somewhat less important disadvantages of the [7] scheme are that it
expands vote data size considerably, and that it requires a voter validity proof.
This proof further expands the vote data size by about an order of magnitude,
and is unattractive from a practical perspective, because it presumes special
purpose code to be running on the voter’s computer.

The shuffle protocols are constructed entirely from elementary arithmetic
operations. They are thus simple to implement, and are imminently practical
for the anonymous credential application described.

1.1 Comparison to previous results

The number of exponentiations required to construct the proof is 8k+5, where as
the protocol of Furukawa-Sako[16] requires 18k +18, which itself is a significant
improvement over the roughly 642k exponentiations required by Sako-Kilian[26]
and the 22k log k exponentiations required by Abe-Hoshino[1]([2]). In the spe-
cial case where the shuffler, or prover, knows the encrypted data, only k + 4
exponentiations are required by the present protocol. The construction of this
paper also has advantages when measured by size, or length, which is 8k + 5
modular integers, or group elements. In the case of Zp implementation, most
of these are “smaller” integers – typically 160 bits – though some of them are
“larger” integers – typically 1024 bits. Furukawa-Sako[16] claim their proof size
is 211k bits, and that the sizes for for Sako-Kilian[26] and Abe-Hoshino[1][2]
respectively are 218k and 214k log k bits. It is not clear at this time exactly how
these size estimates compare with those of this paper, since they seem to have
left out a dependence on the bit size of an integer. However, a rough count of
the integers used in their protocol, seems to indicate more than 8k + 5.

All estimates of the efficiency of other papers are taken from [16]. However,
in the case of [26] and [1]([2]) they may be conservative for a non-interactive
implementation of the protocol.

3

1.2 Applications to voting

The voting application that occurs immediately is that which employs the usual
tabulation/mixing center approach to provide anonymity. In this setting, the
protocols of this paper offer important advantages. They are much more effi-
cient, and allow the mixing centers to be completely independent of the author-
ities who hold some share of the key necessary to decrypt ballots.

Perhaps, however, a more valuable and exciting application of the new proto-
col is for creating “anonymous credentials”. A member of an authorized group,
identified only by a set of DSA, or Diffie-Hellman public keys, can authenticate
group membership, and/or sign in a one time way, without revealing his/her
individual identity. This leads to a novel solution to the voting problem that
is universally verifiable, but does not require any special set of “authorities” in
order to tabulate. It also offers a better privacy model to the voter, and speeds
tabulation enormously since ballots do not need to be encrypted/decrypted. In
effect, instead of mixing encrypted vote cyphertexts after ballots have been re-
ceived at the vote collection center, voter credentials are mixed before the start
of the election. This mixing can naturally be done by the voters themselves
to achieve “anonymous authentication”. (See section 6.1.) (It should be noted
that the mixing could also be done by a set of authorities, thus providing a more
efficient means to implement a threshold privacy election. One where, again,
ballots do not need to be encrypted/decrypted.)

2 Notation

In the following, unless explicitly stated otherwise, n will be a positive integer,
p and q will be prime integers, publicly known. Arithmetic operations are
performed in the modular ring Zp (or occasionally Zn), and g ∈ Zp will have
(prime) multiplicative order q. (So, trivially, q | (p−1).) In each proof protocol,
P will be the prover (shuffler) and V the verifier (auditor).

We recall the Chaum-Pedersen proof of equality for discrete logarithms. For
G,X, H, Y ∈ Zp this is a proof of knowledge for the relation

logG X = logH Y (1)

It is not known to be zero-knowledge, however it is known to be honest-verifier
zeroknowledge. In the next section, we will give a natural multi-variable gener-
alization of this protocol which also has these properties. These are sufficient
for our main application where the verifier is implemented via the Fiat-Shamir
heuristic. (See [15] and [7].)

Definition 1 An instance of this proof, as above, will be denoted by

CP (G, X, H, Y) .

Definition 2 For fixed g ∈ Z∗p, let ⊗g be the binary operator on 〈g〉×〈g〉 defined
by

logg (x⊗g y) = logg x logg y

4

for all x, y ∈ 〈g〉. Alternatively

ga ⊗g gb = gab = (ga)b = (gb)a

for all a, b ∈ Zq. Following the conventions used for summations and multipli-
cations, we also use the notation

k⊗

i=1

g Xi = X0 ⊗g X1 ⊗g · · · ⊗g Xk

We refer to this operation as logarithmic multiplication base, g.

In each of the notations in the preceding definition, the subscript g may be
omitted when its value is clear from context.

Remark 1 Notice that

logG X = logH Y ⇐⇒ G⊗g Y = H ⊗g X (2)

We note the following collection of well know results since they will be heavily
used in the remainder of the paper.

Lemma 1 Let f(x) ∈ Zq[x], be a polynomial of degree d. Then there are at
most d values z1, . . . , zd ∈ Zq such that f(zi) = 0.

Corollary 1 Let f(x) , g(x) ∈ Zq[x] be two monic polynomials of degree at
most d, with f 6= g. Then there are at most d− 1 values z1, . . . , zd−1 ∈ Zq such
that f(zi) = g(zi).

Corollary 2 Let f(x) , g(x) ∈ Zq[x] be two monic polynomials of degree at
most d, with f 6= g. If t ∈R Zq (t is selected at random from Zq), then

P ({t : f(t) = g(t)}) ≤ d− 1
q

Corollary 3 Let f(x) , g(x) ∈ Zq[x] be any two polynomials of degree at most
d. Then for every constant R 6= 0, there are at most d values, z1(R), . . . , zd(R),
such that f(zi(R)) = R g(zi(R)).

Definition 3 Let f(x) be a polynomial in Zq[x]. We denote by χf the (un-
ordered) set of all roots of f .

χf
.= { t ∈ Zq : f(t) = 0 } (3)

Definition 4 If Λ ⊂ Zq, and R ∈ Zq, we write

R Λ .= { t ∈ Zq : t = Ru , u ∈ Λ } (4)

5

Corollary 4 Let f(x) , g(x) ∈ Zq[x] be any two polynomials of degree at most
d. Fix constants, R 6= 0, γ 6= 0, and δ 6= 0. If t ∈R Zq, then

P ({t : f(γt) = R g(δt)}) ≤ d

q

Lemma 2 Let Zk
q be the standard k-dimensional vector space over Zq, and fix

v = (v1, . . . , . . . vk) ∈ Zk
q , v 6= 0. If r ∈R Zk

q is chosen at random, then

P ({r : v · r = 0}) =
1
q

Definition 5 Let M = (mij) be a k × l matrix. We denote the ith row vector
of M by ρi(M) and the jth column vector of M by τj(M). That is

ρi(M) = (mi1, . . . ,mil) (5)

τj(M) =




m1j

...
mkj


 (6)

3 Proofs for iterated logarithmic multiplication

For the rest of this section, all logarithmic multiplications will be computed
relative to a fixed element g, and hence we will omit the subscript in notation.
The following problem is fundamental to the shuffle protocols which are to come
later.

Iterated Logarithmic Multiplication Problem: Two sequences {Xi}k
i=1

and {Yi}k
i=1 are publicly known. The prover, P, also knows ui = logg Xi and

vi = logg Yi for all i, but these are unknown to the verifier, V. P is required to
convince Vof the relation

k⊗

i=1

Xi =
k⊗

i=1

Yi (7)

without revealing any information about the secret logarithms ui and vi.

The protocol we give is precisely a higher dimensional generalization of the
Chaum-Pedersen protocol discussed at the beginning of section 2. In fact, we
will see that in the case k = 2, the protocol is exactly the Chaum-Pedersen
protocol. The presentation will be considerably simplified by restricting the
problem instance to a case where

Xi 6= 1 , Yi 6= 1 ∀1 ≤ i ≤ k (8)

6

Clearly, if any of these inequalities do not hold, then there is no sense in con-
structing a proof since equation (7) can be seen to hold or not by inspection.
(If Xi = 1 then xi = 0 and so equation (7) holds if and only if Yj = 1 for some
j. Similarly with the roles of X and Y reversed.)

Iterated Logarithmic Multiplication Proof Protocol (ILMPP) :

1. P secretly generates, randomly and independently from Zq, k−1 elements,
θ1, . . . θk−1. P then computes

A1 = Y θ1
1 (9)

A2 = Xθ1
2 Y θ2

2

... =
...

Ai = X
θi−1
i Y θi

i

... =
...

Ak = X
θk−1
k

and reveals to V the sequence A1, . . . , Ak.

2. V generates a random challenge, γ ∈ Zq and reveals it to P.

3. P computes k − 1 elements, r1, . . . , rk−1, of Zq satisfying

Y r1
1 = A1 X−γ

1 (10)
Xr1

2 Y r2
2 = A2

... =
...

X
ri−1
i Y ri

i = Ai

... =
...

X
rk−1
k = Ak Y

(−1)(k−1)γ
k

and reveals the sequence r1, . . . , rk−1 to V. (We will see in the proof of
completeness, below, how these values are computed.)

4. V accepts the proof if and only if all of the equations in (10) hold.

Theorem 1 The ILMPP is a three-move, public coin proof of knowledge for the
relationship in equation (7) which is special honest-verifier zeroknowledge. The
number of exponentiations required to construct the proof is k, and the number of
exponentiations required to verify it is 2k. If V generates challenges randomly,
the probability of a forged proof is 1/q.

Remark 2 Note that in constructing the proof, all exponentiations can be done
to the same base, g, so fixed base algorithms can be employed. (See [18], p. 623.)

7

Proof: The protocol is clearly three-move and public coin. The exponentiation
count in the construction of the proof looks like it should be 2k−2, but actually
it can be constructed with only k exponentiations. This is because P knows
the logarithms xi and yi, and hence can compute Ai as Ai = gθi−1xi+θiyi for all
2 ≤ i ≤ k − 1.

Completeness
Completeness means that, given arbitrary ~θ = (θ1, . . . , θk−1) and γ, P can
always find ~r = (r1, . . . , rk−1) satisfying the system of equations in (10). To
see that this is the case, take logg of each side of the equations in (10), and set
r̄i = ri − θi for 1 ≤ i ≤ k − 1. One obtains the following k × (k − 1) system of
linear equations in Zq for r̄1, . . . , r̄k−1




y1 0 0 0 · · · 0
x2 y2 0 0 · · · 0
0 x3 y3 0 · · · 0
...

...
...

... · · · ...
0 0 · · · 0 xk−1 yk−1

0 0 · · · 0 0 xk







r̄1

r̄2

r̄3

...
r̄k−2

r̄k−1




=




−γ x1

0
0
...
0

(−1)(k−1) γ yk




(11)

The (k − 1)× (k − 1) sub-system



x2 y2 0 0 · · · 0
0 x3 y3 0 · · · 0
...

...
...

... · · · ...
0 0 · · · 0 xk−1 yk−1

0 0 · · · 0 0 xk







r̄1

r̄2

...
r̄k−2

r̄k−1




=




0
0
...
0

γ yk




(12)

is non-singular since its determinant is
∏k

i=2 xi, which is non-zero by assump-
tion (8). Hence, one can always solve it for r̄1, . . . , r̄k−1. In fact, the solution
is

r̄i = (−1)(k−i−1) γ

k∏

j=i+1

(
yj

xj

)
(13)

However, under the hypotheses of the problem, (12) actually implies (11).
This is because

8

0 =
k∏

i=1

xi −
k∏

i−1

yi (14)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣




x1 y1 0 0 0 · · · 0
0 x2 y2 0 0 · · · 0
0 0 x3 y3 0 · · · 0
...

...
...

...
... · · · ...

0 0 0 · · · 0 xk−1 yk−1

(−1)kyk 0 0 · · · 0 0 xk




∣∣∣∣∣∣∣∣∣∣∣∣∣

which, combined with the fact that the sub-matrix on the left of equation (12)
is non-singular, means that the first column vector of the k × k matrix in (14)
must be a linear combination of the remaining k − 1 column vectors.

Soundness
If the first column vector of the matrix on the left of equation (14) is not a
linear combination of the remaining k − 1 column vectors, then there can be at
most one value of γ ∈ Zq for which equation (11) holds. Thus, if γ is chosen
randomly, there is at most a chance of 1 in q that P can produce r1, . . . , rk−1

which convince V.

Special Honest-Verifier Zeroknowledge
Honest-verifier zero-knowledge holds because, for random γ and random ~r =
(r1, . . . , rk−1), and for

~A =




A1

A2

...
Ak−1

Ak




=




Xγ
1 Y r1

1

Xr1
2 Y r2

2
...

X
rk−2
k−1 Y

rk−2
k−1

X
rk−1
k Y

(−1)kγ
k




(15)

the triple (~A, γ, r) is an accepting conversation. It is easy to see that the distri-
bution so generated for ~A is identical to that generated according to (9), again
because the first column vector of the matrix in (14) is a fixed linear combination
of the remaining column vectors. So if V is honest, the simulation is perfect.
Since the challenge, γ, can be chosen freely, we also have special honest-verifier
zero-knowledge.

9

Remark 3 The solutions for r̄i in (13) could also be written formally as

r̄i = (−1)(i−1) γ

i∏

j=1

(
xj

yj

)

However, this will not work if some of the yj are 0. In the case of equation (13),
this problem was avoided by assumption (8). Of course, the main part of the
solution could just have well be set up under the assumption that yi 6= 0 for all
1 ≤ i ≤ k − 1 – the choice of expression for ri just needs to be kept consistent
with the form of the assumption.

Remark 4 We leave it to the reader to check that in the case k = 2, the
SILMPP reduces exactly to the well known Chaum-Pedersen protocol. In so
doing, it is worth recalling remark 1, equation (2).

Remark 5 Special Soundness
As is the case with the Chaum-Pedersen protocol, which proves that P knows
s = logG X = logH Y , the SILMPP proves that P knows s1, . . . , sk such that
logg Xi = logg Yi, and

∏k
i=1 si = 1. This is clear because from two accepting

conversations, (~A, γ, ~r) and (~A, γ ′, ~r ′), with the same first move and γ 6= γ ′, a
witness,

(w, ρ) = (γ − γ ′ , ~r − ~r ′)

can be extracted satisfying

Y ρ1
1 = X−w

1 (16)
Y ρ2

2 = X−ρ1
2

... =
...

Y ρi

i = X
−ρi−1
i

... =
...

Y
(−1)k w
k = X

−ρk−1
k

Since w = γ − γ ′ 6= 0, it follows that ρi 6= 0 for all 1 ≤ i ≤ k − 1. Thus, with
an appropriate small modification to the statement of the problem, it satisfies
special soundness.

4 The Simple k-Shuffle

The first shuffle proof protocol we construct requires a restrictive set of condi-
tions. It will be useful for two reasons. First, it is a basic building block of the
more general shuffle proof protocol to come later. Fortuitously, it also serves a
second important purpose. A single instance of this proof can be constructed
to essentially “commit” a particular permutation. This can be important when

10

shuffles need to be performed on tuples of Zp elements, which is exactly what
is required when shuffling ElGamal pairs, as in the voting application.

Simple k-Shuffle Problem: Two sequences of k elements of Zp, X1, . . . , Xk,
and Y1, . . . , Yk are publicly known. The prover, P, also knows xi = logg Xi and
yi = logg Yi, but these are unknown to the verifier, V. In addition, constants
c and d in Zq are known only to P, but commitments C = gc and D = gd

are made public. P is required to convince V that there is some permutation,
π ∈ Σk, with the property that

Y d
i = Xc

π(i) (17)

for all 1 ≤ i ≤ k without revealing any information about xi, yi, π, c, or d.

Remark 6 For this section, and the remainder of the paper, we will make the
simplifying assumptions that in all shuffle constructions

1. xi 6= xj for i 6= j (and hence, of course, yi 6= yj for i 6= j).

2. xi 6= 1 for all 1 ≤ i ≤ k.

There are obvious ways to handle these special cases. Moreover, in practice,
they will “essentially never” occur since elements are usually random.

The protocol of the previous section, in combination with corollary 2, provide
the tools necessary to solve this problem in a fairly straightforward manner.

Simple k-Shuffle Proof Protocol:

1. V generates a random t ∈ Zq and gives it to P as a challenge.

2. P and V publicly compute U = Dt = gdt, W = Ct = gct,

~̂
X = (X̂1, . . . , X̂k) = (X1/U, . . . ,Xk/U)

and
~̂
Y = (Ŷ1, . . . , Ŷk) = (Y1/W, . . . , Yk/W)

3. P and V execute the SILPP for the two length 2k vectors

Φ = (~̂
X,

k︷ ︸︸ ︷
C,C, . . . , C) (18)

Ψ = (~̂Y ,

k︷ ︸︸ ︷
D,D, . . . ,D)

The protocol succeeds (V accepts the proof) if and only if V accepts this
SILPP.

11

Theorem 2 The Simple k-Shuffle Proof Protocol is a four-move, public coin
proof of knowledge for the relationship in equation (17). It satisfies special
soundness, and is special honest-verifier zeroknowledge. The number of expo-
nentiations required to construct the proof is 2k, and the number of exponenti-
ations required to verify it is 4k.

If V generates challenges randomly, the probability of a forged proof is less
than or equal to

(k − 1)/q + (q − k + 1)/q2 = (qk − q + q − k + 1)/q2 < k/q

Remark 7 The observations of remark 2 also apply in this case.

Proof: All of the required properties follow immediately from the results of the
previous section. (Special soundness can be argued from remark 5.) A forged
proof can only be generated in two conditions.

1. The challenge t is one of the special values for which

k∏

i=1

(t− xi/d) =
k∏

i=1

(t− yi/c)

2. The challenge t is not one of the special values in 1 above, and the SILMPP
is forged.

By corollary 2, the probability of 1 is at most (k−1)/q, and the probability of 2
is (q − k + 1)/q2 by the results of the previous section.

4.1 A complexity improvement

Both the size and complexity of the simple k-shuffle protocol can be improved
by a factor of 2. Instead of using corollary 2, we use corollary 4. Intuitively,
we would like to replace the k copies of D and k copies of C in equation (18)
with single entries gdk

and gck

respectively. Unfortunately, this would ruin the
zeroknowledge property of the protocol. Instead, we modify the protocol as
follows.

Simple k-Shuffle Proof Protocol II:

1. P generates randomly and independently β from Zq and τ from
Zq − {0}, computes

B = gβ (19)
T = gτ

and reveals B and T to V.

2. V generates a random λ from Zq and reveals it to P.

12

3. P computes s by

s = β + λτ −
k∏

i=1

(
xi

yi

)
= β + λτ −

(
d

c

)k

(20)

and reveals s to V.

4. V generates a random t ∈ Zq and gives it to P as a challenge.

5. P and V publicly compute U = Dt = gdt, W = Ct = gct,

~̂
X = (X̂1, . . . , X̂k) = (X1/U, . . . , Xk/U)

and
~̂
Y = (Ŷ1, . . . , Ŷk) = (Y1/W, . . . , Yk/W)

6. P secretly generates, randomly and independently from Zq, k elements,
θ1, . . . θk. P then computes

A1 = Ŷ θ1
1 (21)

A2 = X̂θ1
2 Ŷ θ2

2

... =
...

Ai = X̂
θi−1
i Ŷ θi

i

... =
...

Ak = X̂
θk−1
k Ŷ θk

k

Ak+1 = gθk

and reveals to V the sequence A1, . . . , Ak+1.

7. V generates a random challenge, γ ∈ Zq and reveals it to P.

8. P computes k elements, r1, . . . , rk, of Zq satisfying

Ŷ r1
1 = A1 X̂−γ

1 (22)

X̂r1
2 Ŷ r2

2 = A2

... =
...

X̂
ri−1
i Ŷ ri

i = Ai

... =
...

X̂
rk−1
k Ŷ rk

k = Ak

grk = Ak+1

(
BTλg−s

)(−1)kγ

and reveals the sequence r1, . . . , rk to V.

13

9. V accepts the proof if and only if all of the equations in (22) hold.

Theorem 3 Simple k-Shuffle Proof Protocol II is a five-move, public coin proof
of knowledge for the relationship in equation (17). It satisfies special soundness,
and is special honest-verifier zeroknowledge. The number of exponentiations
required to construct the proof is k + 4, and the number of exponentiations
required to verify it is 2k + 2.

If V generates challenges randomly, the probability of a forged proof remains
less than or equal to

(k − 1)/q + (q − k + 1)/q2 = (qk − q + q − k + 1)/q2 < k/q

Proof Sketch: All of the arguments are very similar, property by property,
to the arguments constructed in the case of the original protocol. The main
difference is that one makes an appeal to corollary 4 rather than corollary 2.

Full details of the proof will be included in a later version of this paper.

5 The General k-Shuffle

An obvious limitation of the simple k-Shuffle protocol is that the shuffler, P,
must know all the original exponents x1, . . . , xk and y1, . . . , yk. In many appli-
cations, this will not be the case. The goal of this section is to eliminate that
restriction.

General k-Shuffle Problem: Two sequences of k elements of Zp, X1, . . . , Xk,
and Y1, . . . , Yk are publicly known. In addition, a constant c ∈ Zq is known only
to P, but commitments C = gc and D = gd are made public. P is required to
convince V that there is some permutation, π ∈ Σk, with the property that

Y d
i = Xc

π(i) (23)

for all 1 ≤ i ≤ k without revealing any information about π, c, or d.

General k-Shuffle Proof Protocol: The protocol is constructed from a sim-
ple k-shuffle that has been “appropriately randomized” by the verifier, and an
application of lemma 2. (To ease presentation, and avoid confusing notation,
we will present the proof for the situation d = 1. It is a fairly straightforward
matter to make the modifications for the general case.)

1. P chooses two sequences of k elements e11, . . . , e1k, and e21, . . . , e2k from
Zq−{0}. P also chooses a random, independent exponent d from Zq−{0}.
P reveals to V the sequences E1i = ge1i and E2i = ge2i .

2. V generates another two sequences f11, . . . , f1k, and f21, . . . , f2k randomly
and independently from Zq − {0}.

14

3. P computes the sequences

Fji = gd fjπ−1(i)ejπ−1(i) 1 ≤ i ≤ k , 1 ≤ j ≤ 2 (24)

and reveals these to V.

4. V generates a random challenge γ from Zq and reveals it to P.

5. P and V execute a simple k-shuffle protocol for the values (~U, g, ~V , D)
where

Ui = gf1ie1i+γf2ie2i (25)

Vi = gd f1π−1(i)e1π−1(i)+ γ d f2π−1(i)e2π−1(i)

D = gd

(Notice that P need not explicitly compute Ui and Vi in order to construct
the proof – only knowledge of the logarithms is required and these can
be computed by simple multiplication and addition. When checking the
proof, V must compute Ui and Vi as

Ui = Ef1i

1i Eγ f2i

2i (26)
Vi = F1iF

γ
2i

on the other hand, V did not need to perform the exponentiations neces-
sary to compute Eij and Fij in the first place.)

6. P generates random, independent a1, . . . , ak and
b1, . . . , bk−1 and sets

bk = v−1
k

(
k−1∑

i=1

bivi − d
∑

i=1

aiui

)
(27)

where ui = log Ui and vi = log Vi. P then reveals Ai = gai and Bi = gbi

to V.

7. V generates a random challenge λ from Zq and reveals it to P.

8. P computes the exponents

si = ai + λui (28)
ri = bi + λvi

along with the quantities

P =
k∏

i=1

Xri
i (29)

Q =
k∏

i=1

Y si
i

15

and reveals these to V. (Note the places of ri and si have been swapped
from what might have been anticipated. Note also that P needs only k+1
exponentiations to compute P and Q since the ratio of their logs is known
to be d.)

9. P and V execute a SILMPP (or Chaum-Pedersen proof) for the values
(P,Q, D,C).

10. The protocol succeeds (V accepts) if and only if

(a) V accepts the simple k-shuffle in step 5 (including the computation
of Ui and Vi via equation (26)).

(b) V accepts that for all 1 ≤ i ≤ k

gsi = AiU
λ
i (30)

gri = BiV
λ
i

(c) V accepts the proof in step 9.

Theorem 4 The general k-shuffle proof protocol is a seven-move, public coin
proof of knowledge for the relationship in equation (23) which is computational
zeroknowledge – that is, distinguishing between real and simulated proofs is as
hard as the decision Diffie-Hellman problem. The number of exponentiations
required to construct the proof is 8k + 5, and the number of exponentiations
required to verify it is 9k + 2.

If V generates challenges randomly, the probability of a forged proof is at
most

1/q + (qk − k + 1)/q2 + 1/q + 1/q

= (qk + 5q − k + 1)/q2 < (k + 4)/q
(31)

Proof: The protocol is seven-move since the steps can be executed in parallel.
(We have presented them sequentially for clarity.) It is obviously public coin.

Completeness and Soundness
Both of these properties follow immediately from lemma 2 and the corresponding
properties of the simple k-shuffle in step 5.

Computational Zeroknowledge
A simulated proof is generated in much the same way as a real proof, the only
difference is that in step 5, a simulator does not have knowledge of π. At
this point, the simulator generates instead, Ui and Vi by the same rules as
equation (25), except that a random permutation, σ, is chosen instead of π.
The simple k-shuffle proof can be simulated, and the remaining steps can also
be simulated in essentially the same way. A distinguisher can then distinguish

16

between real and simulated proofs only if it can distinguish between distributions
of the form (

(Gi) ; (Gd
π(i))

)

and (
(Gi) ; (Gd

σ(i))
)

This problem can be reduced to the decision Diffie-Hellman problem by induc-
tion. Further, if these distributions can be distinguished, the original encryption
of the shuffle is not sound.

6 k-Shuffles of DSA Public Keys

The general k-shuffle is ideally suited to verifiably permuting a set of DSA, or
Diffie-Hellman public keys. By this we mean that a new set of DSA public keys
is produced, which is computationally unlinkable to the original set, but which
verifiably represents the same set of private keys. This can be extremely valuable
when one wishes to anonymize a set of authenticated keys while still protecting
the integrity of the original group of private keys – the election setting is just
one such example.

We only sketch the technique here, but the details should then be completely
obvious to the reader. It is assumed that initially all the public keys are of the
form (g, H), H = gs, where g is some fixed generator and s is the private key.
That is, loosely, “all the keys use the same base”. The protocol proceeds as
follows:

1. Shuffler, or mixer, is presented with g and the list of keys Hi.

2. Shuffler executes the general k-shuffle with C = g, and Yi = H ′
i (the new

public keys), implementing the V via the Fiat-Shamir heuristic.

3. Shuffler “returns” the entire proof transcript.

4. Assuming the transcript verifies, set g = C, and Hi = H ′
i. By changing

the common base to C, the private keys all remain the same since

H = gs ⇐⇒ H ′ = Cs (32)

6.1 Anonymous Voters

In the voting application, it is often said that for election integrity one must
know “who voted”, but for privacy, one must not know “how voted”. The
technique of this section solves the privacy/integrity dilemma in a new way.
Instead of knowing “who voted”, one only knows that the person who voted is
a member of a set of authorized voters! As a consequence, we are left with a
voting solution that

17

1. Does not require key sharing to implement a distributed trust tabulation
scheme.

2. Guarantees computational privacy to the voter, rather than threshold pri-
vacy, which is a necessary evil of other voting solutions based on dis-
tributed trust tabulation. (If a threshold number of authorities agree to
collude, all voters’ votes can be decrypted.)

3. Does not require encryption or decryption of voted ballots.

Of course, one must look after the problem of “double voting”, but the
technique of this section is easily modified to take care of that as follows. (For
simplicity, we describe the protocol as executed at vote time, with the voter
playing the role of the shuffler, however, numerous obvious modifications exist
allowing it to be executed separately.)

• In step 3, the voter (shuffler) – who knows one of the private keys s0 in
this case – signs his voted ballot using the DSA pair (s0,H

′
0) and base C

of course. (H ′
0 is the “post shuffle” public key which belongs to the voter.

The voter knows its place in the new sequence, since he/she executed the
shuffle.)

• In step 4, assuming that the shuffle transcript checks, and that the bal-
lot signature checks, the vote center simply removes H ′

0 from the list of
authorized keys, and starts the process again waiting for the next ballot
request. The new list of public keys is now one smaller, and unless the
voter (shuffler) knew more than one private key in the first place, he/she
now knows none of the new private keys, and hence can not vote again.

The resulting election protocol is Universally Verifiable if all the transcripts
and signatures are maintained.

7 k-Shuffles of Tuples

It should be clear that in section 5, the simple shuffle generated essentially
“froze” the permutation that could be proved. This makes it easy to see how to
extend the previous section to shuffles of k tuples of elements of 〈g〉. Thinking
of a sequence of k l-tuples as a k× l array, a single simple k shuffle can serve to
prove that all columns have been permuted according to the same permutation.
In particular, this extends to tuples of ElGamal pairs.

7.1 DSA key shuffles without common base

The observation of this section also allows a generalization of the DSA key shuffle
protocol of section 6. Rather than maintaining the entire set of public keys to
the same base, g ↔ C, the keys are maintained as independent pairs (gi,Hi).
The shuffler can pick an arbitrary subset of key pairs, (Gi,Hi), shuffle them “as

18

2-tuples”, and return the result. This makes shuffling more manageable if the
original set is large, at the cost of increasing the work per key by about 50%.

8 The Multi-Authority Voting Application

Much of the setting for the conventional voting application can be found in [7].
Votes are submitted as ElGamal pairs of the form (gαi , hαim) (or a sequence
of these pairs if more data is required), where m is some standard encoding of
the voter choices, the αi are generated secretly by the voters, and h is a public
parameter constructed via a dealerless secret sharing scheme ([21]). Once the
polls are closed (voting finished), an independent collection of authorities se-
quentially shuffles the ballots. On output of the final shuffle, the final collection
of encrypted ballots is decrypted in accordance with the threshold scheme, and
the clear text votes are tabulated in full view by normal election rules.

The authorities who participate in the sequential shuffles, may be arbitrary
in number, and they may be completely different from those who hold shares
of the election private key. The sequence of ballots which are finally decrypted
can only be matched with the original sequence of submitted ballots if all of
the shuffling authorities collude, since each of their permutations is completely
arbitrary.

Each shuffle is performed by an individual authority as follows:

1. βi are chosen secretly, randomly and independently.

2. Each vote vi = (gαi , hαim) is replaced, in sequence, by (gαi+βi , hαi+βim).
A Chaum-Pedersen proof is published without revealing the secrets.

3. A shuffle with secret exponent c is performed on the resulting encrypted
votes.

4. Step 1-2 are repeated.

5. At this point, the messages that are encrypted are the c-th power of the
original messages. This is easily fixed by raising each coordinate of each
vote to the 1/c power. A Chaum-Pedersen proof of this operation is
equally easy to provide, thus keeping c secret while convincing verifiers,
by simply reversing roles of g and C = gc.

9 Conclusion

The protocols presented offer a practical method for performing shuffles, or
mixes, of data and proving their correctness. They considerably improve the
efficiency of previous methods both in theory and practice. The structured
nature of the protocols lend themselves well to implementation. In a future
version of this paper, we expect to improve further on the complexity and size.

19

We also believe the general shuffle proof can be modified to achieve honest-
verifier zeroknowledge.

10 Acknowledgments

The author wishes to acknowledge the advice and wisdom of several impor-
tant cryptographers who both motivated, and helped to improve this result.
In random order, they are: Dan Boneh, Josh Benaloh, Moti Yung and Berry
Schoenmakers. Without them, this paper might have been lost in the shuffle.

References

[1] M. Abe. Mix-Networks on Permutation Networks - ASIACRYPT 99, Lec-
ture Notes in Computer Science, pp. 258-273, Springer-Verlag, 1999.

[2] M. Abe and F. Hoshino. Remarks on Mix-Network Based on Permutation
Networks. Proceedings 4th International Workshop on Practice and Theory
in Public Key Cryptography PKC 2001, Lecture Notes in Computer Science,
pages 317-324, Springer-Verlag, 2001.

[3] J. Benaloh. Secret Sharing Homomorphisms: Keeping Shares of a Secret
Secret. Advances in Cryptology - CRYPTO ’86, Lecture Notes in Computer
Science, pp. 251-260, Springer-Verlag, Berlin, 1987.

[4] J. Benaloh, M. Yung. Distributing the power of a government to enhance
the privacy of voters. ACM Symposium on Principles of Distributed Com-
puting, pp. 52-62, 1986.

[5] R. Cramer, I. Damgrd, B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. Advances in Cryptology -
CRYPTO ’94, Lecture Notes in Computer Science, pp. 174-187, Springer-
Verlag, Berlin, 1994.

[6] R. Cramer, M. Franklin, B. Schoenmakers, M. Yung. Multi-authority
secret-ballot elections with linear work. Advances in Cryptology - EURO-
CRYPT ’96, Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1996.

[7] R. Cramer, R. Gennaro, B. Schoenmakers. A secure and optimally efficient
multi-authority election scheme. Advances in Cryptology - EUROCRYPT
’97, Lecture Notes in Computer Science, Springer-Verlag, 1997.

[8] D. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84-88, 1981.

[9] D. Chaum. Zero-knowledge undeniable signatures. Advances in Cryptology -
EUROCRYPT ’90, Lecture Notes in Computer Science, volume 473, pages
458-464, Springer-Verlag, 1991.

20

[10] D. Chaum and T.P. Pedersen. Wallet databases with observers. Advances
in Cryptology - CRYPTO ’92, volume 740 of Lecture Notes in Compute
Science, pages 89-105, Berlin, 1993. Springer-Verlag.

[11] A. De Santis, G. Di Crescenzo, G. Persiano and M. Yung. On Monotone
Formula Closure of SZK. FOCS 94, pp. 454-465.

[12] W. Diffie, M. E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644-654, 1976.

[13] T. ElGamal. A public-key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, IT-
31(4):469-472, 1985.

[14] A. Fujioka, T. Okamoto, K. Ohta. A practical secret voting scheme for large
scale elections. Advances in Cryptology - AUSCRYPT ’92, Lecture Notes
in Computer Science, pp. 244-251, Springer-Verlag, 1992.

[15] A. Fiat, A. Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. Advances in Cryptology - CRYPTO ’86,
Lecture Notes in Computer Science, pp. 186-194, Springer-Verlag, New
York, 1987.

[16] J. Furukawa and K. Sako. An Efficient Scheme for Proving a Shuffle. To
appear in CRYPTO 2001.

[17] R. Gennaro. Achieving independence efficiently and securely. Proceedings
14th ACM Symposium on Principles of Distributed Computing (PODC
’95), New York, 1995.

[18] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied
Cryptography, CRC Press, 1997.

[19] N. Koblitz, A Course in Number Theory and Cryptography, 2nd edition,
Springer, 1994.

[20] A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic
significance, Advances in Cryptology - EUROCRYPT ’84, Lecture Notes in
Computer Science, Springer-Verlag, 1984.

[21] T. Pedersen. A threshold cryptosystem without a trusted party, Advances
in Cryptology - EUROCRYPT ’91, Lecture Notes in Computer Science, pp.
522-526, Springer-Verlag, 1991.

[22] C. Park, K. Itoh, K. Kurosawa. Efficient anonymous channel and
all/nothing election scheme. Advances in Cryptology - EUROCRYPT ’93,
Lecture Notes in Computer Science, pp. 248-259, Springer-Verlag, 1993.

[23] C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161-174, 1991.

21

[24] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612-
613, 1979.

[25] K. Sako, J. Kilian. Secure voting using partially compatible homomor-
phisms, Advances in Cryptology - CRYPTO ’94, Lecture Notes in Com-
puter Science, Springer-Verlag, 1994.

[26] K. Sako, J. Kilian. Receipt-free mix-type voting scheme – A practical so-
lution to the implementation of a voting booth, Advances in Cryptology -
EUROCRYPT ’95, Lecture Notes in Computer Science, Springer-Verlag,
1995.

[27] J. Kilian, K. Sako, Secure electronic voting using partially compatible ho-
momorphisms, awarded 2/27/1996, filed 8/19/1994.

[28] J. Kilian, K. Sako, Secure anonymous message transfer and voting scheme,
awarded 10/28/1997, filed 1/23/1995.

22

