
Subliminal Channels in the Private
Information Retrieval Protocols

Meredith L. Patterson Len Sassaman
The University of Iowa Katholieke Universiteit Leuven

Department of Computer Science ESAT-COSIC
Iowa City, Iowa Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee

USA Belgium
mlpatter@cs.uiowa.edu len.sassaman@esat.kuleuven.be

Abstract

Information-theoretic private information retrieval (PIR) protocols, such as
those described by Chor et al. [5], provide a mechanism by which users can
retrieve information from a database distributed across multiple servers in such
a way that neither the servers nor an outside observer can determine the contents
of the data being retrieved. More recent PIR protocols also provide protection
against Byzantine servers, such that a user can detect when one or more servers
have attempted to tamper with the data he has requested. In some cases (as in
the protocols presented by Beimel and Stahl [1]), the user can still recover his
data and protect the contents of his query if the number of Byzantine servers is
below a certain threshold; this property is referred to as Byzantine-recovery.

However, tampering with a user’s data is not the only goal a Byzantine server
might have. We present a scenario in which an arbitrarily sized coalition of
Byzantine servers transforms the userbase of a PIR network into a signaling
framework with varying levels of detectability by means of a subliminal chan-
nel [11]. We describe several such subliminal channel techniques, illustrate sev-
eral use-cases for this subliminal channel, and demonstrate its applicability to a
wide variety of PIR protocols.

1 Introduction

Since the seminal paper by Chor, Goldreich, Kuzhelevitz and Sudan in 1995 [5],
information-theoretic private information retrieval protocols have received consider-
able attention in the information theory community [2, 3, 1, 7, 12, 9, 8, 13]. However,
comparatively little work has been done to evaluate these privacy primitives within the
broader scope of a secure privacy system. We examine one consideration that design-
ers of systems based on information-theoretic PIR may need to consider within their
threat model: subliminal channels between independent PIR databases.

1.1 Background

There are two primary classes of PIR schemes: information-theoretic PIR, and compu-
tational PIR. In the case of the former, an attacker is unable to learn any information
about the user’s query, even with unlimited computing power. In the latter, the privacy
of the query is preserved only against adversaries restricted to polynomial-time com-
putations. In this paper, we consider information-theoretic PIR protocols exclusively.

2 Examples of Subliminal Channels in Several PIR

Schemes

2.1 A simple subliminal channel in a Chor et al. PIR Service

Let us examine the simple xor-based PIR scheme presented in the seminal paper
on PIR [5], and observe the potential for covert communication between nodes in a
multiple-server PIR system.

Suppose there are three servers: an honest server A and Byzantine servers B and
C in collusion. Out of n buckets, the bucket to be retrieved is bucket b1. The user
sends bit vectors ~vA, ~vB, ~vC to A, B and C such that ~vA ⊕ ~vB ⊕ ~vC = 〈1 0 0 0 . . .〉, e.g.:

A 1 1 1 0
B 0 1 1 1
C 0 0 0 1

Thus A should send the user bA1⊕ bA2⊕ bA3, B should send bB2⊕ bB3⊕ bB4, and C
should send bC4. However, suppose B and C agree to flip the same bit in the vectors
they received — in this case, bucket 3:

A 1 1 1 0
B 0 1 0 1
C 0 0 1 1

The xor of all three vectors, and thus the xor of the returned data, still unveils
the contents of b1. More than two servers can collude in this fashion, although an odd
number of colluding servers must flip bits for at least two buckets (e.g., B and C flip
bits for bucket j while C and D flip bits for bucket k).

Observe that if it is desirable for each server to have a uniquely identifying set of
bits to flip, then the length of the string describing which bits are flipped and which
ones are not must be sufficiently long. In particular:

Observation 1 (Lower bound on flipped-bit string lengths) If there are n col-
luding servers, then the length of Bn, the set of bits which an individual server will flip
or not flip, is bounded such that |Bn| > dlg ne.

Proof 1 First, note that in order to assign a unique bitstring to each server, each
string must be at least dlg ne bits long, otherwise there will be overlap. But it is not
enough that the bitstrings be unique: they must also xor to the all-zero string. No
server can be assigned an all-zero bitstring (otherwise, that server would be instructed
to never flip any bits whether it was transmitting or not, and thus could never transmit
anything). Thus there are actually 2dlg ne−1 strings from which to choose if each string
is dlg ne bits long. If n is a power of 2, then each bitstring must be at least (dlg ne) + 1
bits long, otherwise at least one string will have to overlap.

Furthermore, suppose that n = 2blg nc + 1. Define the parity string for each bit in
the set of n bitstrings as Pm = B1m · B2m · . . . · Bnm, where m is the position of the
bit. For example, the parity strings for the set of all 3-bit strings in increasing order,
less the all-zero string, are {0001111}, {0110011}, {1010101}. In order for all n strings
to xor to 0, the result of xoring the bits of each parity string must also be 0; this
will always be the case when examining the parity strings for all 2m strings of m bits.
There will be m − 1 parity strings of parity 0 for 2m−1 strings (including the all-zero
string); adding another string to the set requires the mth bit and thus the mth parity
string. In order to not throw off the first m − 1 parity strings, the first m − 1 bits of
the nth string must be 0. However, an m− 1-bit string of 0s is already present in the

n−1 strings already selected. Since an m-bit all-zero string cannot be present, both the
already-present string and the nth string being added must have a 1 as their mth bit,
but then a string has been duplicated. It is further impossible to manipulate the set of
m-bit strings such that the m parity strings are all of parity 0.

Through this channel, colluding servers could communicate potentially sensitive
information even if the network channel were monitored for such communication. When
one server flips its prearranged bit(s) and another does not, the data which the user
retrieves consists of more than one bucket xored together, and thus in the case of
non-Byzantine-robust pir protocols, the user must make another attempt to retrieve
his data. (Byzantine-robust pir systems are discussed below.) Colluding servers can
therefore use the user as an oracle which reveals the transmission of a single bit: if the
user’s request succeeds, a 0 has been transmitted, and if the request fails, a 1 has been
transmitted.

One might ask why colluding servers would prearrange a set of bits to flip, as
this is an additional step. Indeed, if all servers preserve the original bit-string to
communicate a 0 and change a random bit to communicate a 1, the same effect is
preserved. However, prearranging the flipped bits provides for some security against
outside tampering: if the presence of servers using this channel has been detected by
an adversary who subsequently changes the responses of one or more other servers to
correct for the responses sent by the colluding servers, it will be easier for the colluding
servers to detect this if they already know what variations to expect from the other
parties on the subliminal channel. In effect, the search space for the origin of an
error decreases significantly when the set of flipped bits is prearranged. Later, when
we address the multi-party use case, we will also demonstrate how a prearranged set
can quickly pinpoint the identity of a malfunctioning or inoperative server within the
channel participants.

2.1.1 A simple use-case: the dead-man switch

Suppose that N individuals living in a police state are unable to communicate regularly
without fear of letting the authorities know that they are in communication. They all
wish to keep the others apprised of their safety, so they agree to announce their status
to one another every day by means of a dead-man switch over the subliminal channel
described above. Each participant runs a pir database server modified such that flip-
ping bits is a manual operation (i.e., requires some approval input from the server’s
operator in order to occur). Suppose that one of the participants is then picked up
by the secret police. He will be unable to approve any subsequent bit-flips—in effect,
his hand has fallen off the switch—so all subsequent pir queries will fail and the other
participants will know that something has happened to one of their number.

However, if multiple colluding servers attempt to transmit simultaneously, they are
guaranteed to fail in the case of a two-party collusion. If A and B both attempt to
signal each other by not flipping their prearranged bits, then the user’s original set
of bit vectors is used unmodified and the user’s request succeeds. When simultaneous
transmissions occur in multi-party collusions, transmission failure is not guaranteed—if
A and C are not supposed to flip the same bits, and both fail to perform the bit-flip,
then the pir request fails as planned—but it is also impossible to determine who
initiated the transmission. Thus, we extend this approach to remove the possibility of
collision and enable colluding servers to identify which party is sending a signal.

2.2 A multi-party subliminal channel

In addition to choosing a set of bits to flip, let each colluding server Si also choose a
particular user Mi from the userbase of the pir system. We refer to Mi as the mark

for Si, and every S ∈ {S \ Si} as the shills for Si. Server Si will always perform its
bit-flip operation for every Mj ∈ {M \Mi}, and will fail to flip a bit in its mark’s
request when Si wants to transmit a 1. Si’s shills receive Si’s signal by observing Mi’s
behaviour, as in the single-user case.

Now, instead of a simple on-off signal shared by all participants in the channel, each
server controls a stream of bits. Note, however, that if one participant suddenly drops
out of the channel (“falls off the dead-man switch”, as above), then all streams will
produce failing pir requests, and it will not immediately be evident which server has
dropped out. We address this problem with a systematic approach for constructing
the bit-strings and rotating their usage so that this failure mode can be detected. We
assume an atomic broadcast paradigm for pir requests; that is, for a set of servers S
and a set of marks M , every server receives the requests from the marks in the same
order.

2.2.1 Failure detection in the multi-party model

Note that the entire set of flipped bits must xor to the all-zero string so that a normal
pir transaction is not interrupted. When one colluding server stops communicating,
the xor of the remaining participants’ strings will contain some 1s and all subsequent
transactions will fail. Since each server has a mark allocated to it, however, a server
can easily identify that queries for which it did not intend to transmit a 1 are failing
anyway. Thus, we design the sets of bits to flip such that the bitstrings describing
these sets can be systematically truncated and rotated through in order to identify the
failed server. Recall from Observation 1 that for n servers, each bitstring must be at
least dlg ne+ 1 bits long. Again, an atomic broadcast paradigm is assumed.

Example 1 (A three-party approach) For servers A, B and C, assign the initial
set of strings describing which bits to flip as follows:

A 1 1 0
B 1 0 1
C 0 1 1

(In this example, buckets beyond the third are disregarded.)
For the first pir query that the servers receive, each uses the bit-string that was

first assigned to it, e.g., server A uses bit-string A. For the second query, each server
uses the bit-string assigned to the next server in the list, e.g., server A uses bit-string
B. For the third query, each server uses the following bit-string (server A uses string
C); for the fourth, the rotation returns to the top of the queue; and so on and so forth.

Now, suppose that server B fails. In order to initiate the failure-detection process,
each of the remaining servers must be aware that a failure has occurred somewhere
on the channel (i.e., each server must notice that it transmitted a 1 when it did not
intend to) and they must recognise that the other servers are aware of the failure, so
that they can synchronize their efforts. As soon as a server recognises that a failure
has occurred, it immediately stops flipping any bits. So long as any servers continue
to flip bits, however, all transactions will continue to fail. Once A and C have both
recognised this, subsequent queries will succeed; thus, once the marks assigned to A, B
and C have performed successful queries, recovery can begin.

As the first step, for the next query, all remaining servers revert to their initially
assigned bit-strings, but truncate the last bit. Thus A uses 〈1 1〉 and C uses 〈0 1〉. This
query fails. Each server rotates to the next string in the queue (A uses string B and
C uses string A), truncated; i.e., A uses 〈1 0〉 and C uses 〈1 1. This still fails. On the
third rotation, A uses 〈0 1〉 and C uses 〈1 0〉. This also fails, so another bit is dropped.
In round 4, A uses 〈1〉 and C uses 〈0〉. This fails as well. In round 5, A uses 〈1〉 and
C uses 〈1〉. This query succeeds, indicating that B has failed (since during round 4, B
was supposed to flip the first bit in its string, and both A and C know this.

Developing a systematic method of producing bit-strings suitable for failure detection
in larger multi-party models is an obvious avenue for further work. Prefix coding may
present useful techniques for constructing such bit-strings quickly.

One drawback to this approach is that every colluding server must observe as many
marks as there are colluding servers. Network traffic between the colluding servers
and the marks must therefore increase by a factor of n2, though in a sufficiently noisy
system this increase may well go unnoticed.

A worse problem, however, is the fact that each colluding server can only transmit
a bit when its mark performs a pir request. In systems like the Pynchon Gate [10],
requests are rate-limited to a fixed number per cycle in order to reduce the effectiveness
of long-term intersection attacks and other forms of traffic analysis [6]. If each colluding
server can only transmit a few bits per day, the latency of this channel becomes so high
as to be useless. (Furthermore, since pir requests are user-initiated, a colluding server
can be silenced if its mark goes offline for a few days.) Fortunately, this problem is
easy to address: partition the userbase into sets of marks, such that Si’s set of marks,
MSi

, is disjoint with
⋃

MSj
, ∀j 6= i.

2.3 Subliminal channels in Byzantine-robust PIR

A pir system which consists of ` servers, any k of which need to respond to a client’s
query, is referred to as a k-out-of-` system. If t + 1 servers must collude in order
to compromise the privacy of a query, the system is termed t-private k-out-of-`. If
some v of the k responding servers can return an incorrect answer but the user can
still reconstruct the correct response, the system is also called v-Byzantine-robust. v-
Byzantine-robust protocols such as that presented in Goldberg [8] rely on polynomial
interpolation to reconstruct the contents of the response to a query. When some servers
are Byzantine, the set of returned values may correspond to more than one possible
polynomial and therefore more than one “valid” data block. Goldberg proposes a
list-decoding algorithm which recovers all possible blocks for the values returned, and
does so in polynomial time. However, the additional processing time is significant—
seconds or even minutes—and thus the user can still function as an oracle for a group
of colluding servers.

Note that a colluding server only gets one chance per user to transmit a signal, as
once a Byzantine-robust client detects a Byzantine action, it does not request any more
blocks from that server. Partitioning the userbase again comes into play here. Overall
bandwidth goes down, because a server can only use a mark to transmit a 1 once, and
once a server has done so, it cannot use that mark again. However, a server can easily
pass an expended mark to another colluding server; i.e., once Si has transmitted a 1
using mark Mi, all the colluding servers revise their list of marks, assigning Mi to Si+1

modulo n, the number of colluding servers.
As a final note, observe that servers establishing a subliminal channel over a v-

Byzantine-robust protocol need not (and, in practice, probably should not) prearrange
their incorrect answers. Since the colluding servers do not know what seed values
have been sent to the non-colluding servers in the network, it is extremely difficult to
construct a set of responses which will still interpolate to only one valid polynomial.
Thus, servers should always transmit correct responses to their shills’ marks, and only
transmit incorrect responses to their own marks when they wish to transmit a 1. A v-
Byzantine-robust system can still be used as a dead-man switch if a server is configured
to require approval to transmit a correct response, and send an incorrect response if
no approval is given, but detecting who tripped the switch requires a different (and
far simpler) procedure. Since Byzantine-robust clients stop requesting blocks from
servers which have taken Byzantine actions, a server which has fallen off the switch
will eventually end up blacklisted by all clients in the system. Participants in the
channel could simply generate their own dummy traffic and use their own clients’

Byzantine-recovery capabilities to determine which server has stopped transmitting
valid traffic.

3 Coercing Collusion from Users

In their paper “A Pact with the Devil”, Bond and Danezis discuss ways an adversary
can entice third-party users to facilitate his attacks by cooperating in exchange for in-
centives (and under threat of punishment for failure to cooperate) [4]. A clever attacker
employing these methods could significantly broaden the communication channel for
the covert communications of the servers; rather than simply relying on an unwitting
user’s side-channel leakage in the form of success-or-failure detection, users could be
drafted into relaying messages encoded in the seemingly random data that PIR clients
transmit to the PIR databases. The human factor to the security of such systems
should be further explored in light of attack schemes such as those presented in [4].

4 Future Work

4.1 Byzantine-robustness among the Byzantines

The general approach described in this paper requires all colluding servers to be faithful
to each other, i.e., not interfere with other servers’ marks and not alter the data
they send to users beyond their manipulation of the request string. A Byzantine shill
can produce spurious signals from Si by neglecting to flip its prearranged bits in a
request from Mi, or by flipping random bits in the bit-string or the data sent to Mi.
Furthermore, a Byzantine (or merely malfunctioning) server outside the colluding group
can also produce a spurious signal. If the only means of determining whether a signal
has been sent is whether a mark’s request succeeds or fails, then if all colluding servers
flip their bits as arranged and a server outside the group takes a Byzantine action, the
mark will still have to retry its request or perform a recovery action, thus the mark’s
behaviour will indicate that a signal was sent.

However, although servers within a collusion group should technically be considered
Byzantine with respect to the pir system as a whole, the behaviour of faithful colluding
servers differs from Byzantine servers outside a collusion group, and this behaviour
lends itself to differentiation.

Further work must be done to develop a Byzantine-robust collusion algorithm for
Byzantine servers, if needed for a given attacker’s own threat model, though solutions
to this problem can be found in existing literature, and are out of the scope of this
paper.

4.2 Multiple collusion groups

The multi-party approach described in this paper assumes that no mark will be assigned
to more than one colluding server. However, when more than one group of servers
agrees to collude, it is probable that two servers in different groups will choose the
same mark. Thus, it is likely that multiple groups attempting to establish a subliminal
channel on the same pir network will experience irreparable collisions as they attempt
to broadcast at the same time, thus rendering both channels unreadable. Investigating
techniques for discovering the existence of multiple channels on one pir network, and
possibly establishing non-colliding channels, is also a subject for further work.

5 Conclusion

In this paper, we have demonstrated the potential for a subliminal communication
channel in distributed private information retrieval networks which is indistinguish-
able from ordinary network errors. We have shown its applicability to xor-based and
polynomial-interpolation-based pir systems, and have shown how an arbitrarily large
number of parties can communicate using this channel. Furthermore, we have shown a
method for failure detection in the multi-party model and opened avenues for investiga-
tion toward making this channel more robust against outside interference. More work
must be done to make this a reliable channel for complex, ongoing communication, but
for simple use-cases, the necessary tools are already in place.

Acknowledgements Meredith L. Patterson would like to thank the COSIC group
at K.U. Leuven, for its hospitality during her visit to Leuven, and for the discussions
which led in part to this work.

Len Sassaman’s work was supported was supported in part by the Concerted Re-
search Action (GOA) Ambiorics 2005/11 of the Flemish Government, by the IAP
Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy), and by the
EU within the PRIME Project under contract IST-2002-507591.

References

[1] A. Beimel and Y. Stahl. Robust information-theoretic private information re-
trieval. In S. Cimato C. Galdi G. Persiano, editor, 3rd Conf. on Security in
Communication Networks, volume 2576 of Lecture Notes in Computer Science,
pages 326–341. Springer-Verlag, 2002.

[2] Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval:
A unified construction. Lecture Notes in Computer Science, 2076:89–98, 2001.

[3] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-François Raymond. Break-
ing the O(n1/(2k−1)) Barrier for Information-Theoretic Private Information Re-
trieval. In Proceedings of the 43rd IEEE Symposium on Foundations of Computer
Science (FOCS), 2002.

[4] Mike Bond and George Danezis. A pact with the devil. In New Security Paradigms
Workshop (NSPW 2006), page 13, Schloss Dagstuhl,DE, 2006. ACM.

[5] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private in-
formation retrieval. In IEEE Symposium on Foundations of Computer Science,
pages 41–50, 1995.

[6] George Danezis. Statistical disclosure attacks: Traffic confirmation in open envi-
ronments. In Gritzalis, Vimercati, Samarati, and Katsikas, editors, Proceedings
of Security and Privacy in the Age of Uncertainty, (SEC2003), pages 421–426,
Athens, May 2003. IFIP TC11, Kluwer.

[7] Yael Gertner, Shafi Goldwasser, and Tal Malkin. A random server model for
private information retrieval or how to achieve information theoretic pir avoiding
database replication. In RANDOM ’98: Proceedings of the Second International
Workshop on Randomization and Approximation Techniques in Computer Science,
pages 200–217, London, UK, 1998. Springer-Verlag.

[8] Ian Goldberg. Improving the Robustness of Private Information Retrieval. In
Proceedings of the 2007 IEEE Symposium on Security and Privacy, May 2007.
http://www.cypherpunks.ca/~iang/pubs/robustpir.pdf.

[9] Alexander A. Razborov and Sergey Yekhanin. An Ω(n1/3) Lower Bound for Bi-
linear Group Based Private Information Retrieval. In Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pages
739–748, Washington, DC, USA, 2006. IEEE Computer Society.

[10] Len Sassaman, Bram Cohen, and Nick Mathewson. The Pynchon Gate: A Secure
Method of Pseudonymous Mail Retrieval. In Proceedings of the Workshop on
Privacy in the Electronic Society (WPES 2005), Arlington, VA, USA, November
2005.

[11] Gustavus J. Simmons. The prisoners’ problem and the subliminal channel. In
David Chaum, editor, Advances in Cryptology: Proceedings of Crypto 83, pages
51–67. Plenum Press, 1984.

[12] David P. Woodruff and Sergey Yekhanin. A geometric approach to information-
theoretic private information retrieval. In Proceedings of the 20th Annual IEEE
Conference on Computational Complexity (CCC 2005), pages 275–284, San Jose,
CA, USA, June 2005. IEEE Computer Society.

[13] Sergey Yekhanin. Towards 3-Query Locally Decodable Codes of Subexponential
Length. In Proceedings of the 39th ACM Symposium on Theory of Computing
(STOC), San Diego, CA, USA, June 2007. ACM Press.

