
Reputation in P2P Anonymity Systems

Roger Dingledine
The Free Haven Project

arma@freehaven.net

Nick Mathewson
The Free Haven Project

nickm@freehaven.net

Paul Syverson
Naval Research Lab

syverson@itd.nrl.navy.mil

Abstract

Decentralized anonymity systems tend to be unreli-
able, because users must choose nodes in the network
without knowing the entire state of the network. Rep-
utation systems promise to improve reliability by pre-
dicting network state. In this paper we focus on anony-
mous remailers and anonymous publishing, explain why
the systems can benefit from reputation, and describe
our experiences designing reputation systems for them
while still ensuring anonymity. We find that in each ex-
ample we first must redesign the underlying anonymity
system to support verifiable transactions.

1 Introduction

In decentralized networks, many traditional means
of ensuring accountability between participants become
unworkable. As the combined resources of individual
participants outgrow those of a (possibly nonexistent)
central authority, top-down enforcement of good be-
havior becomes unwieldy. As the number of partic-
ipants grows, repeated interactions between partici-
pants can become infrequent, and so individuals can-
not rely on their own past experience to recognize those
who behave badly. Under these circumstances, reputa-
tion is one of few workable mechanisms to keep hostile
and freeloading nodes from damaging the system.

But when the network’s very purpose is to pro-
vide anonymity, reputation itself becomes problem-
atic. Firstly, location protection enables an attacker
or freeloader to cheaply throw away a pseudonym that
has acquired a bad reputation. Secondly, it is hard to
detect or verify a participant’s behavior while at the
same time maintaining his anonymity. And thirdly,
reputation information can be exploited by an adver-
sary to reduce a participant’s anonymity.

So we are left with a conundrum: if the network’s
stability relies on the good behavior of individual
nodes, reputation may be the only way to achieve it.

But reputation data is hard to gather in the presence of
anonymity, and even when gathered, poses a potential
vulnerability for an attacker to exploit.

As with security, it is tempting but incorrect to
think that reputation is a simple matter of bolting an
extra service to the side of an existing system. In the
rest of this paper, we illustrate this point with exam-
ples from reputation systems that have been designed
for use in networks that provide pseudonymity and
anonymity. First, however, we outline the incentive
structures involved in deploying such networks.

2 An Economics of Anonymity

Unlike confidentiality (encryption), anonymity can-
not be created by the sender or receiver. Alice cannot
decide by herself to send anonymous messages — she
must trust the infrastructure to provide protection, and
others must use the same infrastructure. Anonymity
systems use messages to hide messages: senders are
consumers of anonymity and also providers of the cover
traffic that creates anonymity for others. Thus users
are always better off on crowded systems because of
the noise other users provide.

Because high traffic is necessary for strong
anonymity, agents must balance their incentives and
find a common equilibrium, rather than each using
a system of their own. The high traffic they create
together also enables better performance: a system
that processes only light traffic must delay messages to
achieve adequately large anonymity sets. But systems
that process the most traffic do not necessarily provide
the best hiding: if trust is not well distributed, a high
volume system is vulnerable to insiders and attackers
who target the trust bottlenecks.

Anonymity systems face a surprisingly wide variety
of direct anonymity-breaking attacks [2, 10]. Addition-
ally, adversaries can also attack the efficiency or relia-
bility of nodes, or try to increase the cost of running
nodes. All of these factors combine to threaten the
anonymity of the system. As Back et al. point out, “in

1



anonymity systems usability, efficiency, reliability and
cost become security objectives because they affect the
size of the user base which in turn affects the degree of
anonymity it is possible to achieve.” [2]

Early work on the economics of anonymity [1] has
focused on the incentives for participants to act as
senders and nodes, providing three results: Firstly, sys-
tems must attract cover traffic (many low-sensitivity
users) before they can attract the high-sensitivity users.
Weak security parameters (e.g. smaller batches or
lower latency) may produce stronger anonymity by
bringing more users. But to attract this cover traffic,
they may well have to address the fact that most users
do not want (or do not realize they want) anonymity
protection. Secondly, high-sensitivity agents have in-
centive to run nodes, so they can be certain their first
hop is honest. There can be an optimal level of free-
riding: in some conditions these agents will opt to ac-
cept the cost of offering service to others in order to
gain cover traffic. Thirdly, while there are economic
reasons for distributed trust, the deployment of a com-
pletely decentralized system might involve coordina-
tion costs which make it unfeasible. A central coordi-
nation authority to redistribute payments may be more
practical, but could provide a trust bottleneck for an
adversary to exploit.

The reputation systems we discuss below would en-
able users to direct their traffic to reliable nodes —
thus giving high-sensitivity agents incentive to provide
reliable service, and making the network as a whole
more reliable. Below, we examine several designs for
reputation systems for anonymity networks.

3 An Example: Remailer Networks

Remailer networks allow people to send and receive
mail while protecting their identities. Today’s remailer
networks use a handful of long-lived, static servers with
fairly uniform reliability. Currently deployed reputa-
tion systems [9] send periodic test messages through
each remailer to determine which are currently work-
ing. This “pinging” approach works well enough for a
small static list of servers. However, a network that is
made of a small static set of remailers is potentially vul-
nerable to a well-funded adversary in a variety of ways,
e.g., denial of service or remailer compromise. Thus,
to better resist a well-funded adversary, the remailer
network must grow so it has enough nodes to properly
distribute trust. Pinging for reputation breaks down in
an environment where the network is made up of many
transient volunteer nodes. On the other hand, an ad-
versary might render a growing, dynamic network use-
less by volunteering a flood of unreliable remailers, or

it might manipulate the reputation system to improve
the standing of remailers it owns.

The reputation system presented in [4] aims to im-
prove remailer reliability. Remailer reputation is based
on both positive and negative performance. If it were
based only on successes, an adversary could pump up
his reputation by sending his own messages through
the node while ignoring other messages. On the other
hand, recording only failures is also insufficient, be-
cause new unreliable remailers would be rated the same
or better than remailers that consistently perform well
[7]. In this design, each remailer in the message’s path
passes back a receipt to the one behind it. Senders
can successively query for receipts to determine which
remailer to blame for delivery failure. However, a re-
mailer might refuse to provide a receipt for a partic-
ular message either because it didn’t try to send the
message, or because it tried but was unable to obtain a
receipt from the next hop. We solve the problem of pin-
pointing failures by introducing a set of weakly trusted
global witnesses. These witnesses are contacted when
the next hop in the path refuses the message, allowing
a remailer to prove that it made a best-effort deliv-
ery attempt. Senders can also tell witnesses about re-
mailers that silently dropped messages (meaning they
got a copy but did not attempt to pass it on). These
witnesses verify and tally failures, and also send their
own test messages to distinguish reliable remailers from
new ones that have not yet been tested. Reputations
are made available to client software, which can use
them to choose reliable remailers for sending anony-
mous mail.

This reputation system attempts to improve relia-
bility in a long-term sense, rather than giving provable
delivery guarantees for each message [8]. On the other
hand, it still relies both on proofs of correct behavior
to establish reputations, and trusted witnesses to de-
termine and keep track of them. These witnesses are
both a trust bottleneck and a communications bottle-
neck. Further, an anonymity-breaking adversary with
an adequate budget would do best to provide very good
service, possibly also attempting DoS against other
high-quality providers. The usual performance and ef-
ficiency metrics cannot distinguish the bad guys.

The reputation system in [6] does away with trusted
witnesses and proofs in favor of self-rating groups of
remailers. Remailers are arranged in cascades (fixed
paths through the network, so batches of messages go
through in synchrony). New cascades are formed at
a regular interval (e.g. daily), and the formation of
cascades is based on a communally generated random
value so that no set of collaborating remailers can pre-
dict which remailer will be in which cascade, as long

2



as at least one remailer is honest. Remailers send test
messages through their own cascades and can also re-
ceive evidence of failure from client senders. Rather
than depending on proofs of remailer performance, a
cascade fails when and only when some member of that
cascade has declared it to have failed. All members of
cascades that do not fail during an interval increase in
reputation; all members of cascades that fail decrease.
To make it harder for the head remailer of a cascade to
undetectably fail or fail selectively, each of the cascade
members is responsible for a portion of the messages
that go through a cascade in each batch. In effect,
each member is the head for some of the messages.
Similarly, the tail of the cascade sends each outgoing
message to each of the other cascade members rather
than just directly to the recipient. All then attempt
to deliver the message to the recipient. (Efficiency of
communication for final delivery can be improved by
using delivery receipts when that is feasible.)

In both of these remailer reputation systems, it was
necessary to redesign the remailer protocol so we could
track remailer behavior. In the first case, we added
receipts for each delivery to each remailer and to the
ultimate destination, and we added trusted witnesses
to verify delivery and record success or failure. In the
second case, we used the usual remailer cascade proto-
col for messages inside the cascade, but we introduced
a new protocol for sending messages into the cascade
and delivering messages from the cascade.

4 An Example: Anonymous Publishing

Free Haven [5] describes a design for a publishing
system that can resist the attempts of powerful adver-
saries to find or destroy any stored data. It provides
anonymity for readers and publishers, and also hides
the locations of the servers that store and serve the
documents. Unlike related designs such as Freenet [3],
the publisher of a document — not the servers holding
the document — determines its lifetime. To counter
malicious or flaky servers, publishers break documents
up into shares, any adequately sized subset of which
is sufficient to reconstruct the document. Servers then
trade these shares around, allowing for servers to join
and leave smoothly and also providing a moving target
for an adversary hunting a particular share.

To prevent selfish or malicious users from filling up
the available disk space, all who would publish must
also provide servers, and servers form contracts to store
each other’s material for a certain period of time. Be-
cause servers can cheat and drop data early, Free Haven
employs a reputation system to limit the damage done
by servers that misbehave. Successfully fulfilling a con-

tract increases a server’s reputation and thus its ability
to store some of its own data on other servers. This
gives an incentive for each server to behave well — that
is, as long as cheating servers can be identified.

In such a dynamic and anonymous environment, it
is very difficult to reliably notice if a server drops data
early. We might give the original publisher the task
of monitoring the availability of his documents; he can
then broadcast a claim that a particular document has
been dropped early. If we don’t want to rely on the
original publisher, we can assign a random server as a
“shepherd” for a document. Or for a more dynamic
solution, we can use a “buddy system”, where pub-
lishers put in two copies of each share, and the copies
watch each other and broadcast a complaint if either
disappears.

Anyone wishing to claim misbehavior can present a
signed contract as an indication the file should have
been kept, but there are a number of special cases
where a signed contract is not sufficient proof to pin-
point a particular server as the culprit, such as if the
server traded the share away before the contract ex-
pired. Because a claim cannot be taken as absolute
proof, servers are left with the grim task of trying to
determine the credibility of the claimer: if two or more
servers disagree, onlookers need a way to determine
which to believe. Keeping track of all claims ever made
and tracking their results might give a server enough
information to make reasonable guesses about the va-
lidity of each claim. This approach gets complex very
quickly, and leaves lots of holes for a smart adversary.

Providing a way to verify claims in Free Haven re-
mains an open problem. Given our experience design-
ing the remailer reputation systems above, it seems
most promising to redesign the entire system from the
ground up, this time with verifiable claims in mind.
Designing the original system without a clear idea of
the reputation and verifiability requirements made Free
Haven’s design complex and brittle.

It’s tempting to scale down the reputation system in-
stead. That is, servers use only local information from
their own transactions and trades. In this scenario,
a new server must separately convince each server it
encounters that it is reputable before that server will
allow it to publish any data. Because news about good
and bad behavior does not propagate, servers must be
more conservative about offering resources to unfamil-
iar nodes. To prevent stabilization into a static network
with a small number of nodes trading data among each
other and ignoring newcomers, many servers must ex-
plicitly risk resources on new nodes. Rather than the
global gossip system where the whole world learns from
a server’s first interaction, now each new server has a

3



chance to waste the time and resources of every other
server (the “screw everyone once” attack).

Perhaps the most interesting point of Free Haven
reputations is that servers use their reputation capital
to obtain proportional resources from other servers. In
order to build up to a reputation that allows a server
to store a certain amount in the system (think of it
like a credit limit), the server must previously have
successfully stored that same size of other documents.
Each server is able to commit at most his current credit
limit in new contracts, and successfully completing a
contract raises his credit limit. Because a server can
cheat on at most the amount of useful work he has
already done, each server is forced to perform at least
50% useful work. We will say more about this notion
of “spending” reputation and quantifying risk below.

5 Reputation and Anonymity

Although the examples described above asso-
ciate non-transferable reputation with long-lived
pseudonyms (nyms for short), there are many ways to
vary this formula. Entities may be anonymous or have
only short-lived names; reputations may be short-lived
or transferable; and bindings between nyms, entities,
and reputations may be varied. We have already noted
that in Free Haven, a server can both acquire and spend
reputation. A central register or registers can keep
track of each server’s current reputation credit level,
or each server can maintain its own view of the sys-
tem. It is a small step from here to consider systems
in which reputation can be paid in the form of coins
or tokens. With such a system, the same entity can
maintain reputation even while changing nyms. An en-
tity that holds different nyms in different contexts can
benefit from this feature – either to preserve reputation
independent of private key compromise, or to maintain
perfect forward anonymity (future compromises linking
a nym to an entity will not reveal previous transactions
by the entity bearing that nym, even if all past behav-
ior under all nyms is logged [11]).

Along with the advantages of fungible reputation
come some potential problems. For example, an entity
can obtain reputation in one context where it has func-
tioned well and spend it in another context where it has
not. Or the entity can transfer reputation to another
entity entirely. This capability might be controlled by
using cryptographic techniques that, e.g., bind all the
reputation to the same nym or the same entity without
revealing which nym (or entity) that is. But there are
other concerns for this approach. For example, how do
you diminish reputations for bad performance in such a
model? (If it is possible to bind reputation tokens to an

entity in an anonymity preserving way, it may also be
possible to bind them to a duration so that the amount
of reputation can be evaluated with respect to the time
that the reputation bearer has existed. Thus we can
distinguish longstanding, low-performing entities from
untested ones.)

On the other hand, in some contexts transferable
reputation may not be a problem. For example, in a
system like Free Haven that “pays” you for good per-
formance with system services from others, as long as
the amount of service credit taken from the system is
no more than the amount of service provided to it, does
it matter if that credit is transferred to others?

6 Conclusion: New Directions, Misdi-
rections, and Other Questions

Reputation systems are already gathering momen-
tum at the grassroots of the Internet. Special-purpose
systems — some more ad hoc than others — have al-
ready been rolled into online auction services, messag-
ing protocols, and online discussion sites. But despite
this growing body of experience at building simple rep-
utation systems and designing more complex ones for
anonymity systems, the questions remain as intriguing
as the solutions.

How can we fine-tune a reputation system in re-
sponse to a specific threat model? In a relatively low-
threat environment (e.g., tracking ISP uptime), ordi-
nary statistical models will suffice. But most statis-
tical models assume that data is biased at worst, not
maliciously chosen by an adversary who wants us to
make a particular decision. At this point, the empha-
sis in current research shifts from predicting behavior
to minimizing risk. Is it really necessary to abandon
statistical rigor? The field of machine learning has a
rich history and a lot of experience at solving related
problems. Is there some way to adapt these solutions
to an adversarial context?

Similarly, what can we do when statements aren’t
verifiable, and where an adversary can either lie about
real interactions, or fabricate spurious interactions and
lie about those? We could try to make credibility charts
and weight statements by credibility — but a smart
adversary could try to trick our credibility calculations
as well. If somebody finds a way to establish bounds
on malicious influence on such a system, the range of
problems we can solve with reputation would explode
overnight.

We have already seen how reputation can enhance
privacy. Can we go one step further, and assign repu-
tation based on an expectation of protecting privacy?
In distributed privacy systems, the privacy provided is

4



typically based on an assumption that some subset of
system components will both perform duties correctly
and will not reveal some parts of their data and/or
operations. A privacy destroying adversary might of-
fer very reliable service while using information from
various compromised system elements to compromise
privacy. Can we say anything meaningful about repu-
tations based on reliability at keeping secrets, or are we
limited to making statements about the probability of
privacy compromise given the likelihood and structure
of component compromise?

What if we treat reputation as currency? Currency
implies economics. How do you get reputation cur-
rency? Do currency-based approaches always imply
transitive trust? Is the supply of reputation currency
constant, increasing, or decreasing? Does it expire, or
slowly lose value over time? Where, ultimately, does
a currency come from — a decentralized Federal Re-
serve? Does it materialize as a side-effect of performing
work from the system? Is there credit? Or does cur-
rency only appear when the system is bootstrapped,
and if so, how? Is currency global, or do individual
servers mint their own currencies? Can we evolve a
viable market that is scalable based on these local cur-
rencies issued by individual servers? Can a global cur-
rency be bootstrapped from local currencies?

The number and diversity of real-world reputation
systems is staggering. Through a byzantine mass of
credit reports, product reviews, earnings statements,
flat-out gossip, and a thousand other information chan-
nels, we try to convince one another of our honesty and
competence. In the process we expose far more detail
about ourselves than we might wish. Online reputation
systems promise to be still more complex and difficult
to build than their real-world analogues, but they hold
out the promise of enabling decentralized interaction
and protecting privacy in ways that today’s systems of
trust cannot.

References

[1] A. Acquisti, R. Dingledine, and P. Syverson. On the
Economics of Anonymity. In J. Camp and R. Wright,
editors, Financial Cryptography (FC ’03). Springer-
Verlag, LNCS (forthcoming), 2003.

[2] A. Back, U. Möller, and A. Stiglic. Traffic analysis at-
tacks and trade-offs in anonymity providing systems.
In I. S. Moskowitz, editor, Information Hiding (IH
2001), pages 245–257. Springer-Verlag, LNCS 2137,
2001.

[3] I. Clarke, O. Sandberg, B. Wiley, and T. W.
Hong. Freenet: A distributed anonymous infor-
mation storage and retrieval system. In Workshop
on Design Issues in Anonymity and Unobservability,

pages 46–66, 2000. <http://citeseer.nj.nec.com/

clarke00freenet.html>.
[4] R. Dingledine, M. J. Freedman, D. Hopwood, and

D. Molnar. A Reputation System to Increase MIX-
net Reliability. In I. S. Moskowitz, editor, Infor-
mation Hiding (IH 2001), pages 126–141. Springer-
Verlag, LNCS 2137, 2001.
<http://www.freehaven.net/papers.html>.

[5] R. Dingledine, M. J. Freedman, and D. Molnar. The
free haven project: Distributed anonymous storage
service. In Workshop on Design Issues in Anonymity
and Unobservability, July 2000.

[6] R. Dingledine and P. Syverson. Reliable MIX Cas-
cade Networks through Reputation. In M. Blaze,
editor, Financial Cryptography (FC ’02). Springer-
Verlag, LNCS 2357, 2002.

[7] E. Friedman and P. Resnick. The social cost of cheap
pseudonyms. Journal of Economics and Management
Strategy, 10(2):173–199, 2001.

[8] C. A. Neff. A verifiable secret shuffle and its appli-
cation to e-voting. In P. Samarati, editor, 8th ACM
Conference on Computer and Communications Secu-
rity (CCS-8), pages 116–125. ACM Press, November
2001.

[9] P. Palfrader. Echolot: a pinger for anonymous remail-
ers. <http://www.palfrader.org/echolot/>.

[10] J. F. Raymond. Traffic Analysis: Protocols, Attacks,
Design Issues, and Open Problems. In Workshop
on Design Issues in Anonymity and Unobservability.
Springer-Verlag, LNCS 2009, July 2000.

[11] P. F. Syverson, S. G. Stubblebine, and D. M.
Goldschlag. Unlinkable serial transactions. In
R. Hirschfeld, editor, Financial Cryptography (FC
’97). Springer-Verlag, LNCS 1318, 1997.

5


