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Abstract. In this paper we study the anonymity provided by general-
ized mixes that insert dummy traffic. Mixes are an essential component
to offer anonymous email services. We indicate how to compute the re-
cipient and sender anonymity and we point out some problems that may
arise from the intuitive extension of the metric to take into account dum-
mies. Two possible ways of inserting dummy traffic are discussed and
compared. An active attack scenario is considered, and the anonymity
provided by mixes under the attack is analyzed.

1 Introduction

The Internet was initially perceived as a rather anonymous environment. Nowa-
days, we know that it is a powerful surveillance tool: anyone willing to listen
to the communication links can spy on you, and search engines and data min-
ing techniques are becoming increasingly powerful. Privacy does not only mean
confidentiality of the information; it also means not revealing information about
who is communicating with whom. Anonymous remailers (also called mizes) al-
low us to send emails without disclosing the identity of the recipient to a third
party. They also allow the sender of a message to stay anonymous towards the
recipient.

In this paper, we extend previous results [DS03b,SD02,DSCP02] in order to
obtain equations to compute sender and recipient anonymity, expressed using
the model of generalised mixes. Then, we reason about the anonymity provided
by these mixes when dummy traffic is inserted in the network. We point out that
the intuitive way of computing the anonymity when dummy traffic is inserted
by the mix presents some problems. We also analyze the anonymity offered by
the mixes when an active attacker is capable of deploying an n — 1 attack.
Some side aspects are discussed, in order to provide a good understanding of the
anonymity metric. The paper also intends to be an intermediate step towards
the quantification of the anonymity provided by the whole mix network.

The structure of the paper is as follows: in Sect. 2 we give an overview on
mixes. In Sect. 3 the concept of dummy traffic is introduced. Anonymity metrics
are discussed in Sect. 4. Sections 5 and 8 provide results for recipient anonymity,



first without dummy traffic and then with dummy traffic. Sender anonymity is
analyzed in Sect. 6 and Sect. 7. Sect. 9 analyzes recipient anonymity under an
active attack. Finally, Sect. 10 presents the conclusions and proposes topics of
future work.

2 Mixes

Mixes are the essential building block to provide anonymous email services. A
mix is a router that hides the correspondence between incoming and outgoing
messages. A taxonomy of mixes can be found in [DP04]. The mix changes the
appearance and the flow of the messages. In order to change the appearance of
the messages, the mix uses some techniques, such as padding and encryption,
thus providing bitwise unlinkability between inputs and outputs. Techniques
like reordering and delaying messages, and generating dummy traffic are used
to modify the flow of messages. This modification of the traffic flow is needed
to prevent timing attacks that could disclose the relationship between an input
and an output messages by looking at the time the message arrived to and left
from the mix.

The idea of mixes was introduced by Chaum [Cha81]. This first design was
a threshold miz, a mix that collects a certain number of messages and then
flushes them. Since then, variants on this first design have been proposed in the
literature [DS03b,MC00,Cot,Jer00]. One of the design strategies used to increase
the anonymity of the messages and prevent some simple attacks is sending only
part of the messages, while keeping others for later rounds. These are called pool
mizes or batching mires. Chaum’s original design is a particular case of a pool
mix, that keeps 0 messages in the pool when it flushes.

Another type of mixes, synchronous or Stop-and-Go mixes, were proposed
by Kesdogan et al. in [KEB98]. These mixes modify the traffic flow just by
delaying messages. They cannot be expressed as generalized mixes [DS03b], and
their analysis is outside the scope of this paper. Some practical measurements
on continuous mixes have been presented by Diaz et al. in [DSD04].

2.1 Generalized mixes

The concept of generalized mixes was introduced by Diaz and Serjantov in
[DS03b]. Here, we summarize the basic concepts of the generalized mixes model.
Pool mixes are expressed in this model by a function, instead of a detailed al-
gorithm. The mix is represented at the time of flushing, making abstraction of
the event that triggers the flushing: it may be the expiration of a timeout (timed
mizes) or the arrival of a message (threshold mizes). However, in Sect. 4.1 we
point out some properties of threshold mixes which are worth discussing.

A round represents a cycle of the mix; during a round, the mix collects input
messages that are placed in the pool, the last event of the round is the flushing
of messages. The function P(n) represents the probability of the messages being
sent in the current round, given that the mix contains n messages in the pool.



An example of a timed pool mix that keeps 20 messages in the pool and flushes
the rest is shown in Fig. 1. In this case: P(n) = 0 for n < 20 and P(n) =1-20/n
for n > 20.
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Fig. 1. Representation of a generalized mix

Note that all messages contained in the pool have the same chance of being
selected for sending. This uniformity maximizes the randomness of the selection.
Reducing this randomness leads to leaking more information about the outputs.

2.2 Deterministic vs. binomial mixes

P(n) denotes the probability of sending every message. There are two ways of
dealing with this probability. We distinguish between deterministic and binomial
mixes. Note that the value of the function P(n) is independent of the mix being
deterministic or binomial.

Deterministic mixes. If a mix is deterministic then the number of messages
sent is determined by the number of messages contained in the pool; the mix
sends s = nP(n) messages. The only randomness present in the flushing algo-
rithm is the one used to select which messages will be sent, but not how many.
Classical pool mixes fall into this category. Note that, for these mixes, once the
number of messages in the pool (n) is known, the number of messages sent (s)
is determined, and vice versa.

Binomial mixes. Binomial mixes were introduced in [DS03b]. In these mixes,
an independent decision is taken for every message in the pool. A biased coin
(being the bias the value of P(n)) is thrown for each message, so it is sent with



probability P(n). The number of selected messages follows a binomial distri-
bution with respect to the number of messages in the pool. The probability of
sending s messages, given that the pool contains n messages is (note that p is
the result of the P(n) function for the current round):

Pr(sjn) = n!

. mS. 1 — n—s

sl(n — s)! p-(1-p)

The probability of having n messages in a pool of maximum size N4z, given
that the mix sends s messages is [DS03b]:

p(sln)
> pliln)

This probabilistic relationship has the following effects: as it was shown in
[DS03b], just by observing the number of outputs of a round, an observer cannot
know ezactly the number of messages contained in the mix; by knowing the
number of messages in the pool we cannot determine the number of messages that
will be flushed. However, large deviations from the mean values occur with very
low probability. This property influences the anonymity metric under certain
circumstances, as it is remarked in Sect. 4.2.

Pr(n|s) =

3 Dummy traffic

Inserting dummy traffic (see [Jer00] for a discussion on the topic and [DP04] for
a taxonomy of dummy traffic) in a mix network is a technique that hides the
traffic patterns inside the mix network, making traffic analysis more difficult. As
shown in Sect. 8, the generation of dummy traffic increases the anonymity of
the messages sent through the mix network. Dummies also reduce the latency of
the network by keeping a minimum traffic load (a low traffic load increases the
latency of the mix network).

A dummy message is a “fake” message created by a mix, instead of a user.
The final destination is also a mix, instead of a recipient; the dummy is discarded
by the last mix, that may be the one that created it. Observers of the network
and intermediate mixes cannot distinguish the dummy from a real message. In
this paper, we make abstraction of the specific purpose of the dummy (link
padding, ping traffic, etc.) and its path-length; we focus on the impact of these
dummies in the anonymity provided by the mix that creates the dummies (note
that dummies are treated as real messages by the other mixes, except for the
last in the path, that discards them).

Creating and transmitting dummies has a cost. We need to find a tradeoff
between the anonymity we want to offer and the cost of adding dummy traffic. In
this paper we present formulas to compute the anonymity, taking into account
the number of dummies produced by mixes. One possibility is that the dummies
created by a mix are sent to itself through a path in the network. Therefore,
every mix will discard its own dummies, and no mix is able to distinguish real
messages from the dummies created by another mix. This strategy was already



proposed by Danezis and Sassaman in [DS03a] in order to detect and prevent
active attacks against a mix.

We assume that the mix generates dummies following a probability distri-
bution. The creation of a fixed number d of dummies per round is a particular
case, in which Pr(dy, = d) = 1. The probability distribution that determines the
number of dummies created should be independent of the traffic of real messages.
Otherwise, an active attacker could develop an attack strategy which minimizes
the number of dummies sent during his attack.

We consider two possible scenarios. First, we assume that the mix inserts
the dummy messages into the output link at the time of flushing. If the mix
flushes after a timeout (timed mix), the mix could add dummies even in the
case in which no real messages are sent. In this case, the pool contains only
real messages (note that dummies created by other mixes are considered real
messages at the intermediate mixes).

In the second scenario, a number of dummies is added to the pool of the
mix. In this case, the number of dummies present at the output depends on the
random selection of messages from the pool. The function P(n), that defines the
probability with which messages are going to be sent, is computed taking into
account the dummies present in the pool. Otherwise, in the case of low traffic,
the mix would accumulate dummies that are flushed at a very low rate. Besides,
the goal of keeping traffic above a minimum would not be achieved.

We also assume that the number of inserted dummies is independent of the
number of dummies already present in the pool, in order to keep the mix design
stateless, that is, that the decisions of one round are not constrained by the
events of previous rounds. A setting in which the mix keeps, for instance, a
constant number of dummies in the pool would need a different analysis.

4 Anonymity metrics

In this section we introduce the anonymity metrics for mixes. We remark the
particularities of some mix designs (binomial mixes and threshold mixes). Also,
we present the attack model considered.

Anonymity was defined by Pfitzmann and Kohntopp [PK00] as “the state of
being not identifiable within a set of subjects, the anonymity set”.

The use of the information theoretical concept of entropy as a metric for
anonymity was simultaneously proposed by Serjantov and Danezis in [SD02]
and by Diaz et al. in [DSCP02]. The difference between the two models for
measuring anonymity is that in [DSCP02] the entropy is normalized with respect
to the number of users. In this paper we will use the non-normalized flavour of
the metric.

The anonymity provided by a mix can be computed for the incoming or for
the outgoing messages. We call this sender anonymity and recipient anonymity.

Sender anonymity. In order to compute the sender anonymity, we want to know
the effective size of the anonymity set of senders for a message output by the mix.



Therefore, we compute the entropy of the probability distribution that relates an
outgoing message of the mix (the one for which we want to know the anonymity
set size) with all the possible inputs.

Recipient anonymity. If we want to compute the effective recipient anonymity
set size of an incoming message that goes through the mix, we have to compute
the entropy of the probability distribution that relates the chosen input with all
possible outputs.

Note that in the two cases, the metric computes the anonymity of a particular
input or output message; it does not give a general value for a mix design and it
is dependent on the traffic pattern. The advantage of this property is that mixes
may offer information about the current anonymity they are providing. The
disadvantage is that it becomes very difficult to compare theoretically different
mix designs. Nevertheless, it is possible to measure on real systems (or simulate)
the anonymity obtained for a large number of messages and provide comparative
statistics. This has been done by Diaz et al. in [DSD04], where we can see that
the anonymity offered by a mix can be analyzed through simulations.

4.1 Remarks on threshold mixes.

If an active attack is deployed (see Sect. 9), the attacker is able to empty the mix
of previous messages much faster, because he is able to trigger the flushings by
sending many messages. Also, the attacker may have another advantage: when a
dummy arrives to the last mix of the path it is discarded and it does not trigger
the flushing if only one message more is required to reach the threshold. This
way, the attacker may be able to know whether a message is a dummy or not.
For these reasons, timed mixes should be preferred to threshold mixes.

4.2 Remarks on binomial mixes

There are two ways of computing the anonymity metric for binomial mixes.
If the number nj of messages in the mix (at round k) and the number sj of
messages sent from the pool are observable, this information can be used in
the computation of the entropy. We would use si/n instead of P(ny). The
anonymity obtained is the one that corresponds to a particular realisation of
the mix. Note that the same pattern of incoming traffic fed several times into a
binomial mix may result in different values of the metric.

If this is not observable (dummy traffic can hide this number), or if we want
to compute the average! anonymity offered by a mix, then we have to use the

! This average may be different of the one obtained by considering e possible scenarios
(binomial output combinations), each of them providing an entropy H;, (i =0...e),
happening with probability p;, (i = 0...e). We have checked on a simple numerical
example that the average entropy that we obtain by summing the entropies H;
ponderated by their probabilities p; is different from this average, that corresponds
to the a priori most probable case.



a priori probability, P(n). In this case, we obtain a fixed result for a given
incoming traffic.

4.3 Attack model and dimensions of uncertainty

The anonymity metric computes the uncertainty about the sender or the recip-
ient of a message, given that some information is available. We compute the
metric from the point of view of an attacker, whose powers must be clearly
specified.

The attacker considered in the paper is a permanent global passive observer.
The attacker knows the number of messages that arrive to the mix in every round
(ar) and the number of messages sent by the mix in every round (si). We assume
that the function of the mix P(n) is publicly known. Moreover, the attacker “has
always been there” and “will always be there”, that is, the attacker knows the
whole history of the mix. This way we give a lower bound for anonymity, given
that an attacker with less power will only obtain less information, and the users
will be more anonymous towards him. In Sect. 9 we consider an active attacker,
capable of deploying an n — 1 attack.

When the mix does not generate dummy traffic, the attacker has all the in-
formation needed to compute the anonymity (ag, sp and P(ng)), because he
can determine the number of messages in the pool, ng. When the mix gener-
ates dummies, we can find some differences between deterministic and binomial
mixes. If the mix is deterministic, then the attacker can find out ng, regardless
of the dummy policy. If the mix is binomial, then for a deterministic dummy
policy he will also be able to determine n; (note that the attacker is perma-
nent and knows all the history). But for a random dummy policy the value ny
cannot be determined, and therefore P(ny) remains unknown. This means that
the attacker cannot compute with certainty the anonymity of the messages. He
may be able to estimate it; the estimation is more accurate when the number of
dummies or the randomness of the dummy distribution decreases.

It is important to note that this uncertainty is, in most cases, independent of
the anonymity provided by the mix. The cases in which this uncertainty increases
the anonymity are indicated in the appropriate sections.

Another sort of uncertainty arises if the attacker starts observing the system
when it has been running for some time (non permanent attacker), or if the mix
starts with an unknown number of messages in the pool. This type of attacker
has been considered in the literature (see, for example, [SN03]). In this case,
the uncertainty about the number of unknown messages contained in the pool
(arrived before the attacker started observing) decreases with every round, as
the probability of any of them still being there does.

4.4 Anonymity provided by a mix network

In this paper, we compute the anonymity of a single mix. Nevertheless, we assume
that the mix is a node of a mix network (otherwise, it would not make sense to
create dummy traffic). The goal of the analysis of the impact of dummy traffic



on the anonymity provided by a mix is to go a step further towards a metric
that computes the anonymity provided by a mix network, when dummy traffic
is inserted by the nodes.

Without the results provided in this paper, it would not be clear the way of
computing the anonymity of a mix network whose nodes insert dummy traffic. As
we show in Sect. 7 and Sect. 8, we must be careful when applying the information
theoretical anonymity metrics to mixes that generate or discard dummies.

Danezis [Dan03] has proposed a method to measure the anonymity provided
by a mix network (in the absence of dummy traffic). The method can be applied
to compute the recipient anonymity as follows: one measures the anonymity of
a mix network as the entropy of the distribution of probabilities that relates a
message m entering the network with all the possible outputs of the network, o;;
(being 4 the mix that outputs the message and j the message number). These
probabilities are expressed as the product of two terms: first, the probability of
the target input m being output o;; conditioned to the fact that the m left at
the same mix M; as output o;5; second, the probability of the target having been
left from mix M;.

The first term, Pr(m = o;;|m left at M;) corresponds to the anonymity pro-
vided by mix M; (i.e., the formulas presented in this paper are suited to compute
this value). The second quantifies how effectively the traffic from different nodes
is mixing together; it is dependent of the topology of the network and on the
path selection of the messages and dummies. In order to effectively enhance the
anonymity provided by the mix network, the dummy traffic should maximize the
number and the probabilistic uniformity of the possible destinations for every
outgoing message.

Although the computation of the second term when mixes create dummy
traffic may not be obvious, the results provided in Sect. 8 and Sect. 7 may be
useful to measure the impact of dummy traffic on anonymity at network scale.

5 Recipient anonymity without dummy traffic

In this section, we compute the effective recipient anonymity set size of an in-
coming message that goes through the mix. We need to compute the entropy
of the probability distribution that relates the chosen input with all possible
outputs.

We summarize the notation needed for this section:

— ay: number of messages arrived to the mix in round k.

— ng: number of messages in the mix in round k (before flushing).

— sk: number of messages sent by the mix in round k.

— P(n): characteristic function of a generalized mix [DS03b]. It represents the
probability of a message that is in the pool of being flushed as a function of
the number of messages contained in the mix.

— p(0;): probability of linking the chosen input with an output O that left the
mix in round i.

— H,: effective recipient anonymity set size. Also recipient anonymity.



Computing the recipient anonymity has a shortcoming: instead of needing
the past history of the mix, we need to know the future history. In theory, we
should wait infinite time before we can compute the entropy of an input. In
practice, we can give an approximation of this value once the probability of
the message still staying in the mix is very low (we can choose the probability
to be arbitrarily small, and get as close to the real entropy as we want). Note
that the approximation is still giving a lower bound for anonymity, because the
approximated entropy is lower than the real one.

From [DS03b], we know that if a message arrived to the mix in round r, the
probability of this message going out in round 7 is:

p(round;) = P(n;), r=1.
i—1
p(round;) = P(n;) H(l — P(nj)), r<i.
j=r
The probability of matching our target input message of round r to an output
of round 4, O;, is (note that it is uniformly distributed over all outputs of round
i, Sz)

w0y =0y
P(ny) [T'ZL(1 = P(n,
0y = PO ZPO)

This result only makes sense if s; > 0. Otherwise, p(O;) = 0, and this term
should not count in the computation of the entropy. The recipient anonymity of
the input, assuming that the probability of it still being in the mix is negligible
after round R, is:

R
H,=- Zsi -p(0;) log(p(0;)) - (1)

6 Sender anonymity without dummy traffic

In order to compute the sender anonymity, we want to obtain the effective size
of the anonymity set of senders for a message output by the mix. Therefore,
we compute the entropy of the probability distribution that relates an outgoing
message of the mix (the one for which we want to know the anonymity set size)
with all the possible inputs.

The notation we need for this section, in addition to the one presented pre-
viously, is:

— p(I;): probability of linking the chosen output with an input I that arrived
to the mix in round 4.
— H,: effective sender anonymity set size. Also sender anonymity.



Given that the mix treats all messages in the same way, the probability for
an input to correspond to the chosen output depends on the round in which the
input arrived to the mix. If a message arrived in the current round r, it is certain
that it is in the pool. Therefore, the probability is uniformly distributed among
all the messages contained in the mix:

For the messages that have arrived in previous rounds, we need to take into
account that they might have already been sent by the mix. Therefore, we need
to multiply the previous result by the probability of that input still being inside
the mix. If the message arrived in round i, the probability of staying each round
is 1 — P(n;). Taking into account that the decisions of different rounds are
independent, the probability of the chosen output corresponding to an input of

round 7 is:
r—1
1

pl) = —[[Q-P@y), i<r.

n
T i—i

Note that the result only makes sense if the number of inputs of the round we are
considering is greater that zero, otherwise p(I;) = 0, and this term should not
be taken into account when computing the entropy. The measure of the sender
effective anonymity set size, given by the entropy, is:

Hy=— Zai - p(I;) log(p(I;)) - (2)

Note that we start at round 1 because we assume that the attacker has been
permanently observing the system. From a practical point of view, if a program
to measure the anonymity is embedded in the mix to evaluate the anonymity
performance, this program will be started at the same time as the mix, and will
also “know” the whole history of it.

7 Sender anonymity with dummy traffic

In this section we discuss the sender anonymity metric when dummy traffic is
generated by the mix. We consider two scenarios: dummies inserted at the output
and in the pool. We reason that the intuitive way of computing this anonymity
results in a metric that does not reflect the actual increase in the anonymity of
the users.

7.1 Dummies inserted at the output

We encounter the first limitation of the metric when trying to measure the sender
anonymity in a setting in which the mix is producing dummies.



In order to compute the sender anonymity provided by the mix when dummy
traffic is being inserted at the output link, we would first choose an output, and
then compute the probability of this message being one of the inputs or one of
the dummies. There is a conceptual difference between these two cases: if the
output is a real message, we want to know which one; if it is a dummy, we do
not really care whether it is “dummy number 1”7 or “dummy number 7”: the fact
of the message being a dummy contains only one bit of information (dummy /no
dummy). We show that treating the two cases analogously would lead to a metric
that is not meaningful in terms of anonymity.

Let us consider a distribution of probabilities p; that relates the chosen output
with every possible input I; when no dummies are generated by the mix. The
entropy of this distribution is Hg. If the mix adds d; messages to every output
round, then the new probability distribution is:

— Probability of being a dummy: pg = dy/sg.
— Probability of being input I;: (1 — pg) - p;

The entropy of the new distribution is:

H = —pglogy(pa) — >_(1 = pa) - pilogs((1 — pa) - pi) -

H = —palogy(pa) — (1 — pa)log,(1 — pa) + (1 - pa) - Hs

From the formula, we observe that for high values of Hy and pg, the value of
the new entropy H (with dummies) may be lower than H; (entropy with no
dummies).

The decrease in the entropy is consistent with the concept associated with
it: the uncertainty. If pg >> 1 — py, the attacker has little uncertainty about the
output, he may guess that it is a dummy and he will be right with probability
pq- Nevertheless, the attacker is not gaining much with this guess because the
uncertainty about the inputs that corresponds to real outputs stays the same.

We should conclude that it is not straighforward to use the metric H to
compute the sender anonymity of a mix with dummy traffic. In order to get
meaningful results, we should assume that the attacker chooses a real message,
and never a dummy. As complementary information about the chances of the
attacker of choosing a real message at the output of a mix, we suggest to provide,
together with the metric Hg, the probability of success choosing a real message,
1-— Pd-

On the other hand, we should note that the incoming dummies that are
discarded by the mix do contribute to the sender anonymity.

7.2 Dummies inserted in the pool

The same problem pointed out in the previous section about the relevance of
the metric applies to this scenario, hence the same solution is suggested. We
propose as metric the entropy conditioned to the event that a real message is



chosen, together with the probability of choosing a real message, 1 — pg - as in
the previous case.

The main difference witht he previous case is that for binomial mixes the
number of dummies flushed by the mix follows a binomial distribution with
respect to the number of dummies contained in the pool. The average number
of dummies contained in the pool at round r is:

r—1 r—1
D, =d, +Y di [J(1 - P(n;)) .
i=1  j=i

The proportion of dummies at the output is, on average, the same as in the pool
(the dummies are selected to be sent with the same probability as real messages).
The probability of selecting a real message at the output is: 1 —pg =1 — D,./n,.

Note that the entropy in this scenario must be computed taking into account
the actual value of P(n) (where n includes the dummies). The value is higher
than in the case in which dummies are inserted at the output. Therefore, the mix
may provide less anonymity and less delay. Note that the value of the function
P(n) depends not only on the number of real messages contained in the pool,
but also on the number of dummies. This implies that nj will be bigger that in
the other analyzed cases. P(n) is a function that grows with n (a function that
decreases with n would not make sense: the mix would send less messages as
the traffic increases). From the expression of the entropy, we can conclude that
for the same traffic load, the anonymity and the delay decrease when this policy
is used instead of inserting the dummies at the output (note that higher values
of P(n) provide less anonymity and less delay). Eventually, we could reach a
situation in which a real message is only mixed with dummies. Note that if the
function P(n) does not increase its value (P(n) may reach a maximum value),
the anonymity would not be affected.

8 Recipient anonymity with dummy traffic

A similar problem arises for the case of recipient anonymity as for sender anonymity.
In this case, we must assume that the attacker choses to trace a real input. This

is a reasonable assumption when the message comes from the user. But in cer-
tain circumstances, the attacker may want to trace a message that comes from
another mix (trying to find the path of the target message in the network). In
this case, the attacker may choose a message that is actually a dummy that will
be discarded by the mix. It does not seem easy to model the dummy traffic that
arrives to a mix for being discarded, given that it depends on the whole network
and the path of the dummy.

In order to effectively apply the anonymity metric, we must assume that
the attacker computes the recipient anonymity for a message that will not be
discarded by the mix (that is, a message that matches an output). Analogously
to the case of sender anonymity, we may provide as complementary information
to the recipient anonymity, the probability of choosing an input message that is
not discarded by the mix.



In this section we discuss the impact of the dummy traffic created by the
mix on the recipient anonymity. We show that a simple extension of the metric
allows us to take into account dummy traffic generated by this mix (the input
dummy traffic getting to the mix cannot be considered). We compare the two
possible ways of inserting dummies: at the output and in the pool. The number
of dummies inserted at round k is dj,. The number of dummies inserted follows
a distribution Pr(d; = d). We make abstraction of this distribution.

8.1 Dummies inserted at the output

The mix inserts dr messages at the output link in round k. The recipient
anonymity when dummy traffic is being inserted at the output of the mix is
computed using (1). The only difference in this case is that s has a component
of real messages, my, and another one of dummy messages, di (s = my + di)-
Therefore, the impact of the dummy traffic is equivalent to an increase in the
traffic load.

This simple result is consistent with the fact that real messages which are
not the one we want to trace act as cover traffic for the target message, just as
dummy messages do. Whenever there is at least one real message in the output of
a round, the probabilities of matching our target input message are distributed
over the messages output by the mix in that round.

Nevertheless, it is important to note that if my and di are known by the
attacker (deterministic mix or deterministic dummy policy), the rounds in which
my = 0 (only dummy messages sent) can be discarded by the attacker. These
dummy messages do not increase the recipient anonymity provided by the mix.
This is not the case when the attacker has uncertainty about dj, and my, (binomial
mix with random dummy policy); therefore he has to take into account dummies
sent in rounds in which no real message is flushed.

We can conclude that binomial mixes with random dummy policy offer more
anonymity when the traffic is low (in particular, when my = 0), because the
uncertainty of the attacker about the existence of real messages in the output
increases the recipient anonymity: messages of rounds that would be discarded
by the attacker in a deterministic mix cannot be discarded in a binomial mix.

8.2 Dummies inserted in the pool

The mix inserts in the pool dj dummies in round k. The recipient anonymity
provided by a mix implementing this dummy policy is computed using (1). The
difference in this case is that the value of the function P(n) depends not only
on the number of real messages contained in the pool, but also on the number
of dummies, with the same consequences on the anonymity as mentioned in
Sect. 7.2.



9 Recipient anonymity under n — 1 attack

The n — 1 or blending attack (analyzed in detail by Serjantov et al. in [SDS02])
is a method to trace a message going through a mix. The goal of this attack is to
identify the recipient of a message (the attack only affects recipient anonymity,
not sender anonymity). In order to deploy an n — 1 attack, the attacker fills
the mix with his own messages and the target message (he must be able to
delay the other incoming messages). Assuming that the attacker can recognize
his messages at the output, then he is able to trace the target message. In this
attack model, the adversary is able to delay messages and to generate large
numbers of messages from distributed sources (so that the flooding of the mix
cannot be distinguished from a high traffic load).

If no dummy traffic is being generated by the mix, then the attacker can
successfully trace the target (with probability 1 for a deterministic mix and with
arbitrarily high probability for a binomial mix).

9.1 Deterministic mix with dummy traffic inserted at the output

In this case, the attacker knows dj, and my. Therefore, he knows when the target
message is being sent by the mix (it is the round in which the number of unknown
messages sent is dy, + 1). The anonymity will be that provided by the dummies
in the round in which the target is flushed (round i):

di+1 1 1
HT=—]‘;1 d,-+110g2( ) =logy(d; +1) .

d; +1

Note that although the attacker can detect the round in which the target mes-
sage is flushed, he still cannot distinguish between the target message and the
dummies.

9.2 Binomial mix with random dummy traffic inserted at the
output

In this case, the attacker cannot observe in which round the message is flushed,
because he does not know dj and my, and he cannot distinguish between the
dummies and the target message. We assume that after round R the probability
of the target message being inside the mix is negligible.

The mix flushes s; messages per round. The attacker can recognize my mes-
sages. He does not know whether the s; — mj remaining messages are just
dummies or if the target is among them.

The attacker fills the mix with his own messages and lets the target in at
round r. From that round on, the probability of every unknown output of round
1 of being the target is:




i—1

P n; .
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The entropy is given by:
R
H ==Y (si —m;) - p(03) log(p(05)) -

This means that all the dummies sent in the rounds in which there is a probability
of sending the target (this includes the rounds before and/or after the actual
sending of the target) contribute to the anonymity, in contrast with the previous
case, in which the round that includes the target is observable and only the
dummies sent in that particular round contribute to the recipient anonymity of
the message.

9.3 Dummies inserted in the pool

If the dummies are inserted in the pool, then the attacker has uncertainty about
the round in which the target message is flushed. This is independent of the type
of mix (deterministic or binomial) and the dummy distribution (deterministic
or random dummy policy): the attacker can neither distinguish at the output
between unknown real messages and dummy messages, nor know which of the
messages of the pool will be selected.

The anonymity provided in this case is computed as in the case of binomial
mixes with random dummy policy. The only difference is that the pool will
contain more messages (n grows due to the dummies). This increases P(n),
unless P(n) reaches at a certain point a maximum (as it is the case in some
practical designs, as Mixmaster) and the attacker sends enough messages to
make it reach this maximum. An increase in the result of the function P(n)
would help the attacker to force the target to leave the mix in fewer rounds with
a high probability.

10 Conclusions and future work

We have computed the sender and recipient anonymity provided by generalized
mixes. The formulas provided are compact and easy to evaluate and implement.
We have indicated how to measure the sender and recipient anonymity when the
mix inserts dummy traffic in the pool or at the output. Given that the intuitive
extension of the metric for this scenario provides confusing results, we have
clearly explained how it should be applied. We have analyzed the anonymity
provided by a mix that sends dummy traffic, when it is subject to an n — 1
attack, and provided the equations that express this anonymity.
We summarize the main conclusions of the paper:



— The dummies generated by the mix contribute to recipient anonymity, but
not to sender anonymity. The dummies discarded by the mix contribute to
sender anonymity but not to recipient anonymity. Much attention must be
paid when implementing this metric to nodes that generate dummy traffic.

— Binomial mixes in combination with a random dummy policy provide more
anonymity than deterministic mixes (regardless the dummy policy) or bino-
mial mixes with deterministic dummy policy.

— Inserting the dummies in the pool provides less anonymity and less latency
that inserting them at the output.

— When dummies are inserted at the output, binomial mixes with a random
dummy policy offer more protection against the n — 1 attack than determin-
istic mixes.

— Inserting dummies in the pool protects deterministic mixes better than in-
serting them at the output, when an n — 1 attack is deployed.

Some of the topics that are subject of future work are:

— Find a metric that expresses the sender and recipient anonymity provided
by a mix network with dummy traffic.

— Compare the anonymity achieved with different distributions of dummy traf-
fic. Obtain quantitative results.

— Compare the anonymity provided by pool mixes to the anonymity provided
by Stop-and-Go mixes, with dummy traffic.
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