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Abstract. We give a critical analysis of the system-wide anonymity
metric of Edman et al. [3], which is based on the permanent value of a
doubly-stochastic matrix. By providing an intuitive understanding of the
permanent of such a matrix, we show that a metric that looks no further
than this composite value is at best a rough indicator of anonymity.
We identify situations where its inaccuracy is acute, and reveal a better
anonymity indicator. Also, by constructing an information-preserving
embedding of a smaller class of attacks into the wider class for which this
metric was proposed, we show that this metric fails to possess desirable
generalization properties. Finally, we present a new anonymity metric
that does not exhibit these shortcomings. Our new metric is accurate as
well as general.

Keywords: System-wide anonymity metric, Probabilistic attacks, Com-
binatorial matrix theory

1 Introduction

Measuring the amount of anonymity that remains in an anonymity system in the
aftermath of an attack has been a concern ever since a need for web anonymity
systems was first recognized. Much of the work on anonymity metrics, such as
that of Serjantov and Danezis [1] or of Diaz, Seys, Claessens and Preneel [2], has
focused on measuring anonymity from the point of view of a single message or
user. In contrast, Edman, Sivrikaya and Yener [3] proposed a system-wide metric
for measuring an attacker’s uncertainty in linking each input message of a system
with the corresponding output message it exited the system as. They employ
the framework of a complete bipartite graph between the system’s input and
output messages. Any perfect matching between nodes of this graph is a possible
message communication pattern of the system. Anonymity in this framework
is measured as the extent to which the single perfect matching reflecting the
system’s true communication pattern is hidden, after an attack, among all perfect
matchings in the graph.

Edman et al. [3] gave metrics for measuring anonymity after two kinds of
attacks, which we name as infeasibility and probabilistic attacks. Infeasibility
attacks determine infeasibility of some edges in the system’s complete bipartite
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graph and arrive at a reduced graph by removing such edges. Probabilistic at-
tacks, on the other hand, arrive at probabilities for each edge in the complete
bipartite graph of being the actual communication pattern. Both metrics of [3]
are based upon permanent values of certain underlying matrices.

Contributions of our paper are two-fold. We first demonstrate that while the
metric given in [3] for infeasibility attacks is sound, the one for probabilistic
attacks has two major shortcomings. We then propose a new, unified anonymity
metric for both classes of attacks that overcomes these shortcomings.

By presenting an intuitive understanding of the permanent of a matrix for
probabilistic attacks, we show that the first shortcoming of the metric in [3] for
such attacks is that the permanent, which is a composite value, is at best a rough
indicator of the system’s anonymity level. We highlight situations in which the
permanent is especially inadequate, and show that a better anonymity indicator
is the breakdown of the permanent as a probability distribution on the graph’s
perfect matchings.

The second shortcoming shown of the metric in [3] for probabilistic attacks is
that it is not a generalization of their metric for infeasibility attacks. We present
an information-preserving embedding of infeasibility attacks into the wider class
of probabilistic attacks to show that the former are just special cases of the
latter, a relationship ideally reflected in the metrics of [3], but is not.

The rest of this paper is organized as follows. Section 2 contains an overview
of the two metrics proposed by Edman et al. [3], namely for infeasibility and
probabilistic attacks. Section 3 analyzes the metric of [3] for probabilistic at-
tacks and exposes two shortcomings of it. The inadequacy of permanent as an
indicator of anonymity is explained in Section 3.1, and its failure to correctly
generalize infeasibility attacks in Section 3.2. These sections also develop much
of the mathematical framework that is used to construct our new, unified metric,
which is then presented in Section 4. Finally, Section 5 concludes our work and
mentions some directions for future work.

2 Overview of a System-Wide Metric

In this section we give an overview of the anonymity metrics proposed by Ed-
man, Sivrikaya, and Yener [3]. Their metrics give a system-wide measure of the
anonymity provided to the messages sent via an anonymity system, rather than
to any single message going through it.

Let S be the set of n input messages observed by an attacker having entered
an anonymity system, and T be the set of output messages observed by the
attacker having exited from that system. It is assumed that every input message
eventually appears at the output, i.e. |S| = |T | = n. The anonymity system
attempts to hide from the attacker which input message in S exited the system
as which output message in T . It may employ a number of techniques to this
end, such as outputting messages in an order other than the one in which they
arrived to prevent sequence number association, or modifying message encoding
by encryption/decryption to prevent message bit-pattern comparison, etc. The
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maximum anonymity this system can strive to achieve is when for any particular
input message in S, each of the output messages in T is equally likely to be the
one that input message in S exited the system as. This situation is depicted
by the complete bipartite graph Kn,n between S and T , as shown in Fig. 1 for
n = 4. Any edge 〈si, tj〉 in this graph indicates that the incoming message si

s1 t1
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t2

t3

t4

Fig. 1. Complete anonymity, when all edges in the complete bipartite graph between
the system’s input and output messages are equally likely.

could possibly have been the outgoing message tj . All edges in the graph are
considered equally likely.

Edman et al. in [3] consider two different classes of attacks. The first class
is of attacks that label some of the edges (i.e. input-output pairings) in the
above complete bipartite graph as infeasible. Removal by the attacker of these
infeasible edges from the graph results in decreased anonymity. The latency-
based attack of [3] and the route length attack of Serjantov and Danezis [1]
are examples of such attacks. The second class considered in [3] is of attacks
that arrive at probabilities for the edges in the graph of Fig. 1 of being the
actual communication pattern. This also reduces the anonymity provided by the
system, and an example of such a probabilistic attack is given in [3] as well.

For both of these classes of attacks, Edman et al. [3] propose anonymity
metrics to reflect the level of anonymity remaining in the system in the aftermath
of an attack. While our work in this paper is an improvement of just the second
metric of [3], namely for probabilistic attacks, here we give an overview of both
metrics of [3] as they are related.

2.1 A Metric for Infeasibility Attacks

An infeasibility attack removes from the system’s complete bipartite graph, like
the one shown in Fig. 1, edges that are determined by the attack to be infeasible
due to some attacker’s observation.

Edman et al. [3] give an example of such an attack that notes the times
at which messages enter and exit the system, and uses its knowledge of the
minimum and/or maximum latency of messages in the system. In this example,
suppose each message entering the system always comes out after a delay of
between 1 and 4 time units, and this characteristic of the system is known to the
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attacker. If 4 messages enter and exit this system at times shown in Fig. 2(a),
then s1 must be either t1 or t2, because the other outgoing messages, namely t3
and t4, are outside the possible latency window of s1. Similar reasoning can be

(a) (b)

Entry 
times

Exit
times

s1 = 1 t1 = 4

s2 = 2 t2 = 5

s3 = 4 t3 = 7

s4 = 5 t4 = 8

s1 t1

s2

s3

s4

t2

t3

t4

t1 t2 t3 t4

s1 1 1 0 0

s2 1 1 0 0

s3 0 1 1 1

s4 0 0 1 1

(c)

Fig. 2. (a) Message entry and exit times observed by attacker. (b) Graph resulting
from the attack, which removed edges it determined to be infeasible from system’s
complete bipartite graph. (c) Biadjacency matrix of this graph.

performed on all other messages to arrive at the reduced graph produced by this
attack, shown in Fig. 2(b). Note that in this graph s1 is connected to only t1 and
t2, and not to t3 or t4, since the edges 〈s1, t3〉 and 〈s1, t4〉 were determined by
the attack to be infeasible. The biadjacency matrix of this graph, a 0-1 matrix
with a row for each input message and a column for each output message, is
given in Fig. 2(c).

The number of perfect matchings between the system’s input and output
messages allowed by the bipartite graph resulting from such an attack is a good
indication of the level of anonymity left in the system after the attack. It is well
known (see, for example, Asratian et al. [4]) that this number is the same as the
permanent of the biadjacency matrix of that graph. The permanent of any n×n
matrix M = [mij ] of real numbers is defined as:

per(M) =
∑
π∈Sn

m1π(1)m2π(2) · · ·mnπ(n),

where Sn is the set of all permutations of the set {1, 2, . . . , n}. It can be seen that
the graph of Fig. 2(b) allows 4 perfect matchings, and that is also the permanent
of its biadjacency matrix in Fig. 2(c).

Given any n by n bipartite graph G resulting from an attack, it is assumed
that G contains at least one perfect matching between the input and output
messages, the one that corresponds to the true communication pattern. The
minimum value of the permanent of its biadjacency matrix A is thus 1, when
A contains exactly one 1 in each of its rows and columns. In this case, the
system is considered to provide no anonymity as the attacker has identified the
actual perfect matching, by ruling out all others. The largest number of perfect
matchings in G is n!, when G is the complete bipartite graph Kn,n. Therefore,
the maximum value of per(A) is n!, when all entries in A are 1. In this case, the
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system is considered to provide maximum anonymity as the attacker has been
unable to rule out any perfect matching as being the actual one.

Definition 1 (Infeasibility Attacks Metric). Edman et al. [3] define a sys-
tem’s degree of anonymity after an infeasibility attack that results in an n × n
biadjacency matrix A as:

d(A) =

{
0 if n = 1,

log(per(A))
log(n!) otherwise.

The above anonymity metric is reasonable as it compares the number of perfect
matchings deemed feasible by the attack with their maximum number. Note that
0 ≤ d(A) ≤ 1. Also, d(A) = 0 iff A has just one perfect matching, i.e. the system
provides no anonymity, and d(A) = 1 iff n > 1 and A has n! perfect matchings,
i.e. full anonymity.

The matrix of Fig. 2(c) contains 4 perfect matchings out of the 24 maximum
possible. By the above metric, the system’s degree of anonymity after that attack
is log(4) / log(24) ≈ 0.436.

2.2 A Metric for Probabilistic Attacks

Unlike infeasibility attacks, that simply label edges of the system’s complete
bipartite graph as being feasible or infeasible, probabilistic attacks assign to
each edge of the graph a real value between 0 and 1 as that edge’s probability
of being a part of the actual communication pattern.

As an example of this attack, consider the simple mix network shown in
Fig. 3(a), with two mix nodes, M1 and M2, and four input as well as output
messages. The message from mix M1 to M2 is internal to the network. As dis-
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Fig. 3. (a) Message flow via a mix network, observed by attacker to arrive at proba-
bilities of input-output message pairings. (b) Probability matrix of this network.

cussed in Serjantov and Danezis [1], suppose each mix node randomly shuffles
all its input messages before sending them out, i.e. a message entering any mix
node is equally likely to appear as any of that node’s output messages. If this
characteristic of mix nodes is known to the attacker, and the entire message flow
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pattern of the network (including internal messages) is visible to the attacker,
the attacker can arrive at probabilities for each input-output message pairing
of the system, as shown next to the output messages in Fig. 3(a). These prob-
abilities are essentially labels produced by the attack on edges of the system’s
complete bipartite graph, and can be arranged as a probability matrix P = [pij ],
as shown in Fig. 3(b). Any entry pij in this matrix contains the probability that
the system’s input message si appeared as its output message tj . Real values
from the closed interval [0, 1] are used for probabilities.

A probability matrix produced by an attack is doubly-stochastic, i.e. the
sum of all values in any of its rows or columns is 1. This follows from the
assumption that each input message must appear as some output message, and
each output message must have been one of the input messages. The maximum
value of the permanent of an n×n probability matrix P is 1 (see Propositions 1
and 2 in Section 3.1), when P contains exactly one 1 in each of its rows and
columns. In this case, the system is considered to provide no anonymity as the
attacker has determined all input-output message pairings with full certainty.
The minimum value of per(P ) is well known to be n!/nn, when all entries in
P are 1/n (see, for example, Egorychev [5]). This corresponds to the system
providing full anonymity.

Definition 2 (Probabilistic Attacks Metric). For any probabilistic attack
resulting in an n× n probability matrix P , Edman et al. [3] define the system’s
degree of anonymity after that attack as:

D(P ) =

{
0 if n = 1,

log(per(P ))
log(n!/nn) otherwise.

The permanent of the matrix of Fig. 3(b) works out to 1/9 ≈ 0.11111, while
the minimum value of the permanent of a 4 × 4 probability matrix is 4!/44 =
0.09375. By the above metric, the system’s degree of anonymity after this attack
is log(1/9) / log(4!/44) ≈ 0.9282.

A Note on Our Naming Convention and Figures. As the rest of this paper
deals with two different types of matrices, namely biadjacency matrices that have
0 and 1 entries and probability matrices with real values in the closed interval
[0, 1] as their entries, we adopt a consistent naming convention while discussing
them. The name A is always used for discussing any biadjacency matrix, and P
for any probability matrix. When the type of a matrix under consideration is
not important, we use the name M .

In figures, biadjacency matrices are displayed in the plain format, as in
Fig. 2(c), and probability matrices with shaded row and column titles, as in
Fig. 3(b).

Finally, the infeasibility attacks metric d of Edman et al. [3], given in Def-
inition 1, is defined for biadjacency matrices, while their probabilistic attacks
metric D, given in Definition 2, is for probability matrices.
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3 Shortcomings of Metric for Probabilistic Attacks

It is instructive to recapitulate the ranges of the permanent of matrices con-
sidered so far. These ranges are shown in Fig. 4. There are some similarities

n!/nn

Probability

matrix P

n!10

Biadjacency

matrix A

Fig. 4. Ranges of permanent: For an n×n biadjacency matrix A, per(A) is an integer
from the set {1, 2, . . . , n!}, and for an n×n probability matrix P , per(P ) is a real value
in the range [n!/nn, 1].

between the metric expressions proposed by Edman et al. [3] for infeasibility at-
tacks given by Definition 1 and probabilistic attacks given by Definition 2. First,
in both cases, the argument of the logarithm in the denominator is the perma-
nent of the matrix that corresponds to full anonymity. Second, the farther away
from 1 the permanent of the underlying matrix (A for an infeasibility attack,
and P for a probabilistic attack), the larger the system’s degree of anonymity.

Despite these similarities, while the metric for infeasibility attacks in Defini-
tion 1 is sound, we show that the metric for probabilistic attacks in Definition 2
is not a good one. In this section, we demonstrate some shortcomings of this
metric and, in the next section, we propose a better metric for probabilistic
attacks.

3.1 Inadequacy of Matrix Permanent

The first shortcoming of the metric in Definition 2 for probabilistic attacks is
that it is a function of just the permanent of the probability matrix. While the
value of the permanent is necessary to take into account, we will show that it is
not sufficient.

An Intuitive Understanding of Permanent. We begin by gaining a better
understanding of the permanent of a matrix. Recall that S and T are the sets
of n input and output messages of the system. Given any n× n biadjacency or
probability matrix M , we define a thread of M to be any subset of its cells that
contains exactly one cell from each row of M . Each thread therefore has exactly
n cells. Additionally, a thread of M is a diagonal if no two of its cells lie in the
same column of M . Let T (M) and X (M) denote, respectively, the sets of all
threads and diagonals of M . Note that, a cell in the matrix M corresponds to
an edge of the system’s complete bipartite graph between S and T , a thread
corresponds to a subgraph of that graph obtained by removing all but one edge
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connected to each s ∈ S (i.e. a function from S to T ), and a diagonal corresponds
to a perfect matching between S and T . Clearly, M has nn threads, of which n!
are diagonals.

Let the weight of any thread t of M , denotedW(t), be the product of values in
all cells of t. The following proposition follows immediately from the definitions
so far.

Proposition 1. For any biadjacency or probability matrix M ,∑
x∈X (M)

W(x) = per(M).

In other words, per(M) is the composite sum of weights of all diagonals of M .
We first make the following important observation:

The values in M induce not just its permanent, but also a weight distri-
bution on all its threads, including diagonals.

Next, we improve our intuitive understanding of the permanent of a probability
matrix by taking a closer look at the information content in it. The following
proposition is also straightforward.

Proposition 2. For any probability matrix P ,∑
t∈T (P )

W(t) = 1.

Proof. Let P be n× n. By definitions and algebraic rearrangement we have,∑
t∈T (P )

W(t) =
n∑

j1=1

n∑
j2=1

· · ·
n∑

jn=1

p1j1p2j2 · · · pnjn =
n∏
i=1

(pi1 + pi2 + · · ·+ pin) = 1.

The last equality follows from the fact that the sum of each row of P is 1. ut

Consider the set TS of all nn functions f : S → T . By assigning a probability
to each edge in the set S × T , the matrix P ends up inducing a probability on
each function in TS . The probability that P associates with any function f ∈ TS
is
∏
{pij | f(si) = tj}, i.e. the weight of the thread in P corresponding to f .

By Proposition 2, these weights add up to 1, i.e. we have a probability distri-
bution on the entire set TS . If a function f is now picked randomly from the
set TS according to the probability distribution defined by P , then by Propo-
sition 1, per(P ) is the probability that f is a bijection, i.e. a perfect matching
between S and T . The weights of the individual diagonals of P are the probabil-
ities associated by P to their corresponding perfect matchings of being the true
communication pattern of the system.1

1 As all column sums of P are also 1, P induces a similar probability distribution on
the set ST of all nn functions f : T → S. However, the bijections in ST correspond
to the bijections in TS , and get identical probabilities in both distributions. This
distribution therefore casts no further light on the meaning of per(P ).



An Accurate System-Wide Anonymity Metric for Probabilistic Attacks 9

A Better Indicator of Anonymity. Since the system’s goal is to blend
the true message communication pattern among others, the system’s degree of
anonymity should not be determined by simply answering the question:

What is the composite permanent of P?

The quintessential question is, rather:

How evenly is the permanent of P distributed as its diagonal weights?

By Proposition 1, it is possible for two matrices, say P1 and P2, to have iden-
tical permanents, but a significantly different diagonal weight distribution. If
the weights of all diagonals of P1 are closer to each other in comparison with
those of P2, then the system underlying P1 should be considered as providing
better anonymity, because the attack has better succeeded in exposing some of
the perfect matchings of P2 as being the likely ones.

The example in Fig. 5 illustrates this phenomenon on 3 × 3 matrices. The

P1 t1 t2 t3

s1 .53 .25 .22

s2 .20 .28 .52

s3 .27 .47 .26

P2 t1 t2 t3

s1 .53 .46 .01

s2 .01 .53 .46

s3 .46 .01 .53

.1489.0386

.0024.1295

.0024.0130

.0973.0351

.0000.0207

.0024.0166

Fig. 5. Two probability matrices with nearly identical permanent, 0.2535, but sig-
nificantly different diagonal weight distributions (for each perfect matching, weights
according to P1 and P2 shown of its corresponding diagonal).

diagonal weight distributions of these two matrices, in non-decreasing order, are:

P1: 〈0.0130, 0.0166, 0.0207, 0.0351, 0.0386, 0.1295〉,
P2: 〈0.0000, 0.0024, 0.0024, 0.0024, 0.0973, 0.1489〉.

Clearly, the weights of the diagonals of P1 are more evenly distributed than those
of P2. Yet, D(P1) ≈ D(P2), because per(P1) ≈ per(P2). Later, in Section 4, we
propose another metric that, by taking the diagonal weight distribution into
account, ends up assigning almost twice as high degree of anonymity to the
system underlying P1 than to that of P2.

Region of Acute Inadequacy of Permanent. Let the diameter of an n× n
probability matrix P be the largest difference between weights of any two of its
diagonals, i.e.

max{W(x1)−W(x2) | x1, x2 ∈ X (P )}.

Just as the permanent of P , its diameter is another rough indicator of the degree
of anonymity of the underlying system. In general, the smaller the diameter, the
higher the anonymity.
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For any possible permanent value p ∈ [n!/nn, 1], let M(p) be the set of all
n× n probability matrices with permanent p. As illustrated in Fig. 6 for n = 3,
for any value of p that is close to 1 or extremely close to n!/nn, the diameters of
all matrices in M(p) are roughly the same. Using just p to determine the system’s

0 0.2 0.4 0.6 0.8 Diameter

Permanent

0.7

0.4

0.1

Fig. 6. Diameter spread of possible permanent values of 3× 3 probability matrices.

anonymity level for such matrices, although inaccurate, is somewhat acceptable.
However, for any other value of p, i.e. in the middle range, matrices in M(p) vary
significantly in their diameters. It is in this region, where it is critical to consider
the entire diagonal weight distribution of a probability matrix to determine the
system’s anonymity level, rather than just its permanent.

We end this discussion with the observation that the permanent of matrices
in the example of Fig. 5 is approximately 0.2535. From Fig. 6 we can tell that the
diameters of these two matrices are in fact not as far apart from each other as
can be for some other two matrices with permanent, say around 0.4. Thus, even
more convincing examples can be constructed to demonstrate the inadequacy of
permanents as sole indicators of the anonymity level.

3.2 Incorrect Generalization of Infeasibility Attacks Metric

Another shortcoming of the metric in Definition 2 for probabilistic attacks is that
it is not a generalization of the metric in Definition 1 for infeasibility attacks,
despite the fact that probabilistic attacks are, in a sense, a generalization of in-
feasibility ones. We state this more precisely by giving an information-preserving
embedding of infeasibility attacks into the wider class of probabilistic ones.

Diagonal Weight Profile. Let 〈X1, X2, . . . , Xn!〉 be the sequence of diagonals
of any n×n matrix M , ordered by the lexicographic ordering on their underlying
index sets. In other words, if {(1, i1), (2, i2), . . . , (n, in)} is the set of indices of
cells in a diagonal Xi, and {(1, j1), (2, j2), . . . , (n, jn)} is the set of indices of cells
in a diagonal Xj , then i < j iff for some c, ic < jc and for all k < c, ik = jk.

We define the diagonal weight profile (or just profile) of M to be the normal-
ized sequence of weights of diagonals in the above sequence, given by:

profile(M) =
1

per(M)
〈W(X1),W(X2), . . . ,W(Xn!)〉.



An Accurate System-Wide Anonymity Metric for Probabilistic Attacks 11

As this paper only deals with matrices that have strictly positive permanents, the
above sequence is well defined. A fixed ordering of diagonal weights in profiles,
such as the lexicographic one given above, together with normalization, enable
us to compare weights of corresponding diagonals across matrices.

From Proposition 1, it is seen that profile(M) is a probability distribution
on the diagonals of M , i.e. perfect matchings of its underlying bipartite graph.
From the point of view of a system-wide anonymity metric, this is the most vital
piece of information contained in M .

A Profile-Preserving Embedding. Let A be an n × n biadjacency matrix
resulting from an infeasibility attack. Exactly per(A) values in profile(A) are
1/per(A), and the remaining values are 0. The metric d(A) of Definition 1 is
based on the premise that each of the per(A) feasible perfect matchings corre-
sponding to the nonzero values in profile(A) are equally likely, and the remaining
are not possible. We now proceed to construct a unique probability matrix CA
with the same profile as A. We will then show that while it is desirable and
expected that D(CA) = d(A), in general it is not so.

We begin by observing that the reduced bipartite graph underlying A may
contain edges that do not appear in any perfect matching as, for example, the
edge 〈s3, t2〉 in Fig. 2(b) and (c). Such nonzero entries in A are harmless since,
by not being on any diagonal with nonzero weight, their presence affects neither
per(A) nor profile(A), thus also not d(A). Let Â = [âij ] be the matrix identical
to A, except that Â contains a 0 entry for all such edges.

Now, let P(A) be the set of all possible (doubly-stochastic) probability ma-
trices conforming to the graph underlying A, i.e.

P(A) = {n× n probability matrix P = [pij ] |
pij = 0 if âij = 0, for all i, j}.

In other words, P(A) contains all possible probability distributions on the edges
declared feasible by A. It is well known that P(A) is nonempty iff per(A) > 0
(see, for example, Theorem 2.2.3 in Bapat and Raghavan [6]). Observe that
any P ∈ P(A) has no less information than A as it contains some probability
distribution in addition to the feasibility information in A, i.e. an attack resulting
in P is at least as strong as one resulting in A. It is therefore expected and
desirable that D(P ) ≤ d(A), but that does not always hold as the example
matrix in Fig. 7 illustrates. This matrix, P , is chosen arbitrarily from P(A), for
the biadjacency matrix A in Fig. 2(c). While d(A) ≈ 0.436, as computed at the
end of Section 2.1, we have that D(P ) ≈ 0.491, a larger value. This phenomenon
does not conform to the intuition behind anonymity metrics.

Let an n×n matrix S = [sij ] be called a scaling of an n×n matrix M = [mij ]
if for some multiplier vectors R = 〈r1, r2, . . . , rn〉 and C = 〈c1, c2, . . . , cn〉 with
strictly positive values, sij = rimijcj , for all i, j. It is easily verified that the
weight of any diagonal of S is the weight of the corresponding diagonal of M ,
multiplied by the scaling factor λ =

∏n
i=1 rici. Thus, per(S) = λ · per(M) as

well. This leads to the following proposition.
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P t1 t2 t3 t4

s1 0 0

s2 0 0

s3 0 0

s4 0 0

1
2

1
2

1
2

1
2

1
4

3
4

3
4

1
4

Fig. 7. An example P ∈ P(A), for biadjacency matrix A of Fig. 2(c).

Proposition 3. If S is a scaling of M , then profile(S) = profile(M).

We let S(M) denote the set of all scalings of M .

Theorem 1. For any n×n biadjacency matrix A resulting from an infeasibility
attack, P(A) ∩S(Â) is a singleton set.

Proof. When per(A) > 0, that the intersection is nonempty was established by
Brualdi, Parter and Schneider [7]. Uniqueness, when nonempty, follows from the
fact that distinct doubly-stochastic matrices cannot have identical profiles, given
as Corollary 2.6.6 in Bapat and Raghavan [6]. ut

The sole member of P(A)∩S(Â) is the unique canonical probability matrix
for A, denoted CA. It is the only doubly-stochastic matrix whose profile is iden-
tical to that of A. Fig. 8 shows an example matrix A, along with its CA. The

A t1 t2 t3

s1 0 1 1

s2 1 0 1

s3 1 1 1

CA t1 t2 t3

s1 0 2 2

s2 2 0 2

s3 2 2

 15 

 15 

 53

 53

 53  53 25 

Fig. 8. A biadjacency matrix A and its canonical probability matrix CA.

matrix CA can be viewed as the result of a probabilistic attack that has arrived
at the same conclusion as the infeasibility attack resulting in A, in that the sets
of perfect matchings called feasible by these attacks coincide and all those fea-
sible perfect matchings are deemed equally likely by both attacks. As these two
attacks are equally strong (in fact, identical), it is desirable that D(CA) = d(A).

For the matrices shown in Fig. 8, per(A) = 3 and per(CA) = 3(5
√

5− 11)/2.
However, profile(A) = profile(CA) = 〈0, 0, 1

3 ,
1
3 ,

1
3 , 0〉. And while d(A) ≈ 0.6131,

we have that D(CA) ≈ 0.8693 6= d(A). Again, an undesirable behavior of the D
metric. In Section 4, we present a new metric ∆ that has the property ∆(CA) =
d(A), for all biadjacency matrices A.
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Construction of Canonical Probability Matrix. As for the construction
of CA from a given A, recall that CA is a scaling of Â with some row-multiplier
vector R and column-multiplier vector C. For the example of Fig. 8, A = Â, and
let R = 〈r1, r2, r3〉 and C = 〈c1, c2, c3〉. As the sums of the rows and columns of
CA should be 1, we get the following 6 equations:

r1(c2 + c3) = 1 r2(c1 + c3) = 1 r3(c1 + c2 + c3) = 1
c1(r2 + r3) = 1 c2(r1 + r3) = 1 c3(r1 + r2 + r3) = 1

We seek solutions to the above system of equations in which all ri’s and ci’s are
positive. One solution for this particular scaling is:

R =

〈
3−
√

5
2

,
3−
√

5
2

,
√

5− 2

〉
, C =

〈
1 +
√

5
2

,
1 +
√

5
2

, 1

〉
.

Although there are multiple such solutions, Sinkhorn [8] showed that all solutions
are unique up to a scalar factor, i.e. if (R1, C1) and (R2, C2) are solutions to the
above, then for some α > 0, R2 = R1α and C2 = C1/α. However, due to the
uniqueness of CA all solutions lead to the same resulting matrix.

Sinkhorn and Knopp [9] gave another interesting characterization of CA as
the limit of an infinite sequence of matrices. Let f , g and h be functions from
and to n× n real matrices, defined as follows:

f(M)ij = Mij /
∑n
k=1Mik (f normalizes each row of M)

g(M)ij = Mij /
∑n
k=1Mkj (g normalizes each column of M)

h(M) = g(f(M))

Then, CA = limk→∞ hk(A). In other words, a procedure that alternately nor-
malizes all rows followed by all columns of A, ad infinitum, would converge to
CA. The accumulated row and column multipliers along the way also converge to
the correct R and C values. However, as A contains just 0-1 values, multipliers
accumulated after any finite number of iterations are only rational. As the ex-
ample in Fig. 8 shows, the final solution can be irrational, the limit of an infinite
sequence of rational approximations. So in general, this procedure requires an in-
finite number of iterations. A number of efficient algorithms have therefore been
considered, as in Kalantari and Khachiyan [10] and Linial, Samorodnitsky and
Wigderson [11], for producing in a finite number of steps, approximate solutions
that are within acceptable error bounds.

4 A More Accurate Metric for Probabilistic Attacks

We now present a new metric for probabilistic attacks that overcomes the short-
comings mentioned in the previous section of the metric D of Edman et al. [3].
By being sensitive to the distribution of the permanent of a given probability ma-
trix over its diagonals, the new metric results in a more accurate measurement
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of the underlying system’s degree of anonymity. Furthermore, this metric has
the welcome trait of correctly treating probabilistic attacks as generalizations of
infeasibility attacks. This feature is exploited to make just this one metric suffice
for both kinds of attacks.

The fundamental premise upon which our metric is constructed is that the
permanent of a matrix can be broken down into a probability distribution over
its diagonals, i.e. the perfect matchings of the system’s complete bipartite graph.
The profile of the matrix is essentially that distribution.

Ever since the works of Serjantov and Danezis [1] and Diaz et al. [2], Shannon
entropy of a probability distribution is a well accepted measure of the system’s
degree of anonymity. We employ the same technique over the profile of the
matrix as a measure of the attacker’s uncertainty of which perfect matching is
the system’s true communication pattern.

Definition 3 (Unified Metric). Let M be a given n× n biadjacency or prob-
ability matrix resulting from an attack, with profile(M) = 〈w1, w2, . . . , wn!〉. We
define the underlying system’s degree of anonymity after this attack as:

∆(M) =

 0 if n = 1,
−
∑n!
i=1 wi · log(wi)

log(n!) otherwise.

In the above summation, a subexpression 0 · log(0) is interpreted as 0.
Observe that the above metric ∆ is for biadjacency as well as probability

matrices, whereas the metrics of Edman et al. [3] for these two kinds of matrices
were separate. Their metric d, given in Definition 1, was for biadjacency matrices,
while their metric D, given in Definition 2, was for probability matrices. We first
establish that for biadjacency matrices, our ∆ coincides with d.

Theorem 2. For any biadjacency matrix A, d(A) = ∆(A) = ∆(CA).

Proof. The second equality follows from the fact that A and CA have identical
profiles. To show the first equality, we recall from Section 3.2 that exactly per(A)
values in profile(A) are 1/per(A), and the remaining values are 0. The numerator
of the expression in Definition 3 thus becomes:

−per(A)
[

1
per(A)

· log
(

1
per(A)

)]
= log(per(A)),

which is the numerator of the expression in Definition 1 of Section 2.1. ut

To understand the properties of our new metric better, we revisit some of
our earlier examples. For the probability matrices P1 and P2 of Fig. 5 with
equal permanent value of about 0.2535, we had that D(P1) ≈ D(P2) ≈ 0.9124.
However, ∆(P1) ≈ 0.8030, about twice as high as ∆(P2) ≈ 0.4544. Our new
metric ∆ recognizes that the profile of P2 is significantly more uneven than that
of P1, thus assigning the system underlying P2 a far lower degree of anonymity.

For the biadjacency matrix of Fig. 2(c), we have ∆(A) = d(A) ≈ 0.436. The
probability matrix P of Fig. 7 was arbitrarily chosen from the set P(A). Of
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the 24 values in profile(P ), 〈 1
20 ,

9
20 ,

1
20 ,

9
20 〉 is the subsequence of nonzero values.

While we saw that D(P ) ≈ 0.491 > d(A), we have that ∆(P ) ≈ 0.3204 < d(A).
This behavior conforms with our intuition that P has more information than A.
The following theorem shows that this phenomenon is guaranteed by ∆.

Theorem 3. For any biadjacency matrix A and P ∈ P(A), such that P 6= CA,
∆(P ) < ∆(A).

Proof. Let per(A) = t. Then, profile(A) has t nonzero values, and each of those
values is 1/t. Let p1, p2, . . . , pt be the corresponding values in profile(P ). As these
are the only diagonals of P that may have nonzero weights, their sum is 1. We
need to show that:

−
t∑
i=1

pi · log(pi) < −
t∑
i=1

(1/t) · log(1/t).

Although this property of Shannon entropy is well known in information theory
(see, for example, Kapur [12] for a proof based on Jensen’s inequality), here we
give a short proof.

It is easily seen that, for all β > 0, we have 2β ≤ 2β , with equality iff
β = 1. Taking logarithms to the base 2 gives 1 + log(β) ≤ β. As we interpret
0 · log(0) = 0, we can substitute β = (1/t)/pi, and simplify, to get that for all i,
pi− pi · log(pi) ≤ (1/t)− pi · log(1/t), with equality iff pi = 1/t. Summation over
all i gives:

−
t∑
i=1

pi · log(pi) ≤ log(t) = −
t∑
i=1

(1/t) · log(1/t).

As P 6= CA and distinct doubly-stochastic matrices cannot have the same profile,
we have that for some i, pi 6= (1/t), leading to a strict inequality. ut

We end this section with an example that demonstrates how different our
new metric ∆ can be from the old metric D of Edman et al. [3]. Fig. 9 shows two
matrices, P1 and P2 for which, according to the D metric, P1 seems to result
in less anonymity than P2, as D(P1) ≈ 0.5658 < 0.7564 ≈ D(P2). However,

P1 t1 t2 t3

s1 .04 .04 .92

s2 .48 .49 .03

s3 .48 .47 .05

P2 t1 t2 t3

s1 .65 .01 .34

s2 .01 .34 .65

s3 .34 .65 .01

Fig. 9. Two probability matrices for which D(P1) < D(P2), but ∆(P1) > ∆(P2).

∆(P1) ≈ 0.4132 > 0.2750 ≈ ∆(P2), i.e. according to our new metric, P1 results
in higher anonymity than P2.
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5 Conclusions and Future Work

Edman, Sivrikaya and Yener [3] introduced a method for arriving at a system-
wide measure of the level of anonymity provided by a system. Their approach
is based upon a complete bipartite graph that models all possible input and
output message associations of the system. By rendering infeasible some edges
of this graph, an infeasibility attack results in a reduced graph, thereby lowering
anonymity. They proposed adopting the permanent of the biadjacency matrix
of this reduced graph to determine the amount of anonymity remaining in the
system in the aftermath of the attack.

Edman et al. [3] then suggest adopting a similar technique for a wider class of
probabilistic attacks that, instead of removing infeasible edges from the system’s
complete bipartite graph, assign probabilities to all edges.

In this paper, we argue that while the metric given in [3] for the narrower
class of infeasibility attacks is sound, their metric for probabilistic attacks has
shortcomings. We show why using just the permanent of the underlying matrix
for probabilistic attacks is inaccurate, as it at best gives only a rough measure of
the system’s anonymity level. We also show that this technique fails to correctly
treat probabilistic attacks as generalizations of infeasibility ones.

We then present a new metric that overcomes these shortcomings. By rec-
ognizing that the permanent of a matrix can be broken down into a probability
distribution on the perfect matchings of the underlying bipartite graph, our new
metric provides an accurate measure of anonymity. It also has the desirable
property of being a unified metric for both classes of attacks.

The basic metric of [3] for infeasibility attacks has since been extended for
modified scenarios. Gierlichs et al. [13] enhanced it for situations where system
users send or receive multiple messages. The equivalence relation on perfect
matchings, induced by such multiplicity, causes a reduction in anonymity. Bagai
and Tang [14] analyzed the effect of employing data caching within the mix
network. Their modified metric captures an increase in anonymity due to such
caching. We leave such extensions to the new metric proposed in this paper as
future work.
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