The Need for Flow Fingerprints
to Link Correlated Network Flows

Amir Houmansadr! and Nikita Borisov?

! The University of Texas at Austin
amir@cs.utexas.edu
2 University of Illinois at Urbana-Champaign
nikita@illinois.edu

Abstract. Linking network flows is an important problem in the de-
tection of stepping stone attacks as well as in compromising anonymity
systems. Traffic analysis is an effective tool for linking flows, which works
by correlating their communication patterns, e.g., their packet timings.
To improve scalability and performance of this process, recent propos-
als suggest to perform traffic analysis in an active manner by injecting
invisible tags into the traffic patterns of network flows; this approach
is commonly known as flow watermarking. In this paper, we study an
under-explored type of active traffic analysis that we call it flow finger-
printing. Information theoretically, low watermarking aims at conveying
a single bit of information whereas flow fingerprinting tries to reliably
send multiple bits of information, hence it is a more challenging prob-
lem. Such additional bits help a fingerprinter deliver extra information
in addition to the existence of the tag, such as the network origin of
the flow and the identity of the fingerprinting entity. In this paper, we
introduce and formulate the flow fingerprinting problem and contrast
its application scenarios from that of the well-studied flow watermark-
ing. We suggest the use of coding theory to build fingerprinting schemes
based on the existing watermarks. In particular, we design a non-blind
fingerprint, Fancy, and evaluate its performance. We show that Fancy
can reliably fingerprint millions of network flows by tagging only as few
as tens of packets from each flow.

Keywords: Flow fingerprinting, traffic analysis, linear codes, network security

1 Introduction

Linking network flows is an important problem in different applications, in-
cluding stepping stones detection [13,28] and compromising anonymity [22,23].
For instance, it is widely known that attackers can de-anonymize a low-latency
anonymity system by linking its egress and ingress flows. Since network flows are
commonly encrypted in such applications, linking flows is feasible only through
correlation of communication patterns such as packet timings, packet counts,
and packet sizes [13,22,23]; this is known as traffic analysis.

Traditional traffic analysis links network flows passively, i.e., through ob-
serving and correlating patterns inherent in network flows such as packet tim-
ings [3,28]. Unfortunately, this suffers from high rates of false positive errors due
to the intrinsic correlation that exists among network flows, even if they are not
related [13]. For instance, HT'TP connections to the same webpage exhibit highly
correlated packet timings [14], even if they are initiated independently by indi-
viduals residing in different network locations. In response to this, researchers
have suggested an active approach for traffic analysis. In this approach, com-
munication patterns of network flows are slightly perturbed, e.g., by delaying
packets, such that this perturbation is detectable from the flows even after pass-
ing through a noisy network like the Internet. The existing designs for active
traffic analysis are referred to as flow watermarks. A flow watermarking system
is composed of watermarkers, who tag network flows by perturbing their pat-
terns, and detectors, who analyze intercepted flows to identify those carrying the
watermark perturbation.

In this paper, we study flow fingerprinting, an under-explored® variant of ac-
tive traffic analysis. Flow fingerprinting is similar to flow watermarking in that
it tags network flows by slightly perturbing their communication patterns—we
call these tags flow fingerprints. Flow fingerprinting, however, differs from flow
watermarking in the amount and the kind of information that it embeds: A wa-
termark tag contains a “single bit”, which solely states that the carrying flow has
been tagged by “some” tagger (watermarker); on the other hand, a fingerprint
tag contains “multiple bits” of information, which convey additional informa-
tion about the flows being tagged. In simpler words, for each observed flow a
watermark detector only seeks the answer to the following question: “Has this
flow been tagged by any of our watermarking agents?” A fingerprint extractor,
however, looks for additional information about the intercepted flow, such as
the network origin of that flow, its relation to other observed flows, the iden-
tity of its tagger, and so on. Example questions asked by a fingerprint extractor
are: “Which specific fingerprinter (out of all fingerprinters) tagged this flow?”
“Which specific flow is related to the observed flow?” “In which region of the
network has this flow been tagged?” etc.

The need for flow fingerprints. While flow watermarking and fingerprint-
ing look very similar in how they operate, they have different capabilities and
limitations. To illustrate this better, consider the following application scenario.
Previous research [22,23] have designed flow watermarking systems in order to
attack anonymity systems by linking their egress and ingress flows. Such water-
marks, however, can only conduct a targeted attack in this scenario, i.e., they
can identify the egress flows corresponding to a “single” target, ingress flow.
On the other hand, one might need to perform a non-targeted attack in this
case, i.e., to simultaneously identify the egress flows corresponding to “many”
ingress flows observed; this can not be accomplished through flow watermark-
ing [10,13,19,23,27] as they do not have efficient mechanisms to confidently

3 By fingerprinting we mean fingerprinting of traffic patterns, not packet contents.
The latter is orthogonal to the problem studied in this paper, and is widely studied.

distinguish among various watermark tags. Performing such a non-targeted at-
tack requires a flow fingerprinting scheme that embeds various tags on different
ingress flows, and that is reliably able to extract them from the egress flows. In
Section 2 we elaborate more on the differences between flow watermarking and
fingerprinting.

A gap in the literature. The literature on active traffic analysis has mainly
studied the flow watermarking problem [10,13,19,23,27] while entirely ignoring
flow fingerprinting. This comes as a surprise given that, in several important
applications of traffic analysis, flow fingerprinting is indeed the solution to the
problem, not watermarking (see Section 2). As fingerprinting aims at the reliable
extraction of multiple information bits its design is more challenging than flow
watermarking, which only conveys a single bit of information. One might design
a naive fingerprinting scheme by having a flow watermarker insert dif-
ferent tags into different flows. The problem, however, is that the watermark
detectors will not able to distinguish among a large number of distinct water-
marks as they are not designed to do so (they might be able to distinguish within
a small set of watermarks though). Note that in several flow watermarking sys-
tems [10,13,17,19] a watermark signal is composed of a sequence of numbers,
often referred to by the misleading term of watermark “bit”s. These watermark
bits, however, do not correspond to different “information bits,” but they all
help to the reliable transmission of a single information bit. To make this more
clear, consider the cell-counter attack of [17]. This attack uses a Tor-specific [7]
flow watermark that embeds a secret sequence of watermark bits on each Tor
flow by modifying its cell counters [6]. In this setting, a single Tor cell delivers
a 0 watermark bit and a triplet Tor cells sent together denotes a 1 watermark
bit. As network congestion and network delay can separate and merge cells in a
circuit, the authors in [17] design a recovery mechanism to detect the distorted
watermark sequences. While this mechanism is able to detect the presence of
the watermark sequence on a distorted flow, it is not able to reliably extract the
watermark bits. For instance, suppose that each watermarker inserts only one
of these two watermarks: “010” and “00000”. Once a detector receives a flow
with a “010” cell pattern, it will return positive correlations against both “010”
and “00000” watermark sequences due to its recovery mechanism (for “0000”
the detector assumes that the triplet cells carrying the 1 bit are split by the Tor
routers). In simpler words, the detector can tell, with high assurance, that a flow
contains a watermark, but it can not tell which one.

As another example, consider RAINBOW [13], which is the basis of our
Fancy fingerprint. For a specific set of RAINBOW parameters, i.e., a watermark
amplitude of 10ms and a watermark length of 500, RAINBOW achieves a false
negative rate of around 107% (Figure 4 of [13]), i.e., it misses only one out
of a million watermark tags. For the same parameters, the average correlation
between the embedded watermark and the extracted one is about 0.55 (Figure
6 of [13]), meaning that it roughly misses one third of the watermark bits with
unknown positions, despite its very high watermark detection ratio. Similarly,

all of the proposed flow watermarks [10, 13,17, 19] are only able to detect the
presence of the watermark, but cannot extract the watermark bits reliably.

Our contributions. In this paper, we introduce and formulate the flow fin-
gerprinting problem and contrast its application scenarios from that of the well-
studied flow watermarking. We also design a class of flow fingerprints, called
Fancy, that uses a non-blind architecture similar to the RAINBOW [13] wa-
termark. Fancy utilizes communication codes for the reliable extraction of fin-
gerprint bits. We investigate the use of three classes of coding schemes in the
design of Fancy, namely block codes, convolutional codes, and turbo codes [21].
We simulate Fancy using real-world network traces and evaluate its fingerprint-
ing performance for different coding algorithms and under different conditions.
The simulation results show that it is possible to reliably send dozens of finger-
print bits over very short lengths of network flows. Our methodology in using
coding theory can motivate the design of other fingerprints based on existing
watermarking systems. In summary, in this paper we make the following main
contributions:

— We introduce and formulate the problem of flow fingerprinting, and discuss
its necessity in several applications;

— We design the very first flow fingerprinting scheme, called Fancy;

— Through massive simulations on real-world network traces we show the
promising reliability of Fancy in fingerprinting network flows and discuss
different performance trade-offs.

In this paper, we do not study tag invisibility, robustness to active attacks,

and similar issues common to flow watermarks. While these issues are important,
they have been extensively studied in the watermarking literature. In particu-
lar, the invisibility and robustness evaluations of [13, 16] apply to the Fancy
fingerprint designed in this paper.
Paper’s organization. The rest of this paper is organized as follows: in Sec-
tion 2, we introduce flow fingerprinting and elaborate on its differences with
flow watermarking by mentioning their application scenarios. In Section 3 we
describe the design of our proposed flow fingerprinting scheme, Fancy. We de-
sign efficient codes for Fancy and evaluate their performance in Section 4. We
discuss the related work in Section 5 and the paper is concluded in Section 6.

2 Network Flow Fingerprinting

As described above, active traffic analysis has mainly been studied in the concept
of flow watermarking, leaving flow fingerprinting unexplored. In this section, we
define the flow fingerprinting problem by describing its components and goals.
Then, we discriminate flow fingerprinting from its dual, flow watermarking, by
explaining their application scenarios.

2.1 Problem Statement

A fingerprinting system is composed of two main components: fingerprinters and
fingerprint extractors. A typical implementation of a fingerprinting system may
consist of several fingerprinters and extractors mounted at different network lo-
cations. A fingerprinter slightly modifies communication patterns of an observed
network flow, e.g., its packet timings, so that it modulates an ¢-bits fingerprint
tag into that flow. This ¢-bits fingerprint conveys some information about the
carrying flow, e.g., its network origin, hence it might have different values across
different flows. A fingerprinted flow passes through a noisy network, e.g., the
Internet, before it is intercepted by a fingerprint extractor who, then, tries to
extract its ¢-bits fingerprint tag. A fingerprint tag should be robust to the net-
work noise, i.e., an extractor should be able to extract all ¢ bits correctly. Also,
as with flow watermarks, a fingerprint should be invisible, i.e., an entity not
part of the fingerprinting system should not be able to distinguish between a
fingerprinted flow and a regular flow.

2.2 Application Scenarios

Active traffic analysis is traditionally suggested for two applications: detection of
stepping stone attacks [10,13,19], and compromising anonymity systems [17,22].
In the following, we introduce these two applications and discriminate finger-
printing and watermarking in each of these cases.

Compromising Anonymity Systems An anonymity system like Tor [7] maps
a number of input flows to a number of output flows while hiding the exact
relationships between them. The goal of an attacker, then, is to link an incoming
flow to its outgoing flow (or vice versa). Previous research [22,23] has suggested
the use of flow watermarks for performing this attack. To do so, an attacker
tags the flows entering the anonymity network and watches output flows for the
inserted watermark. Such an attack can be performed in two manners, targeted
and non-targeted. As we discuss in the following, flow watermarking is only able
to conduct the targeted form of this attack, whereas conducting the non-targeted
attack requires flow fingerprinting.

1) Targeted attack Consider a malicious website who intends to identify users
who visit that website through an anonymity system (see Figure 1a). To do so,
the malicious website inserts a tag on all flows between itself and the anonymizing
system. An accomplice who can eavesdrop on a link to the anonymity system
(e.g., a malicious Tor entry node, or an ISP) can identify the users browsing the
malicious website by looking for the inserted tag. Note that, in this case, the
malicious website suffices to insert the same tag on any flow that it tags, i.e., it
inserts a watermark. This is because the accomplice only needs to check for the
existence of the tag, but not its value.

2) Non-targeted attack Now consider a different scenario in which two (or
more) compromised/malicious Tor [7] nodes intend to de-anonymize Tor’s con-

nections (see Figure 1b). We argue that this application requires flow fingerprint-
ing as a solution. Suppose that the malicious nodes A and B intercept traffic
from n and m number of distinct users, respectively. If flow watermarking was
used by the attackers, the node A would insert the same tag (i.e., a watermark)
on the traffic of all of its n users, and the node B would look for that single
watermark on the traffic of all of its m users. In this case, if B detects the wa-
termark on the traffic of one of its m users, namely Up j, the attackers can only
infer that Up j is communicating with one of the n users observed by A, but
they can not tell with which of them. Alternatively, suppose that flow finger-
printing is used by the attackers. In this case, A inserts a different, customized
tag (i.e., a fingerprint) on the traffic of each of its n users, e.g., it inserts the
fingerprint f; on the traffic of user U4 ;. Now, if B observes that the traffic to
one of its users, Up j, contains the fingerprint f; the attackers can infer that
users Uy ; and Up i, are communicating through the anonymity system.

. £5e

Malicious
Website
(The Target)

&

Anonymity Network

(a) Targeted attack

Us,1
Malicious ﬁ ’

Malicious
Ua1 node node

A B 9! Us,2

. i L @ q@ Usk
@ UB,m

Ua,i

Anonymity Network

UA,n
(b) Non-targeted attack

Fig. 1: Target and non-targeted attacks on an anonymous network.

Stepping Stone Detection A stepping stone is a host that is used to relay an
attacking traffic to its victim destination, in order to hide the true origin of the
attack. To defend, an enterprise network should be able to identify the ingress
flows that are linked (correlated) with some egress flow. The situation is therefore

very similar to an anonymous communication system, with n flows entering the
enterprise and m flows leaving. There are two objectives for active traffic analysis
in this case, as described in the following; the first one is achievable using flow
watermarking while the second one requires flow fingerprinting.

1) Detecting relayed flows As previous research [13,19] suggests, flow wa-
termarks can be used to detect relayed network flows in this scenario. Suppose
that the enterprise network consists of two border routers A and B. To do so,
the border router A inserts a watermark tag w on all flows that enter the enter-
prise network. On the other side, the border router B inspects all egress network
flows, looking for the watermark w. Suppose that A intercepts n flows and B
intercepts m network flows at a given time. If B detects that a network flow Fz 4
is carrying the watermark tag w, the security officer of the enterprise network
infers that F'p j is a traffic relayed through the enterprise. However, the security
officer can not tell which of the n flows observed by A is the source of F j, since
A inserts the same watermark tag on all intercepted flows.

2) Detecting relayed flows and their origins Flow fingerprinting can be
used to not only detect the relayed flows, but also identify their sources. Consider
the case in which the border router A inserts different tags (i.e., fingerprints)
on each of the n intercepted flows (that is, the fingerprint f; is inserted into the
i-th flow, Fl4 ;). Now, suppose that B detects the fingerprint f; on the network
flow Fg ;. In this case, the security officer infers two facts: first, Fiz ;, is a relayed
traffic and, second, the source of this relay traffic is the network flow F4 ;. A
watermark, however, is not able to identify the source of the relayed traffic.

3 Fancy Fingerprinting Scheme

In this section, we describe the design of our flow fingerprinting system, Fancy.
Fancy consists of two main elements: a fingerprinter that embeds fingerprint
messages inside intercepted flows by slightly modifying their timing patterns,
and a fingerprint extractor (extractor in short) that analyzes the timing pat-
terns of the intercepted flows, trying to extract the fingerprint messages. Fancy
uses a non-blind architecture similar to the RAINBOW watermark [13]: the fin-
gerprinter communicates with fingerprint extractors some information about the
flows being fingerprinted, which is required for efficient fingerprint extraction. To
perform this communication, Fancy uses a third element in its design, IPDs reg-
istrar, which is accessible by fingerprinters and fingerprint extractors. A Fancy
fingerprinter stores some information about the intercepted flows on the IPDs
registrar, which is periodically accessed by Fancy extractors. Figure 2 shows the
high-level block diagram of Fancy.

3.1 Embedding Fingerprints

Figure 3 illustrates a Fancy fingerprinter. Suppose that a network flow, n, with
packet timings of t = {t;]i = 1, ...} enters the fingerprinter (e.g., a router) where
it is to be fingerprinted. The fingerprinter generates an ¢-bits fingerprint message,

| Sender | Fingerprinter p—p» Noisy Network Extractor > Receiverl

IPDs Registrar

Fig. 2: The main model of Fancy fingerprinting system.

f=A{filfi =x1,i=1,..,¢}, that especially corresponds to the intercepted flow
n. That is, a different fingerprint sequence is generated for each intercepted flow,
however a fingerprint sequence can be re-used for another flow once the first flow
has terminated. This fingerprinter records n’s fingerprint message, f, along with
the last £¢ inter-packet delays (IPDs) of n, i.e., 7 = {t;|7; = tix1—ti,i = 1,.., £},
in the IPDs registrar (¢¢ is the length of the fingerprinted flows, as described
later). In addition to recording the flow’s fingerprint in the IPDs registrar, the
fingerprinter embeds f on the intercepted flow n, as described in the following
(in Section 3.3, we discuss the reason for both embedding the fingerprint into
the flow and recording it in the IPDs registrar).

Encoded
) . Fingerprint Fingerprinted
Fingerprint ——p»- Encoder Chl g”::gs

— !
Amplitude IPDs

Fig. 3: Fingerprinting scheme of Fancy.

The fingerprinter embeds the fingerprint f into the intercepted flow n by
delaying its packets by an amount such that the IPD of the i-th fingerprinted
packet is

=mita f (1)

The constant a is the fingerprint amplitude and f¢ = {ff|ff = £1,i =
1,...,£¢} is the encoded fingerprint sequence, which is generated from f as de-
scribed in the following. The value a is chosen to be small enough so that the
artificial jitter caused by fingerprinting is invisible to non-fingerprinting parties
and to the users.

Fingerprint generation: Suppose that Fancy intends to insert an /-bits fin-
gerprint f = {f;|i = 1,...,¢} on a candidate flow. Since each fingerprint bit takes
one of the +1 and -1 values, the number of all distinct fingerprint sequences is 2.
A fingerprinter encodes an ¢-bits fingerprint sequence, f, into an £°-bits encoded
fingerprint f¢ by passing f through the encoder block of Fancy fingerprinter.

For a given encoding algorithm, we define the redundancy of our fingerprinting
system, r, to be the redundancy of the utilized encoder, i.e.,

r={0°/1. (2)

3.2 Extracting Fingerprints

Suppose that a Fancy extractor receives the fingerprinted flow n after passing the
noisy network, e.g., the Internet. Let us consider that 74" = {7""|i = 1,..,£°}
are the IPDs of n as observed by the extractor (the superscript ¢ denotes being
encoded/fingerprinted and the superscript denotes being received after passing
the noisy network). As described above, the Fancy fingerprinter has recoded n’s
IPDs before getting fingerprinted, i.e., 7, in the IPDs registrar, along with the
embedded fingerprint message f. The extractor uses this recorded information
to perform fingerprint extraction by accessing the IPDs registrar.

The IPDs registrar contains flow records, which are generated by fingerprint-
ers. Each flow record is a pair Ry = (7%, fk), where k is the index of the record in
the IPDs registrar, 7% is the original IPDs sequence of a fingerprinted flow, and
fk is the fingerprint embedded into that flow. For each received flow, the extrac-
tor loops through the IPDs registrar to find the right flow record corresponding
to it (if any).

For any flow record in the IPDs registrar, e.g., (7%, fk), the extractor per-
forms the following steps:

1. The extractor derives the following sequence:

fr == e =10 (3)

K2 2

where 7,7 is the i-th IPD of the received flow.

2. Then, the extractor passes the (-bits f™* = {f:k|z = 1,..,£°} through a
decoder block that outputs an (-bits sequence f&F = {fid’]c fid”c =+1,i=
1,..,£}. This decoder is the corresponding decoder for the encoder block used
by Fancy fingerprinter.

3. The extractor declares that the received flow contains the fingerprint se-
quence fk if it is the same as the decoder’s output, i.e., if we have that:

f‘d’k = fik’ Vi e {1’ 76} (4)

(3

4. If (4) does not hold the extractor uses the next flow record from the IPDs
registrar and repeats the steps above until the end of the database.

We claim that the described algorithm results in reliable extraction of Fancy
fingerprints. Let us consider the following two cases:

Case 1 (True match): Suppose that the extractor has picked the flow record
that corresponds to the received flow, i.e., 7% = 7 and f¥ = f. We have that

o =146 (5)

7

10

where J; is the network jitter applied to the i-th IPD and 7{ is the fingerprinted
IPD. In this case, using (1), (5), and (3) we get that:

ff =" =1k /a (6)
=(rni+0i+aff —m)/a (7)
= fi+d;/a (8)

In other words, using the right flow record from the registrar the step 1 of our
extraction process will generate a perturbed version of the coded fingerprint. As
a result, passing this perturbed coded fingerprint through the decoder (step 2)
is likely to return the embedded fingerprint, depending on the noise conditions
and the decoder performance (in Section 4 we design decoders that perform
very well in our application). Since this decoded fingerprint is the same as the
one contained in the flow record, step 3 of the algorithm will result in a correct
fingerprint extraction.

Case 2 (False match): Now, let us consider a case where the extractor is using a
non-relevant flow record from the registrar. In this case, the second step of the
above algorithm will result in an arbitrary fingerprint sequence. The odds that
this arbitrary fingerprint is the same as the one contained in the flow record is
27%. For the values of ¢ used in our design (e.g., 25) this results in a tiny false
extraction rate, so we neglect this case in our performance evaluation. Note that
the overall probability for a received flow getting false matched with some flow
record is 27¢ x Y, where Y is the number of flow records matched against from
the IPDs registrar; the following filtering process minimizes Y.

Filtering flow records: In order to speed up the extraction process, also to
decrease the possibilities of false matches, for a received flow the extractor leaves
out a large number of flow records in the registrar by using simple filters. One
very simple, yet efficient, filter is the packet count of the registered flows: the
extractor does not consider flow records whose corresponding flows have packet
counts much larger or much smaller than the packet count of the received flow.
A second filter that we use is the IPDs-distance metric, which leaves out the
records with non-similar IPDs. We define the IPDs-distance metric between a
received flow with IPDs 77 and a flow record Ry = (7%, £¥) to be:

0c

A7) = 5 ST = £9) ©)

i=1

If Ry, is the right record corresponding to the received flow this distance met-
ric will return the average network jitter on the path, which is a small number.
The extractor considers only those records from the registrar whose distance
from the received flow are smaller than a threshold, n. By putting 1 equal to
four times the standard deviation of the network jitter the odds that the right
record is left out is approximately 104 (we model the network jitter as Laplace
distribution [13]).

11

3.3 Alternative Designs

As described above, to fingerprint a flow n with the fingerprint message f, the
fingerprinter performs two tasks: a) it records the fingerprint f in the IPDs regis-
trar, along with the IPD values of the flow, and, b) it embeds f into the network
flow n. Alternatively, one could suggest to only record the fingerprint in the
registrar, or to only embed it into the flow. In the following, we back our design
decision by discussing the performance degradation of the two alternatives.

Passive fingerprinting An alternative approach to Fancy is to only record
fingerprint sequences in the IPDs registrar along with their corresponding IPDs
sequences, without embedding the fingerprints into the flows. In fact, this ap-
proach is passive traffic analysis, which has extensively been studied in the lit-
erature [3,9,25]. Unfortunately, this approach may result in high rates of false
detection, especially when the evaluated flows are cross-correlated. The common
examples for correlated network flows are web traffic (to the same destination),
and file transfers. To validate this, we simulate an optimum passive traffic anal-
ysis scheme [14] on real web traffic that are generated by different users to the
same websites. Our results (Table 1) show that even this optimum passive traffic
analysis scheme produces very large false positive errors in linking the correlated
web traffic.

Table 1: False positive error rates of the optimum passive traffic analysis [14] in
linking web traffic that are generated by different users to the same websites (N
is the flow length).

Website |N=25|N=50|{N=100

baidu.com | 0.29 | 0.07 | 0.08
blogger.com | 0.97 | 0.63 1

facebook.com| 0.91 | 0.97 | 0.96
live.com 1 1 0.38
wikipedia.org| 0.94 | 0.44 | 0.46
yahoo.co.jp | 0.66 | 0.33 | 0.05
yahoo.com 1 1 0.23
yandex.com | 0.89 | 0.08 | 0.02

Only embedded into flows As another alternative, one could only embed
fingerprints in network flows without recording them in the IPDs registrar. This,
also, results in high rates of false extraction errors. For a received flow at the
extractor, the use of a non-corresponding flow record from the registrar will
most likely lead the extractor to retrieve some wvalid fingerprint sequence that
is different from the embedded fingerprint. By recording the fingerprints in the
registrar as well the extractor can detect this by simply comparing the extracted
fingerprint with the one recorded in the IPDs registrar.

12

4 Code Design and Simulations

We investigate the use of different coding algorithms as the encoder/decoder
block of Fancy. In particular, we investigate the use of several linear block codes
[21] considering our communication channel. Based on our measurements over
Planetlab [1] the standard deviation of network jitter () between randomly
selected nodes varies between 6ms and 12ms. For a fingerprinting amplitude of
a = 10ms, the SNR [2], given by SNR = 20log(a/)), varies between -1.5836
and 4.4370 (i.e., an average of 1.4267). Also, we aim at having a flow length
of around n = 100 for fingerprinting, since larger lengths would take longer to
extract. For these parameters, we look for appropriate coding algorithms to be
used by Fancy’s encoder. Dolinar et al. [8] compare the performance of several
block codes for different lengths of information bits, along with the theoretical
capacity limits. In particular, they illustrate the appropriate block size values for
different coding algorithms, i.e., the range of block sizes that a coding algorithm
performs close enough to the channel capacity. Based on such evaluations (Figure
12 in [8]) we identify several codes that are expected to work well for our system
parameters. In particular, we investigate the use of three types of linear codes in
our simulations, which are Reed-Solomon (RS) Codes, convolutional codes, and
turbo codes. The simulations are done in Matlab using network traces gathered
over Planetlab [1], and by using Matlab’s built-in coding functions and the CML
coding library [4].

Evaluation metrics — We define the following metrics to evaluate the extrac-
tion performance of Fancy.

— Extraction Rate (Pg): This metric is the ratio of the number of finger-
printed flows successfully extracted by a Fancy extractor to the number of
all fingerprinted flows.

— Miss Rate (Py): This is the ratio of the number of fingerprinted flows
declared as non-fingerprinted by a Fancy extractor to the number of all
fingerprinted flows. We have that Py; =1 — Pg.

The goal of a Fancy extractor is to maximize the extraction rate (i.e., mini-
mize the miss rate).

4.1 Reed-Solomon (RS) Codes

Reed-Solomon (RS) codes [21] are a class of linear block codes that are maximum
distance separable (MDS), i.e., they meet the equality criteria of the singleton
bound [21]. In fact, the RS codes are the only known instances of the MDS
codes. The encoding structure of the RS codes makes them suitable for M-ary
communication schemes where the noise is applied in bursts over a message bit
stream (e.g., satellite communications). This makes them a good candidate for
applications where bursty noise may happen to inter-packet delays, e.g., due to
network congestion. We use the notation (n, k)-RS for an RS code that encodes
each k message symbols into n encoded symbols, where each symbol is m bits

13

and m = logy(n + 1) (e.g., an n-bit RS coded message consists of m x n binary
bits).

We design a Fancy fingerprint, called Fancy-RS, that utilizes RS encoders as
part of its encoding algorithm. More specifically, Fancy-RS generates an £°-bits
coded fingerprint f€ from an ¢-bits fingerprint sequence f by passing f through
an (n, k)-RS encoder. We have that (¢ = n/kf.

We simulated Fancy-RS in Matlab. We use traces of network jitter gathered
over Planetlab [1] to simulate the effect of the noisy network over the finger-
printing performance. Note that we do not include the original IPDs in our
simulations, since as discussed in Section 3.2 the extractor is able to reliably
pick the original IPD sequence from the IPDs registrar and subtract it from
the received flow before performing the extraction. In the first experiment, we
measure and compare the performance of our fingerprint extractor for different
parameters of the (n, k)-RS encoder. We set a = 10ms and p = 2. We also set
¢ = mk (generally, ¢ should be an integer multiplication of mk) and vary the m
and k parameters of our RS encoder (each experiment is run for 1000 times with
different randomly generated fingerprints and different network jitter). Figure 4
shows the extraction rate (Pg) for different values of m and k (the bars show the
95% confidence intervals). As can be seen, for a given m, decreasing k improves
the extraction performance since it increases the redundancy of our RS encoder,
i.e., (2™ —1)/k. Figure 5 shows the coding redundancy of Fancy-RS for different
parameters of the RS code.

20 B m=4 —4—
. 0.95 5 m=5 —e—
o m=6 ——
B 09 g 30 T m=7 —&—
s 085 8 25
8 o8 S 20%— e
©) h=]
o m=4 F—+—
X 075 m=5 r—e— : 12 o o e——
0.7 IM=6 F¢— —
. 5 4
m=7 F—d—
0.65 L oL
3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

Parameter k Parameter k

Fig. 4: Extraction rate of Fancy-RS for Fig.5: Coding redundancy of Fancy-RS
different RS encoders. (a = 10ms, and for different RS encoders. (a = 10ms,
L =mk) p =2, and £ = mk)

Finally, the number of distinct fingerprints, /N, that can be embedded and
extracted reliably by Fancy-RS is given by

N =2mk (10)

For instance, for k = 5, and m =5 (i.e., £ = 25) we have that N ~ 107.
In order to evaluate the effect of the fingerprint amplitude (a), we measure
the extraction rate for different values of a. This is illustrated in Figure 6, where

14

m = 5, and k = 5. As intuitively expected, increasing a rapidly improves the
true detection and miss rate such that for a = 20ms we have that Pr = 1 and
Py = 0. Note that increasing the fingerprint amplitude a makes the fingerprint
less invisible, as discussed in [13].

1

0.8 /
0.6 /
0.4

0.2

Extraction Rate

0
5 10 15 20 25 30 35 40

Fingerprint Amplitude (msec)

Fig. 6: Extraction rate of Fancy-RS for different fingerprint amplitudes. (m = 5,
k =5, i.e., the redundancy is 6.2)

4.2 Convolutional Codes

Convolutional codes are another class of linear error-correcting codes that have
use in several different applications [21]. An (n, k) convolutional code, (n,k)-
Conv, is a function with &k inputs and n outputs. The input stream, i.e., f =
{filfi € {0,1},i = 1,2,...}, is split into k streams entering the inputs of the
encoder. Each of the n output streams of this encoder is evaluated by convolv-
ing some of the input streams with a generator function G. The length of the
generator function is called the constraint length v, and © = v — 1 is the memory
of the encoder. An easy-to-implement decoder for convolutional codes is an ML
decoder based on the Viterbi algorithm [21].

We design a variant of Fancy fingerprint, called Fancy-Conv, that uses con-
volutional coding for its encoding process. More specifically, an ¢-bits fingerprint
sequence f passes through the (n, k)-Conv encoder of Fancy-Conv, which gen-
erates the final encoded fingerprint f¢ consisting of £¢ bits.

We implemented Fancy-Conv in Matlab using the CML [4] coding libraries.
We use a constraint length of v = 9, and a randomly created generator function
G. We run several experiments to measure the performance of Fancy-Conv for
different parameters, where each experiment is run for 1000 randomly gener-
ated fingerprints. In the first experiment, we measure the effect of our encoder’s
redundancy on the fingerprinting performance, where a = 10ms, and ¢ = 24.
Figure 7 shows the extraction rate (with bars showing the 95% confidence in-
tervals) for different redundancies of (n, k)-Conv. As can be seen, increasing the
redundancy, r, improves the extraction rate; this, however, increases the flow
length required to embed the fingerprint, which is linear with redundancy, i.e.,
e =r.

1 - - -

1 oo /r’*—'
s = O
o 08 — & os
© / 5 /
= 2 07
< 0.63 g /
ES 5 06
2 04 b /
£ 0.5
w
02 0.4
0 5 10 15 20 25 30 35 40
2 3 4 5 6 7 Fingerprint Amplitude (ms)
Redundancy

Fig.8: Extraction performance of
Fig. 7: Extraction rate of Fancy-Conv Fancy-Conv for different fingerprint
for different encoder redundancies. (¢ = amplitudes. (¢ = 18, and the convolu-
10ms) tional code’s redundancy is 8)

We also measure the effect of the fingerprint amplitude on the detection
performance. As can be seen from Figure 8, increasing the fingerprint amplitude
improves the extraction rate (¢ = 18, and the convolutional code’s redundancy is
8). This comes at the price of less fingerprint invisibility. A fingerprint amplitude
of a = 20ms results in a very good extraction rate, while at the same time
provides a promising invisibility.

Finally, the number of distinct fingerprints, N, that can be embedded and
extracted reliably by Fancy-Conv is given by N = 2¢. For instance, for ¢ = 24,
we have that N ~ 107.

4.3 Turbo Codes

Turbo codes are a class of high-performance error correction codes and are the
first practical capacity-approaching codes [18]. A turbo code is generated by
concatenating two or more constituent codes, where each constituent code can
be a convolutional or a block code. Usually some interleaver reorders the data
at the input of the inner encoders. Turbo codes are decoded through iterative
schemes. There are two types of Turbo codes: Block Turbo Codes (BTC), and
Conwvolutional Turbo codes (CTC).

In this paper, we consider the use of BTC codes in the design of Fancy
fingerprints. A BTC code works by encoding a k; x k, matrix of data, D, into a
ng X n, matrix C as follows: a (n,, k;) systematic code encodes each row of D, a
block interleaver reorders the rows of the resulted matrix, and finally, a (n,, k)
systematic code encodes the columns of the resulted matrix to generate the final
n, X n, dimensional matrix C. The systematic codes used for BTC codes are the
cyclic codes, e.g., Hamming, Single Parity Check, and Extended Hamming [18].
The constituent block codes can be generated using polynomials.

We design Fancy-BTC, a fingerprint that uses BTC codes as its encoding
block. Our BTC code uses two convolutional codes as its horizontal and vertical
constituent codes. We use the CML [4] coding library to simulate Fancy-BTC in

16

Matlab. We randomly create the generator functions of the convolutional codes
that constitute our BTC encoder (with constraint lengths of v, and v, for the
horizontal and vertical codes, respectively). To encode a fingerprint f with length
£ our encoder reorders f into a k, x k, matrix D, where k, =k, = round(v/{)
and round(-) rounds to the nearest larger number. The encoder also fills the
first B = k; x ky, — £ bits of this matrix with zeros. We use an iterative detector
that stops only if either a maximum number of iterations has reached, or the
additional iterations do not change the decoded fingerprint.

In our first experiment, we measure the effect of the number of iterations on
the extraction performance (each experiment is run for 1000 randomly generated
fingerprints). We use a fingerprint amplitude of @ = 10ms, a fingerprint length
of £ = 25, and our code is designed such that v, = v, =6, ky =k, =5, B=0
and the code redundancy is 5.95. Figure 9 shows the extraction rate for different
values of the maximum decoder iteration, along with the 95% confidence inter-
vals. As can be seen, even though the detection performance improves rapidly for
small numbers of iterations it does not change significantly after several itera-
tions. Considering the added processing overhead for more iterations, we choose
8 as the maximum number of iterations performed by our detector, being used
in all of our consecutive simulations.

190
180
170

0.96 T T T T I
TR

o

O

N
——

140
130
120

110 /)
0 2 4 6 8 10 12 14 16 138
Detector Iterations 5

Extraction Rate

Coded Fingerprint Length

10 15 20 25 30
Fingerprint Length

35 40

Fig.9: Extraction rate of Fancy-BTC

for different values of maximum de-
coder iteration. (a = 10ms, ¢ = 25, and
r = 5.95)

Fig. 10: The length of the coded finger-
print for different fingerprint lengths for
Fancy-BTC.

In the second experiment, we keep v, = v, = 6 and a = 10ms, but vary
the fingerprint length /. Figure 10 shows the length of the coded fingerprint for
different values of the fingerprint length. As before, the number of distinct fin-
gerprints, N, is exponential with /. As can be seen from the figure, increasing /¢
only linearly increases the length of the encoded fingerprint, while it exponen-
tially increases IV. Note that in the figure the code redundancy is around 6, but
varies a bit with £ since our BTC encoder can not produce all redundancy values
for any given /.

In the third experiment, we evaluate the performance of Fancy-BTC using
BTC codes with different redundancies. More specifically, we set a = 10ms,

17

¢ =25, and k; = k, = 5 and try BTC codes with different constraint lengths
(vy and vy,), resulting in various redundancies. Figure 11 shows the extraction
rate for codes with different redundancies. As can be seen, Fancy-BTC does
not perform well for small values of code redundancies, however increasing the
code redundancy rapidly improves its performance. In fact, such an improved
performance comes at the price of longer fingerprinted flows.

- e

1 1 + - -+ <+ +
0.9 /4 0.9 ;/
0.8 /l/ 0.8 /
0.6 0.6 /

0.5 0.5
4

0.4 0.4
1 2 3 4 5 6 7 5 10 15 20 25 30 35 40

Redundancy Fingerprint Amplitude (ms)

Extraction Rate
Extraction Rate

Fig. 11: Extraction rate of Fancy-BTC Fig. 12: Extraction rate of Fancy-BTC
for different redundancies of the BTC for different values of fingerprint ampli-
code. (a = 10ms, ¢ = 25) tude. (¢ =25, and r = 4)

Finally, we illustrate the effect of the fingerprint amplitude on the extraction
performance. As can be seen from Figure 12, increasing a rapidly improves the
extraction, such that a = 20ms results in an extraction rate of in 1000 runs of
the experiment.

4.4 Comparison

We also compare the performance of the three versions of Fancy, i.e., Fancy-RS,
Fancy-Conv, and Fancy-BTC. Figure 13 shows the extraction rate of the three
schemes for different values of encoder redundancy (for all three schemes we have
that £ = 25, and a = 10ms). As can be seen, for very small redundancies the
Fancy-RS outperforms the other two, even though all of the schemes perform
poorly for such small values of redundancy. As the redundancy increases, all
schemes improve their performance and, in particular, the Fancy-BTC outper-
forms the other two schemes for high redundancies.

We also compare the three schemes for different fingerprint amplitudes. Fig-
ure 14 shows the extraction performance of Fancy-RS, Fancy-Conv, and Fancy-
BTC for different values of a, with £ = 25. Also, the redundancies of Fancy-RS,
Fancy-Conv, and Fancy-BTC are 6.2 , 6, and 5.96, respectively (note that it
is not possible to produce an exact value of r for any given £). As intuitively
expected, increasing the fingerprint amplitude significantly improves the extrac-
tion performance at the cost of larger perturbations applied to the fingerprinted
flows.

18

0.9 7.3
[
5 os /!
o .
c X Fancy-RS F—+—i
2 07 Fancy-Conv +—e—i
i Fancy-BTC ¢
‘;:<‘ 0.6 L&
w

05 i/-

0.4

1 2 3 4 5 6 7 8

Redundancy

Fig. 13: Comparing the extraction per-
formance of Fancy-RS, Fancy-Conv,
and Fancy-BTC for different code re-

1~
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

/|
//
//

/
/

Fancy-RS +—+—
Fancy-Conv +—e—i
Fancy-BTC +—¢—i

Extraction Rate

5 10 15 20 25 30 35 40
Fingerprint Amplitude (ms)

Fig. 14: Comparing the extraction per-
formance of Fancy-RS, Fancy-Conv,
and Fancy-BTC for different fingerprint
amplitudes (with a similar redundancy

dundancies. of around 6).

5 Related Work

Traffic analysis has long been studied for linking network flows. Early traffic anal-
ysis schemes [5,9,20, 24,26, 28] work in a passive manner, i.e., they record the
communication characteristics of incoming flows and correlate them with that
of the observed outgoing flows. The right place to do this is often at the border
router of an enterprise, so the overhead of this technique is the space used to
store the stream characteristics long enough to check against correlated relayed
streams, and the CPU time needed to perform the correlations. In a complex ap-
plication with many interconnected networks, a relayed connection, e.g., through
a stepping stone, may enter and leave the monitored network through different
points; in such cases, there is also an additional communications overhead for
transmitting traffic statistics between the border routers.

To address some of the efficiency concerns of passive traffic analysis, re-
searchers have suggested to perform traffic analysis in an active manner. Active
traffic analysis improves upon passive traffic analysis in two ways. First, by in-
serting a pattern that is uncorrelated with any other flows, they can improve
the detection efficiency, requiring smaller numbers of packets to be observed
(hundreds instead of thousands) and providing lower false-positive rates (1074
or lower, as compared to 1072 with passive watermarks) [14]. Second, they can
operate in a blind fashion [25]: after an incoming flow is watermarked, there is
no need to record or communicate the flow characteristics, since the presence of
the watermark can be detected independently. The detection is also potentially
faster as there is no need to compare each outgoing flow to all the incoming flows
within the same time frame.

Wang et al. borrowed the QIM watermarking idea from the multimedia lit-
erature to perform active traffic analysis [25]. This approach, however, is fragile
to packet-level modifications, e.g., a single dropped packet would completely
destroy the watermark pattern. To provide robustness to such packet-level per-
turbations several proposals apply the watermark modifications on the timing

19

“Intervals” of network flows [19,23,27]. Kiyavash et al. [12,15] demonstrated that
applying the interval-based watermarks identically on different flows can give
away the embedded watermark to an attacker who observes several watermarked
flows. This affected the design of the successor watermarking schemes [10, 13],
which apply the watermark patterns to network flows depending on the features
of the candidate flow. Note that such schemes do not insert different watermark
tags on different flows, but they apply the same watermark tag differently on
different flows. Houmansadr et al. [11] use repeat-accumulate codes to improve
the detection performance of watermarks.

While most of the proposals for flow watermarking use timing patterns for
their modifications, other traffic patterns are also used for watermark insertion.
For instance, Yu et al. [27] design a watermarking system that tags flows by
modifying their packet rates in different time intervals. As another example, Ling
et al. [17] propose a watermarking attack on Tor [7] that works by modifying
packet sizes. The attack works by modifying the counts of Tor cells [6] carried
by network packets.

6 Conclusions

In this paper, we shed light on an unexplored, yet important, variant of ac-
tive traffic analysis, flow fingerprinting. We designed the first flow fingerprinting
scheme, Fancy, and demonstrated its reliability in tagging large numbers of dis-
tinct flows. We explored the use of different linear codes in the design of Fancy
and compared their performance. In particular, we showed that Fancy can reli-
ably tag millions of distinct network flows using flows as short as tens of packets.

Acknowledgements

The authors would like to thank Roger Dingledine and anonymous reviewers
for their insightful comments. This work was supported in part by the National
Science Foundation grant CNS 0831488 and the Boeing Trusted Software Center
at the Information Trust Institute at the University of Illinois.

References

1. A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin, S. Muir, L. Peterson,
T. Roscoe, T. Spalink, and M. Wawrzoniak. Operating Systems Support for
Planetary-Scale Network Services. In NSDI, 2004.

2. S. Benedetto and E. Biglieri. Principles of Digital Transmission: With Wireless Ap-
plications. Information Technology: Transmission, Processing, and Storage. Kluwer
Academic/Plenum Press, 1999.

3. A. Blum, D. X. Song, and S. Venkataraman. Detection of Interactive Stepping
Stones: Algorithms and Confidence Bounds. In RAID, 2004.

4. The coded modulation library (cml). http://www.iterativesolutions.com/
Matlab.htm.

http://www.iterativesolutions.com/Matlab.htm
http://www.iterativesolutions.com/Matlab.htm

20

o Ot

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

23.

26.

27.

28.

. G. Danezis. The Traffic Analysis of Continuous-Time Mixes. In PETS, 2004.

. R. Dingledine and N. Mathewson. Tor Protocol Specification. https://gitweb.
torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt.

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation Onion
Router. In USENIX Security Symposium, 2004.

S. Dolinar, D. Divsalar, and F. Pollara. Code Performance as a Function of Block
Size. Technical report, TMO Progress, 1998.

D. Donoho, A. Flesia, U. Shankar, V. Paxson, J. Coit, and S. Staniford. Multi-
scale Stepping-stone Detection: Detecting Pairs of Jittered Interactive Streams by
Exploiting Maximum Tolerable Delay. In RAID, 2002.

A. Houmansadr and N. Borisov. SWIRL: A Scalable Watermark to Detect Corre-
lated Network Flows. In NDSS, 2011.

A. Houmansadr and N. Borisov. Towards Improving Network Flow Watermarks
using the Repeat-accumulate Codes. In ICASSP, 2011.

A. Houmansadr, N. Kiyavash, and N. Borisov. Multi-Flow Attack Resistant Wa-
termarks for Network Flows. In ICASSP, 2009.

A. Houmansadr, N. Kiyavash, and N. Borisov. RAINBOW: A Robust And Invisible
Non-Blind Watermark for Network Flows. In NDSS, 2009.

A. Houmansadr, N. Kiyavash, and N. Borisov. Non-blind Watermarking of Network
Flows. CRR, arXiv:1203.2273v1, 2012.

N. Kiyavash, A. Houmansadr, and N. Borisov. Multi-Flow Attacks Against Net-
work Flow Watermarking Schemes. In USENIX Security Symposium, 2008.

Z. Lin and N. Hopper. New Attacks on Timing-based Network Flow Watermarks.
In USENIX Security, 2012.

Z. Ling, J. Luo, W. Yu, X. Fu, D. Xuan, and W. Jia. A New Cell Counter Based
Attack Against Tor. In CCS, New York, New York, USA, 2009.

D. J. C. Mackay. Information Theory, Inference and Learning Algorithms. Cam-
bridge University Press, first edition edition, June 2003.

Y. Pyun, Y. Park, X. Wang, D. S. Reeves, and P. Ning. Tracing Traffic through
Intermediate Hosts that Repacketize Flows. In INFOCOM, 2007.

S. Staniford-Chen and L. T. Heberlein. Holding Intruders Accountable on the
Internet. In IEEE S&P, 1995.

J. H. van Lint. Introduction to Coding Theory (third edition). Springer Verlag,
Berlin (D), 1998.

X. Wang, S. Chen, and S. Jajodia. Tracking Anonymous Peer-to-peer VoIP Calls
on the Internet. In CCS, 2005.

X. Wang, S. Chen, and S. Jajodia. Network Flow Watermarking Attack on Low-
Latency Anonymous Communication Systems. In IEEE S&P, 2007.

X. Wang, D. Reeves, and S. F. Wu. Inter-Packet Delay Based Correlation for
Tracing Encrypted Connections Through Stepping Stones. In ESORICS, 2002.
X. Wang and D. S. Reeves. Robust Correlation of Encrypted Attack Traffic
Through Stepping Stones by Manipulation of Interpacket Delays. In C'CS, 2003.
K. Yoda and H. Etoh. Finding a Connection Chain for Tracing Intruders. In
ESORICS, 2000.

W. Yu, X. Fu, S. Graham, D.Xuan, and W. Zhao. DSSS-Based Flow Marking
Technique for Invisible Traceback. In IEEE S&P, 2007.

Y. Zhang and V. Paxson. Detecting Stepping Stones. In USENIX Security Sym-
posium, 2000.

https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=tor-spec.txt

	The Need for Flow Fingerprints to Link Correlated Network Flows
	Introduction
	Network Flow Fingerprinting
	Problem Statement
	Application Scenarios

	Fancy Fingerprinting Scheme
	Embedding Fingerprints
	Extracting Fingerprints
	Alternative Designs

	Code Design and Simulations
	Reed-Solomon (RS) Codes
	Convolutional Codes
	Turbo Codes
	Comparison

	Related Work
	Conclusions

