
Trawling for Tor Hidden Services: Detection, Measurement, Deanonymization

Alex Biryukov, Ivan Pustogarov, Ralf-Philipp Weinmann

University of Luxembourg
{alex.biryukov,ivan.pustogarov,ralf-philipp.weinmann}@uni.lu

Abstract—Tor is the most popular volunteer-based
anonymity network consisting of over 3000 volunteer-operated
relays. Apart from making connections to servers hard to
trace to their origin it can also provide receiver privacy for
Internet services through a feature called “hidden services”.

In this paper we expose flaws both in the design and
implementation of Tor’s hidden services that allow an attacker
to measure the popularity of arbitrary hidden services, take
down hidden services and deanonymize hidden services. We
give a practical evaluation of our techniques by studying: (1) a
recent case of a botnet using Tor hidden services for command
and control channels; (2) Silk Road, a hidden service used to
sell drugs and other contraband; (3) the hidden service of the
DuckDuckGo search engine.

Keywords-Tor; anonymity network; privacy; hidden services

I. INTRODUCTION

Research into low-latency anonymity networks has mostly

focused on sender anonymity, i.e. allowing users to connect

to network resources without disclosing their network ad-

dress to the destination. Nonetheless, to guarantee freedom

of speech, responder privacy1 is equally if not even more

important. Allowing the people not only to access informa-

tion anonymously but also to publish anonymously is an

important aspect of nurturing democracy. Similarly, provid-

ing internet services without disclosing their location and

owner puts a constraint on what attacks can be performed

by adversaries.

Tor [7] arguably is the most popular and well-researched

low-latency anonymity network, providing sender privacy

for internet services to its users; additionally responder

privacy can be achieved with Tor by making TCP services

available as hidden services. While the first generation

of Tor’s hidden service design has been described in the

original design paper, the current version of Tor is using a

revised design [25]. Justifications of the design choices and

attack scenarios considered are given in [15].

This paper analyzes the security of Tor hidden services.

We look at them from different attack perspectives and

provide a systematic picture of what information can be

obtained with very inexpensive means. We focus both on

attacks that allow to censor access to targeted hidden ser-

vices as well as on deanonymization of hidden services. As

the result we believe that many components of the current

1Traditionally called recipient privacy in the case of mix networks.

Tor HS protocol should be improved and while a short term

patch may mitigate some of the problems, a more complex

approach is required both in terms of efficiency and in terms

of privacy.

We also study deployed hidden services. For instance, we

apply our findings to a botnet which makes its command and

control center available to bots as a Tor hidden service (we

extracted its onion address by analyzing a malware sample)

and extrapolate its size by counting the number of hidden

service requests.

Contributions:
• We give a method to measure the popularity of any

hidden service without the consent of the hidden service

operator.

• We show how connectivity to selected hidden services

can be denied by impersonating all of their responsible

hidden services directories.

• We demonstrate a technique that allows one to harvest

hidden service descriptors (and thus get a global picture

of all hidden services in Tor) in approximately 2 days

using only a modest amount of resources.

• We show how to reveal the guard nodes of a Tor hidden

service.

• We propose a large-scale opportunistic deanonymiza-

tion attack, capable of revealing IP addresses of a

significant fraction of Tor’s hidden services over a one

year period of time.

Most of our attacks are made practical and cost efficient by

two implementation deficiencies in the current versions of

Tor2: (1) Tor relays can cheat and inflate their bandwidth

in the consensus despite bandwidth measurements; this

makes them more likely to be chosen by the path selection

algorithm. (2) Using a technique called “shadowing” we can

phase relays in and out of the consensus at will without them

losing their flags, allowing us to defeat countermeasures

against Sybil [8] attacks.

Ethical considerations: Attacks against Tor can be

simulated in dedicated simulators such as Shadow [13].

However, deployed hidden services are not well studied.

Until now there have been no statistics about the number

of hidden services or their usage statistics. Henceforth,

we deem experiments on the live Tor network that do

2We consider versions up to tor v0.2.4.6-alpha, which was the most
current version at the time of submission.

2013 IEEE Symposium on Security and Privacy

1081-6011/13 $26.00 © 2013 IEEE

DOI 10.1109/SP.2013.15

80

not intentionally cause degradation of the network and its

services to be worthwhile and necessary to enhance the

scientific understanding of hidden services.

Our goal was at no time to perform a full deanonymization

of any target that was not under our control but rather

to show that this would be possible. Moreover, since we

are conducting anonymity research, we did not disclose

information about guard nodes identified to third parties but

rather discarded identifying data after the experiments.

Roadmap: We start by presenting and discussing related

work in Section II. In Section III, we provide the necessary

background to understand Tor hidden services and our

attacks. In section IV, we show how countermeasures against

Sybil attacks implemented in Tor can be circumvented.

In Section V, we show how an attacker can control the

hidden service directories of any hidden service. We also

demonstrate a technique that allows us to harvest hidden

services quickly and efficiently. Section VI shows how to

confirm that a Tor relay serves as a guard node of a given

hidden service, allowing us to determine the IP address of

the hidden service if the guard node is under our control.

In Section VII, we show how an attacker can discover the

guard nodes of a hidden services. In Section VIII, we discuss

countermeasures that can be implemented to defend against

our attacks. Section IX concludes the paper.

A. Examples of hidden services analyzed

A botnet using hidden services: In April 2012, an “ask

me anything” thread (AMA) on the social news website

Reddit appeared in which an anonymous poster, allegedly a

malware coder and botnet operator, claimed to be operating

a botnet with its command and control center running as a

Tor hidden service [1]. The malware installed on the clients

was described to be a modified version of ZeuS.

Subsequently, a thread on the tor-talk mailing list appeared

[14] in which apparently the same botnet was discussed. We

obtained samples of this malware and found the properties of

the malware matched: just like described in the AMA thread,

it was using a modified UnrealIRC 3.2.8.1 server3 for one of

the command and control channels and included a Bitcoin

miner. This was the first publicly documented instance of a

botnet in the wild using Tor hidden services. While there had

been a talk given at DEFCON in 2011 [4] about how hidden

services could be used to protect botnets from takedowns

of their command and control structure, previously no such

malware had been observed.

Interestingly, not one but two hidden services were op-

erated for command and control: the standard HTTP based

channel4 that ZeuS uses for command as well as an IRC

based one5. Furthermore, the malware creates a hidden ser-

vice (on port 55080) on each install, which allows the botnet

3Unfortunately, not the backdoored distribution by ac1db1tch3z
4mepogl2rljvj374e.onion:80
5eoqallfil766yox6.onion:16667

operator to use the infected machine as a SOCKS proxy

for TCP connections through the hidden service. While the

hidden service is constantly running, the command to enable

SOCKS proxy functionality needs to be given through the

IRC command and control channel. In the version of the

malware we analyzed, a Tor v0.2.2.35 binary was executed

by injecting it into a svchost process.

In September 2012, G Data Security described a sample

of apparently the same malware in a blog post [11]; a more

thorough analysis of the botnet was published by Claudio

Guarnieri of Rapid7 in December 2012 [12].

Black Markets on Hidden Services: A number of black

markets exist on Tor hidden services. Silk Road is by

far the most widely known, even triggering requests from

U.S. senators to the U.S. Attorney General and the Drug

Enforcement Agency (DEA) to request it to be shut down

[22].

Silk Road is a market that operates mostly in contraband

goods using Bitcoin as currency. According to a recent study

primarily narcotics and other controlled substances are sold

on this platform [5]. This study estimates the Silk Road

revenue at over USD 1.9 million per month – aggregated

over all sellers – with a 7.5% cut going to the Silk Road

operators.

II. RELATED WORK

The first published attacks against Tor hidden services

were presented by Øverlier and Syverson in [19]. They

targeted a previous version of the hidden services design

in which no entry guard nodes were used. In the scenario

described, the attacker needs to control one or more Tor

relays; the idea being that given enough connection attempts,

one of the attacker’s relays will be chosen as the first hop

of the rendezvous circuit established by the hidden service.

To mount the attack, the attacker establishes many ren-

dezvous circuits to the hidden service and sends a specific

traffic pattern along the circuits. She uses traffic correlation

to determine if one her nodes was chosen as a part of

the circuits. Once an attacker’s Tor relays is chosen as the

first hop of a circuit, the location of the hidden service is

immediately revealed. As the result of the paper, entry guard

nodes were added to the Tor hidden services specification

which prevents the attack in the current version of Tor. The

basic idea of guard nodes (originally named helpers) was

introduced by Wright et al. in [17].

Valet services were proposed by Øverlier and Syverson

as an extension to the hidden services concept to strengthen

DoS resilience of hidden services. This is achieved by

introducing an additional layer of protection for introduction

points [20].

Another approach was presented in [18] and [26]. These

attacks are based on the observation that the system clocks of

computers drift depending on the temperature of the CPU.

An attacker observes timestamps from a PC connected to

81

the Internet and watches how the frequency of the system

clock changes when repeatedly connecting to the hidden

service, causing its CPU load to rise. The attacker requests

timestamps from all candidate servers and finds the one

exhibiting the expected clock skew pattern. One drawback

of this attack is that it assumes a closed-world model, i.e. the

list of possible candidate servers needs to be be known by

the attacker in advance. Also, the degree of the scalability

of the attack is limited by the fact that the attacker needs to

probe each server in the list.

Some of the building blocks for our attacks have already

been mentioned in the literature. In [15], Loesing mentions

that it is unavoidable for hidden services descriptors to be

collected over a long period of time. However in this paper,

we show how to perform harvesting fast and cheap.

The forensic problem of placing identifiable fingerprints

in the log files of a machine running a hidden service trough

service queries is considered in [24], [10]. This fingerprint is

then used to prove that the confiscated machine in fact hosted

a particular content, assuming that requests are logged.

III. BACKGROUND

Tor is a low-latency anonymity network based on the ideas

of onion routing and telescoping. Clients have anonymous

communication to a server by proxying their traffic through

a chain of three Tor relays. Specifically, prior to sending

the data, a client chooses three Tor relays and uses public

key cryptography to negotiate symmetric session keys with

them, establishing a circuit. Whenever a client wants to send

a piece of data he packs it into Tor cells and encrypts them

with multiple layers of encryption using the session keys.

As the cells travel along the circuit, each relay strips off one

layer of encryption. Hence the server receives the original

piece of data while each relay along the path knows only

which relay it received the Tor cell from and which relay it

forwarded the cell to.

Tor Hidden Services are a feature which was introduced in

2004 to add responder anonymity to Tor. Specifically, hidden

services allow running an Internet service (e.g. a Web site,

SSH server, etc.) so that the clients of the service do not

know its actual IP address. This is achieved by routing all

communication between the client and the hidden service

through a rendezvous point which connects anonymous

circuits from the client and the server.

The Tor hidden service architecture is comprised of the

following components (see Figure 1):

• Internet service which is available as Tor hidden ser-

vice;

• Client, which wants to access the Internet service;

• Introduction points (IP): Tor relays chosen by the

hidden service and which are used for forwarding

management cells necessary to connect the Client and

the hidden service at the Rendezvous point;

��
��

����	

�� ��

�����	
�������

����	
���

���

���
���

���

���
���

Figure 1. Tor hidden services architecture

• Hidden service directories (HSDir): Tor relays at which

the hidden service publishes its descriptors and which

are communicated by clients in order to learn the

addresses of the hidden service’s introduction points;

• Rendezvous point (RP): a Tor relay chosen by the

Client which is used to forward all the data between

the client and the hidden service.

A. Hidden service side

In order to make an Internet service available as a Tor

hidden service, the operator (Bob) configures his Tor Onion

Proxy (OP) which automatically generates new RSA key

pair. The first 10 bytes of the SHA-1 digest of an ASN.1

encoded version of the RSA public key become the identifier

of the hidden service. The OP then chooses a small number

of Tor relays as introduction points and establishes new

introduction circuit to each one of them (step 1 in Figure 1).

As the next step (step 2), Bob’s OP generates two service

descriptors with different IDs, determines which hidden

services directories among the Tor relays are responsible for

his descriptor and uploads the descriptor to them. A hidden

services directory is a Tor relay which has the HSDir flag.

A Tor relay needs to be operational for at least 25 hours to

obtain this flag.

The hidden service descriptors contain the descriptor ID,

the list of introduction points and the hidden service’s public

key.

B. Client side

When a client (Alice) wants to communicate with the

hidden service, she needs a pointer to this service, which

needs to be transmitted out of band. The pointer is the

hostname of the form ”z.onion”, where z is the base-32

encoded hidden service identifier described above. She then

computes the descriptor IDs of the hidden service (see the

82

expression in section III-C) and the list of responsible hidden

service directories and fetches the descriptors from them

(step 3).

In order to establish a connection to a given hid-

den service Alice’s OP first builds a rendezvous cir-

cuit (step 4). It does this by establishing a circuit

to a randomly chosen Tor relay (OR), and sending a

RELAY_COMMAND_ESTABLISH_RENDEZVOUS cell to that

OR. The body of that cell contains a Rendezvous cookie

(RC). The rendezvous cookie is an arbitrary 20-byte value,

chosen randomly by Alice’s OP. Alice chooses a new ren-

dezvous cookie for each new connection attempt. Upon re-

ceiving a RELAY_COMMAND_ESTABLISH_RENDEZVOUS cell,

the OR associates the RC with the circuit that sent it. Alice

builds a separate circuit to one of Bob’s chosen introduction

points, and sends it a RELAY_COMMAND_INTRODUCE1 cell

containing the IP address and the fingerprint of the ren-

dezvous point, the hash of the public key of the hidden

service (PK ID), and the rendezvous cookie (step 5).

If the introduction point recognizes PK ID as the public

key of a hidden service it serves, it sends the body of the

cell in a new RELAY_COMMAND_INTRODUCE2 cell down the

corresponding circuit (step 6).

When Bob’s OP receives the

RELAY_COMMAND_INTRODUCE2 cell, it decrypts it using

the private key of the corresponding hidden service and

extracts the rendezvous point’s nickname as well as the

rendezvous cookie. Bob’s OP builds a new Tor circuit

ending at Alice’s chosen rendezvous point, and sends a

RELAY_COMMAND_RENDEZVOUS1 cell along this circuit,

containing RC (step 7). Subsequently, the rendezvous point

passes relay cells, unchanged, from each of the two circuits

to the other.

In this way, the client knows only the rendezvous point.

Neither does the hidden service learns the actual IP address

of the client nor does the client learn the IP address of the

hidden service.

C. Choosing responsible HSDirs

A hidden service determines if a hidden services direc-

tory is responsible for storing its descriptor based on the

descriptor’s ID and the directory’s fingerprint6.

Descriptor identifiers change periodically every 24 hours

and are computed as follows:

descriptor-id = H(public-key-id || secret-id-part)
secret-id-part = H(descriptor-cookie || time-period ||
replica-index)

The field descriptor-cookie is an optional field. If

present, it prevents non-authorized clients from accessing the

hidden service. The field time period denotes the number of

days since the epoch. This is used to make the responsible

6Each Tor relay is identified by SHA-1 digest of its public key. We call
this digest as the relay’s fingerprint.

������

���	
��

�����
��

�����
��

�����
��

������

�����

� � �

�
�
�

Figure 2. Tor hidden services fingerprints circular list

directories change periodically. The replica index is used to

create different descriptors identifiers so that the descriptor

is distributed to different parts of the fingerprint range.

After computing the descriptor identifiers, a hidden ser-

vice determines which directory nodes are responsible for

storing the descriptor replicas. To do this the hidden service

arranges the directories using their fingerprints in a closed

fingerprint circle and chooses as hidden service directories

the three closest relays in positive direction (fingerprint value

of them is greater than the fingerprint value of the hidden

service).

According to the current Tor implementation, a hidden

service generates and publishes two replicas of its descriptor

which results in 2 sets of 3 hidden service directories with

consecutive fingerprints.

As an example, consider the circle of fingerprints depicted

in Figure 2 and assume that one of the hidden service

descriptor IDs is between fingerprints of relays HSDirk−1

and HSDirk. In this case the hidden service directories

serving the descriptor are relays with fingerprints HSDirk,

HSDirk+1, and HSDirk+2. The fingerprint of HSDirk is the

first following the descriptor ID. We call this HSDir relay the

first responsible hidden service directory for the descriptor

ID.

The list of all Tor relays is distributed by the Tor author-

ities in the consensus document. The consensus is updated

once an hour by the directory authorities and remains valid

for three hours. Every consensus document has a “valid-

after” (VA) time, a “fresh-until” (FU) time and a “valid-

until” (VU) time. The “valid-after” timestamp denotes the

time at which the Tor authorities published the consensus

document. The consensus is considered fresh for one hour

(until “fresh-until” has passed) and valid for two hours

more (until “valid-until” has passed). According to the

83

current implementation clients download the next consensus

document in (FU + 45 mins; VU - 10 mins) interval.

D. Guard nodes

Being a low-latency anonymity network Tor is vulnerable

to the traffic confirmation attacks: if an adversary can

monitor the edges of a Tor circuit, she can confirm who is

communicating. This is quite dangerous for hidden services

since by design the attacker always controls one edge of the

connection. If the entry nodes of the circuit were chosen

uniformly from the whole set of Tor relays, the probability

of the attack would approach 1 when the number of circuits

to the hidden service established by the attacker increased.

In order to significantly reduce the probability of the

traffic confirmation attack Tor developers introduced the

concept of entry guard nodes. Tor initially selects a set of

three guard nodes. Whenever less than two guard nodes from

the set are reachable, new guard nodes are chosen. A guard

node remains in the set for a random duration between 30

and 60 days. Then it is marked as expired and removed from

the set. Whenever a circuit is established, one node from the

set of Guard nodes is used for the first hop.

IV. FLAGS AND BANDWIDTH INFLATION

According to the current Tor specification, the maximum

number of Tor relays on a single IP address that Tor

authorities include to the Consensus document is 2. This

restriction is enforced by the directory authorities when

they cast their votes for the consensus. If more than two

relays are running on the same IP address, only two relays

with the highest-most measured bandwidth will appear in

the consensus document. This prevents an attacker from

performing the Sybil attack described by Bauer et al. [2],

in which an attacker floods the network with dummy Tor

relays.

However, by inspecting the Tor source code we noticed

that while only two relays per IP appear in the Consensus,

all running relays are monitored by the authorities; more

importantly, statistics on them is collected, including the

uptime which is used to decide which flags a relay will

be assigned.

We call relays appearing in the consensus active relays
and those which run at the same IP address but do not

appear in the consensus shadow relays. Whenever one of

the active relays becomes unreachable and disappears from

the consensus, one of the shadow relays becomes active, i.e.

appears in the consensus. Interestingly, this new active relay

will have all the flags corresponding to its real run time and

not to the time for which it was in the consensus. We call

this technique shadowing.

The path selection algorithm of Tor selects nodes at

random, with a probability proportional to the bandwidth

advertised for the node in the consensus document. Hence

it is of interest to an attacker to artificially inflate the

bandwidth of her nodes, in order to increase the chance of

of them being included in the path (note that although some

of the attacks presented in this paper have been made more

efficient using bandwidth inflation they by no means depend

it).

Originally, directory authorities announced self-reported

bandwidth values of the relays in the consensus document.

The general concept of bandwidth inflation was first ex-

ploited in [19] to make attacks against hidden services more

efficient; again the authors of [2] made use of the same

design flaw to make end-to-end traffic correlation attacks

feasible with a modest amount of resources.

As a reaction to these attacks, bandwidth scanners were

introduced. In the current design, Tor authorities not only

take into account the self-reported bandwidth values but

also actively measure the bandwidth. A subset of directory

authorities operate a set of bandwidth scanners which period-

ically choose two-hop exit circuits and download predefined

files from a particular set of IP addresses (according to

the current source code, there are two such IP addresses).

The bandwidth of a relay shown in the consensus depends

on the self-reported bandwidth Brep and the bandwidth

measurement reports Bmeas by the Tor authorities. The weak

point of this approach is the fact that the scanning can be

reliably detected by relays that want to cheat. To inflate our

bandwidth we then provide more bandwidth for authorities’

measurement streams while throttling bandwidth for all other

streams. This results in a high bandwidth value shown in the

consensus while keeping the traffic expenses at a low level.

When doing bandwidth measurements, authorities estab-

lish two-hop circuits. Thus it is sufficient for cheating non-

exit nodes to provide more bandwidth for streams which

originate at IP addresses of authorities and throttle all

other streams. As an improvement the attacker can take

into account that for bandwidth measurements authorities

download files which are known. Taking this into account,

the attacker can drop circuits which carry a traffic pattern

inconsistent with these downloads.

We have implemented this method of bandwidth cheating

and were able to inflate the bandwidth of our relays more

than ten fold; while the consensus showed bandwidth val-

ues of approximately 5000 kBytes/sec per relay, they only

provided 400 kBytes/sec of real bandwidth to Tor clients

each.

V. CATCHING AND TRACKING HIDDEN SERVICE

DESCRIPTORS

In this section we study the security of descriptor distribu-

tion procedure for Tor hidden services. We show how an at-

tacker can gain complete control over the distribution of the

descriptors of a particular hidden service. This undermines

their security significantly: before being able to establish a

connection to a hidden service, a client needs to fetch the

hidden service’s descriptor; unless it has it cached from a

84

���

���

���

���

���

���

��	

��

�� ���� ���� ���� �	�� ����� ����� �����

�
��
��

��
��
��
�
��

��
��

�

���

��
��
��
��
��
��

��
���

��

�������������������

Figure 3. Distances between HS directories fingerprints, log10 scale.

prior connection attempt. Thus, should the attacker be able

to control the access to the descriptors, the hidden service’s

activity can be monitored or it can be made completely

unavailable to the clients.

A. Controlling hidden service directories

As mentioned in the background section, the list of

responsible hidden service directories depends on the current

consensus document and the descriptor IDs of the hidden

service. In this subsection, we explain how to inject relays

into the Tor network that become responsible for the descrip-

tors of the hidden service. This immediately translates into

the problem of finding the right public keys, i.e. the keys

with fingerprints which would be in-between the descriptor

IDs of the hidden service and the fingerprint of the first

responsible hidden service directory.

Figure 3 shows the distances between consecutive hidden

service directories (in log10 scale) computed for a randomly

picked consensus document in November 2012. The average

value is 44.8 and the minimum value is 42.16. This means

that we need to find a key with a fingerprint which would

fall into an interval of size 1044.8 on the average. This takes

just a few minutes on a modern multi-core computer.

Just like any Tor client, an attacker is able to compute the

descriptor IDs of the hidden service for any moment in the

future and find the fingerprints of expected responsible HS

directories. After that she can compute the private/public

key pairs so that SHA-1 hash of the public keys would

be in-between the descriptor ID and the fingerprint of the

first responsible hidden service directory. The attacker then

runs Tor relays with the computed public/private keys pairs

and waits for 25 hours until they obtain the HSDir flag.

When the attacker’s relays appear in the consensus as hidden

service directories, they will be used by the hidden service

to upload the descriptors and by the clients to download the

descriptors. In this way the attacker can gain control over

all the responsible HS directories for a particular service by

injecting 6 Tor relays with precomputed public keys. This

allows her to censor a hidden service of her choice or gather

��

����

����

����

����

�����

�����

�����

�����

� � � 	 �
 � � � � �� �� �� �	 �� �
 �� �� �� �� �� �� ��

�
�
��

���
���
��

��
��
�

�����������

����������
 �!"��#$

%�&"%�&"'�

Figure 4. Hidden service descriptor request rate during one day.

its usage statistics.

As a proof of concept we used this approach to control

one of the six hidden service directories of the discovered

Tor botnet, the Silk Road hidden service, and the Duck-

DuckGo hidden service. We tracked these for several days

and obtained the following measurements: (1) The number

of requests for the hidden service descriptor per day (see

Tables I and II) and (2) the rate of requests over the course

of a day, which is shown in Figure 4 (each point corresponds

to the number of hidden service descriptor requests per one

hour).

Column 1 of Table I and columns 2 and 4 of Table II

show the number of requests for a particular hidden service

descriptor per day. Columns “Total” show the total number

of descriptors requests (for any hidden services descriptor)

served by the hidden service directory per day. The hidden

service tracked in Table I is the IRC C&C service.

Table I
POPULARITY OF THE DISCOVERED BOTNET

Date Botnet descriptor Total
13 Jul 1408 6581
14 Jul 1609 2392
15 Jul 1651 4715
16 Jul 1448 6852
25 Jul 4004 6591
26 Jul 4243 4357
27 Jul 4750 4985
28 Jul 4880 7714
29 Jul 4977 9085

Table II
POPULARITY OF SILK ROAD AND DUCKDUCKGO

Date Silk Road Total DuckDuckGo Total
09 Nov 19284 27363 502 2491
10 Nov 15427 16103 549 5621
11 Nov 15185 15785 543 3899
12 Nov 15877 16723 549 10910

Descriptors are cached by the Tor process in RAM for

24 hours. Hence, as long as a computer is not restarted,

85

we will see at most one descriptor request every 24 hours,

even if the long-lived circuit to the IRC server is repeatedly

dropped; moreover suspending the computer will not cause

the descriptor to be requested again. On the other hand,

multiple power cycles per day lead to overcounting the size

of the botnet. Hence, from Table I one can estimate that the

size of the botnet was in the range 12,000 – 30,000 infected

machines.

This is a very rough approximation since bots can request

the descriptor several times per day, each time when the

infected computer is turned on. By looking at the descriptor

request rate against time we can infer that the bulk of the

botnet resides in the European time-zone.

To protect a hidden service from making it unavailable,

Loesing [15] proposes that hidden services periodically

check if their descriptors can be downloaded from the

responsible directories7. If some hidden service directory

consistently refuses the fetch request, the hidden service files

a complaint to the Tor directory authorities. The complaint

includes the hidden service descriptor.

Having received the complaint, the authorities upload the

descriptor to the directory and try to fetch it. If the fetch

consistently fails again, the authorities remove HSDir flag

from the directory. If the directory demonstrates the same

behaviour for a long period of time, the relays in the IP

range can be banned from obtaining the HSDir flag.

This protection is based on the assumption that it is

hard to acquire fresh IP addresses. The availability of large

computing platforms that can be rented on an hourly basis

has made this technique ineffective, unless the entire IP

ranges of such platforms are banned; new IP addresses can

be easily obtained, e.g. by restarting instances on Amazon

EC2.

B. Efficient harvesting of Tor HS descriptors

It is of a particular interest to collect the descriptors

of all hidden services deployed in Tor. We will show

how an attacker can use this collection to opportunistically

deanonymize any hidden service which chose one of the

attacker’s nodes as one of its entry guards. The IP addresses

of these hidden services can be revealed in a matter of

seconds using a traffic correlation attack, as we will show

later.

It is clear that an attacker can operate several hidden

service directories and collect hidden service descriptors

over a long period of time. However, since there were more

than 1200 hidden service directories at the time of this

writing it can take the attacker significant amount of time to

collect enough hidden service descriptors.

To collect the descriptors of all hidden services in a short

period of time, a naı̈ve attack requires to run many Tor relays

from a non-negligible number of IP addresses. Assume that

7Note that this countermeasure is not implemented in Tor, however.

a hidden service descriptor’s ID falls into some gap8 on the

fingerprint circle. The hidden service uploads its descriptor

to the three hidden service directories with the next greater

fingerprints. This means that each hidden services directory

receives descriptors with identifiers falling into two gaps

preceding the hidden service directory’s fingerprint. This in

turn means that the attacker needs to inject a hidden service

directory into every second gap in the fingerprint circle

to collect all hidden service descriptors. Thus she would

need to run more than 600 Tor relays for 27 hours. This

requires more than 300 IP addresses, given that the attacker

is allowed to run only 2 Tor relays on a single IP address.

However, given the observations in the previous section,

we can collect the hidden service descriptors much more

efficiently. In this subsection, we show how to reduce the

number of IP addresses to approximately 50 (depending on

the exact number of hidden service directories in the con-

sensus). Our approach is based on shadow relays described

in the previous section. An attacker can use this artifact of

Tor’s design as follows. She can rent 50 IP addresses and

run 24 relays on each of them for 25 hours thus running

1200 Tor instances in total; 100 of them should appear in

the consensus. The fingerprints of the public keys of the

relays should fall into every second gap in the fingerprint

circle. At the end of 25 hour time period all of the relays

will have HSDir flags but only 100 of them will appear in

the consensus and the rest will be shadow relays. The idea

is to gradually make active relays unreachable to the Tor

authorities so that shadow relays become active and thus

gradually cover all gaps in the circular list during 24 hours.

It should be noted that the descriptor IDs of hidden ser-

vices (and hence the responsible hidden service directories)

change once per 24 hours and the time of the day when

they change can be different for different hidden services.

Since each hour the attacker covers only a fraction of the

gaps on the fingerprint circle, the location of the descriptor

can change from a gap not yet covered by the attacker to a

gap already covered. Thus, if the attacker makes only one

pass over the fingerprint circle during the day, she may not

catch some descriptors. It will not happen if the attacker

makes two passes during the day. Those descriptors location

of which changed during the first pass to already covered

gaps will be collected during the second pass (since they

can change the location once per 24 hours only).

Another important point is that consensus document re-

mains valid for a client for 3 hours, starting from its publi-

cation. According to the current implementation the clients

can download the new consensus in (FU + 45 mins;VA

- 10 mins) interval. Hence a hidden service can skip the

consensus document which immediately follows its current

consensus. This means the hidden service directories of the

8A gap is defined to be an interval in the circular list of fingerprints
between two consecutive HS directories

86

attacker should be in at least two consecutive consensus

documents in order for the hidden service to learn about

them.

Taken into account the aforementioned the attacker would

need to control R = N
12∗2 IP addresses, where N is the

number of hidden service directories in the Tor network.

Note that all the relays run by the attacker can be cheap

since they do not have to provide high performance. Thus

the attacker will have to pay only for the additional IP

addresses and very little for the traffic. The IP addresses

can be acquired from Amazon EC2 accounts. This results

in a low-resource attack.

C. Experimental results

We performed the attack using 50 EC2 virtual instances.

During the experiment we received 59130 publication re-

quests for different descriptor IDs. We also fetched the

descriptors from the memory of running Tor instances and

obtained 58389 descriptors in total9. Out of them there were

24703 descriptors with unique public keys. The fraction of

encrypted descriptors among them was approximately 1.5%.

When computing onion addresses from the descriptors,

we found the botnet C&C addresses, DuckDuckGo’s hidden

service and the Silk Road onion address in that set – as

expected. However, we also found what looked like backup

or phishing onion addresses for Silk Road, namely onion

addresses with the same 8 letter prefix:

silkroadrlzm5thj.onion
silkroadvb5piz3r.onion
silkroadvlsu5apk.onion
silkroad5hq52m36.onion

We were not able to connect to

silkroadrlzm5thj.onion, however

both silkroadvlsu5apk.onion and

silkroad5hq52m36.onion redirected us to

silkroadvb5piz3r.onion which is an onion-address for

Silk Road that is publicly known.

In order to verify the completeness of the harvested data

we collected a sample of 120 running hidden services from

public sources. Our data set missed 4 relays from this sample

set. By extrapolating this result we conclude that we could

have lost about 3% of hidden descriptors.

We launched a second experiment on another date in order

to reduce the costs of the attack. Because of the increased

number of hidden services directories on that date, we used

58 EC2 instances. We also used an improved harvesting

script: in addition to storing descriptors posted by hidden

services we also initiated descriptors fetches from other

responsible hidden services directories if a client’s request

was received for an unknown descriptor. At the end of the

experiment we collected 39824 unique onion addresses.

9Note that we fetched the descriptors from memory 3 hours after the
end of the experiment. This means that by that time some of our Tor relays
removed a small portion of the descriptors from their memory

In order to reduce the experiments’ costs we used the

following. First both shadow and active relays had reported

bandwidth of 0 Bytes/sec or 1 Bytes/sec. Since the granular-

ity of the bandwidth values in the consensus is 1 kBytes/sec,

all relays used in our attack were assigned bandwidth 0

kBytes/sec in the consensus. This means that the relays used

in the attack should never be chosen by clients for purposes

other than hidden services descriptors fetches. This has cut

the traffic costs expenses. Secondly, we launched Tor relays

participating in the harvesting from cheaper EC2 instances.

In the second experiment, we used EC2 micro instances

which is the cheapest option. In combination with reductions

in traffic costs, this allowed us to reduce the overall price

down to 57 USD.

Falling back to micro instances created performance prob-

lems however. Due to limited amount of RAM, at the end

of the experiment, we could not establish SSH connections

to some of EC2 instances and we had to reboot them to

retrieve the data. The log files indicated that system clock

jumped for several times which means that we could loose

some hidden services descriptors.

This experiment had inadvertent but important side-effect

on the flag calculation of Tor, of which we were notified by

the Tor developers; see the Appendix for more details.

VI. OPPORTUNISTIC DEANONYMISATION OF HIDDEN

SERVICES

The fact that an attacker always controls one side of

the communication with a hidden service means that it is

sufficient to sniff/control a guard of the hidden service in

order to implement a traffic correlation attack and reveal

the actual location of the hidden service. In particular, an

attacker can:

• Given the onion address of a hidden service with

unencrypted list of introduction points determine if her

guard nodes are used by this hidden service.

• Determine the IP addresses of those hidden services

that use the attacker’s guard nodes.

• Determine if the attacker’s guard nodes are used by any

of the hidden services, even if the list of introduction

points is encrypted.

A. Unencrypted descriptors

In order to confirm that an attacker controls a guard

node of a hidden service she needs to control at least one

more Tor non-Exit relay. In the attack, the hidden service is

forced to establishes rendezvous circuits to the rendezvous

point (RP) controlled by the attacker. Upon receiving a

RELAY_COMMAND_RENDEZVOUS1 cell with the attacker’s

cookie, the RP generates traffic with a special signature.

This signature can be identified by the attacker’s middle

node. We note that a special PADDING cell mechanism in Tor

simplifies generation of a signature traffic which is discarded

at the recipient side, and is thus unnoticeable to the hidden

87

service. The steps of the attack are shown in Figure 5 and

are as follows:

�������	
��
��

�������	
��
��
���	����

	����

	����

	����

���
���

���
��

��� ��

�

�

� ��

������������ �

�!!" #��

Figure 5. Revealing the guards

• The attacker sends a RELAY_COMMAND_INTRODUCE1

cell to one of the hidden service’s introduction points

(IP) indicating the address of the rendezvous point.

• The introduction point forwards the content in a

RELAY_COMMAND_INTRODUCE2 cell to the hidden ser-

vice.

• Upon receiving the RELAY_COMMAND_INTRODUCE2

cell, the hidden service establishes a three-hop cir-

cuit to the indicated rendezvous point and sends it a

RELAY_COMMAND_RENDEZVOUS1 cell.

• when the rendezvous point controlled by the attacker

receives the RELAY_COMMAND_RENDEZVOUS1 cell, it

sends 50 PADDING cells back along the rendezvous

circuit which are then silently dropped by the hidden

service.

• the rendezvous point sends a DESTROY cell down the

rendezvous circuit leading to the closure of the circuit.

Whenever the rendezvous point receives a

RELAY_COMMAND_RENDEZVOUS1 with the same cookie as

the attacker sent in the RELAY_COMMAND_INTRODUCTION1

cell it logs the reception. At the same time, the attacker’s

guard node monitors the circuits passing through it.

Whenever it receives a DESTROY cell over a circuit it

checks:

1) whether the cell was received just after the rendezvous

point received the RELAY_COMMAND_RENDEZVOUS1

cell;

2) the number of the forwarded cells: 3 cells up the

circuit and 53 cells down the circuit. Three cells

more come from the fact that the hidden ser-

vice established a circuit to the rendezvous point

thus the attacker’s guard node had to forward

(2×RELAY_COMMAND_EXTEND + 1×RENDEZVOUS1)

cells up and (2×RELAY_COMMAND_EXTENDED +

1×DESTROY) cells down. This is very important for

our traffic signature since it allows us to distinguish

the case when the attacker’s node was chosen as the

guard from the case when it was chosen as the middle.

If all the conditions are satisfied, the attacker decides

that her guard node was chosen for the hidden service’s

rendezvous circuit and marks the previous node in the circuit

as the origin of the hidden service.

In order to estimate the reliability of the traffic signature,

we collected a statistics on the number of forwarded cells

per circuit. We examined 748,846 circuits on our guard node.

None of the circuit exhibited the traffic pattern of 3 cells up

the circuit and 53 cells down the circuit. This means that

the proposed traffic signature is highly reliable.

We implemented the approach to attack our own hidden

service. We used a relay with a bandwidth of 500 Kbytes/s

according to the consensus as the guard node and were

scanning for the aforementioned traffic signature. For each

RELAY_COMMAND_RENDEZVOUS1 cell receive events we col-

lected the corresponding traffic pattern and got no false

positives.

B. Encrypted descriptors

If the list of introduction points is encrypted, an attacker

will not be able to establish a connection to the hidden

service. Hence the attack described in the previous section

does not apply. However, we can use a different method to

determine if some of those encrypted hidden services use a

guard node controlled by us. We will not be able distinguish

between hidden services with encrypted introduction points

though. On the other hand, note that results from Section

V show that the number of hidden services which encrypt

their introduction points is comparatively small.

To achieve this goal we do the following:

• On our guard node we look for a traffic pattern charac-

teristic for introduction circuits (we describe this traffic

pattern and how unique it is later in this section).

• We discard introduction circuits which originate at the

same IP address as any of the hidden services with

unencrypted descriptors.

• For all remaining introduction circuits, we mark their

origins as possible locations of an encrypted hidden

services.

Let us describe the characteristics exhibited by introduc-

tion circuits: The main difference between general-purpose

circuits and introduction circuits is their duration. General

Tor circuit stays alive either for ten minutes (if they were

used by any stream), for one hour (if they did not carry

any data traffic) or as long as any traffic is carried over

them (this implies an open stream). In contrast, introduction

circuits stay alive much longer, namely until some hop in

the circuit fails or the hidden service closes the connection.

The second important difference is that after an introduc-

tion circuit is established, it does not transmit cells from the

88

origin. On the other hand, general-purpose circuits usually

transmit traffic back and forth.

Thirdly, we can use the fact that introduction circuits are

always multi-hop while some general-purpose circuits are

one-hop.

In order to check how good these filters are, we launched

a hidden service which established two introduction circuits

through a non-guard relay controlled by us. By collecting

the circuit statistics on this node for 24 hours we were

able to identify our introduction circuits while having no

false positives. We also did measurements on our guard

node during 24 hours and identified 14 potential introduction

circuits. However, we did not check if they belonged to

hidden services with unencrypted introduction points.

C. Success rate and pricing for targeted deanonymizations

In early 2012 we operated a guard node that we rented

from a large European hosting company (Server4You, prod-

uct EcoServer Large X5) for EUR 45 (approx. USD 60) per

month. Averaging over a month and taking the bandwidth

weights into account we calculated that the probability for

this node to be chosen as a guard node was approximately

0.6% on average for each try a Tor client made that month.

As each hidden service chooses three guard nodes initially,

we expect over 450 hidden services to have chosen this node

as a guard node10. Running these numbers for a targeted

(non-opportunistic) version of the attack described in Section

VI-A shows us that by renting 23 servers of this same type

would give us a chance of 13.8% for any of these servers to

be chosen. This means that within 8 months, the probability

to deanonymize a long-running hidden service by one of

these servers becoming its guard node is more than 90%,

for a cost of EUR 8280 (approximately USD 11,000).

Take into account that this scales well: Attacking multiple

hidden services can be achieved for the same cost once the

infrastructure is running.

VII. REVEALING GUARD NODES OF HIDDEN SERVICES

As mentioned in the background section, each hidden

service keeps a list of guard nodes. Revealing the guards

does not immediately allow an attacker to reveal the location

of the hidden service but gives her the next point of attack.

This can be dangerous for a hidden service since it is

supposed to be online for a long11 time. This gives an

attacker sufficient amount of time either to take control over

the guard nodes or to start sniffing network traffic near the

guards. Given that guard nodes are valid for more than a

month, this may also be sufficient to mount a legal attack to

recover traffic meta data for the guard node, depending on

the jurisdiction the guard node is located in.

In this section we present an attack to reveal the guard

nodes of a hidden service when the list of the introduction

10Assuming the current number of hidden services
11Silk Road’s hidden service is already running for almost two years.

points in the HS descriptor is not encrypted (for the case

when the list of introduction points in encrypted see Ap-

pendix B).

To do this, we use a technique similar to that presented

in section VI; control over at least two Tor non-Exit relays

is needed to carry it out. In the attack, the hidden service

is forced to establishes many rendezvous connections to the

rendezvous point (RP) controlled by the attacker in hope

that some circuits pass through the second node (the middle

node) controlled by the attacker. The RP generates traffic

with a special signature which can be identified by the

attacker’s middle node. The steps of the attack are the same

as in section VI.

Asymptotically, the probability that the attacker’s mid-

dle node is chosen for the rendezvous circuit, ap-

proaches 1. Whenever the rendezvous point receives a

RELAY_COMMAND_RENDEZVOUS1 with the same cookie as

the attacker sent in the RELAY_COMMAND_INTRODUCTION1

cell it logs the reception and the IP address of the immediate

transmitter of the cell. At the same time, the attacker’s mid-

dle node monitors the circuits passing through it. Whenever

it receives a DESTROY cell over a circuit it checks:

1) whether the cell was received just after the rendezvous

point received the RELAY_COMMAND_RENDEZVOUS1

cell;

2) if the next node of the circuit at the middle node

coincides with the previous node of the circuit at the

rendezvous point;

3) whether the number of forwarded cells is exactly 2

cells up the circuit and 52 cells down the circuit.

If all the conditions are satisfied, the attacker decides

that her middle node was chosen for the hidden service’s

rendezvous circuit and marks the previous node in the circuit

as a potential guard node of the hidden service.

We implemented the attack and ran it against two hidden

services operated by us. In both cases the guard nodes

were identified correctly, without any false positives. In the

first case, the rendezvous point received around 36 000

RELAY_COMMAND_RENDEZVOUS1 cells in 1 hour 20 minutes

and the correct guard nodes were identified 8, 6, and 5 times

correspondingly. In the seconds case, the rendezvous point

received 16 000 RELAY_COMMAND_RENDEZVOUS1 cells in

40 minutes and the correct guard nodes were identified 5,

2, and 1 times respectively.

We also used this approach to identify the guard nodes of

the botnet hidden service. Note that in the attack described

in this section an attacker can use just one middle node and

send the traffic signature as a client. However it requires

building rendezvous circuits which makes the attack longer.

The same applies to the attack presented in section VI.

VIII. DISCUSSION AND POTENTIAL COUNTERMEASURES

We propose two countermeasures to make distributed

storage of the hidden service descriptors more robust. The

89

first of these prevents the directory authorities from learning

the contents of hidden services descriptors they are serving.

This prevents hidden services from harvesting descriptors to

learn more onion addresses. Our second proposed change

makes the position of the responsible hidden service di-

rectories in the directory fingerprint ring unpredictable for

any hidden service. This removes the opportunity of target-

ing hidden service directories. Henceforth attackers can no

longer precompute identity keys to target hidden services

for popularity measurements and to deny service to them by

selectively running relays with those keys.

Harvesting can be easily prevented by making the

descriptor-cookie authentication [15] mandatory for all

hidden services and base32 encoding the value as part of

the URL together with the permanent-id. The downside

of this change is a significantly reduced usability: instead of

16 character onion addresses the user now has to deal with

onion-addresses that are 42 characters long.

In order to prevent adversaries from efficiently targeting

hidden service directories we propose the following changes:

For each hour, an unpredictable value is derived by the

directory authorities from a shared secret. Three of these

values are included in the consensus – one for each of the

hours the consensus is valid.

The unpredictable value valid for the hour of the request

is then included in the calculation of the descriptor ID

and henceforth determines the place on the ring where the

descriptor is stored. This makes it impossible for an attacker

to precompute identity keys for time periods further ahead

than 3 hours in the future.

Additionally, directory authorities base the decision on

whether a relay is assigned an HSDir flag on the number

of past consecutive consensus documents the relay has been

listed in and not on the uptime of the relay. This prevents

the shadowing attack we have described.

To prevent the guard nodes being revealed, one can use

an additional layer of guard nodes – guard middle nodes.

This countermeasure has already been proposed in [19] but

is not implemented in Tor. Note that this measure will not

protect against an attacker exploiting degree anomalies of

the guard nodes as described in Section B.

Unfortunately, we do not see how the risk of guard nodes

being able to deanonymize a hidden service having chosen

them can be eliminated completely. Recent work by Tariq

et al. [9] suggests that the guards compromise rate can be

decreased by (1) making the guard rotation interval longer

and (2) by taking into account how long nodes have been

part of the network when assigning Guard flags to them.

Note that this approach if not carefully implemented has

a number of downsides like reduced end-user quality of

experience and malicious nodes accumulating Tor users.

In regard to revealing the introduction circuits, if the

attacker will not be able to collect the full list of hidden

service descriptors, she will not be able to distinguish be-

tween introduction circuit of hidden services with encrypted

introduction points and non-encrypted.

IX. CONCLUSION

We have analyzed the security properties of Tor hidden

services and shown that attacks to deanonymize hidden

services at a large scale are practically possible with only

a moderate amount of resources. We have demonstrated

that collecting the descriptors of all Tor hidden services is

possible in approximately 2 days by spending less than USD

100 in Amazon EC2 resources. Running one or more guard

nodes then allows an attacker to correlate hidden services

to IP addresses using a primitive traffic analysis attack.

Furthermore, we have shown that attackers can impact the

availability and sample the popularity of arbitrary hidden

services not under their control by selectively becoming their

hidden service directories.

To address these vulnerabilities we have proposed coun-

termeasures. These prevent hidden service directories from

learning the content of any the descriptors unless they also

know their corresponding onion address and significantly

increase the resources required to selectively become a

hidden service directory for a targeted hidden service.

However, note that the above suggestions are nothing

more than stop-gap measures. We believe that the problems

we have shown are grave enough to warrant a careful

redesign of Tor’s hidden services.

REFERENCES

[1] ANONYMOUS. IAmA a malware coder and botnet operator,
AMA. http://www.reddit.com/r/IAmA/comments/sq7cy/
iama a malware coder and botnet operator ama/, April
2012.

[2] BAUER, K. S., MCCOY, D., GRUNWALD, D., KOHNO, T.,
AND SICKER, D. C. Low-resource routing attacks against
Tor. In WPES (2007), P. Ning and T. Yu, Eds., ACM, pp. 11–
20.

[3] BIRYUKOV, A., PUSTOGAROV, I., AND WEINMANN, R.-
P. TorScan: Tracing long-lived connections and differential
scanning attacks. In ESORICS 2012, S. Foresti, M. Yung,
and F. Martinelli, Eds., vol. 7459 of LNCS. Springer, 2012,
pp. 469–486.

[4] BROWN, D. Resilient botnet command and control with Tor.
DefCon 18, https://www.defcon.org/images/defcon-18/dc-
18-presentations/D.Brown/DEFCON-18-Brown-TorCnC.pdf,
July 2010.

[5] CHRISTIN, N. Traveling the silk road: A measurement
analysis of a large anonymous online marketplace. CoRR
abs/1207.7139 (2012).

[6] DARROCH, J. N., AND SENETA, E. On quasi-stationary dis-
tributions in absorbing continuous-time finite Markov chains.
Journal of Applied Probability 4, 1 (1967), pp. 192–196.

90

[7] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. F.
Tor: The second-generation onion router. In USENIX Security
Symposium (2004), USENIX, pp. 303–320.

[8] DOUCEUR, J. R. The Sybil attack. In IPTPS 2002 –
Peer-to-Peer Systems, First International Worksho (2002),
P. Druschel, M. F. Kaashoek, and A. I. T. Rowstron, Eds.,
vol. 2429 of Lecture Notes in Computer Science, Springer,
pp. 251–260.

[9] ELAHI, T., BAUER, K., ALSABAH, M., DINGLEDINE, R.,
AND GOLDBERG, I. Changing of the guards: A framework
for understanding and improving entry guard selection in Tor.
In Proceedings of the Workshop on Privacy in the Electronic
Society (WPES 2012) (2012), ACM, pp. 43–54.

[10] ELICES, J., PEREZ-GONZALEZ, F., AND TRONCOSO, C.
Fingerprinting Tor’s Hidden Service Log Files Using a Tim-
ing Channel. In WIFS 2011 – 3rd IEEE International Work-
shop on Information Forensics and Security (2011), IEEE.

[11] G DATA SECURITY. Botnet command server hidden
in Tor. http://blog.gdatasoftware.com/blog/article/botnet-
command-server-hidden-in-tor.html, September 2012.

[12] GUARNIERI, C. Skynet, a Tor-powered botnet straight from
Reddit. https://community.rapid7.com/community/infosec/
blog/2012/12/06/skynet-a-tor-powered-botnet-straight-from-
reddit, December 2012.

[13] JANSEN, R., AND HOPPER, N. Shadow: Running Tor in a
Box for Accurate and Efficient Experimentation. In NDSS
2012 – Proceedings of the Network and Distributed System
Security Symposium (2012), Internet Society.

[14] LIPMAN, D. H. Mailing list post: ”[tor-talk]
vwfws4obovm2cydl.onion ?”. https://lists.torproject.org/
pipermail/tor-talk/2012-June/024565.html, June 2012.

[15] LOESING, K. Privacy-enhancing Technologies for Private
Services. PhD thesis, University of Bamberg, May 2009.

[16] MANDL, P. Sur le comportement asymptotique des prob-
abilites dans les ensembles de etats dune chaine de Markov
homogeene (Russian). Casopis Pest. Mat. 84 (1959), pp. 140–
149.

[17] MICAH, M. W., WRIGHT, M., ADLER, M., AND LEVINE,
B. N. Defending anonymous communications against passive
logging attacks. In Proceedings of the 2003 IEEE Symposium
on Security and Privacy (2003), pp. 28–41.

[18] MURDOCH, S. J. Hot or not: Revealing hidden services by
their clock skew. In 13th ACM Conference on Computer and
Communications Security (2006), ACM Press, pp. 27–36.

[19] ØVERLIER, L., AND SYVERSON, P. Locating hidden servers.
In Proceedings of the 2006 IEEE Symposium on Security and
Privacy (2006), IEEE Computer Society, pp. 100–114.

[20] ØVERLIER, L., AND SYVERSON, P. F. Valet services:
Improving hidden servers with a personal touch. In PET
2006 – Privacy Enhancing Technologies (2006), G. Danezis
and P. Golle, Eds., vol. 4258 of Lecture Notes in Computer
Science, Springer, pp. 223–244.

[21] POLLETT, P. K. Analytical and computational methods for
modelling the long-term behaviour of evanescent random
processes, June 1993.

[22] SCHUMER, C. E., AND MANCHIN, J. Press
release: Manchin urges federal law enforcement to
shut down online black market for illegal drugs.
http://manchin.senate.gov/public/index.cfm/2011/6/manchin-
urges-federal-law-enforcement-to-shut-down-online-black-
market-for-illegal-drugs, Jun 2011.

[23] SENETA, E. Quasi-stationary behaviour in the random walk
with continuous time. Australian Journal of Statistics 8, 2
(1966), 92–98.

[24] SHEBARO, B., PEREZ-GONZALEZ, F., AND CRANDALL,
J. R. Leaving timing-channel fingerprints in hidden service
log files. Digital Investigation 7 (2010), pp. 104–113.

[25] THE TOR PROJECT. Tor Rendezvous Specification.
https://gitweb.torproject.org/torspec.git?a=blob plain;hb=
HEAD;f=rend-spec.txt, accessed on November 13th, 2012.

[26] ZANDER, S., AND MURDOCH, S. J. An improved clock-
skew measurement technique for revealing hidden services.
In USENIX Security Symposium (2008), pp. 211–226.

APPENDIX

A. The Influence of Shadow Relays on the Flag Assignment

During the second harvesting experiment we accidentally

revealed an important artifact of the flag assignment in Tor

which is not obvious from the Tor specifications. Near the

end of the experiment we were notified by the Tor developers

that the Sybil attack had caused a spike in the number of

relays assigned Fast flags and Guard flags (see Fig. 6)

����

�����

�����

�����

�����

�����

�����

���	
� ���	
� �
�	
� ������ ������ �
����

��
�
��
���

���
��

�
�

����������

�������
��
�
�
�!

"!
���

Figure 6. Increase in the number of Guard nodes.

This happened because the shadow relays were taken

into account for calculating medians of the bandwidth and

the uptime. From these values, thresholds are derived that

determine the flag assignment of all relays. According to the

Tor specification:

91

... A router is a possible Guard if its Weighted

Fractional Uptime is at least the median for famil-

iar active routers, and if its bandwidth is at least

median or at least 250KB/s.

To calculate weighted fractional uptime, com-

pute the fraction of time that the router is up in

any given day, weighting so that downtime and

uptime in the past counts less.

A node is familiar if 1/8 of all active nodes

have appeared more recently than it...

In our second experiment, we caused the authorities

to take into account 1392 shadow relays of bandwidth 0

Bytes/sec and 1 Bytes/sec. This significantly changed the

medians for both bandwidth and uptime, which allowed

many already running relays to get the Guard flag. During

the harvesting experiment, this caused the number of Guard

nodes to suddenly increase by 500.

The artifact has been patched in tor v0.2.4.10-alpha by

ignoring Sybil relays when assigning flags. However, it is

important to note that a more expensive version of the same

Sybil attack is still possible. For example, an attacker could

rent a large number of EC2 instances, running 2 Tor relays

on each. This would enable attackers’ Tor relays to decrease

the value of the median for the Weighted Fractional Uptime

as well as the bandwidth median, allowing to obtain the

Guard flag for her relays much faster. For example, in order

to inject 1200 Tor relays, an attacker would need to run 600

EC2 instances, spending only 288 USD per 24 hours.

B. Anomalies in the Tor Network Topology

If the list of introduction points of a hidden services is

encrypted, it is not possible to make the hidden service

establish rendezvous circuits (as was described in Section

VII). In order to reveal the guard nodes of a popular hidden

service in this case, an attacker can use another attack. The

condition for this attack is that the hidden service has many

clients which establish long-lived (approx. 1-2 hours or

longer) connections. This is the case of the botnet described

in previous sections; connections to its IRC hidden service

are long-lived.

Our measurements show that currently only a small frac-

tion of all hidden services use encrypted descriptors. How-

ever we believe that this is an important case to study since

encrypted descriptors offer significant additional protection

and in the original draft of the Tor hidden services protocol

all descriptors were supposed to be hidden.

Popularity of a hidden service, i.e. a large number of

clients connecting to it, creates additional load on its guards

nodes. This changes the topological properties of the guard

nodes in terms of their degree 12 and in terms of the decay

rate of persistent connections (in comparison to the case

12The degree of a Tor relay denotes the number of TLS connections
established between a given relay and other relays.

when the guard nodes are not used by a popular hidden

service). In particular:

• the degree of the guard nodes of such a service will

depend on the number of clients. The deviation of a

node’s degree from the expected value can serve as an

indication of a popular hidden service;

• if clients make persistent connections to the hidden ser-

vice (which is the case with botnet where IRC channel

is used) the decay rate of the persistent connections of

the HS’s guard nodes will look substantially different

from that of other guard nodes with similar bandwidth.

We expect that the decay curve is much steeper in the

case of normal guard nodes.

In order to identify the guard nodes of a popular hidden

service we implement the following steps. We provide two

analytical models for (1) the expected degree and (2) the

expected persistent connections decay rate of a “normal”

guard node. We then use the scanning technique from [3]

to determine the real degrees of the guard nodes and their

persistent connections decay rates. Finally, we compare the

predicted values with those received from the measurements

and single out nodes with too high degrees and too slow

decay rates. The nodes we get are the candidates for the

guard nodes of the hidden service.

By persistent connections decay rate of a Tor relay we

mean the following: Assume that at time t0 the relay has

N TLS connections with other Tor relays. The decay rate

of these connections is a function of time which shows how

many of them remain connected at time t.

1) Expected degree of nodes in the Tor network graph:
In order to derive the expected degree of a Tor relay we use

results presented in [3], section 5.2. In [3], the probability of

a TLS connection between two Tor relays at a given point

in time is computed as ratio of the average gap between

connections to the average connection duration. We denote

tavg as the average circuit duration and tidle as the lifetime

of a connection without circuits. According to empirical

results presented [3], the average duration of a circuit is 200

seconds and according to the current Tor implementation,

the lifetime of a connection without circuits is set to three

minutes.

Assuming a delay larger than tavg + tidle, the average

delay between two circuits is computed as:

I =

∫∞
tavg+tidle

t · λa,b · e−λa,b·tdt

eλa,b·(tavg+tidle)
= tavg + tidle +

1

λa,b
,

(1)

The probability that there is a connection between A and

B at an arbitrary point in time is given by:

92

PAB = 1− e−λa,b·(tavg+tidle) · I − (tavg + tidle)

I
=

1− e−λa,b·(tavg+tidle)

λa,b(tavg + tidle) + 1
,

(2)

where R is the current circuit arrival rate of the whole Tor

network, and pa,b is the probability of routers A and B to

form an edge in a circuit and λa,b = R ·pa,b. The probability

pa,b is approximated as follows:

pa,b = 2 · bwabwb

bwtotal

(
1

bwguards
+

1

bwexit

)
,

where bwguards is the total bandwidth of guard nodes,

bwexit is the total bandwidth of exit nodes, bwtotal is the

total bandwidth of the whole Tor network, bwa and bwb are

bandwidths of routers A and B respectively. This information

is obtained from the consensus document.

The expected number of open connections of a Tor relay

at an arbitrary point of time is thus:

Navg
A = �

∑
B∈T

PAB�,

where T denotes the set of all Tor relays and |T | = n.

We now compare the model with the observed degrees

of Tor relays. We used the technique described in [3] in

order determine to which other relays a given Tor relay has

established TLS connections. Figure 7 shows the degrees

of Tor relays sorted by their bandwidth weight from the

consensus.

�

���

����

����

����

����

� ��� ��� ��� ��� ��� ��� 	��
�� ���

�

��
�
��
��
�
��

��
��

�
��� ���� ���� �
����

Figure 7. Degrees of Tor relays

From this figure, one can see that there are a number of

nodes which deviate significantly from the average – we call

these peak nodes. The guard nodes of the botnet which we

determined in the previous section are marked by arrows and

are among the peaks. This allows us to filter out quite many

relays. However the number of peaks is still considerable. In

the next section we show how to reduce the set of candidates

of guard nodes of a popular hidden service based on the

persistent connection decay rate.
2) Decay rate of persistent connections: As mentioned

in [3], for an average Tor relay the decay rate of persistent

connections is steep during the first hours. This is not the

case if a relay is a guard node of a hidden service with

persistently connected clients, such as the botnet’s IRC

command and control. In this case the decay rate will be

determined by the bots going offline rather than by the

bandwidth of the node.

In order to predict the decay rate of a “normal” Tor relay

we use the following approach: We first find the expression

for the duration of a connection between relay A and B and

use it to determine the connection decay rate. We assume

the following: 1) circuits arrive to the connections according

to Poisson distribution [3]; 2) the circuit arrival rate is

proportional to the bandwidth of the relay; 3) the circuit

duration follows an exponential distribution. Given these

assumptions, we adopt a finite state Markov chain to model

the connection duration. Each state of the Markov chain

represents the number of circuits carried over the connection.

The chain has one absorbing state 0. We are interested in

the extinction time. The number of states is finite.

We assume that at the time when we observe the con-

nections, the system is in quasistationary state, conditioned

that the extinction has not occurred. Thus the initial state

distribution is a quasi-stationary distribution which always

exists for finite state case (see [16] , [6]). Classical matrix

theory can be used to show that a matrix containing in-

finitesimal transition probabilities of transient states has a

dominant eigenvalue such that the corresponding left and

right eigenvectors have positive entries (see [16], and [6]);

the left eigenvector is the quasistationary distribution. We

denote (q1, q2, ..., qN) as the row vector of quasistationary

probabilities.

Let λ be the circuit arrival rate to a connection between

two Tor relays and μ the circuit closing rate. In this case,

the matrix of infinitesimal transition probabilities is:

R =

[
0 0
a C

]
, (3)

where the matrix C corresponds to transient states T =
{1, 2, ..N} and state 0 is absorbing. The matrix C can be

written as:

⎛
⎜⎜⎜⎜⎜⎝

−λ− μ λ 0 0 · · · 0 0
μ −λ− μ λ 0 · · · 0 0
0 μ −λ− μ λ · · · 0 0
...

....
...

...
. . .

...
...

0 0 0 0 · · · μ −μ

⎞
⎟⎟⎟⎟⎟⎠

(4)

The probability of extinction of a connection between

relays A and B in this case can then be derived as (we

use Kolmogorov forward equations to get this result):

93

pAB
0 (t) = 1− e−μq1t

The circuit arrival rate λa,b is computed as in the previous

subsection. We set the circuit closing rate as μ = 1/(tavg +
tidle), where tavg is the average duration of a circuit as

in [3] and tidle = 180 seconds is the time before an idle

connection would close. As stated in [3], tavg depends only

slightly on the pair of relays and is close to 200 seconds.

One can use numerical methods (see [21] for example) to

compute the eigenvalues and eigenvectors. Note that for the

cases when λa,b < μ, one can approximate the values with

an expression for infinite state Markov chain [23]. In the

infinite case, the quasistationary probability for the system

to be in state j is:

qj = (1− β)2jβj−1,

where β =
√

λ
μ . Particularly,

q1 = (1− β)2.

We apply this model to the pair of medium-bandwidth

Tor relays for which the experimental data was presented

in [3]. The consensus bandwidths of the relays were 1850

kBytes/sec and 4280 kBytes/sec. Both were Guard and non-

Exit nodes. The comparison between the model and the data

obtained from the direct measurements on one of the nodes

is shown in Figure 8.

��

���

���

���

���

����

�� ����� ����� ����� ����� ������ ������ ������

��
��

��
���

�	

��

�����������
�������
�����	

����������	�
������������������
�����������
����������
��

Figure 8. Connection duration model validation

Given the initial connections of a relay, we use the model

for connection duration to compute the expected number of

persistent connections at an arbitrary point of time for Tor

relay A:

Npers
A (t) =

∑
B∈I

(1− pAB
0 (t)),

where I is the set of initial connections of A.

Using the technique from [3] we obtained the persistent

connections decay rate of the Tor guard nodes. We compared

them with the connection decay rate predicted by the model

and filtered those connections which differ from the model.

Particularly, we compared the number of persistent connec-

tions after 3 hours of scanning. Out of 856 nodes 200 had

a degree that exceeded the value predicted by the model.

Choosing a threshold such that guard of the botnet’s hidden

service is included, we find that 37 nodes have a degree that

is 1.4 time higher than the value predicted by the model.

Figure 9 shows the real decay rate of the botnet’s guard

nodes plotted against the theoretically predicted one. As one

can see, the discrepancy is quite detectable.

����

����

����

�����

�����

�����

�����

�����

�� ����� ����� �	��� ����� �
��� ����� ����� ����� ����� ������

�
�
��

���
���

��
��
��
��

���
��

��
��
��
��

���������

������������ ��������
�������������!�"

Figure 9. Decay rate of the botnet’s guard 1

Figure 10 shows the observed decay rate and the predicted

decay rate of another node with a degree above the average

(one of the peaks in Figure 7). The majority of peaks from

the previous section have this type of the decay rate, which

is close to the theoretical predictions. This allows us to

reduce the number of candidates to 29. Since we know the

actual guard nodes of the botnet’s hidden service from the

unencrypted descriptor attack, we were able to check that

indeed the correct guards appeared in this list of candidates.

����

����

����

����

����

����

����

����

����

�� ����� �	��� �
��� ����� ����� ����� ����� ����� ����� ������

�
�
��

���
���

��
��
��
��

���
��

��
��
��
��

���������

������������ ��������
�������������!�"

Figure 10. Common shape of the decay rate

94

