
Peek-a-Boo, I Still See You:
Why Efficient Traffic Analysis Countermeasures Fail

Kevin P. Dyer∗, Scott E. Coull†, Thomas Ristenpart‡, and Thomas Shrimpton∗

∗Department of Computer Science, Portland State University, Portland, USA. Email: {kdyer, teshrim}@cs.pdx.edu
† RedJack, LLC., Silver Spring, MD, USA Email: scott.coull@redjack.com

‡Department of Computer Sciences, University of Wisconsin-Madison, USA. Email: rist@cs.wisc.edu

Abstract—
We consider the setting of HTTP traffic over encrypted

tunnels, as used to conceal the identity of websites visited
by a user. It is well known that traffic analysis (TA) attacks
can accurately identify the website a user visits despite the
use of encryption, and previous work has looked at specific
attack/countermeasure pairings. We provide the first com-
prehensive analysis of general-purpose TA countermeasures.
We show that nine known countermeasures are vulnerable to
simple attacks that exploit coarse features of traffic (e.g., to-
tal time and bandwidth). The considered countermeasures
include ones like those standardized by TLS, SSH, and
IPsec, and even more complex ones like the traffic morphing
scheme of Wright et al. As just one of our results, we show
that despite the use of traffic morphing, one can use only
total upstream and downstream bandwidth to identify —
with 98% accuracy— which of two websites was visited. One
implication of what we find is that, in the context of website
identification, it is unlikely that bandwidth-efficient, general-
purpose TA countermeasures can ever provide the type of
security targeted in prior work.

Keywords-traffic analysis countermeasures; privacy; ma-
chine learning; padding; encrypted traffic

I. INTRODUCTION

Internet users increasingly rely on encrypted tunnels to
keep their web browsing activities safe from eavesdrop-
pers. A typical scenario involves a user establishing an
encrypted tunnel to a proxy that then relays all subsequent
HTTP traffic (in both directions) through the tunnel. An-
other is when one browses the web on a wireless network
that uses WPA to encrypt all traffic. In both cases, the
use of encryption should hide the contents of the traffic
and, intuitively, the identity of the destination website(s).
Yet modern encryption does not obfuscate the length of
underlying plaintexts, nor the number of plaintexts that
are encrypted. This information may seem harmless, but
in fact it enables traffic analysis (TA) attacks. Among other
things, TA attacks can reveal the identity of the websites
viewed by the user [1, 9, 10, 15, 19].

One commonly suggested TA countermeasure is to hide
the plaintext length by adding padding prior to encryption.
Padding countermeasures are standardized in TLS, explic-
itly to “frustrate attacks on a protocol that are based on
analysis of the lengths of exchanged messages” [5]. Simi-
lar allowances for padding appear in SSH and IPSec. More
advanced countermeasures, such as traffic morphing [19],

manipulate whole streams of packets in order to precisely
mimic the distribution of another website’s packet lengths.

The seemingly widespread intuition behind these coun-
termeasures is that they patch up the most dangerous side
channel (packet lengths) and so provide good protection
against TA attacks, including website identification. Exist-
ing literature might appear to support this intuition. For
example, Liberatore and Levine [10] show that padding
packets to the network MTU (e.g., 1500 bytes) reduces
the accuracy of one of their attacks from 98% to 7%.

Our results strongly challenge this intuition. We perform
the first comprehensive analysis of low-level countermea-
sures (e.g., per-packet padding) for the kind of website
identification attacks considered by prior work (c.f., [8, 10,
14, 22]): a closed-world setting for privacy sets, in which
the a priori set of possible websites a user might visit is
known to the attacker, coupled with the ability for the
attacker to train and test on traffic traces that are free
of real-world artifacts (e.g., caching effects, interleaved
flows, and user-specific content). We consider nine distinct
countermeasures, apply them to two large, independent
datasets of website downloads, and pit the resulting ob-
fuscated traffic against a total of seven different attacks.
The results are summarized in Figure 1. What we uncover
is surprisingly bleak:

None of the countermeasures are effective. We show
that two classifiers —a new naı̈ve Bayes classifier called
VNG++ and a support vector machine classifier due to
Panchenko et al. [14]— achieve better than 80% accuracy
in identifying which of k = 128 websites was visited
in a closed-world experiment. (Random guessing achieves
0.7% accuracy.) When k = 2 these classifiers achieve over
98% accuracy. This holds for all nine countermeasures
considered, including ones inspired by the SSH, TLS
and IPSec RFCs, and state-of-the-art ones such as traffic
morphing [21].

Hiding packet lengths is not sufficient. We initiate a study
of classifiers that do not directly use fine-grained features
such as individual packet lengths. The VNG++ classifier
just mentioned uses only “coarse” information, including
overall time, total bandwidth, and size of bursts. In fact,
we provide a naı̈ve Bayes classifier that uses only the total
bandwidth for training and testing, yet still achieves greater

1

Attack Classifier Features Considered k = 2 k = 128 k = 775

Liberatore and Levine [10] (LL) naı̈ve Bayes (NB) Packet lengths 85% 25% 8%

Herrmann et al. [8] (H) multinomial naı̈ve Bayes (MNB) Packet lengths 71% 3% 0%

Panchenko et al. [14] (P) support vector machine (SVM) Packet lengths, Order, Total bytes 99% 82% 63%

Time (TIME) naı̈ve Bayes Total trace time 82% 9% 3%

Bandwidth (BW) naı̈ve Bayes Upstream/Downstream total bytes 98% 41% 18%

Variable n-gram (VNG) naı̈ve Bayes Bytes in traffic bursts 99% 69% 54%

VNG++ naı̈ve Bayes Total trace time, 99% 80% 61%
Upstream/Downstream total bytes,

Bytes in traffic bursts

Figure 1. Summary of attacks evaluated in our work. The k = 2, k = 128 and k = 775 columns indicate the classifier accuracy for a privacy set
of size k when using the most effective countermeasure for the Herrmann dataset (see Section II).

than 98% accuracy at k = 2 and 41% accuracy at k =
128. This implies that any effective countermeasure must
produce outputs that consume indistinguishable amounts
of bandwidth.

Coarse information is unlikely to be hidden efficiently.
Our coarse-feature attacks, in particular the bandwidth-
only attack, strongly suggest that resource-efficient coun-
termeasures will not (on their own) effectively hide website
identity within a small privacy set. So, we investigate
an inefficient strawman countermeasure, Buffered Fixed-
Length Obfuscation (BuFLO, pronounced “buffalo”), that
combines and makes concrete several previous sugges-
tions: it sends packets of a fixed size at fixed intervals,
using dummy packets to both fill in and (potentially)
extend the transmission. We subject it to the same analysis
as the other countermeasures. This analysis shows that
should BuFLO fail to obfuscate total time duration and
total bandwidth, then attacks still achieve 27% accuracy
at k = 128. With a bandwidth overhead of over 400%, we
can, in theory, finally reduce k = 128 accuracy to 5%.

Relevance to other settings. While the adversarial model
that we consider is consistent with previous work, we
admit that there are several factors (e.g., caching, open-
world identification) that are not captured. Indeed, these
may reduce the effectiveness of the attacks, and improve
countermeasure efficacy, in practice. There may also be
some other settings, such as Voice over IP (VoIP) traf-
fic [18–21], where the nature of the application-layer
protocol enables some countermeasures to work very well.
That said, the model considered in this paper (and its
predecessors) is one that a general-purpose countermeasure
ought to cover.

Finally, our analysis does not cover application-
layer countermeasures such as Camouflage [8] and
HTTPOS [12], which both make intimate use of spurious
HTTP requests to help obfuscate traffic patterns. We
suspect, however, that the lessons learned here might help
direct future analysis of application-layer countermeasures,
as well.

II. EXPERIMENTAL METHODOLOGY

Like previous works [8, 10, 14, 22], our experiments
simulate a closed-world setting in which an adversary has
access to the timing, lengths, and directionality of packets
sent over an encrypted HTTP tunnel (e.g., to or from a
proxy server). We assume secure encryption algorithms are
used and no information can be learned from the encrypted
contents itself.

We base our simulation on two datasets that have been
widely used by previous works on web page identification.
The Liberatore and Levine dataset [10] contains times-
tamped traces from 2,000 web pages. The Herrmann et
al. [8] dataset contains timestamped traces from 775 web
pages. A trace is defined as a record of the lengths and
timings of ciphertexts generated by accessing a web page
using an OpenSSH single-hop SOCKS proxy. Please refer
to the previous works [8, 10] for further details about data
collection methodology.

Each of our experiments is performed with respect to
a particular classifier, a particular countermeasure, and a
specified set of n web pages. An experiment consists of
a number of trials; we will say in a moment how the
particular number of trials is determined. At the start of
each experimental trial, we uniformly select a subset of
k ≤ n web pages to define the privacy set for that trial.1

Next we establish k sets of 20 traces, one for each web
page, as follows. For every web page in the data set, there
are m > 20 chronologically sorted sample traces. We
select a random trace index i ∈ {0, 1, . . . ,m − 19}, and
take traces i, i + 1, . . . , i + 19 for each of the k web
pages. The first t = 16 of the traces from each of the k
sets are used as the training data for the classifier, and
the remaining T = 4 traces form the testing data set.2

The countermeasure is applied to both the training and
testing data, and the classifier is trained and then tested to
determine its accuracy. Classifier accuracy is calculated as

1We do not believe the uniform distribution represents typical user
web-browsing behavior. In practice, we expect that biased sampling from
the privacy set would further aid an attacker.

2We considered values of t ∈ {4, 8, 12, 16} and observed effects con-
sistent with those reported by Liberatore and Levine [10]: as t increases
there was a consistent, modest increase in classification accuracy.

2

(c/Tk), where c is the number of correctly classified test
traces and k is our privacy set size.

In each experiment, we perform 2(15−log2(k)) tri-
als, so that there are a total of T · 215 test data
points per experiment. We consider values of k ∈
{2, 4, 8, 16, 32, 64, 128, 256, 512, 775} in order to capture
countermeasure performance across a number of scenarios.
Intuitively, smaller values of k present easier classification
(attack) settings, and larger values of k present more
difficult classifier settings.

We note that the engineering effort required to produce
our results was substantial. To aid future research efforts,
the Python framework used for our experiments is publicly
available3.

III. TRAFFIC CLASSIFIERS

A sequence of works detail a variety of TA attacks, in
the form of classifiers that attempt to identify the web
page visited over an encrypted channel. These classifiers
use supervised machine learning algorithms, meaning they
are able to train on traces that are labeled with the
destination website. Each algorithm has a training and
a testing phase. During training, the algorithm is given
a set {(X1, `1), (X2, `2), . . . , (Xn, `n)}, where each Xi

is an vector of features and `i is a label. During testing
the classification algorithm is given a vector Y and must
return a label. In our case, a vector Xi contains information
about the lengths, timings, and direction of packets in the
encrypted connection containing a web page `i, and the
format of a vector Xi is dependent upon the classifier.
In the remainder of this section, we present a high-level
overview of the operation of the three published classifiers
that we use in our evaluation, and we refer interested
readers to more detailed descriptions elsewhere [8, 10, 13,
14].

A. Liberatore and Levine Classifier

Liberatore and Levine [10] (LL) proposed the use of a
naı̈ve Bayes classifier (NB) to identify web pages using
the direction and length of the packets. The naı̈ve Bayes
classifier determines the conditional probability Pr (`i|Y)
for a given vector of features Y using Bayes’ rule:
Pr (`i|Y) = Pr(Y |`i) Pr(`i)

Pr(Y) . The probability is computed
for all labels `i with i = {1, 2, . . . , k} and k representing
the size of the privacy set (or number of labels being
considered), and the label with the highest probability is
selected as the classifier’s guess. The probability Pr (Y |`i)
is estimated using kernel density estimation over the ex-
ample feature vector provided during training, and Pr(`i)
is assumed to be 1/k. The feature vectors used by the LL
classifier are derived from the count of the lengths of the
packets sent in each direction of the encrypted connection.
Specifically, the feature vector contains 2 · 1449 = 2898
integers that represent the number of packets seen in the

3http://www.kpdyer.com/

given vector with each of the potential direction and packet
length combinations (i.e., {↑, ↓} × {52, . . . , 1500}). For
example, if we observe a packet of length 1500 in the ↓
direction (e.g., server to client) we would increment the
counter for (↓,1500).

B. Herrmann et al. Classifier

Herrmann, Wendolsky and Fedarrath [8] (H) take a
similar approach to Liberatore and Levine, however they
make use of a multinomial naı̈ve Bayes (MNB) classifier.
Like the naı̈ve Bayes classifier with density estimation,
the multinomial naı̈ve Bayes classifier attempts to estimate
the probability Pr (`i|Y) for each of the i = {1, 2, . . . , k}
potential labels and the given feature vector Y . The key
difference is that the multinomial classifier does not apply
density estimation techniques to determine the probability
Pr (Y |`i), but instead uses the aggregated frequency of the
features (i.e., normalized distribution) across all training
vectors. Thus, the H classifier uses normalized counts
of (direction, length), whereas the LL classifier exam-
ined raw counts. Furthermore, Herrmann et al. suggest a
number of approaches for normalizing these counts. For
our evaluation, we combine term frequency transformation
and cosine normalization, as these were identified by
Herrmann et al. to be the most effective in the SSH setting.

C. Panchenko et al. Classifier

Panchenko et al. [14] (P) take a completely different
approach by applying a support vector machine (SVM)
classifier to the problem of identifying web pages. A
support vector machine is a type of binary linear clas-
sifier that classifies points in a high-dimensional space by
determining their relation to a separating hyperplane. In
particular, the SVM is trained by providing labeled points
and discovering a hyperplane that maximally separates the
two classes of points. Classification occurs by determining
where the point in question lies in relation to the splitting
hyperplane. Due to the complexity of SVM classifiers, we
forego a detailed discussion of their various parameters
and options.

We configure our SVM as follows. We use the same
radial basis function (RBF) kernel as Panchenko et al. with
parameters of C = 217 and γ = 2−19. The P classifier
uses a wide variety of coarse and detailed features of
the network data mostly derived from packet lengths and
ordering. Some of these features include the total number
of bytes transmitted, total number of packets transmitted,
proportion of packets in each direction, and raw counts
of packet lengths. There are also several features known
as “markers” that delineate when information flow over
the encrypted connection has changed direction. These
markers aggregate bandwidth and number of packets into
discrete chunks. Each of the features considered by the P
classifier are rounded and all 52 byte TCP acknowledge-
ment packets are removed to minimize noise and variance
in the training and testing vectors.

3

IV. COUNTERMEASURES

For ease of exposition and analysis, we organize the
considered countermeasures into three categories: those
that are inspired by the padding allowed within the SSH,
TLS and IPSec standards (Type-1); other padding-based
countermeasures (Type-2); and countermeasures that make
explicit use of source and target packet-length distributions
(Type-3). In what follows, we describe the operation of
the countermeasures we evaluate and discuss the overhead
they generate. Lengths are always measured in bytes.

A. Type-1: SSH/TLS/IPSec-Motivated Countermeasures

A common suggestion, already used in some implemen-
tations, like GnuTLS4, is to obfuscate plaintext lengths
by choosing random amounts of extra padding to append
to the plaintext prior to encryption. SSH, TLS and IPSec
allow up to 255 bytes of padding in order to align the to-
be-encrypted plaintext with the underlying block cipher
boundary, and also to provide some obfuscation of the
original plaintext length. We consider two ways in which
this might be implemented within SSH/TLS/IPSec: (1)
choose a single random amount of padding to be applied
across all plaintexts in the session, or (2) choose a random
amount of padding for each plaintext.

Session Random 255 padding: A uniform value r ∈
{0, 8, 16 . . . , 248} is sampled and stored for the session.5

Each packet in the trace has its length field increased by r,
up to a maximum of the MTU.

Packet Random 255 padding: Same as Session Random
255 padding, except that a new random padding length r
is sampled for each input packet.

We note that our simulation of Session Random and
Packet Random padding in this setting are not exactly
what would be implemented in reality because we do not
have access to the size of the plaintext data from the
datasets available to us. Instead, our assumption is that the
plaintext data is sufficiently short to fit into a single TCP
packet and therefore is closely approximated by simply
adding the padding to the length of the ciphertext. What we
simulate, therefore, is likely to overstate the efficacy of the
countermeasure since the (at most) 255 bytes of padding
would be dominated by the true size of the plaintext (e.g.,
up to 214 bytes for TLS), thereby providing relatively
little noise. In contrast, our simulation allows for a much
larger ratio of plaintext to padding, which in turn adds
significantly more noise.

B. Type-2: Other Padding-based Countermeasures

The second class of countermeasure we consider are
those padding mechanisms that are not easily supported in

4http://www.gnu.org/software/gnutls/
5We assume that the underlying encryption block size is 8 bytes. For

the Liberatore and Levine dataset, we know this assumption is true. We
do not expect classification accuracies to be different if, in fact, the block
size was 16 bytes.

existing encrypted network protocol standards due to the
amount of padding added. In this scenario, we assume the
countermeasure will be capable of managing fragmentation
and padding of the data before calling the encryption
scheme. Most of the countermeasures considered by prior
work fall into this category, though we also consider a
randomized scheme that has not been previously explored.

Linear padding: All packet lengths are increased to the
nearest multiple of 128, or the MTU, whichever is smaller.

Exponential padding: All packet lengths are increased
to the nearest power of two, or the MTU, whichever is
smaller.

Mice-Elephants padding: If the packet length is ≤ 128,
then the packet is increased to 128 bytes; otherwise it is
padded to the MTU.

Pad to MTU: All packet lengths are increased to the MTU.

Packet Random MTU padding: Let M be the MTU and `
be the input packet length. For each packet, a value r ∈
{0, 8, 16, . . . , M− `} is sampled uniformly at random and
the packet length is increased by r.

C. Type-3: Distribution-based Countermeasures

Wright et al. [22] presented two novel suggestions as
improvements upon traditional per-packet padding coun-
termeasures: direct target sampling (DTS) and traffic mor-
phing (TM). On the surface, both techniques have the same
objective. That is, they augment a protocol’s packets by
chopping and padding such that the augmented packets
appear to come from a pre-defined target distribution (i.e.,
a different web page). Ideally, DTS and TM have secu-
rity benefits over traditional per-packet padding strategies
because they do not preserve the underlying protocol’s
number of packets transmitted nor packet lengths. Al-
though the full implementations details of DTS and TM
are beyond scope of this paper (see [22]), we give a high-
level overview here.

Direct target sampling: Given a pair of web pages A
and B, where A is the source and B is the target, we
can derive a probability distribution over their respective
packet lengths, DA and DB . When a packet of length i
is produced for web page A, we sample from the packet
length distribution DB to get a new length i′. If i′ > i,
we pad the packet from A to length i′ and send the
padded packet. Otherwise, we send i′ bytes of the original
packet and continue sampling from DB until all bytes
of the original packet have been sent. Wright et al. left
unspecified morphing with respect to packet timings. We
assume a negligible overhead to perform morphing and
specify a 10ms inter-packet delay for dummy packets.

In our experiments, we select the target distribution
uniformly at random from our set of k potential identi-
ties. The selected web page remains unchanged (i.e., no

4

Overhead (%)

Countermeasure LL H

Session Random 255 9.0 7.1

Packet Random 255 9.0 7.1

Linear 4.2 3.4

Exponential 8.7 10.3

Mice-Elephants 41.6 39.3

Pad to MTU 81.2 58.1

Packet Random MTU 40.1 28.8

Direct Target Sampling 86.4 66.5

Traffic Morphing 60.8 49.8

Figure 2. Bandwidth overhead of evaluated countermeasures calculated
on Liberatore and Levine (LL) and Herrmann et al. (H) datasets.

countermeasures applied), while the remaining k− 1 web
pages are altered to look like it. After the source web page
has stopped sending packets, the direct target sampling
countermeasure continues to send packets sampled from
DB until the L1 distance between the distribution of sent
packet lengths and DB is less than 0.3.

Traffic morphing: Traffic morphing operates similarly to
direct target sampling except that instead of sampling from
the target distribution directly, we use convex optimization
methods to produce a morphing matrix that ensures we
make the source distribution look like the target while
simultaneously minimizing overhead. Each column in the
matrix is associated with one of the packet lengths in
the source distribution, and that column defines the target
distribution to sample from when that source packet length
is encountered. As an example, if we receive a source
packet of length i, we find the associated column in the
matrix and sample from its distribution to find an output
length i′. One matrix is made for all ordered pairs of source
and target web pages (A,B). The process of padding
and splitting packets occurs exactly as in the direct target
sampling case. Like the direct target sampling method,
once the source web page stops sending packets, dummy
packets are sampled directly from DB until the L1 distance
between the distribution of sent packet lengths and DB

is less than 0.3. In our simulations we select a target
distribution using the same strategy described for DTS.

D. Overhead

Although the focus of our evaluation lies in understand-
ing the security provided by these countermeasures, we
realize that their cost in terms of bandwidth overhead and
latency is an important factor that determines whether they
are applicable in practice or not. To this end, we present
the bandwidth overhead induced by the countermeasures
for both the Liberatore and Levine and Herrmann et al.
datasets in Figure 2. Overhead is calculated as (bytes sent
with countermeasure)/(bytes sent without countermeasure)
times 100. We note that these overhead measurements
differ from those of earlier work because we do not ap-

LL H P

k = 2

Type-1 85% 71% 99%
Type-2 97% 80% 99%
Type-3 98% 76% 99%

k = 128

Type-1 41% 13% 91%
Type-2 46% 5% 90%
Type-3 25% 3% 82%

Figure 3. The lowest average accuracy for each countermeasure class
against LL, H, and P classifiers using the Hermann dataset. Random
guessing yields 50% (k = 2) or 0.7% (k = 128) accuracy.

ply countermeasures to TCP acknowledgement (52-byte)
packets. For example, Liberatore and Levine [10] report
a Pad to MTU overhead of 145% and Wright et al. [22]
report 156%. We argue that acknowledgement packets
are present regardless of the content being downloaded
and there is no standard mechanism for application-layer
countermeasures to apply padding to TCP acknowledge-
ment (52-byte) packets. Nevertheless, as we will see in the
following section, there is almost no correlation between
overhead and the level of confidentiality provided by the
countermeasure

V. EXISTING COUNTERMEASURES VERSUS
EXISTING CLASSIFIERS

We pit the LL, H, and P classifiers from Section III
against traffic simulated as per the nine countermeasures
of the previous section. The testing methodology used was
described in Section II. We also look at classifiability of
the raw traffic, meaning when no countermeasure (beyond
the normal SSH encryption) is applied.

We note that despite the appearance of the LL, H, and
P classifiers in the literature, all the results we report
are new. In particular, the H and P classifiers were never
tested against any of these countermeasures, while the LL
classifier did look at efficacy against Linear , Exponential,
Mice-Elephants, and Pad to MTU but only at k = 1000.
Figure 3 contains a high-level summary for k = 2 and
k = 128. We refer the interested reader to Appendix A for
comprehensive results.

In the rest of this section we analyze the results from
various points of view, including the role of the dataset,
the relative performance of the classifiers, and the relative
performance of the different countermeasures.

A. Comparing the Datasets

Before beginning digging into the results in earnest, we
first evaluate the consistency and quality of the two avail-
able datasets. We do so to determine the extent to which
results gathered using them represent the identifiability
of the web pages rather than artifacts of the collection
process, such as connection timeouts and general collec-
tion failures. In Figure 4, we show the silhouette of the
accuracy achieved by the three classifiers across a number
of universe sizes and countermeasures using each of the

5

Figure 4. Comparison of accuracy silhouettes for the Liberatore and Levine and Herrmann datasets across all countermeasures for the LL, H, and P
classifiers, respectively.

datasets. That is, the lower boundary of each silhouette
is the best-performing countermeasure while the upper
boundary represents the worst-performing (which turned
out to always be no countermeasure, as one would expect).

Ideally, the classifier accuracies should be roughly sim-
ilar, or at least show similar trends. Instead, what we
notice is a trend toward strong drops in performance as
the web page universe size increases in the Liberatore
dataset, whereas in the Herrmann dataset we see a much
smoother drop across multiple universe sizes and across
all classifiers. This is most notable under the P classifier
(far right of Figure 4).

To take a closer look at the differences between the
datasets, we report some basic statistics in Figure 5. The
fraction of traces that have short duration, particularly ones
that are clearly degenerate (≤ 10 packets), is much higher
in the Liberatore dataset. Such degenerate traces act as
noise that leads to classification errors. We suspect that
they arise in the dataset due to collection errors (e.g.,
incomplete website visits), and may imply that some pre-
vious works [10, 22] may underestimate the privacy threat
posed by web page traffic analysis attacks. Despite the
extra noise, the classifiers performed well, just consistently
lower at high values of k as compared to the Herrmann
dataset. In addition, the Herrmann dataset was collected
in 2009, as opposed to the Liberatore dataset, which
was collected in 2006. Despite all these differences we
found the high-level trends and conclusions are the same
across both datasets. For these reasons, we will focus our
analysis only on the Herrmann dataset for the remainder
of this paper. Appendix A contains details for classifier
performance using the Liberatore dataset at k = 128.

B. Comparison of Classifiers

Figure 6 gives a three-by-three grid of graphs: one
column per classifier and one row for countermeasure type.
We start by quickly comparing the relative performance of
the three classifiers, which is observable by comparing the
performance across the three columns.

The first thing to notice is that at k = 2, essentially all of
the classifiers do well against all of the countermeasures.

LL H

Traces with 0 packets in one direction 3.1% 0.1%

Traces with ≤ 5 bidirectional packets 5.2% 0.2%

Traces with ≤ 10 bidirectional packets 13.8% 0.4%

Traces with ≤ 1s duration 29.4% 6.4%

Median trace duration 2.4 sec. 3.6 sec.

Median bidirectional packet count 106 256

Median bandwidth utilization (bytes) 78,382 235,687

Figure 5. Statistics illustrating the presence of degenerate or erroneous
traces in the Liberatore and Levine and Hermann datasets.

The LL and P classifiers are particularly strong, even
against the DTS and TM countermeasures. The overall best
classifier is clearly the P classifier. It is robust to all the
countermeasures. The H classifier edges out both the P and
LL classifiers for raw traffic, but is very fragile in the face
of all but the simplest countermeasure (Linear padding).
The LL classifier proves more robust than the H classifier,
but has more severe accuracy degradation compared to P
as k increases.

C. Comparison of Countermeasures

Consider the first row of Figure 6, where we see a com-
parison of the two Type-1 randomized padding schemes.
Curiously, it is better to pick a single random padding
amount to apply to each packet within a trace than to
pick fresh random amounts per packet. Applying a single
random amount across all packets shifts the distribution
of packet lengths in a way that is unlikely to have been
seen during training. On the other hand, randomizing per
packet “averages out” during training and testing.

Common intuition about the Pad to MTU countermea-
sure is that it ought to work well against TA attacks since
it ensures that no individual packet length information is
leaked. However, as we seen in the second row of Figure 6,
we see this intuition is wrong in large part because the
number of packets is still leaked. The LL classifier, for
example, exploits this fact, since it trains on the number
of packets of each (direction, length). When the packets are
padded to the MTU, there are only two numbers, namely
for (↑,1500) and (↓,1500). The LL classifier does well

6

Figure 6. Average accuracy as k varies for the LL (left column), H (middle column), and P (right column) classifiers with respect to the Type-1 (top
row), Type-2 (middle row), and Type-3 (bottom row) countermeasures. The dotted gray line in each graph represents a random-guess adversary.

because the number of packets transmitted is relatively
consistent across traces for a particular web page. (We
will investigate this more in the next section.) This also is
our first evidence that exact packet-length information is
not necessary for high-accuracy classification.

Next, we turn to the Type-3 countermeasures. Recall
that these countermeasures focus on altering a specific
feature of the web page traffic, namely the distribution
of normalized counts, so that one web page looks like
another with respect to that feature. In theory then, the
distribution of packets produced by the DTS and TM
countermeasures should match that of the target web
page and, unlike Type-1 and Type-2 countermeasures, the
number of packets from the source web page should be
concealed, in part. This is not true in all cases, however,
as Type-3 countermeasures do not substantially change the
total bandwidth of data transmitted in each direction, nor
the duration of the trace with regards to time. In fact, no
countermeasure considered here substantially changes the
total bandwidth. Moreover, these countermeasures do not

hide “burstiness” of the data, which may be correlated
to higher level structure of the underlying HTTP traffic
(e.g., a downstream burst represents a web page object).
Therefore, DTS and TM perform best against the H clas-
sifier, which examines the same normalized packet count
distribution, while the P classifier performs particularly
well with its use of packet burst information.

We compare the best countermeasure from each type
in Figure 7: Session Random 255 (Type-1), Pad to MTU
(Type-2), and DTS (Type-3). A few surprises arise in this
comparison. First, Session Random 255 performs better
or about the same as Pad to MTU. This is surprising,
as Session Random 255 is a significantly lighter-weight
countermeasure. It has only 7% overhead compared to
Pad to MTU’s 58%, and can potentially be dropped into
existing deployments of SSH and TLS. That said, even at
k = 128, it is unlikely to be satisfying to drop accuracy
only down to 90%. DTS does better than the others across
all values of k against the best classifier (P), but we note
that simpler countermeasures actually can do a better job

7

Figure 7. Comparison of the overall best performing countermeasure of each type against the LL, H, and P classifiers.

against the LL and H classifiers for lower k values.

VI. EXPLORING COARSE FEATURES

Our study of existing classifiers reveals that some fine-
grained features, such as individual packet lengths, are not
required for high-accuracy classification. Indeed, the fact
that the P classifier performs so well against the Pad to
MTU countermeasure means that it is using features other
than individual packet lengths to determine classification.
This leads us to the following question: Are coarse traffic
features sufficient for high-accuracy classification?

To answer this question, we explore three coarse fea-
tures: total transmission time, total per-direction band-
width, and traffic “burstiness”.6 From these features we
build the time (TIME), bandwidth (BW), and the variable
n-gram (VNG) classifier using naı̈ve Bayes as our underly-
ing machine learning algorithm. See Figure 9 for a visual
summary of their performance. Later, we put these three
coarse features together, and build the VNG++ naı̈ve Bayes
classifier. We will see that VNG++ is just as accurate as
the (more complex) P classifier.

A. Total Time

We begin with the most coarse and intuitively least
useful feature, the total timespan of a trace. How much
do traces differ based on total time? The left-most plot in
Figure 8 depicts the time of the first 50 traces from five
websites in the Herrmann dataset. There is clear regularity
within traces from each website, suggesting relatively low
variance for this feature.

To test the usefulness of total time in classification, we
implemented a naı̈ve Bayes classifier that uses time as
its only feature. This simple time-only classifier is quite
successful for small k, as shown in Figure 9. At k = 2, it
is able to achieve better than an 80% average accuracy
against the three best countermeasures from each class
as determined by performance on the P classifier. As the
privacy set increases, the likelihood of multiple websites
having similar timing increases, and so the accuracy of

6We note that these features are more coarse than individual packet
lengths, in the sense that knowing the latter likely implies knowing the
former, but not the other way around.

the time classifier goes down. At k = 775, it achieves
only about 3% accuracy, although this is still substantially
better than random guessing (0.1%) and may provide value
as a supplementary feature in order to increase a classifier’s
accuracy.

Figure 9 also shows that the time classifier performs
roughly the same against raw traffic (i.e., the “None” coun-
termeasure) and with traffic countermeasures applied. As
one might expect padding-based countermeasures (Type-1
and Type-2), do not directly modify the total time taken
by traces. On the other hand, distribution-based counter-
measures (Type-3) potentially inject dummy packets into
a trace, but this is most often no more than 10-12 packets
sent in quick succession. Thus, these also do not change
the total time significantly.

B. Total Per-Direction Bandwidth

Next, we turn to total bandwidth consumed per di-
rection. We see the consistency of total bandwidth in
the center plot in Figure 8, which displays the upstream
and downstream bandwidths of the first 50 traces of five
websites from the Herrmann dataset. This plot shows a
clear clustering of the websites with both very low variance
within website clusters and high degrees of separability
(i.e., spacing) between clusters.

Therefore, we expect bandwidth-based classification
will work well as long as websites within the privacy
set do not have too much overlap in terms of total
per-direction bandwidth. Figure 9 shows that, indeed, the
bandwidth classifier performs well. In fact, the real surprise
is just how well the bandwidth-only classifier works for all
privacy set sizes despite the coarse nature of the feature. At
k = 2, the classifier provides close to perfect accuracy of
over 99% against all countermeasures. Moreover, compare
the behavior of the bandwidth-only classifier to that of the
LL and H classifiers (c.f., Figure 7), which do not use
bandwidth as a feature, as k increases. The bandwidth clas-
sifier is clearly more robust to changes in privacy set size.
This might seem surprising, since countermeasures such as
Pad to MTU and Session Random 255 should, intuitively,
obfuscate bandwidth usage. They do, but these per-packet
paddings only add noise to the low order bits of total

8

Figure 8. Each scatterplot is a visual representation of the first fifty traces, from the first five websites in the Herrmann dataset. Each symbol of the
same shape and color represents the same web page. (left) Distribution of traces with respect to duration in seconds. (middle) Distribution of traces
with respect to bandwidth utilization, where we distinguish the upstream and downstream directions. (right) Distribution of traces with respect to the
number of bursts per trace.

bandwidth. Specifically, the change to bandwidth usage is
too small relative to what would be needed to make two
websites’ bandwidths likely to overlap significantly. This is
true for all of the padding-based countermeasures (Type-1
and Type-2). Distribution-based countermeasures DTS and
TM, however, offer the best resistance to the bandwidth
classifier for higher k values. Here, they outpace other
countermeasures by several percentage points. This seems
to be due to the insertion of dummy packets, which can add
more noise than per-packet padding for total bandwidth
use.

C. Variable n-gram

The time and bandwidth features already provide im-
pressive classification ability despite their coarse nature,
but do not yet give the accuracy that the Panchenko
classifier achieves. We therefore look at a third feature,
that of burst bandwidth. A burst is a sequence of non-
acknowledgement packets sent in one direction that lie
between two packets sent in the opposite direction. The
bandwidth of a burst is the total size of all packets
contained in the burst, in bytes. For instance, if we have
a trace of the form

(↑, 100), (↓, 1500), (↓, 100), (↑, 200), (↑, 300)
then there are three bursts with bandwidth 100, 1600, and
500. The intuition underlying this is that bursts correlate
with higher-level properties of the traffic, such as indi-
vidual web requests. This observation was first made by
Panchenko et al. [14].

The right-most plot in Figure 8 shows the number of
bursts for each of the first 50 traces for five websites in
the Herrmann dataset. Even the number of bursts correlates
strongly with the web page visited. Although this relatively
limited information is capable of providing some classifi-
cation ability, it turns out that burst bandwidths prove even
more powerful.

Recalling that an n-gram model would coalesce n
packets together into one feature, we can view bandwidth

bursts as a variable n-gram model in which n varies across
the trace. Then, our VNG (Variable n-Gram) classifier par-
titions a trace into bursts, coalesces packets into variable
n-grams described by (direction, size) pairs, rounds the
resulting sizes up to the nearest multiple of 600 bytes7,
and then applies a naı̈ve Bayes classifier. Figure 9 shows
how well the VNG classifier performs, already achieving
better than 80% accuracy for all padding-based coun-
termeasures, and achieving significantly higher accuracy
levels for distribution-based approaches than any other
classifier except the P classifier.

D. Combining Coarse Features: the VNG++ Classifier

To extract all potential identifying information from
these coarse features, we combine the time, bandwidth,
and variable n-gram classifiers to give a simple, yet
impressively effective, classifier that dispenses with use
of individual packet lengths for classification. Specifically,
we use total time, bandwidth in each direction of the con-
nection, and variable n-grams as features of a naı̈ve Bayes
classifier. A graph of the VNG++ classifier’s accuracy as
k varies is given in Figure 11.

In comparing VNG++ to the P classifier, we note that the
latter uses a large assortment of features (as discussed in
Section III), including fine-grained ones such as frequency
of individual packet lengths. It also applies a more compli-
cated machine learning algorithm in the form of an SVM.
Figure 11 depicts the performance of the P and VNG++
classifiers against the best performing countermeasures of
each type, as well as data with no countermeasure applied.
Note that for clarity the y-axis starts at 50%, unlike
other graphs. From this figure, two clear trends arise.
First, VNG++’s performance against no countermeasure
degrades slightly faster with k than the P classifier. This
highlights that fine-grained features can provide some
small benefit in classifying unprotected traces. Second,

7Panchenko et al. experimentally determine this rounding value as a
way to maximize classification accuracy via dimensionality reduction.

9

Figure 9. The average accuracy against the raw encrypted traffic (None), and the best countermeasures from each type, as established in Section V.
(left) the time-only classifier. (middle) the bandwidth only classifier. (right) the VNG (“burstiness”) classifier.

Classifier

Countermeasure P P-NB VNG++

None 97.2± 0.2 98.2± 0.9 93.9± 0.3

Session Random 255 90.6± 0.3 59.1± 2.3 91.6± 0.3

Packet Random 255 94.9± 0.3 93.7± 1.6 93.5± 0.3

Linear 96.8± 0.2 96.9± 1.1 94.3± 0.3

Exponential 96.6± 0.3 97.4± 0.9 94.8± 0.3

Mice-Elephants 94.5± 0.6 95.1± 0.8 91.7± 0.4

Pad to MTU 89.8± 0.4 91.7± 1.5 88.2± 0.4

Packet Random MTU 92.1± 0.3 84.1± 1.7 87.6± 0.3

Direct Target Sampling 81.8± 0.5 76.8± 2.5 80.2± 0.5

Traffic Morphing 88.7± 0.4 82.6± 5.6 85.6± 0.7

Figure 10. Accuracies (%) of P, P-NB, and VNG++ classifiers at k =
128.

when we consider countermeasures, VNG++ matches P in
performance. This holds despite the use of fewer features
and the simpler machine learning algorithm used by the
former. As it turns out, in the face of countermeasures,
the coarse features are the damaging ones and fine-grained
features are not particularly helpful.

A final question lingers: does using an SVM provide any
advantage over a naı̈ve Bayes classifier? We implemented a
naı̈ve Bayes version of the P classifier. This P-NB classifier
uses a 1-1 mapping of the features used by P to analogues
suitable for use with a naı̈ve Bayes classifier. A comparison
of performance at k = 128 for P, P-NB, and VNG++ are
given in Figure 10. Overall, we see that the results are
consistent across all three classifiers. A single exception
is the accuracy of P-NB for Session Random 255, which
results in a surprisingly low classifier accuracy.

E. Discussion

The nine countermeasures considered so far attempt to
obfuscate leaked features of the traffic via padding and
insertion of dummy packets. As we’ve seen, however,
these fail to protect significant amounts of identifying
information from being leaked from coarse features of
the encrypted traffic, rather than the fine-grained, per-
packet features typically targeted by TA countermeasures.

Unfortunately, these kinds of features are precisely the
ones that are most difficult to efficiently hide.

Obfuscating total bandwidth is an obvious case in point.
To prevent this feature from leaking information, a coun-
termeasure must ensure a similar amount of bandwidth
use across all websites in any given privacy set. Since we
do not want to forego functionality (e.g., shutting down
connections prematurely), this translates into a counter-
measure that inserts dummy traffic until we achieve a total
bandwidth close to that of the maximum bandwidth usage
of any website in the privacy set.

Hiding burst bandwidth is also problematic. As seen
in Figure 8, different websites can have quite different
patterns of bursts. A countermeasure must smooth out
these patterns. In theory, a traffic morphing-like coun-
termeasure can attempt to imitate a target trace’s burst
patterns, however this will require buffering packets for
potentially long periods of time. Thus, countermeasures
for preventing website traffic analysis must incur both
bandwidth and latency overheads.

In all, our analyses leaves little wiggle room for coun-
termeasures to operate within. Providing robust protection
against fingerprinting attacks for arbitrary websites in a
closed-world setting, such as the one presented here, is
going to have to be inefficient.

VII. BuFLO: BUFFERED FIXED-LENGTH OBFUSCATOR

Our analysis thus far leaves us with the conclusion that,
despite the long line of work on TA attacks and counter-
measures, we have no packet-oriented countermeasure that
prevents website fingerprinting attacks. We therefore want
to know whether any measure can work, even prohibitively
inefficient ones.

Following the analysis of the last section, we know
that any effective countermeasure must hide the total time,
bandwidth use, and burst patterns. To that end, we consider
a new countermeasure Buffered Fixed-Length Obfuscator,
or BuFLO. It is a realization of the “fool-proof” folk-
lore countermeasure that, intuitively, should defeat any
TA classifier by removing all side-channel information.
BuFLO operate by sending fixed-length packets at a fixed

10

Figure 11. Accuracy of P (left) and VNG++ (right) classifiers against the best-performing countermeasures from Section III.

interval for at least a fixed amount of time. If a flow goes
longer than the fixed time out, BuFLO lets it conclude
while still using fixed-length packets at a fixed interval.
In an ideal implementation, BuFLO will not leak packet
lengths or packet timings, and so BuFLO should do a good
job at closing side-channels that enable TA classifiers.
This type of countermeasure has been investigated in the
context of other TA attacks, such as those on anonymity
networks [17, 23]

Our simulation-based analysis of BuFLO provides some
positive evidence for packet-level countermeasures, but in
fact our results here are mostly negative, thereby reinforc-
ing the lessons learned in prior sections. BuFLO is, as one
might expect, incredibly inefficient. Moreover, we will see
that even mild attempts to claw back some efficiency can
fail: setting the minimum session too aggressively short
opens up vulnerability to our coarse-feature classifiers.

A. BuFLO Description

A BuFLO implementation is governed by three integer
parameters d, ρ and τ :
• Parameter d determines the size of our fixed-length

packets.
• Parameter ρ determines the rate or frequency (in

milliseconds) at which we send packets.
• Parameter τ determines the minimum amount of time

(in milliseconds) for which we must send packets.
A BuFLO implementation at the start of communications
will send a packet of length d every ρ milliseconds until
communications cease and at least τ milliseconds of time
have elapsed. Specifically, data is buffered into discrete
chunks, and these chunks are sent as quickly as possible
via the steady flow of the fixed-length packets. When
no data is in the buffer, dummy data is sent instead.
This assumes that the application-layer signals the start
and end of communication. Alternatively, we could have
chosen τ as an upper bound on the duration of our
communications session and forcibly close the connection
even if communications are still in progress. This would
disable any websites that take longer to load, making it
unlikely to be a pragmatic choice.

B. Experiments

In this section, we examine BuFLO for various pa-
rameters using the Hermann dataset and provide detailed
results in Figure 12. Since we are using a simulation-based
experiment, these results reflect an ideal implementation
that assumes the feasibility of implementing fixed packet
timing intervals. This is at the very least difficult in
practice [7] and clearly impossible for some values of
ρ. Simulation also ignores the complexities of cross-layer
communication in the network stack, and the ability for
the BuFLO implementation to recognize the beginning
and end of a data flow. If BuFLO cannot work in this
setting, then it is unlikely to work elsewhere, aiding us in
our exploration of the goal of understanding the limits of
packet-level countermeasures.

We evaluated BuFLO empirically with parameters in
the ranges of τ ∈ {0, 10000}, ρ ∈ {20, 40} and d ∈
{1000, 1500}. The least bandwidth-intensive configura-
tion, at τ = 0, ρ = 40 and d = 1000 would require at
least 0.2 Mbps of continuous synchronous client-server
bandwidth to operate8. Surprisingly, with this BuFLO
configuration and a privacy set size of k = 128, the P
classifier still identifies sites with an average accuracy of
27.3%. This is compared to 97.5% average accuracy with
no countermeasure applied. At the other extreme of our
experiments with τ = 10000, ρ = 20 and d = 1500 it
would require at least 0.6 Mbps of synchronous client-
server bandwidth to operate. Here, the P classifier can still
identify sites with a privacy set size of k = 128 with an
average 5.1% accuracy.

C. Observations about BuFLO

BuFLO cannot leak packet lengths, nor can it leak
packet timings. Yet, our experiments indicate that an ag-
gressively configured BuFLO implementation can still leak
information about transmitted contents. This is possible
because BuFLO can leak total bytes transmitted and the
time required to transmit a trace in two circumstances:

8Calculated by
(

1000
ρ

)
·
(

8d
106

)
.

11

Overhead Classifier Accuracy (%)

Parameters Bandwidth (%) Latency (s) LL H P VNG++ P-NB

BuFLO (τ=0, ρ=40, d=1000) 93.5 6.0 18.4± 2.9 0.8± 0.0 27.3± 1.8 22.0± 2.1 21.4± 1.0

BuFLO (τ=0, ρ=40, d=1500) 120.0 3.6 16.2± 1.6 0.8± 0.0 23.3± 3.3 18.3± 1.0 18.8± 1.4

BuFLO (τ=0, ρ=20, d=1000) 140.5 2.4 16.3± 1.2 0.8± 0.0 20.9± 1.6 15.6± 1.2 17.9± 1.7

BuFLO (τ=0, ρ=20, d=1500) 201.3 1.2 13.0± 0.8 0.8± 0.0 24.1± 1.8 18.4± 0.9 18.7± 1.0

BuFLO (τ=10000, ρ=40, d=1000) 129.2 6.0 12.7± 0.9 0.8± 0.0 14.1± 0.9 12.5± 0.8 13.2± 0.7

BuFLO (τ=10000, ρ=40, d=1500) 197.5 3.6 8.9± 1.0 0.8± 0.0 9.4± 1.3 8.2± 0.8 9.3± 1.3

BuFLO (τ=10000, ρ=20, d=1000) 364.5 2.4 5.4± 0.8 0.8± 0.0 7.3± 1.0 5.9± 1.0 6.8± 0.9

BuFLO (τ=10000, ρ=20, d=1500) 418.8 1.2 4.4± 0.2 0.8± 0.0 5.1± 0.7 4.1± 0.8 5.3± 0.5

Figure 12. Overhead and accuracy results for the BuFLO countermeasure at k = 128.

• The data source continued to produce data beyond the
threshold τ .

• The data source ceases to produce data by the thresh-
old τ , but there is still data in the buffer at time τ .

The first situation can occur if our our threshold τ is not
sufficiently large to accommodate for all web pages that we
may visit. The latter situation occurs when values ρ and d
are not sufficiently configured to handle our application’s
data throughput, such that we transmit all data by time τ .

What is more, in some circumstances an inappropriately
configured BuFLO implementation can can actually benefit
an adversary. At k = 128 with τ = 0, ρ = 40
and d = 1000 (see Figure 12) the BuFLO countermeasure
can increase the accuracy of the Time classifier from 9.9%
to 27.3%! In retrospect this is not surprising. If we throttle
the bandwidth of the web page transfer, we will amplify
its timing fingerprint.

These results reinforce the observations of prior sec-
tions. Namely, that TA countermeasures must, in the con-
text of website identification, prevent coarse features from
being leaked. As soon as these features leak, adversaries
will gain some advantage in picking out web pages.

VIII. RELATED WORK

Traffic analysis of encrypted data has been studied ex-
tensively. Our focus is on identification (or fingerprinting)
of web pages within encrypted tunnels, and we do not
discuss other contexts, such as analysis of encrypted VoIP
traffic [18–21] or revelation of web page contents [2, 3].
Even so, there is a significant amount of literature focused
on website identification, including a wide diversity of
evaluation methodologies, attacks, and countermeasures.

To the best of our knowledge, the first academic dis-
cussion of TA attacks in this context was by Wagner and
Schneier [16]. They relayed an observation of Yee that
SSL might leak the URL of an HTTP get request because
ciphertexts leak plaintext length. Wagner and Schneier
suggested that per-ciphertext random padding should be
included for all cipher modes of SSL.

Cheng and Avnur [4] provided some of the first ex-
perimental evidence of web page fingerprinting attacks
by analyzing pages hosted within one of three websites.
Their attack assumes perfect knowledge of HTML and web

page object sizes, which is not always precisely inferred
from ciphertexts. They also suggested countermeasures
including padding of HTML documents, Pad to MTU, and
introduction of spurious HTTP requests. They evaluated
the first two in the context of their attack, and claim some
efficacy for the considered websites.

Sun et al. [15] investigated a similar setting, in which
the adversary can precisely uncover the size of individual
HTTP objects in a non-pipelined, encrypted HTTP connec-
tion. They provided a thorough evaluation utilizing a cor-
pus of 100,000 websites. They described a classifier based
on the Jaccard coefficient similarity metric and a simple
thresholding scheme. It was successful against raw traffic,
and while we did not implement their attack, several of the
classifiers we consider are likely to outperform it. They
also explored numerous countermeasures, including per-
packet padding, byte-range requests, client-based prefetch-
ing, server-based pushing of content, content negotiation,
web ad blockers, pipelining, and using multiple browsers
in parallel. Their evaluation of the countermeasures only
considered their attack, and the results indicate that the
countermeasures provide improved TA resistance to it.

Hintz [9] discussed a simple attack for identifying which
of five popular web pages was visited over a single-hop
proxy service called SafeWeb. The proposed attack does
not require exact knowledge of web request sizes, but there
is little evaluation and it remains unclear how the attack
would fair with larger privacy sets.

Bissias et al. [1] demonstrated a weaker adversary than
that of Sun et al. [15], which could observe an SSH tunnel
and view only the length, direction, and timing of each
ciphertext transmitted, rather than web page objects. They
used cross-correlation to determine webpage similarity,
which is a metric commonly used for evaluating the simi-
larity of two time series. They achieved worse performance
than the classifiers we consider, and they did not explore
any countermeasures.

Liberatore and Levine [10] showed that it is possible
to infer the contents of an HTTP transaction encapsulated
in an SSH connection by observing only encrypted packet
lengths and the directions of unordered packets. We pro-
vided a detailed description of their classifier in section III,
and we use their publicly-available dataset in our analy-

12

ses. They quantify the ability of several countermeasures,
including Linear, Exponential, Mice-Elephants, and Pad to
MTU padding schemes, to protect against their attack, but
only report on a privacy set size of k = 1000. These results
cast a positive light on some padding approaches, like Pad
to MTU, which reduces the accuracy of their proposed
classifier from 68% to around 7%. We did not consider
k = 1000 in order to ensure consistency with other datasets
in our evaluation, but projecting out from the observed
trends we expect that, for example, the VNG++ classifier
will do significantly better than 7% at k = 1000 (c.f.,
Figure 9).

Herrmann et al. [8] collected encrypted traces from four
different types of single-hop encryption technologies, and
two multi-hop anonymity networks. We use a portion of
their dataset for our analyses. They were the first to suggest
the use of a multinomial naı̈ve Bayes classifier for traffic
classification that examines normalized packet counts. A
discussion of their classifier was given in Section III.
Their evaluation of countermeasures was restricted to
application-layer countermeasures.

Panchenko et al. [14] presented a support vector ma-
chine classifier as an improvement upon the work of
Herrmann et al. [8]. We discussed details of the Panchenko
classifier in Section III. They apply it to Tor [6] traffic
they generated in both a closed-word and open-world
setting, showing good accuracy, though worse than those
that the classifiers we consider achieve. Tor’s encryption
mechanisms already obfuscate some information about
plaintext lengths, making it harder, in general, to classify.
They did not report on their classifier’s efficacy against the
countermeasures we consider.

In an effort to minimize overhead incurred by previously
suggested padding schemes, Wright et al. proposed the
notion of traffic morphing [22]. Their countermeasures
can minimize overhead while still making one web page
“look” like another with respect to specific features. As
Wright et al. suggested [22, Section 4.1], and Lu et al. later
confirmed with their experimental evaluation [11], traffic
morphing is only effective when the attacker restricts
attention to the same feature(s) targeted by the morphing
routine. Our results likewise indicate that attackers can still
succeed even when traffic morphing is used to ensure the
normalized distribution of packet sizes is similar to some
target web page.

Both Panchenko et al. [14] and Luo et al. [12] suggest
concrete application-layer countermeasures. Panchenko et
al. propose the Camouflage countermeasure, which makes
spurious HTTP requests in parallel with legitimate ones,
and show that it renders their classifier significantly less
effective. The Luo et al. system is called HTTPOS and uses
a number of client-side mechanisms that take advantage of
existing HTTP functionality to add noise to encrypted web
traffic. For example, HTTPOS randomizes HTTP GET re-
quests by adding superfluous data to headers and utilizing
HTTP byte range functionality to request subsets of data

non-sequentially. They evaluate their countermeasure in
the presence of four existing classifiers [1, 3, 10, 15] and
show that HTTPOS is effective against all of them. We do
not consider these kinds of application-layer mechanisms,
and indeed our results suggest that such countermeasures
may be better positioned to defend against web page
identification attacks.

IX. CONCLUDING DISCUSSION

Although a significant amount of previous work has
investigated the topic of TA countermeasures, and specifi-
cally the case of preventing website identification attacks,
the results were largely incomparable due to differing
experimental methodology and datasets. Our work syn-
thesizes and expands upon previous ones, and it provides
sharper answers to some of the area’s central questions:

Do TA countermeasures prevent website fingerprinting?
None of the nine countermeasures considered here pre-
vents the kind of website fingerprinting attack addressed
by prior works [8, 10, 14, 22]. From a security perspective
this setting is conservative, and makes several simplifying
assumptions. (The attacker knows the privacy set; it trains
and tests on traffic generated in the same way; the collected
traffic does not account for (potentially) confounding ef-
fects, such as browser caching, interleaved web requests,
etc.) Nevertheless, our negative results suggest that one
should not rely solely upon these countermeasures to
prevent website fingerprinting attacks.

Do TA attacks require individual packet lengths? No. We
implemented three coarse-feature classifiers: one using
only total time as a feature, one using only total per-
direction bandwidth, and one tracking only data bursts
(the VNG classifier). These did not make direct use of
individual packet lengths or packet counts as features, yet
attained high accuracy against the countermeasures. This
highlights the point that masking fine-grained information
is insufficient, unless such masking also hides telling large-
scale features (e.g., individual object requests, size of web
objects, etc.).

Does classification engine matter? Our experiments sug-
gest it is the features, and not the underlying classification
engine, that matters. We implemented a naı̈ve Bayes-based
classifier that used the same features as those exploited by
the SVM-based Panchenko et al. classifier, and our exper-
iments show that these two perform almost identically.

Does the privacy-set size (k) matter? For the considered
setting, it seems not to matter much. When no countermea-
sure is used, attacks can achieve roughly the same accuracy
for k = 2 through k = 775. When countermeasures are
applied, the best classifier’s accuracy does drop slowly
as k increases. This suggests that the countermeasures do
obfuscate some features that can improve accuracy. That
said, at the largest k, the best classifiers offer better than
60% accuracy against all of the countermeasures.

13

Our work paints a pretty negative picture of the use-
fulness of efficient, low-level TA countermeasures against
website-fingerprinting attacks. But pessimism need not
prevail. Future work could investigate more detailed mod-
elings of real-world traffic, and investigate applications of
TA countermeasures beyond website fingerprinting. This
may uncover settings in which some countermeasures are
more successful than they were in our experiments. In
addition, the coarse features (e.g. bandwidth) that appear
near impossible to obfuscate efficiently at the level of
individual packets might be better handled at the applica-
tion layer. Previous works [8, 12] suggest application-layer
countermeasures with promising initial evaluations. Future
work could provide more extensive investigation of such
countermeasures.

REFERENCES

[1] George Bissias, Marc Liberatore, David Jensen, and
Brian Neil Levine. Privacy Vulnerabilities in Encrypted
HTTP Streams. In Proceedings of the Privacy Enhancing
Technologies Workshop, pages 1–11, May 2005.

[2] Peter Chapman and David Evans. Automated Black-Box
Detection of Side-Channel Vulnerabilities in Web Applica-
tions. In Proceedings of the ACM Conference on Computer
and Communications Security, pages 263–274, November
2011.

[3] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan
Zhang. Side-Channel Leaks in Web Applications: a Reality
Today, a Challenge Tomorrow. In Proceedings of the IEEE
Symposium on Security and Privacy, pages 191–206, May
2010.

[4] Heyning Cheng and Ron Avnur. Traffic Analysis
of SSL Encrypted Web Browsing, December 1998.
Available at: http://www.cs.berkeley.edu/∼daw/teaching/
cs261-f98/projects/final-reports/ronathan-heyning.ps.

[5] Tim Dierks and Eric Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. RFC 5246, August
2008. Updated by RFCs 5746, 5878, 6176. Available at:
http://www.ietf.org/rfc/rfc5246.txt.

[6] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The second-generation onion router. In Proceedings of
the 13th conference on USENIX Security Symposium, pages
303–320, 2004.

[7] Xinwen Fu, Bryan Graham, Riccardo Bettati, Wei Zhao,
and Dong Xuan. Analytical and Empirical Analysis of
Countermeasures to Traffic Analysis Attacks. In Proceed-
ings of the International Conference on Parallel Processing,
pages 483–492, October 2003.

[8] Dominik Herrmann, Rolf Wendolsky, and Hannes Feder-
rath. Website Fingerprinting: Attacking Popular Privacy
Enhancing Technologies with the Multinomial Naive-Bayes
Classifier. In Proceedings of the ACM Workshop on Cloud
Computing Security, pages 31–42, November 2009.

[9] Andrew Hintz. Fingerprinting Websites Using Traffic Anal-
ysis. In Proceedings of the Privacy Enhancing Technologies
Workshop, pages 171–178, April 2002.

[10] Marc Liberatore and Brian Neil Levine. Inferring the
Source of Encrypted HTTP Connections. In Proceedings
of the ACM Conference on Computer and Communications
Security, pages 255–263, November 2006.

[11] Liming Lu, Ee-Chien Chang, and Mun Chan. Website
Fingerprinting and Identification Using Ordered Feature
Sequences. In Proceedings of the European Symposium on
Research in Computer Security, volume 6345 of Lecture
Notes in Computer Science, pages 199–214, September
2010.

[12] Xiapu Luo, Peng Zhou, Edmond W. W. Chan, Wenke Lee,
Rocky K. C. Chang, and Roberto Perdisci. HTTPOS:
Sealing Information Leaks with Browser-side Obfuscation
of Encrypted Flows. In Proceedings of the Network and
Distributed Security Symposium, February 2011.

[13] Tom M. Mitchell. Machine Learning. McGraw-Hill, New
York, 1997.

[14] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website Fingerprinting in Onion Routing-
based Anonymization Networks. In Proceedings of the
Workshop on Privacy in the Electronic Society, pages 103–
114, October 2011.

[15] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell,
Venkata N. Padmanabhan, and Lili Qiu. Statistical Identifi-
cation of Encrypted Web Browsing Traffic. In Proceedings
of the IEEE Symposium on Security and Privacy, pages 19–
30, May 2002.

[16] David Wagner and Bruce Schneier. Analysis of the SSL
3.0 Protocol. In Proceedings of the USENIX Workshop on
Electronic Commerce, pages 29–40, November 1996.

[17] Wei Wang, Mehul Motani, and Vikram Srinivasan. Depen-
dent Link Padding Algorithms for Low Latency Anonymity
Systems. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 323–332,
November 2008.

[18] Andrew M. White, Austin R. Matthews, Kevin Z. Snow, and
Fabian Monrose. Phonotactic Reconstruction of Encrypted
VoIP Conversations: Hookt on fon-iks. In Proceedings of
the IEEE Symposium on Security and Privacy, pages 3–18,
May 2011.

[19] Charles V Wright, Lucas Ballard, Scott E. Coull, Fabian
Monrose, and Gerald M Masson. Spot Me if You Can:
Uncovering Spoken Phrases in Encrypted VoIP Conversa-
tions. In Proceedings of the IEEE Symposium on Security
and Privacy, pages 35–49, May 2008.

[20] Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian
Monrose, and Gerald M. Masson. Uncovering Spoken
Phrases in Encrypted Voice over IP Conversations. ACM
Transactions on Information and Systems Security, 13:1–30,
December 2010.

[21] Charles V. Wright, Lucas Ballard, Fabian Monrose, and
Gerald M. Masson. Language identification of encrypted
VoIP traffic: Alejandra y Roberto or Alice and Bob? In
Proceedings of the USENIX Security Symposium, pages 1–
12, August 2007.

[22] Charles V. Wright, Scott E. Coull, and Fabian Monrose.
Traffic Morphing: An Efficient Defense Against Statistical
Traffic Analysis. In Proceedings of the Network and
Distributed Security Symposium, pages 237–250, February
2009.

[23] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and
Wei Zhao. On Flow Correlation Attacks and Countermea-
sures in Mix Networks. In Proceedings of the Privacy
Enhancing Technologies Workshop, volume 3424 of Lecture
Notes in Computer Science, pages 207–225, May 2004.

14

APPENDIX

Classifier
Countermeasure LL H P BW TIME VNG VNG++

None 98.1± 0.1 98.9± 0.1 97.2± 0.2 80.1± 0.6 9.7± 0.1 93.7± 0.2 93.9± 0.3

Session Random 255 40.7± 0.3 13.1± 0.2 90.6± 0.3 54.9± 0.4 9.5± 0.1 87.8± 0.3 91.6± 0.3

Packet Random 255 80.6± 0.4 40.1± 0.3 94.9± 0.3 77.4± 0.6 9.4± 0.1 91.6± 0.2 93.5± 0.3

Pad to MTU 63.1± 0.5 4.7± 0.1 89.8± 0.4 62.7± 0.6 9.6± 0.2 82.6± 0.4 88.2± 0.4

Packet Random MTU 45.8± 0.4 11.2± 0.2 92.1± 0.3 64.6± 0.5 9.5± 0.1 77.8± 0.3 87.6± 0.3

Exponential 95.4± 0.2 72.0± 0.4 96.6± 0.3 77.1± 0.6 9.6± 0.1 95.1± 0.2 94.8± 0.3

Linear 96.6± 0.2 89.4± 0.2 96.8± 0.2 79.5± 0.6 9.6± 0.2 93.5± 0.2 94.3± 0.3

Mice-Elephants 84.8± 0.4 20.9± 0.3 94.5± 0.3 72.3± 0.6 9.6± 0.1 89.4± 0.3 91.7± 0.4

Direct Target Sampling 25.1± 0.6 2.7± 0.1 81.8± 0.5 41.2± 0.9 9.7± 0.2 69.4± 0.6 80.2± 0.5

Traffic Morphing 31.0± 0.7 6.3± 0.3 88.7± 0.4 43.0± 0.9 9.8± 0.2 81.0± 0.5 86.0± 0.4

Figure 13. Classifier performance for k = 128, using the Herrmann dataset.

Classifier
Countermeasure LL H P BW TIME VNG VNG++

None 87.1± 0.6 87.4± 0.3 87.5± 0.6 55.7± 0.7 11.6± 0.7 72.0± 1.1 76.3± 1.0

Session Random 255 25.3± 0.4 9.5± 0.1 66.1± 0.6 38.6± 0.5 12.1± 0.6 60.5± 1.1 68.7± 1.2

Packet Random 255 43.6± 0.7 13.1± 0.3 74.0± 0.7 51.5± 0.7 11.8± 0.6 65.6± 1.3 71.8± 1.0

Pad to MTU 41.3± 0.6 5.0± 0.1 69.2± 0.7 41.8± 0.6 11.6± 0.7 56.8± 1.2 65.7± 1.1

Packet Random MTU 21.8± 0.5 7.5± 0.1 69.1± 0.7 40.2± 0.6 11.4± 0.8 47.1± 1.0 60.3± 1.0

Exponential 72.9± 0.6 61.2± 0.4 82.1± 0.8 54.8± 0.8 10.5± 0.7 74.1± 0.8 78.0± 0.9

Linear 79.2± 0.7 73.9± 0.3 84.2± 0.6 54.4± 0.9 12.0± 0.7 70.3± 0.9 74.3± 1.4

Mice-Elephants 55.9± 0.9 25.6± 0.3 75.6± 0.7 49.3± 0.6 11.7± 0.5 65.9± 1.1 71.2± 1.0

Direct Target Sampling 19.4± 1.0 2.5± 0.3 47.4± 1.4 26.8± 1.1 11.1± 0.7 35.7± 3.0 49.7± 1.9

Traffic Morphing 20.1± 1.2 4.1± 0.5 55.3± 1.3 25.6± 1.1 12.3± 0.7 45.4± 2.1 56.7± 2.0

Figure 14. Classifier performance for k = 128, using the Liberatore dataset.

Privacy Set Size
Classifier k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k = 775

None 96.9± 0.1 95.9± 0.2 95.1± 0.2 93.9± 0.3 93.3± 0.4 91.6± 0.6 90.6± 0.9

Session Random 255 96.0± 0.1 94.7± 0.2 93.4± 0.2 91.6± 0.3 89.4± 0.4 85.6± 0.6 84.1± 0.5

Packet Random 255 96.6± 0.1 95.7± 0.2 94.5± 0.2 93.5± 0.3 92.2± 0.5 89.8± 0.7 88.5± 0.8

Pad to MTU 95.2± 0.1 93.2± 0.2 91.4± 0.2 88.2± 0.4 84.2± 0.5 79.5± 0.8 77.3± 0.7

Packet Random MTU 95.0± 0.1 93.1± 0.2 90.8± 0.2 87.6± 0.3 83.3± 0.5 78.6± 0.6 74.8± 0.8

Exponential 97.1± 0.1 96.5± 0.1 95.6± 0.2 94.8± 0.3 93.7± 0.4 92.5± 0.6 90.8± 1.2

Linear 96.9± 0.1 96.0± 0.2 95.1± 0.2 94.3± 0.3 92.8± 0.5 91.8± 0.6 89.5± 1.1

Mice-Elephants 96.2± 0.1 95.1± 0.2 93.6± 0.2 91.7± 0.4 90.0± 0.5 86.5± 0.8 84.0± 0.8

Direct Target Sampling 93.1± 0.2 89.8± 0.2 85.3± 0.3 80.2± 0.5 74.3± 0.8 65.8± 1.8 61.0± 4.1

Traffic Morphing 94.8± 0.2 92.8± 0.2 90.2± 0.3 85.6± 0.7 83.3± 0.7 77.7± 2.3 75.1± 3.1

Figure 15. Performance of the VNG++ classifier, for varying values of k, using the Herrmann dataset.

Privacy Set Size
Classifier k = 16 k = 32 k = 64 k = 128 k = 256 k = 512 k = 775

None 98.4± 0.1 98.0± 0.1 97.7± 0.2 97.2± 0.2 97.2± 0.3 96.4± 0.5 96.4± 0.4

Session Random 255 96.8± 0.1 95.5± 0.2 93.6± 0.2 90.6± 0.3 87.2± 0.5 83.2± 0.5 78.7± 0.9

Packet Random 255 97.6± 0.1 96.9± 0.2 96.2± 0.2 94.9± 0.3 93.9± 0.3 91.2± 0.8 90.3± 0.7

Pad to MTU 96.4± 0.1 94.8± 0.2 92.7± 0.3 89.8± 0.4 86.6± 0.5 82.4± 0.8 79.2± 0.9

Packet Random MTU 97.0± 0.1 95.8± 0.2 94.4± 0.2 92.1± 0.3 89.3± 0.5 85.6± 0.7 83.2± 0.6

Exponential 98.1± 0.1 97.9± 0.1 97.2± 0.2 96.6± 0.3 95.6± 0.4 95.2± 0.3 94.6± 0.4

Linear 98.1± 0.1 97.7± 0.1 97.6± 0.2 96.8± 0.2 95.8± 0.5 95.0± 0.6 94.2± 0.7

Mice-Elephants 97.5± 0.1 97.0± 0.1 95.6± 0.2 94.5± 0.3 93.2± 0.4 89.9± 0.9 88.7± 1.0

Direct Target Sampling 94.7± 0.2 91.7± 0.2 87.2± 0.3 81.8± 0.5 75.9± 0.7 68.7± 0.9 62.5± 1.3

Traffic Morphing 95.9± 0.1 94.2± 0.2 91.6± 0.3 88.7± 0.4 85.6± 0.6 81.0± 0.9 77.8± 1.3

Figure 16. Performance of the Panchenko classifier, for varying values of k, using the Herrmann dataset.

