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Abstract. Traditional methods for evaluating the amount of anonymity
a�orded by various Mix con�gurations have depended on either measur-
ing the size of the set of possible senders of a particular message (the
anonymity set size), or by measuring the entropy associated with the
probability distribution of the messages possible senders. This paper ex-
plores further an alternative way of assessing the anonymity of a Mix
system by considering the capacity of a covert channel from a sender
behind the Mix to an observer of the Mix's output.

Initial work considered a simple model [5], with an observer (Eve) re-
stricted to counting the number of messages leaving a Mix con�gured
as a �rewall guarding an enclave with one malicious sender (Alice) and
some other naive senders (Cluelessi's). Here, we consider the case where
Eve can distinguish between multiple destinations, and the senders can
select to which destination their message (if any) is sent each clock tick.

1 Introduction

In [5] the idea of measuring the lack of perfect anonymity (quasi-anonymity) via
a covert channel was initiated. This idea was formalized in [6]. Our concern in
this paper is to identify, and to calculate the capacity of, the covert channels
that arise from the use of a Mix [1, 8] as an exit �rewall from a private enclave
(as brie
y addressed in [5, Sec. 4].) In general, we refer to a covert channel that
arises, due to a state of quasi-anonymity, as a quasi-anonymous channel [6]. The
quasi-anonymous channel also serves the dual role of being a measure of the lack
of perfect anonymity. [2] uses a similar model for statistical attacks in which Eve
correlates senders' actions with observed output.

? Research supported by the O�ce of Naval Research.



2 Exit Mix-�rewall Model

There are N + 1 senders in a private enclave. Messages pass one way from the
private enclave to a set of M receivers. The private enclave is behind a �rewall
which also functions as a timed Mix [8] that �res every tick, t, hence we call it
a simple timed Mix-�rewall. For the sake of simplicity we will refer to a simple
timed Mix-�rewall as a Mix-�rewall in this paper. One of the N + 1 senders,
called Alice, is malicious. The other N clueless senders, Cluelessi; i = 1; : : : ; N ,
are benign. Each sender may send at most one message per unit time t to the
set of receivers. All messages from the private enclave to the set of receivers pass
through public lines that are subject to eavesdropping by an eavesdropper called
Eve. The only action that Eve can take is to count the number of messages per
t going from the Mix-�rewall to each receiver, since the messages are otherwise
indistinguishable. Eve knows that there areN+1 possible senders. TheN clueless
senders act in an independent and identical manner (i.i.d.) according to a �xed
distribution Ci; i = 1; : : : ; N . Alice, by sending or not sending a message each t
to at most one receiver, a�ects Eve's message counts. This is how Alice covertly
communicates with Eve via a quasi-anonymous channel [6].
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Fig. 1. Exit Mix-�rewall model withN clueless senders andM distinguishable receivers

Alice acts independently (through ignorance of the clueless senders) when
deciding to send a message; we call this the ignorance assumption. Alice has the
same distribution each t. Between Alice and the N clueless senders, there are
N + 1 possible senders per t, and there are M + 1 possible actions per sender
(each sender may or may not transmit, and if it does transmit, it transmits to
exactly one of M receivers).

We consider Alice to be the input to the quasi-anonymous channel, which is
a proper communications channel [9]. Alice can send to one of the M receivers
or not send a message. Thus, we represent the inputs to the quasi-anonymous
channel by the M + 1 input symbols 0; 1; : : : ;M , where i = 0 represents Alice
not sending a message, and i 2 f1; : : : ;Mg represents Alice sending a message
to the ith receiver Ri. The \receiver" in the quasi-anonymous channel is Eve.
Eve receives the output symbols ej ; j = 1; : : : ;K. Eve receives e1 if no sender
sends a message. The other output symbols correspond to all the di�erent ways



the N + 1 senders can send or not send, at most one message each, out of the
private enclave, provided at least one sender does send a message.

For the sake of simplicity we introduce a dummy receiver R0 (not shown
above). If a sender does not send a message we consider that to be a \message"
to R0. For N + 1 senders and M receivers, the output symbol ej observed by

Eve is an M + 1 vector haj
0
; aj

1
; ::::; ajM i, where aji is how many messages the

Mix-�rewall sends to Ri. Of course it follows that
PM

i=0 a
j
i = N + 1:

The quasi-anonymous channel that we have been describing is a discrete
memoryless channel (DMC). We de�ne the channel matrix M as an (M+1)�K
matrix, where M[i; j] represents the conditional probability that Eve observes
the output symbol ej given that Alice input i. We model the clueless senders
according to the i.i.d. Ci for each period of possible action t:

P (Cluelessi doesn
0t send a message) = p

P (Cluelessi sends a message to any receiver) =
q

M
=

1� p

M

where in keeping with previous papers, q = 1�p is the probability that Cluelessi
sends a message to any one of the M receivers. When Cluelessi does send a
message, the destination is uniformly distributed over the receivers R1; : : : ; RM .
We call this the semi-uniformity assumption. Again, keep in mind that each
clueless sender has the same distribution each t, but they all act independently
of each other.

We model Alice according to the following distribution each t:

P (Alice sends a message to Ri) = xi

Of course, this tells us that

x0 = P (Alice doesn0t send a message) = 1�

MX
i=1

xi :

We let A represent the distribution for Alice's input behavior, and we denote by
E the distribution of the output that Eve receives. Thus, the channel matrix M
along with the distribution A totally determine the quasi-anonymous channel.
This is because the elements of M take the distributions Ci into account, and
M and A let one determine the distribution describing the outputs that Eve
receives, P (Eve receives ej).

Now that we have our set-up behind our exit Mix-�rewall model, we may
now go on to analyze various cases in detail. Additional cases and more detail
are available in [7].

3 Capacity Analyses of the Exit Mix-�rewall Model

The mathematics of the problem gets quite complex. Therefore, we start with
some simple special cases before attempting to analyze the problem in general.



The mutual information between A and E is given by

I(A;E) = H(A)�H(AjE) = H(E)�H(EjA) = I(E;A):

The capacity of the quasi-anonymous channel is given by [9]
C = max

A
I(A;E) ;

where the maximization is over the di�erent possible values that the xi may take
(of course, the xi are still constrained to represent a probability distribution).
Recall M[i; j] = P (E = ej jA = i), where M[i; j] is the entry in the ith row
and jth column of the channel matrix, M. To distinguish the various channel
matrices, we will adopt the notation that MN:M is the channel matrix for N
clueless senders and M receivers.

3.1 One Receiver (M = 1)

Case 1 | No clueless senders and one receiver (N = 0; M = 1)
Alice is the only sender, and there is only one receiver R1. Alice sends either
0 (by not sending a message) or 1 (by sending a message). Eve receives either
e1 = h1; 0i (Alice did nothing) or e2 = h0; 1i (Alice sent a message to the
receiver). Since there is no noise (there are no clueless senders) the channel
matrix M is the 2�2 identity matrix and it trivially follows that P (E = e1) = x0,
and that P (E = e2) = x1.

M0:1 =

� e1 e2

0 1 0
1 0 1

�

Since x0 = 1�x1, we see that
3 H(E) = �x0 logx0� (1�x0) log(1�x0). The

channel matrix is an identity matrix, so the conditional probability distribution
P (EjA) is made up of zeroes and ones, therefore H(EjA) is identically zero.
Hence, the capacity is the maximum over x0 of H(E), which is easily seen to
be unity4 (and occurs when x0 = 1=2). Of course, we could have obtained this
capacity5 without appealing to mutual information since we can noiselessly send
one bit per tick, but we wish to study the non-trivial cases and use this as a
starting point.

Case 2 | N clueless senders and one receiver (M = 1)
This case reduces to the indistinguishable receivers case with N senders. This
is the situation analyzed in [5] with both an exit Mix-�rewall that we have
been discussing and an entry Mix-�rewall, with the receivers behind the latter.
Alice can either send or not send a message, so the input alphabet again has
two symbols. Eve observes N + 2 possible output symbols. That is, Eve sees
e1 = hN +1; 0i, e2 = hN; 1i, e3 = hN � 1; 2i, � � � , eN+2 = h0; N +1i. A detailed
discussion of this case can be found in [5].

3 All logarithms are base 2.
4 The units of capacity are bits per tick t, but we will take the units as being under-
stood for the rest of the paper. Note that all symbols take one t to pass through the
channel.

5 This uses Shannon's [9] asymptotic de�nition of capacity, which is equivalent for
noiseless channels (in units of bits per symbol).



3.2 Some Special Cases for Two Receivers (M = 2)

There are two possible receivers. Eve has knowledge of the network tra�c, so
Alice can signal Eve with an alphabet of three symbols: 1 or 2, if Alice transmits
to R1 or R2, respectively, or the symbol 0 for not sending a message. Let us
analyze the channel matrices and the entropies for di�erent cases of senders.

The symbol ej that Eve receives is an 3-tuple of the form haj
0
; aj

1
; aj

2
i, where

aji is the number of messages received by ith receiver.6 The index i = 0 stands
for Alice not sending any message. The elements of the 3-tuple must sum to the
total number of senders, N + 1,

2X
i=0

ai = N + 1 :

Case 3 | No clueless senders and two receivers (N = 0; M = 2)
Alice is the only sender and can send messages to two possible receivers. The
channel matrix is trivial and there is no anonymity in the channel.

M0:2 =

0
@
h1; 0; 0i h0; 1; 0i h0; 0; 1i

0 1 0 0
1 0 1 0
2 0 0 1

1
A

The subscript 0.2 represents one sender (Alice alone) and two receivers. The 3�3
channel matrix M0:2[i; j] represents the conditional probability of Eve receiving
the symbol ej , when Alice sends to the Receiver i. `0' stands for not sending a
message.

The mutual information I is given by the entropy H(E) describing Eve

I(E;A) = H(E) = �x1 logx1 � x2 logx2 � (1� x1 � x2) log(1� x1 � x2):

The capacity of this noiseless covert channel is log 3 � 1:58 (at xi=1/3, i =
0; 1; 2). This is the maximum capacity, which we note corresponds to zero anonymity.

Case 4 | N = 1 clueless sender and M = 2 receivers

There are only six symbols that Eve may receive since there are six ways to
put two indistinguishable balls into three distinct urns.

Let us consider the channel matrix.

M1:2 =

0
@
h2; 0; 0i h1; 1; 0i h1; 0; 1i h0; 2; 0i h0; 1; 1i h0; 0; 2i

0 p q=2 q=2 0 0 0
1 0 p 0 q=2 q=2 0
2 0 0 p 0 q=2 q=2

1
A

6 Recall that the aji 's of the output symbol are not directly related to A, which denotes
the distribution of Alice.
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Fig. 2. Case 4: system with N = 1 clueless sender and M = 2 receivers

The 3� 6 channel matrix M1:2[i; j] represents the conditional probability of Eve
receiving the symbol ej when Alice sends to Ri. As noted, the dummy receiver
R0 corresponds to Alice not sending to any receiver (however this is still a
transmission to Eve via the quasi-anonymous channel).

Given the above channel matrix we have:

H(E) = �fpx0 log[px0]

+[qx0=2 + px1] log[qx0=2 + px1]

+[qx0=2 + px2] log[qx0=2 + px2]

+[qx1=2] log[qx1=2] + [qx1=2 + qx2=2] log[qx1=2 + qx2=2]

+[qx2=2] log[qx2=2]g:

The conditional entropy is given by

H(EjA) = �

2X
i=0

2
4p(xi)

6X
j=1

p(ej jxi) log p(ej jxi)

3
5 = h2(p) ;

where h2(p) denotes the function

h2(p) = � (1� p)=2 log((1� p)=2)� (1� p)=2 log((1� p)=2)� p log p

= �(1� p) log((1� p)=2)� p log p :

The mutual information between Alice and Eve is given by:

I(A;E) = H(E)�H(EjA) :



and the channel capacity is given by :
C = max

A
I(A;E)

= max
x1;x2

�fpx0 log[px0]

+[qx0=2+px1] log[qx0=2+px1]

+[qx0=2+px2] log[qx0=2+px2]

+[qx1=2] log[qx1=2]+[qx1=2+qx2=2] log[qx1=2+qx2=2]

+[qx2=2] log[qx2=2]g�h2(p):
Note that the maximization is over x1 and x2, since x0 is determined by

these two probabilities (holds for any N). This equation is very di�cult to solve
analytically and requires numerical techniques. Figure 4 shows the capacity for
this case with the curve labeled N = 1. From the plot the minimum capacity is
approximately 0.92, when p = 1=3.

Case 5 | N = 2 clueless senders and M = 2 receivers
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Fig. 3. Case 5: system with N = 2 clueless senders and M = 2 receivers

With two clueless senders and two receivers, Eve may receive ten symbols
since there are ten di�erent ways to put three indistinguishable balls into three
distinct urns.

M2:2 =

0
@

h3; 0; 0i h2; 1; 0i h2; 0; 1i h1; 2; 0i h1; 1; 1i h1; 0; 2i h0; 1; 2i h0; 3; 0i h0; 2; 1i h0; 0; 3i

0 p2 pq pq q2=4 q2=2 q2=4 0 0 0 0

1 0 p2 0 pq pq 0 q2=4 q2=4 q2=2 0

2 0 0 p2 0 pq pq q2=2 0 q2=4 q2=4

1
A

The 3 � 10 channel matrix M2:2[i; j] represents the conditional probability of
Eve receiving ej when Alice sends a message to receiver Ri.

Figure 4 shows the capacity for this case in the curve labeled N = 2. Again,
the minimum capacity is found at p = 1=3 = 1=(M + 1). From the plot the
minimum capacity is approximately 0.62, when p = 1=3.

Case 6 | General Case: N clueless senders and M receivers
We now generalize the problem to N clueless senders and M receivers (refer
again to Figure 1). There are N + 1 indistinguishable transmissions (including
null transmissions) and they are sent into M + 1 distinct receivers (urns) (this



also includes the null transmission, which by convention goes to R0, not shown
in the �gure). Combinatorics tells us then that there are K =

�
N+M+1

N+1

�
possible

symbols ej .

The rows of our channel matrix correspond to the actions of Alice. The ith
row of MN:M describes the conditional probabilities p(ej jxi). By convention e1
always corresponds to every sender not sending a message (which is equivalent to
all senders sending to R0). Therefore e1 is theM+1 tuple hN+1; 0; : : : ; 0i. Given
our simplifying semi-uniformity assumption for the clueless senders' distribution,
this term must be handled di�erently.

The �rst row of the channel matrix is made up of the terms MN:M [0,j]. (We
will not always explicitly note that j = 1; : : : ;

�
N+M+1

N+1

�
.) Here, Alice is not

sending any message (i.e., she is \sending" to R0), so Alice contributes one to
the term aj0 in the M + 1 tuple haj0; a

j
1; a

j
2; : : : ; a

j
M i associated with ej . In fact,

this tuple is the \long hand" representation of ej . Therefore the contributions

to the M +1 tuple haj0� 1; aj1; a
j
2; : : : ; a

j
M i describe what the N clueless senders

are doing. That is, aj0� 1 clueless senders are not sending a message, aj1 clueless
senders are sending to R1, etc. Hence, the multinomial coe�cient

�
N

aj
0
�1;aj

1
;::: ;aj

M

�
tells us how many ways this may occur.7 For each such occurrence we see that

the transmissions to R0 a�ect the probability by pa
j
0
�1, and the transmissions

to Ri; i > 0, due to the semi-uniformity assumption, contribute (q=M)a
j

i . Since
the actions are independent, the probabilities multiply, and since aj0 � 1 + aj1 +

� � � + ajM = N , we have a probability term of pa
j
0
�1(q=M)N+1�aj

0 . Multiplying
that term by the total number of ways of arriving at that arrangement we have
that:
MN:M [0; j] =

�
N

aj
0
�1;aj

1
;::: ;aj

M

�
pa

j
0
�1(q=M)N+1�aj

0 .

The other rows of the channel matrix are MN:M [i; j]; i > 0. For row i > 0,
we have a combinatorial term

�
N

aj
0
;aj
1
;::: ;aj

i�1
;aj
i
�1;aj

i+1
;::: ;aj

M

�
for the N clueless

senders, aj0 of which are sending to R0 and N � aj0 of which are sending to the
Ri; i > 0. Therefore, we see that under the uniformity assumption,

MN:M [i; j] =
�

N
aj
0
;aj
1
;::: ;aj

i�1
;aj
i
�1;aj

i+1
;::: ;aj

M

�
pa

j

0(q=M)N�aj
0 ; i > 0 .

We show the plots of the mutual information when the clueless senders act
(assumed throughout the paper) in a semi-uniform manner and when Alice also
sends in a semi-uniform manner (i.e., xi = (1 � x0)=M; i = 1; 2; :::;M). We
conjecture based upon our intuition, but do not prove, that Alice having a
semi-uniform distribution of destinations R1; :::; RM when the clueless senders
act in a semi-uniform manner maximizes mutual information (achieves capacity).
This has been supported by all of our numeric computations for capacity. With
this conjecture, we can reduce the degrees of freedom for Alice from M to 1 (her
distribution A is described entirely by x0), which allows greater experimental
and analytical exploration.

7 The multinomial coe�cient is taken to be zero, if any of the \bottom" entries are
negative.



The channel matrix greatly simpli�es when both the clueless senders and
Alice act in a totally uniform manner. That is, when x0 = 1=(M + 1), then
xi = (1� x0)=M = 1=(M + 1) for all xi, and p = 1=(M + 1). We have

MN:M [0; j] =
�

N
aj
0
�1;aj

1
;::: ;aj

M

�
pa

j
0
�1(q=M)N+1�aj

0 , which simpli�es to

MN:M [0; j] =
�

N
aj
0
�1;aj

1
;::: ;aj

M

�
( 1

M+1
)N . We also have

MN:M [i; j] =
�

N
aj
0
;aj
1
;::: ;aj

i�1
;aj
i
�1;aj

i+1
;::: ;aj

M

�
pa

j
0(q=M)N�aj

0 ; i > 0,

which simpli�es to MN:M [i; j] =
�

N
aj
0
;aj
1
;::: ;aj

i�1
;aj
i
�1;aj

i+1
;::: ;aj

M

�
( 1

M+1
)N ; i > 0 .

Note that this form holds for i = 0 also, due to the total uniformity of the Ci.

To determine the distribution E describing Eve we need to sum over the
columns of the channel matrix and use the total uniformity of A.
P (E = ej) =

P
i P (E = ej jA = i)P (A = i) i = 0; : : : ;M . This gives us

P (E = ej) = ( 1

M+1
)N
PM

i=0

�
N

aj
0
;::: ;aj

i�1
;aj
i
�1;aj

i+1
;::: ;aj

M

�
= ( 1

M+1
)N
� N+1

aj
0
;::: ;aj

M

�
.

From this we can compute the entropy H(E) without too much trouble

H(E) = ( 1

M+1
)N
P

j

� N+1

aj
0
;::: ;aj

M

� �
N log(M + 1)� log

� N+1

aj
0
;::: ;aj

M

��
. However, the

conditional entropy is more complicated, but is expressible. Therefore, we wrote
Matlab code to calculate the mutual information, which is conjectured to be the
capacity, when both the clueless senders and Alice act in a semi-uniform manner.
Local exploration of nearby points all yield lower mutual information values.

4 Discussion of Results
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Figure 4 shows the capacity as a function of p with M = 2 receivers, for
N = 1; 2; 3; 4 clueless senders. In all cases, the minimum capacity is realized at
p = 1=3, and the capacity at p = 1 is identical to log 3. As N increases, the
capacity decreases, with the most marked e�ects at p = 1=3.

In Figure 4, the capacity (of course under the semi-uniformity assumption for
Ci)) was determined numerically for any choice of A. However, for the remaining
plots, we applied the semi-uniformity conjecture (that Alice is better o� behaving
semi-uniformly if that is what the clueless senders do). Thus, x0 is the only free
variable for Alice's distribution in what follows.
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p = 0:25; 0:33; 0:5; 0:67

The mutual information as a function of x0 is shown in Figure 5 for M = 2
receivers and N = 1 clueless sender for p = 0:25; 0:33; 0:5; 0:67. Here, note that
the curve with p = 0:33 has the smallest maximum value (capacity), and that
the value of x0 at which that maximum occurs is x0 = 0:33. The x0 value that
maximizes the mutual information (i.e., for which capacity is reached) for the
other curves is not 0:33, but the mutual information at x0 = 0:33 is not much
less than the capacity for any of the curves.

Figure 6 shows the mutual information curves for various values of x0 as a
function of p, with N = 2 clueless senders and M = 2 receivers. Note that the
curve for x0 = 1=(M + 1) = 1=3 has the largest minimum mutual information,
and also has the greatest mutual information at the point where p = 1, i.e., when
there is no noise since Clueless1 is not sending any messages. The capacity for
various values of p is, in essence, the curve that is the maximum at each p over all
of the x0 curves, and the lower bound on capacity occurs at p = 1=3 = 1=(M+1).

Also observe that the x0 = 0:33 curve has the highest value for p = :33,
but for other values of p, other values of x0 have higher mutual information
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(i.e., Alice has a strategy better than using x0 = 0:33). However, the mutual
information when x0 = 0:33 is never much less than the capacity at any value
of p, so in the absence of information about the behavior of the clueless senders,
a good strategy for Alice is to just use x0 = 1=(M + 1). These observations
are illustrated and expanded in the next two �gures. Note the di�erences in
concavity between Figure 5 and Figure 6. We will discuss concavity again later
in the paper.

Figure 7 shows the optimal value for x0, i.e., the one that maximizes mu-
tual information and hence, achieves channel capacity, for N = 1; 2; 3; 4 clueless
senders and M = 3 receivers as a function of p. A similar graph in [5] for
M = 1 receiver is symmetric about x0 = 0:5, but for M > 1 the symmetry is
multidimensional, and the graph projected to the (p; x0)-plane where the des-
tinations are uniformly distributed is not symmetric. However, note that the
optimum choice of x0 is 1=(M + 1) both at p = 1=(M + 1) and at p = 1, that
is, when the clueless senders either create maximum noise or when they do not
transmit at all (no noise). As N increases, the optimum x0 for other values of
p is further from 1=(M + 1). Also observe that Alice's best strategy is to do
the opposite of what the clueless senders do, up to a point. If they are less
likely to send messages (p > 1=(M + 1)), then Alice should be more likely to
send messages (x0 < 1=(M + 1)), whereas if Cluelessi is more likely to send
messages ((p < 1=(M + 1)), then Alice should be less likely to send messages
(x0 > 1=(M + 1)).

Figure 8 shows the degree to which the choice of x0 = 1=(M +1) can be sub-
optimal, for N = 1; 2; 3; 4 clueless senders and M = 3 receivers. The plot shows
the mutual information for the given p and x0 = 1=(M + 1), normalized by di-
viding by the capacity (maximum mutual information) at that same p. Hence, it
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shows the degree to which a choice of x0 = 1=(M +1) fails to achieve the maxi-
mum mutual information. For N = 2, it is never worse than 0.94 (numerically),
but for N = 4, its minimum is 0.88. The relationship of suboptimality for other
choices of M and N , or for other distributions is not known.
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In Figure 9, we show the lower bound on capacity of the channel as a function
of p for N = 1 clueless sender and various values of M receivers. Numerical
results show that this lower bound increases for all p as M increases, and the
lower bound on the capacity for a given M occurs at p = 1=(M + 1), which is
indicated by the dotted lines in the �gure.

For Figure 10, we take the capacity at p = 1=(M + 1), which we found
numerically to minimize the capacity of the covert channel, and plot this lower
bound for capacity for many values of N and M . We retain the assumption
that xi = (1 � x0)=(M + 1) for i = 1; 2; :::;M , that is, given the semi-uniform
distribution of transmissions to the receivers by the clueless senders, it is best
for Alice to do likewise. Along the surface where N = 0, we have the noiseless
channel, and the capacity is log(M + 1), which is also the upper bound for
capacity for all N and M . The values along the surface when M = 1 give us the
same values we derived in [5].

Equations and curves for additional values and ranges of N and M may be
found in a forthcoming technical report [7].

5 Comments and Generalizations

We �rst note that the maximum capacity of this (covert) quasi-anonymous chan-
nel is log(M +1) for M distinguishable receivers, and is achievable only if there
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are no other senders (N = 0) or if none of them ever send (p = 1), i.e., when the
channel is noiseless.

Here are some of the observations from the di�erent cases considered, un-
der the semi-uniform assumption for the clueless senders and the semi-uniform
conjecture for Alice, followed by some generalizations.

1. The capacity C(p;N;M), as a function of the probability p that a clueless
sender remains silent, with N clueless senders and M receivers, is strictly
bounded below by C( 1

M+1
; N;M), and is achieved with x0 = 1=(M + 1).

2. The lower bound for capacity for a given number M of receivers decreases
as the number N of clueless senders increases,
C( 1

M+1
; N;M) > C( 1

M+1
; N + 1;M).

3. The lower bound for capacity for a given number N of clueless senders in-
creases as the number M of distinguishable receivers increases,
C( 1

M+2
; N;M + 1) > C( 1

M+1
; N;M).

These observations are intuitive, but we have not shown them to be true
numerically in the general case (we did for the case that M = 1 in [5]). It is
interesting to note that increasing the number of distinguishable receivers in-
creases the covert channel capacity, which in some sense decreases the (sender)
anonymity in the system (Alice has more room in which to express herself). This
is a bit contrary to the conventional view of anonymity in Mix networks, where
more receivers tends to provide \greater anonymity." In this light, we note that
Danezis and Serjantov investigated the e�ects of multiple receivers in statisti-
cal attacks on anonymity networks [3]. They found that Alice having multiple
receivers greatly lowered a statistical attacker's certainty of Alice's receiver set.

While the graphs and numerical tests support that the \worst" thing the
clueless senders can do is to send (or not) with uniform probability distribution



over the Ri, i = 0; 1; 2; :::;M , we have not proven this mathematically. Nor have
we proven that, under these conditions, the best Alice can do is to send (or not) to
each receiver Ri with uniform probability, xi = 1=(M + 1) for i = 0; 1; 2; :::;M ,
although the numerical computations support this. The proof in [5] of these
conjectures for the case where M = 1 relied, in part, on the symmetry about
x0 = 0:5, which is not the case when M > 1, so another approach must be used.
However, we should still be able to use the concavity/convexity results from [5].
Note that our conjecture that the best that Alice can do is to send in a semi-
uniform manner, and the results illustrated in Figure 8, seem to be an extension
of the interesting results of [4].

6 Conclusions and Future Work

This paper has taken a step towards tying the notion of capacity of a quasi-
anonymous channel associated with an anonymity network to the amount of
anonymity that the network provides. It explores the particular situation of a
simple type of timed Mix (it �res every tick) that also acts as an exit �rewall.
Cases for varying numbers of distinguishable receivers and varying numbers of
senders were considered, resulting in the observations that more senders (not
surprisingly) decreases the covert channel capacity, while more receivers increases
it. The latter observation is intuitive to communication engineers, but may not
have occurred to many in the anonymity community, since the focus there is
often on sender anonymity.

As the entropy H of the probability distribution associated with a message
output from a Mix gives the e�ective size, 2H , of the anonymity set, we wonder
if the capacity of the residual quasi-anonymous channel in an anonymity system
provides some measure of the e�ective size of the anonymity set for the system
as a whole. That is, using the covert channel capacity as a standard yardstick,
can we take the capacity of the covert channel for the observed transmission
characteristics of clueless senders, equate it with the capacity for a (possibly
smaller) set of clueless senders with maximum entropy (i.e., who introduce the
maximum amount of noise into the channel for Alice), and use the size of this
latter set as the e�ective number of clueless senders in the system. This is illus-
trated in Figure 4, with the vertical dashed line showing that N = 4 clueless
senders that remain silent with probability p = 0:87 are in some sense equivalent
to one clueless sender that sends with p = 0:33.

The case in which the Mix itself injects dummy messages into the stream ran-
domly is not distinguishable from having an additional clueless sender. However,
if the Mix predicates its injection of dummy messages upon the activity of the
senders, then it can a�ect the channel matrix greatly, to the point of eliminating
the covert channel entirely. We are also interested in the degree to which the
Mix can reduce the covert channel capacity (increase anonymity) with a limited
ability to inject dummy messages.

In future work we will analyze the situation where we have di�erent (and
more realistic) distributions for the clueless senders. We are also interested in



di�erent kinds of exit point Mix-�rewalls, such as threshold Mixes, timed Mixes
(where the time quantum is long enough to allow more than one message per
sender to be sent before the Mix �res), timed-pool Mixes, and systems of Mixes.
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