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Abstract—Open communication over the Internet poses a
serious threat to countries with repressive regimes, leading
them to develop and deploy censorship mechanisms within their
networks. Unfortunately, existing censorship circumvention
systems face difficulties in providing unobservable communi-
cation with their clients; this highly limits their availability
as censors can easily block access to circumvention systems
that make observable communication patterns. Moreover, the
lack of unobservability may pose serious threats to their
users. Recent research takes various approaches to tackle
this problem, however they introduce new challenges, and the
provided unobservability is breakable.

In this paper we propose an easy-to-deploy and unobservable
censorship-resistant infrastructure, called FreeWave. FreeWave
works by modulating a client’s Internet traffic into acoustic
signals that are carried over VoIP connections. Such VoIP
connections are targeted to a server, the FreeWave server, that
extracts the tunneled traffic and proxies them to the uncensored
Internet. The use of actual VoIP connections, as opposed to
traffic morphing, allows FreeWave to relay its VoIP connections
through oblivious VoIP nodes (e.g., Skype supernodes), hence
keeping the FreeWave server(s) unobservable and unblockable.
In addition, the use of end-to-end encryption, which is sup-
ported/mandated by most VoIP providers like Skype, prevents
censors from distinguishing FreeWave’s VoIP connections from
regular VoIP connections.

To utilize a VoIP connection’s throughput efficiently we
design communications encoders tailored specifically for VoIP’s
lossy channel. We prototype FreeWave over Skype, the most
popular VoIP system. We show that FreeWave is able to
reliably achieve communication throughputs that are sufficient
for web browsing, even when clients are far distanced from the
FreeWave server. We also validate FreeWave’s communication
unobservability against traffic analysis and standard censorship
techniques.
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I. INTRODUCTION

The Internet is playing an ever-increasing role in con-

necting people from across the world, facilitating the free

circulation of speech, ideas and information. This poses

serious threats to repressive regimes as it elevates their

citizens’ awareness and provides them a powerful medium

to arrange coordinated opposition movements. The recent

unrest in the Middle East [1] demonstrates the very strong

power of the Internet in arranging nation-wide protests

that, in several cases, resulted in revolutionizing or even

overthrowing repressive regimes. In response to such threats,

repressive regimes make use of different technologies to

restrict and monitor their citizens’ access to the Internet; i.e.,

they censor the Internet. Censorship devices leverage various

techniques [2], [3] ranging from simple IP address blocking

and DNS hijacking to the more complicated and resource-

intensive deep packet inspection (DPI) in order to enforce

their blocking and monitoring. Citizens identified as non-

complying with the censors’ restrictions can face different

consequences ranging from Internet service disruption to

severe life-threatening punishments [4].

To help censored users gain open access to the Internet

different systems and technologies have been designed and

developed [5]–[11], generally referred to as censorship cir-

cumvention tools. These systems are composed of computer

and networking technologies that allow Internet users to

evade monitoring, blocking, and tracing of their activities.

We observe that the biggest challenge facing the existing

circumvention systems is the lack of “unobservability”:

while these systems can, under certain conditions, circum-

vent censorship they are not effectively able to hide the

fact that their users are making use of them [5]–[9]. For

instance, the Tor [8] anonymity network is not able to

effectively evade censorship as a censor can block all of

the publicly advertised IP addresses of Tor relays. This has

two major consequences: first, users caught (by censors)

leveraging these circumvention systems may face various

punishments such as imprisoning. Second, and even more

catastrophic, this lack of unobservability usually leads to

the lack of availability; i.e., circumvention systems with

observable communication are easily blocked by censors.

Censors proactively [12] look for Internet services that

help with censorship circumvention and either block any

access to them by their citizens, or leave them (partially)

open to identify their users. In particular, censors rigorously

look for IP addresses belonging to circumvention technolo-

gies (e.g., HTTP/SOCKS proxies) and add them to the IP

blacklists maintained by their censoring firewalls [2], [13].

Consequently, citizens under repressive regimes often find it

difficult to access the existing circumvention systems. For

instance, the popular Tor network has frequently been/is

blocked by several repressive regimes [12], [14].



To provide unobservable circumvention different ap-

proaches have been taken by the research community. Sev-

eral systems [5], [7], [15] provide unobservability by pre-

sharing secrets with their intended clients. The Tor system,

for instance, has recently deployed Tor bridges [15], which

are volunteer proxies whose IP addresses are distributed

among Tor users in a selective manner. This makes Tor

bridges less prone to be identified by censors, as compared

to the publicly-advertised Tor entry nodes, however there

are serious challenges in distributing their IP addresses

among users [16], [17]. In a similar manner, Infranet [5]

and Collage [7] aim for unobservability by pre-sharing some

secret information with their users. This, however, is neither

scalable nor effective as it is challenging to share secrets

with a large number of real users, while keeping them secret

from censors at the same time [18]–[20].

As another approach to provide unobservability, several

systems use various obfuscation techniques. For instance,

Ultrasurf [21] and Psiphon [22] try to confuse content

filtering tools by obfuscating their design and traffic patterns.

Such obfuscation, however, jeopardizes users’ security, as

analyzed in a recent study [23]. Appelbaum et al. propose

pluggable transports [24] for Tor, a platform that allows one

to build protocol-level obfuscation plugins for Tor traffic.

These plugins obfuscate a Tor client’s traffic to Tor bridges

by shaping it to look like another protocol that is allowed by

censors. Obfsproxy [25] is the first Tor pluggable transport.

It adds an additional layer of encryption to Tor traffic to

obfuscate Tor’s content identifiers, like the TLS parameters;

however, it does not remove Tor’s statistical patterns like

packet timings and sizes. Murdoch et al. [26] mention sev-

eral weaknesses for obfsproxy, including being susceptible

to either an active or passive attacker who has recorded

the initial key exchange. StegoTorus [27] provides better

unblockability, but comes with a much higher overhead

[26]. SkypeMorph [28] morphs Tor traffic into Skype video

calls in order to make it undetectable against deep-packet

inspection and statistical analysis. The common issue with

the aforementioned traffic obfuscation techniques is that they

only obfuscate communication patterns, but not the end-

hosts. In other words, while a censor may find it hard to

detect the obfuscated traffic using traffic analysis, it will

be able to identify the end-hosts that obfuscate the traffic

through other active/passive attacks, e.g., SkypeMorph and

StegoTorus relays can be enumerated using prevalent port

knocking techniques [12], [29], zig-zag [30] attack, and

insider attack [31]. Once the identity of a circumventing end-

host is known to a censor the unobservability is completely

lost and the end-host is easily blocked by the censor.

CensorSpoofer [31] is another recent proposal that performs

traffic obfuscation by mimicking VoIP traffic. Like most

of the other designs noted above, CensorSpoofer needs to

pre-share some secret information with the clients, posing

a scalability challenge. In addition, it requires a usable

upstream channel for its operation since its circumvented

traffic is unidirectional.

As another recent trend, several proposals have sought

unobservability by integrating circumvention into the In-

ternet infrastructure [10], [11]. For instance Telex [10]

and Cirripede [11] conceal the circumvented traffic inside

the regular HTTPS traffic thanks to friendly ISPs that

deflect/manipulate the intercepted connections. The real-

world deployment of such circumvention systems requires

collaboration of several trusted ISPs that make software

and/or hardware modifications to their infrastructure; this

does not seem to be realized in short-time until there are

enough financial/political motives for the ISPs. Moreover,

a recent study [32] shows that an adversary capable of

changing routing decisions is able to block these systems.

In this paper we propose FreeWave, a censorship circum-

vention infrastructure that is highly unobservable (hence,

highly available). The main idea of FreeWave, as shown in

Figure 1, is to tunnel Internet traffic inside non-blocked VoIP

communications by modulating them into acoustic signals

that are carried over VoIP connections. For a censored user

to use FreeWave for circumvention, she needs to setup a

VoIP account with a public VoIP provider, and also to install

FreeWave’s client software on her machine. Part of the

FreeWave system is a FreeWave server that listens on several

publicly advertised VoIP IDs to serve FreeWave clients.

To make a FreeWave connection, a user’s FreeWave client

software makes VoIP connections to FreeWave server’s VoIP

IDs. The client and server, then, tunnel the circumvented

Internet traffic inside the established VoIP connections, by

modulating network packets into acoustic signals carried by

the established VoIP connections.

We claim that FreeWave provides strong unobservability

by performing two kinds of obfuscations: traffic obfuscation,

and server obfuscation. First, as FreeWave tunnels Internet

traffic inside actual, encrypted VoIP connections, its traffic

patterns are very hard to be distinguished from benign

VoIP connections. Traffic obfuscation is also aimed for by

recent morphing-based techniques like SkypeMorph [28]

and StegoTorus [27], however, FreeWave provides stronger

traffic obfuscation as it completely runs the target protocol

instead of partially imitating it. The second obfuscation

performed by FreeWave, which is unique to FreeWave, is

server obfuscation, which prevents censors from detecting

circumvented traffic by matching the destination addresses

of traffic. Server obfuscation is an important feature that

similar circumvention systems such as SkypeMorph [28]

and StegoTorus [27] fail to provide. As we describe later

in this paper, the way the FreeWave server is connected

to the Internet results in getting FreeWave’s VoIP traffic

relayed by various, oblivious VoIP peers, preventing a censor

from blocking/identifying FreeWave’s VoIP traffic based on

IP addresses (see Figure 1). For instance, FreeWave con-

nections made through Skype get relayed by Skype supern-
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Figure 1. The main architecture of FreeWave.

odes [33], which are oblivious Skype users residing outside1

the censorship region. As another example, if FreeWave uses

Google Voice, FreeWave connections will get relayed by

Google servers that are oblivious to the circumvention pro-

cess. Server obfuscation, as defined above, is missing in all

previous designs except CensorSpoofer [31]. For instance, in

the case of Tor pluggable transports like SkypeMorph [28]

and StegoTorus [27] once the IP address of the deploying

Tor bridge is revealed to a censor (e.g., using port knocking

[12], [16], [17], [29]) the unobservability is lost and the

censor will be able to identify/block users connecting to

that Tor bridge. In FreeWave, on the other hand, even if

a censor identifies the IP address belonging to a FreeWave

server it will not be able to block connections to it since

users’ connection to that FreeWave server are not direct

connections, but are relayed through varying, oblivious VoIP

nodes. We provide a thorough comparison of FreeWave with

similar obfuscation-based techniques in Section IX.

The strong unobservability of FreeWave makes it highly

unblockable (i.e., available). FreeWave’s availability is tied

to the availability of the VoIP service: since the operation

of FreeWave is not bound to a specific VoIP provider, in

order to block FreeWave a censor needs to block all VoIP

connections with the outside world. This is not desirable by

the censoring ISPs due to different business and political

implications. VoIP constitutes an important part of today’s

Internet communications [36]–[38]; a recent report [37]

shows that about one-third of U.S. businesses use VoIP

solutions to reduce their telecommunications expenses, and

the report predicts the VoIP penetration to reach 79% by

2013, a 50% increase compared to 2009.

We implement a prototype of FreeWave over the popular

VoIP service of Skype and measure its performance. To

achieve reliable communication over VoIP connections we

design a communication encoder/decoder tailored for the

VoIP’s lossy communication channel. Specifically, we take

1The supernodes assigned to a particular Skype client by the Skype
protocol are geographically close to that client for better quality of service;
hence a FreeWave server is expected to use nearby supernodes. In addition,
a FreeWave server can adjust the list of its Skype supernodes [34], [35],
as described later.

advantage of Turbo codes and QAM modulation techniques

[39], [40] in order to reliably encode the circumvented traffic

inside the VoIP connections. Our evaluations show that

FreeWave provides connection bit rates that are suitable for

regular web browsing. We validate FreeWave’s usability by

clients that are geographically far away from the FreeWave

server.

Contributions: In this paper we make the following main

contributions:

• i) We propose, FreeWave, a novel infrastructure for

censorship circumvention that works by modulating

Internet traffic into the acoustic signals carried over

VoIP connections. The use of actual VoIP connections,

as well as being relayed by oblivious VoIP nodes

provides promising unobservability for FreeWave.

• ii) We design communication encoders and decoders

to efficiently modulate Internet traffic into acoustic

signals.

• iii) We prototype FreeWave on the popular VoIP service

of Skype and evaluate its performance and security.

The rest of this paper is organized as follows: In Section II

we review our threat model and the goals in designing

our circumvention system. We describe the design of our

proposed circumvention system, FreeWave, in Section III,

and Section IV discusses our design details. In Section V,

we discuss the features of our designed circumvention

system. We thoroughly analyze the security of FreeWave

in Section VI. In Section VII we describe the design of

MoDem, the communication block of FreeWave software.

We describe our prototype implementation in Section VIII

along with the evaluation results. In Section IX we compare

FreeWave with two recent proposals of SkypeMorph [28]

and CensorSpoofer [31]; this is followed by additional

related work in Section X. In Section XI we discuss Free-

Wave’s limitations and several recommendations. Finally, the

paper is concluded in Section XII.

II. PRELIMINARIES

A. Threat model

We assume that a FreeWave client is connected to the

Internet through a censoring ISP, e.g., an ISP that is



controlled and regulated by a repressive regime. Based

on the regulations of the censoring ISP its users are not

allowed to connect to certain Internet destinations, called

the censored destinations. The users are also prohibited from

using censorship circumvention technologies that would help

them to evade the censoring regulations. The censoring ISP

uses a set of advanced technologies to enforce its censoring

regulations, including IP address blocking, DNS hijacking,

and deep packet inspection [2], [3]. The censoring ISP also

monitors its users’ network traffic to identify and block

any usage of censorship circumvention tools; traffic analysis

can be used by the censor as a powerful technique for this

purpose.

We assume that the censoring ISP enforces its regula-

tions such that it does not compromise the usability of

the Internet for its users, due to different political and

economical reasons. In other words, the enforced censorship

does not disable/disrupt key Internet services. In particular,

we consider VoIP as a key Internet service in today’s Internet

[36], [38], [41], and we assume that, even though a censor

may block certain VoIP providers, the censor will not block

all VoIP services. VoIP constitutes a key part in the design

of FreeWave.

B. Design goals

We consider the following goals in the design and eval-

uation of FreeWave. Later in Section V, we discuss these

features for the FreeWave circumvention system proposed

in this paper and compare FreeWave with related work.

Unblockability: The main goal of a censorship circumven-

tion system is to help censored users gain access to censored

Internet destinations. As a result, the most trivial property

of a circumvention system is being accessible by censored

users, i.e., it should be unblockable by censors.

Unobservability: Unobservability is to hide users’ utiliza-

tion of a circumvention system from censorship authorities,

which is a challenging feature to achieve due to the recent

advances in censorship technologies [2]. The importance

of unobservability is two-fold; first, an observable circum-

vention can jeopardize the safety of a user who has been

caught by the censor while using the circumvention system.

Second, a weak unobservability commonly results in a weak

unblockability, as it allows censors to more easily identify,

hence block, traffic generated by the circumvention system.

Security: Several security considerations should be made

once analyzing a circumvention system. These considera-

tions include users’ anonymity, confidentiality, and privacy

against various parties including the censors, the circumven-

tion system, and third parties.

Deployment feasibility: An important feature of a circum-

vention system is the amount of resources (e.g., hardware,

network bandwidth, etc.) required for it to be deployed in

real world. A circumvention system is also desired to have

few dependencies on other systems and entities in order to

make it more reliable, secure, and cost-effective.

Quality of service: A key feature in making a circumven-

tion system popular in practice is the quality of service pro-

vided by it in establishing circumvented connections. Two

important factors are connection bandwidth, and browsing

latency.

III. FREEWAVE SCHEME

In this section, we describe the design of FreeWave cen-

sorship circumvention. Figure 1 shows the main architecture

of FreeWave. In order to get connected through FreeWave,

a user installs a FreeWave client on her machine, which

can be obtained from an out-of-band channel, similar to

other circumvention systems. The user sets up the installed

FreeWave client by entering her own VoIP ID and also the

publicly advertised VoIP ID of FreeWave server. Once the

FreeWave client starts up, it makes a VoIP audio/video call

to FreeWave server’s VoIP ID. As discussed in Section IV-B,

the FreeWave server is configured in a way that VoIP

connections initiated by clients are relayed through various

oblivious VoIP peers, e.g., Skype supernodes; this is a key

security feature of FreeWave as it prevents a censor from

blocking FreeWave’s VoIP connections using IP address

blocking. Also, since FreeWave’s VoIP connections are end-

to-end encrypted, a censor will not be able to identify

FreeWave’s VoIP connections by analyzing traffic contents,

e.g., by looking for the VoIP IDs. Using the established VoIP

connection, a FreeWave client circumvents censorship by

modulating its user’s Internet traffic into acoustic signals that

are carried over by such VoIP connections. FreeWave server

demodulates a client’s Internet traffic from the received

acoustic signals, and proxies the demodulated traffic to the

requested Internet destinations.

Next, we introduce the main components used in Free-

Wave and describe how these components are used in the

design of FreeWave’s client and server.

A. Components of FreeWave

In this section, we introduce the main elements used in

the design of FreeWave client and server software. The first

three components are used by both FreeWave client and

FreeWave server, while the fourth element is only used by

FreeWave server.

VoIP client VoIP client is a Voice-over-IP (VoIP) client

software that allows VoIP users to connect to one (or more)

specific VoIP service(s). In Section IV-B, we discuss the

choices of the VoIP service being used by FreeWave.

Virtual sound card (VSC) A virtual sound card is a

software application that uses a physical sound card installed

on a machine to generate one (or more) isolated, virtual

sound card interfaces on that machine. A virtual sound card

interface can be used by any application running on the host



machine exactly the same way a physical sound card is uti-

lized. Also, the audio captured or played by a virtual sound

card does not interfere with that of other physical/virtual

sound interfaces installed on the same machine. We use

virtual sound cards in the design of FreeWave to isolate

the audio signals generated by FreeWave from the audio

belonging to other applications.

MoDem FreeWave client and server software use a modu-

lator/demodulator (MoDem) application that translates net-

work traffic into acoustic signals and vice versa. This allows

FreeWave to tunnel the network traffic of its clients over

VoIP connections by modulating them into acoustic signals.

We provide a detailed description of our MoDem design in

Section VII.

Proxy FreeWave server uses an ordinary network proxy

application that proxies the network traffic of FreeWave

clients, received over VoIP connections, to their final Internet

destinations. Two popular choices for FreeWave’s proxy

are the HTTP proxy [42] and the SOCKS proxy [43]; a

SOCKS proxy supports proxying of a wide range of IP

protocols, while an HTTP proxy only supports proxying

of HTTP/HTTPS traffic, but it can perform HTTP-layer

optimizations like pre-fetching of web contents. Several

proxy solutions support both protocols.

B. Client design

The FreeWave client software, installed by a FreeWave

user, is consisted of three main components described above:

a VoIP client application, a virtual sound card (VSC), and

the MoDem software. Figure 2 shows the block diagram

of the FreeWave client design. MoDem transforms the data

of the network connections sent by the web browser into

acoustic signals and sends them over to the VSC component.

The FreeWave MoDem also listens on the VSC sound card

to receive specially formatted acoustic signals that carry

modulated Internet traffic; MoDem extracts the modulated

Internet traffic from such acoustic signals and sends them

to the web browser. In a sense, the client web browser

uses the MoDem component as a network proxy, i.e., the

listening port of MoDem is entered in the HTTP/SOCKS

proxy settings of the browser.

The VSC sound card acts as a bridge between MoDem

and the VoIP client component, i.e., it transfers audio signals

between them. More specifically, the VoIP client is set up to

use the VSC sound card as its “speaker” and “microphone”

devices (VoIP applications allow a user to select physi-

cal/virtual sound cards). This allows MoDem and the VoIP

client to exchange audio signals that contain the modulated

network traffic, isolated from the audio generated/recorded

by other applications on the client machine.

For the FreeWave client to connect to a particular Free-

Wave server it only needs to know the VoIP ID belonging

to that FreeWave server, but not the IP address of the

FreeWave server. Every time the user starts up the FreeWave

client application on her machine the VoIP application of

FreeWave client initiates an audio/video VoIP call to the

known VoIP ID of the FreeWave server.

C. Server design

Figure 3 shows the design of FreeWave server, which

consists of four main elements. FreeWave server uses a VoIP

client application to communicate with its clients through

VoIP connections. A FreeWave server chooses one or more

VoIP IDs, which are provided to its clients, e.g., through

public advertisement.

The VOIP client of the FreeWave server uses one (or

more) virtual sound cards (VSC) as its “speaker” and

“microphone” devices. The number of VSCs used by the

server depends on the deployment scenario, as discussed in

Section IV-A. The VSC(s) are also used by the MoDem

component, which transforms network traffic into acoustic

signals and vice versa. More specifically, MoDem extracts

the Internet traffic modulated by FreeWave clients into audio

signals from the incoming VoIP connections and forwards

them to the last element of the FreeWave server, FreeWave

proxy. MoDem also modulates the Internet traffic received

from the proxy component into acoustic signals and sends

them to the VoIP client software through the VSC interface.

The FreeWave proxy is a regular network proxy, e.g., an

HTTP proxy, that is used by the FreeWave server to connect

FreeWave clients to the open Internet. As mentioned above

in Section III-B, the web browser of a FreeWave client

targets its traffic to a network proxy; such proxied traffic

is received and handled by FreeWave server’s proxy server

(through the VoIP connections, as described).

IV. OTHER DESIGN DETAILS

A. Deployment scenarios

The FreeWave system proposed in this paper can be

deployed by “good” entities that run FreeWave servers

to help censored users gain an uncensored access to the

Internet. We consider the following scenarios for a real-

world deployment of FreeWave. In Section VI, we discuss

the security considerations for each of these scenarios.

Personal deployment: A person having an open access

to the Internet can set up a personal FreeWave server on

her personal machine, anonymously helping censored users

evade censorship. Such a person can, then, advertise her

VoIP ID (used with her FreeWave server) publicly (e.g.,

through social networks) and anyone learning this ID would

be able to connect to the Internet by running FreeWave

client software. To save bandwidth, she can configure her

FreeWave server to enforce restrictions on the quality of

service provided to clients.

Central VoIP-center: FreeWave service can be deployed

and maintained by a central authority, e.g., a for-profit

or non-profit organization. The deploying organization can
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build and run FreeWave servers that are a capable of

serving large numbers of FreeWave clients. To do so, the

deployed FreeWave servers should utilize several physi-

cal/virtual sound cards in parallel. Also, by creating VoIP

accounts on several, different VoIP service providers such

central FreeWave system will be able to service FreeWave

clients who use various VoIP services. Such a central de-

ployment of FreeWave can operate for commercial profit,

e.g., by charging clients for the used bandwidth, or can be

established as a non-profit system, e.g., being funded by

NGOs or pro-freedom governments.

Central phone-center: As an alternative approach, Free-

Wave can be deployed using an automated telephone center.

More specifically, instead of VoIP IDs, FreeWave will pub-

licize several phone numbers, which are used by clients to

connect to the FreeWave server. FreeWave users need to use

the exact same FreeWave client software, except that instead

of making VoIP calls to a VoIP IDs they will make VoIP

calls to FreeWave server’s phone numbers. Compared to the

”central VoIP-center” scenario, this has the big advantage

that clients can arbitrarily choose any VoIP service provider

for the client software, while in the ”central service” design

users need to choose from the VoIP systems supported by

FreeWave server (though a powerful FreeWave server can

support many VoIP systems).

Distributed service: FreeWave service can also be de-

ployed in a distributed architecture, similar to that of Tor [8]

anonymity network. More specifically, a FreeWave network

can be built consisting of a number of volunteer computers

that run instances of FreeWave server software on their ma-

chines. A central authority can manage the addition of new

volunteer nodes to the system and also the advertisement (or

distribution) of their VoIP IDs to the clients.

B. The choice of VoIP systems

There are numerous free/paid VoIP service providers that

can be utilized by the FreeWave system, e.g., Skype2,

Vonage3, iCal4, etc. A VoIP service provider usually supplies

its VoIP client software to its users, but there are also some

VoIP software that can be used for different VoIP accounts,

e.g., PhonerLite5. In this section, we mention some candidate

VoIP services that can be used by FreeWave.

1) Skype: Skype is a peer-to-peer VoIP system that pro-

vides voice calls, instant messaging, and video calls to its

clients over the Internet. Skype is one of the most popular

VoIP service providers with over 663 million users as of

September 2011 [44].

Skype uses an undisclosed proprietary design, which

has been partly reverse-engineered in some previous re-

search [34], [35], [45]. These studies find that Skype uses

a peer-to-peer overlay network with the Skype users as its

peers. There are two types of nodes on Skype: ordinary

nodes, and supernodes (SN). Any Skype client with a public

IP address, having sufficient CPU, memory, and network

bandwidth serves as a supernode, and all the other nodes

are ordinary nodes. In addition, Skype uses a central login

2http://www.skype.com
3http://www.vonage.com
4http://www.icall.com/
5http://www.phonerlite.de/index en.htm

http://www.skype.com
http://www.vonage.com
http://www.icall.com/
http://www.phonerlite.de/index_en.htm


server that keeps users’ login credentials and is used by

Skype users to register into Skype’s overlay network. Apart

from the login server all Skype communications work in a

peer-to-peer manner, including the user search queries and

online/offline user information.

A key feature that makes Skype an ideal choice for

FreeWave is its peer-to-peer network. Depending on its

network setting [33], an ordinary Skype user deploys some

supernodes as her proxies to connect to the Skype network,

to make/receive calls, and to update her status. In particular,

a Skype call made toward an ordinary Skype node gets

relayed to her by her supernodes [34], [35]. Each ordinary

node maintains a supernode-cache [35] table that keeps a

list of reachable (usually nearby) supernodes, discovered by

the Skype protocol. We use this feature to provide server

obfuscation for FreeWave: by having our FreeWave server

to act as an ordinary Skype node the VoIP connections that it

receives will be relayed by alternative supernodes, rendering

IP address blocking impossible. We discuss this further in

Section VI. Also note that a censor can not map a FreeWave

server to its supernodes since the supernode-cache table is

a large, dynamic list; further, a Skype client can change

its supernodes more frequently by flushing [34], [35] its

supernode-cache.

Based on the criteria mentioned for a supernode, an easy

way to be treated as an ordinary node by Skype is to

reside in a firewalled, NATed network subnet [33], [35]. As

another interesting feature of Skype for FreeWave, all Skype

connections are secured by end-to-end encryption [34], [35].

2) SIP-based VoIP: Session Initiation Protocol (SIP) [46]

is a light-weight, popular signaling protocol and is widely

used by VoIP providers, e.g., SFLphone6, Zfone7, and

Blink8, to establish calls between clients. A SIP-based VoIP

system consists of three main elements [46]: 1) user agents

that try to establish SIP connections on behalf of users, 2)

a location service that is a database keeping information

about the users, and 3) a number of servers that help users

in establishing SIP connections. In particular, there are two

types of SIP servers; registrar servers receive registration

requests sent by user agents and update the location service

database. The second types of SIP servers are proxy servers

that receive SIP requests from user agents and other SIP

proxies and help in establishing the SIP connections.

Once a SIP connection is established between two user

agents a media delivery protocol is used to transfer media

between the users. Most of the SIP-based VoIP systems use

the Real-time Transport Protocol (RTP) [47] to exchange

audio data, and the Real-Time Transport Control Protocol

(RTCP) [47] protocol to control the established RTP con-

nections. User agents in SIP-based VoIP system are allowed

6http://sflphone.org/
7http://zfoneproject.com/
8http://icanblink.com/

to use an encryption-enabled version of RTP, called Secure

Real-time Transport Protocol (SRTP) [48], in order to secure

their VoIP calls. Note that the encryption supported by SRTP

is performed end-to-end by SIP agents and VoIP servers are

not required to support encryption. We mandate the SIP-

based design of FreeWave to use SRTP for media transfer.

Similar to Skype, if a user agent is behind NAT or a

firewall it will use an intermediate node to establish its

VoIP connections. In particular, two popular techniques used

by VoIP service providers to bypass NAT and firewalls are

session border controller (SBC) [49] and RTP bridge servers

[50]. As in the case of the Skype-based FreeWave, putting

a FreeWave server behind a firewall masks its IP address

from censors, as the VoIP calls to it will be relayed through

oblivious intermediate nodes. However, better care needs to

be taken in this case since, unlike Skype, SIP-based VoIP

systems are not peer-to-peer.

3) Centralized VoIP: Several VoIP providers use their

own servers to relay VoIP connections, in order to improve

connectivity, regardless of the VoIP protocol that they use.

One interesting example is the Google Voice9, which relays

all of its calls through Google servers, hence disguising a

callee’s IP address from a censor. Also note that the calls in

Google Voice are encrypted.

V. EVALUTION OF THE DESIGN GOALS

In Section II-B, we listed several features that we consider

in designing an effective circumvention system. Here, we

discuss the extent to which our proposed system, FreeWave,

achieves such requirements.

Unblockability: In order to use FreeWave, a client only

needs to know the VoIP ID of the FreeWave server, i.e.,

server-id, but no other secret/public information like the

server’s IP address. server-id is distributed in a public

manner to the users, so we assume that it is also known

to censors. Considering the use of encrypted VoIP connec-

tions by FreeWave, this public knowledge of server-id

does not allow censors to identify (and block) the VoIP

connections to the FreeWave server. In addition, a censor

will not be able to identify FreeWave’s VoIP connections

from their IP addresses since, as discussed in Section IV-B,

the encrypted VoIP connections to the FreeWave server are

relayed through oblivious, intermediate nodes (given the

FreeWave server is set up appropriately). For instance, in

Skype-based FreeWave the VoIP connections to the Free-

Wave server are relayed by oblivious Skype supernodes.

Also, FreeWave server is not mapped to a particular set of

supernodes, i.e., its VoIP connections are relayed through a

varying set of super nodes. In all of the above arguments, we

assume that the VoIP service provider used by FreeWave is

not colluding with the censors, otherwise the unobservability

is lost. Such collusion could happen if a centralized VoIP

9https://www.google.com/voice

http://sflphone.org/
http://zfoneproject.com/
http://icanblink.com/
https://www.google.com/voice


service, e.g., Google Voice, informs censors of the clients

calling FreeWave’s Google Voice ID, or if the censors

control the supernodes used by a FreeWave server.

Another point in making FreeWave unblockable is that

it does not depend on a particular VoIP system, and can

select from a wide range of VoIP providers. As a result, in

order to block FreeWave, censors will need to block all VoIP

services, which is very unlikely due to several political and

economical considerations.

Note that unblockability is a serious challenge with many

existing circumvention systems, as the very same infor-

mation that they advertise for their connectivity can be

used by censors to block them. For example, the Tor [8]

system requires its clients to connect to a public set of

IP addresses, which can be IP-filtered by censors. More

recently, Tor has adopted the use of Tor bridges [15],

which are volunteer proxies with semi-public IP addresses.

Unfortunately, there are different challenges [12], [16], [17],

[20], [29] in distributing the IP addresses of Tor bridges only

to real clients, but not to the censors.

Unobservability: The arguments made above for Free-

Wave’s unblockability can also be used to justify its un-

observability. As mentioned above, even though FreeWave

server’s VoIP ID (server-id) is assumed to be known

to censors, the end-to-end encryption of VoIP connections

prevents a censor from observing users making VoIP con-

nections to server-id. In addition, VoIP relays sitting be-

tween FreeWave clients and a FreeWave server, e.g., Skype

supernodes, foil the identification of FreeWave connections

through IP address filtering.

Deployment feasibility: The real-world deployment of

FreeWave does not rely on other entities. This is in con-

trast to some recent designs that need collaboration from

third parties for their operation. For instance, Infranet [5]

requires support from some web destinations that host the

circumvention servers. As another example, several recent

proposals [10], [11], [51] rely on the collaboration from

friendly ISPs for their operation.

Quality of service: In Section VIII, we discus the connec-

tion performance provided by our prototype implementation

of FreeWave. Our results show that FreeWave provides

reliable connections that are good for normal web browsing.

VI. SECURITY ANALYSIS

In this section, we discuss the security of FreeWave clients

to the threats imposed by different entities.

A. Security against censors

The end-to-end encryption of VoIP connections protects

the confidentiality of the data sent by FreeWave clients

against a monitoring censor, even if the censor is able to

identify VoIP connections targeted to FreeWave. Such end-

to-end encryption also ensures the web browsing privacy of

FreeWave clients. As mentioned in Section IV-B, Skype calls

are encrypted end-to-end, and SIP-based VoIPs also provide

end-to-end encryption using the SRTP protocol. In the case

of centralized VoIP services, like the Google Voice, the

encryptions are usually client-to-server, hence the FreeWave

client should ensure that its VoIP provider is not colluding

with the censors.

Even though FreeWave uses encrypted VoIP connections

a censor may still try to identify FreeWave-generated VoIP

connections by performing traffic analysis, i.e., by analyzing

communication patterns. The use of actual VoIP connections

by FreeWave (instead of shaped connections as in [27], [28])

makes traffic analysis particularly hard. We show this in

Section VIII-C by analyzing FreeWave’s VoIP connections

and comparing them with regular VoIP connections. As

discussed in Section VIII-C, the choice of the VoIP system

affects the feasibility of traffic analysis. Please see Sec-

tion VIII-C for more discussion on FreeWave traffic analysis.

B. Security against FreeWave servers

A FreeWave server only knows the VoIP IDs of its client,

but not their IP addresses since the VoIP connections are

being relayed through intermediate VoIP nodes. As a result,

unless the VoIP service (e.g., the Google Voice server,

or a Skype supernode owned by a FreeWave server) is

colluding with the FreeWave server, the FreeWave server

will not be able to link VoIP IDs to IP addresses, i.e.,

the client is anonymous to the server. Note that anonymity

against circumvention systems is not demanded by typi-

cal censored users who are only willing to access non-

sensitive censored information like the news, and in fact

some popular circumventions mechanisms do not provide

such anonymity, e.g., the single-proxy based systems such

as the Anonymizer [9]. A FreeWave client can strengthen

its anonymity against the FreeWave server in different ways.

For instance, she can enforce its VoIP traffic to be relayed

by additional intermediate VoIP relays, e.g., by the client’s

Skype supernodes.

In the basic design of FreeWave mentioned above a

FreeWave server can observe the traffic contents exchanged

by a FreeWave client, since the tunneled traffic is not always

encrypted. However, a client can easily ensure security and

privacy from the server by using an extra layer of encryption.

For instance, a client can use FreeWave to get connected

to an anonymity system like Anonymizer [9], and then

use the tunneled connection with this anonymity system to

browse the Internet. This secures this client’s traffic from the

FreeWave server, as well as makes it confidential. Note that

considering the fact that FreeWave clients are anonymous

to FreeWave servers, clients may opt not to use such an

additional protection for low-sensitive activities like web

browsing.



C. Security against VoIP providers

Except for the centralized VoIP services, the VoIP connec-

tions between FreeWave clients and servers are encrypted

end-to-end using the keys shared through the VoIP protocol.

In the case of a centralized VoIP service, like the Google

Voice, FreeWave parties can exchange a key using a key

sharing mechanism, like the Diffie-Hellman key exchange

[52], over the established FreeWave VoIP. As a result, the

VoIP provider will not be able to observe the data being

communicated, nor the web destinations being browsed.

However, the VoIP service provider might be able to identify

VoIP IDs that have made VoIP calls to a FreeWave server.

As a result, in order to ensure its unobservability FreeWave

needs to use VoIP providers that are not colluding with the

censors. Note that FreeWave does not rely on a particular

VoIP system and any VoIP provider can be used for its

operation.

VII. FREEWAVE MODEM

The MoDem component is one of the main components

of both FreeWave client and FreeWave server application,

which translates Internet traffic into acoustic signals and vice

versa. MoDem consists of a modulator and a demodulator.

MoDem’s modulator modulates data (IP bits) into acoustic

signals, and MoDem’s demodulator extracts the encoded

data from a received acoustic signal. In the following, we

describe the design of MoDem’s modulator and demodula-

tor.

A. Modulator description

We design a bit-interleaved coded modulation

(BICM) [40] for MoDem’s modulator, which is shown

in Figure 4. First, the modulator encodes the information

bits, {ai}, i.e., IP traffic, using a channel encoder with

rate Rc. The encoded stream, {bi}, is permuted using a

random interleaver [40], and the interleaved sequence is,

then, partitioned into subsequences cn = {c1n, . . . , c
Q
n } of

length-Q (n is the partition index and Q is a parameter

of our modulator). Finally, a QAM mapper [40] generates

the modulated data by mapping each subsequence cn to a

2Q-ary quadrature amplitude modulation symbol.

We design a wrapper protocol to carry the modulated data.

This wrapper performs three important tasks: 1) it allows

a demodulator to synchronize itself with the modulator

in order to correctly identify the starting points of the

received data; 2) it lets the sender and receiver negotiate

the modulation parameters; and, 3) it lets the demodulator

adapt itself to the time-varying channel. Figure 4 shows

the modulated data being wrapped by our wrapper protocol.

As can be seen, the modulated bit stream is converted into

data frames that are sent over the VoIP channel. Each data

frame starts with a known preamble block, which is needed

for synchronization as well as for receiver initialization

purposes. The frame preamble is followed by a signal block

that is used to communicate the modulation and coding

parameters used for this particular frame. The signal block

is followed by N blocks of training and data symbols. The

data symbols are the output of the QAM modulator. The

training blocks are needed to adapt the demodulator to the

time-varying channel.

The data frames, as generated above, are sent over the

VoIP channel using acoustic signals. In particular, for xn

being the n-th symbol in a frame, the frame is mapped to a

waveform x(t) : R → C as follows:

x(t) =
∑

l

xlp(t− lT ) (1)

where p(t) is a basic pulse shifted by multiples of the symbol

period T . This signal is then transformed to a passband [39]

signal with the center frequency of fC :

xPB(t) = 2ℜ{x(t)e2πifCt} (2)

which is then sent over the VoIP channel (by getting sent to

the virtual sound card). ℜ{} returns the real component of

a complex number, and i is the imaginary unit.

B. Demodulator description

Figure 5 shows MoDem’s demodulator, which is designed

to effectively extract the data that the modulator embedded

into an audio signal. For an audio waveform, r(t), received

from the virtual sound card the demodulator shifts its

spectrum by the center frequency fC , passes it through

a low-pass filter and then samples the resulting signal at

symbol rate (equal to 1/T ). The synchronizer correlates the

preamble block with the obtained samples, declares the point

of maximum correlation as the starting point of the received

frame, discards all samples before this point, and enumerates

the remaining samples by rn(n = 1, 2, ...). We assume the

voice channel to be linear and can hence write: [39]:

rn =

Kp∑

k=−Kf

hn,kxn−k + wn (3)

where n and k are time and delay indices, respectively.

Also, wn is a complex white Gaussian noise process, which

models the noise added to the modulated data as a result of

the noisy channel (e.g., due to VoIP codec’s lossy compres-

sion). Moreover, hn,k is the channel gain [39], which may

vary in time. The channel length is assumed to be at most

Kf +Kp + 1, where Kf is the length of the precursor and

Kp is the length of the postcursor response.

The demodulator passes the discrete stream of {r}
through a Turbo equalizer [39]. The goal of this equalizer is

to obtain an estimation of {x}, i.e., the discrete modulated

data. The estimated data is passed to a channel decoder,

which is the equivalent decoder for the encoder used by

MoDem’s modulator. We also put an interleaver and a
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de-interleaver block between the Turbo equalizer and the

channel decoder modules; this is to uniformly distribute

burst bit errors, generated in the channel, across the stream

in order to improve the decoding process. This is because

our channel decoder performs well with distributed errors,

but poorly with bursty errors.

VIII. PROTOTYPE AND EVALUATION

In this section, we describe our prototype implementation

and discuss its connection performance.

A. Implementation setup

We have built a prototype implementation of FreeWave

over Skype. Our MoDem component uses Matlab’s libraries

for acoustic signal processing, and we use Virtual Audio

Card 10 as our virtual sound card (VSC) software. We also

use the free version of Skype client software11 provided

by Skype Inc. as our VoIP client component. Our MoDem

software, as well as the Skype client are set up to use

the Virtual Audio Card as their audio interface. We have

built our FreeWave client and FreeWave server using the

components mentioned above. In order to emulate a real-

world experience, i.e., a long distance between a FreeWave

client and a FreeWave server, we connect our FreeWave

client to the Internet though a VPN connection. In particular,

we use the SecurityKISS12 VPN solution that allows us to

pick VPN servers located in different geographical locations

10http://software.muzychenko.net/eng/vac.htm
11http://www.skype.com/intl/en-us/get-skype/
12http://www.securitykiss.com/

around the world. Note that this identifies the location of

our FreeWave clients; our FreeWave server is located in

Champaign, IL, USA.

MoDem specifications: Our evaluations show that the data

rates that can be achieved with our system clearly depend

on the bandwidth of the Internet connection and the distance

between the client and server. The minimum bandwidth

required for a voice call is 6 kbps for both upload and

download speeds, according to Skype. For the pulse function

of MoDem’s modulator, p(t) (Section VII), we use a square-

root raised cosine filter with a roll-off factor 0.2 and a

bandwidth of 1/T . The carrier frequency fC is chosen such

that the spectrum of the voiceband is always covered. At

the demodulator, the same square-root raised cosine filter

is used for low-pass filtering. Our communication system

automatically adjusts the symbol constellation size Q, the

channel coding rate Rc, and the symbol period T such

that the best possible data rate is achieved. The receiver

knows how well the training symbols were received, and

based on this feedback the modulator can optimize the data

rate. The relationship between the data rate R and the above

parameters is R = (QRc)/T . Our designed demodulator is

iterative [39]. The number of iterations needed for conver-

gence depends on the channel condition, which is typically

measured by means of the signal to noise power ratio, the

SNR.

B. Connection performance

Connection data rates: Table I shows the bit rates achieved

by FreeWave clients connecting from different geographic

http://software.muzychenko.net/eng/vac.htm
http://www.skype.com/intl/en-us/get-skype/
http://www.securitykiss.com/
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locations to our FreeWave server, located in Champaign, IL,

USA. At the beginning of each FreeWave connection, our

client runs an assessment subprotocol to identify the best

codecs and the reliable data rate. The table lists the best

compromise between data rates and packet drop rates, for

different clients. As can be seen, clients in different parts of

Europe are reliably able to get connection bit rates of 16kbps

by using FreeWave over Skype. Users within the US are

able to achieve higher data rates, e.g., 19.2kbps for a client

in Chicago, IL. Note that the distance between a FreeWave

client and the FreeWave server slightly affects the achievable

data rates. To illustrate this, Figure 6 shows the bit error

rate (BER) performance of our designed demodulator for

different SNRs in the log-scale for a 19kbps FreeWave

connection. As can be seen, for SNRs larger than 5.4dB the

BER tends to zero (the zero value cannot be shown in the

log-scale figure). A distributed deployment of FreeWave can

provide users from many different geographic locations with

the same reliable data rate speeds; for instance, FreeWave

servers running in Europe can assist FreeWave users from

the Middle East better than the FreeWave servers that are

located in the US.

Maximum achievable data rates: As illustrated above, our

FreeWave prototype is able to reliably achieve bit rates of

up to 19kbps, using the MoDem component designed in this

paper. It is possible to design more complicated MoDems

that can achieve higher bit rates, however, a MoDem will

not be able to achieve arbitrarily large data rates. This is

due to the fact that each VoIP codec samples speech at

a particular rate (or at a given range of rates) [53] and

FreeWave cannot achieve data rates higher than a codec’s

bit-rate. For instance, Skype generates a bit-rate between

6 and 40kbps [53] (depending on the distance between

the end-hosts, Internet bandwidth and few other factors),

resulting in a “maximum” achievable rate of 40kbps for

FreeWave (the actual rate achieved depends on the efficiency

of MoDem). The “L16” codec generates a 128kbps data rate,

resulting in a maximum FreeWave bit-rate of up to 128kbps.

As another instance, the widely used codec of “G.711”

produces a 64kbps data rate [53], leading to a maximum

FreeWave bit rate of 64kbps.

We believe that the bit rates achievable by the current

design of FreeWave are enough for normal web browsing,

especially for a user under a repressive regime who aims

to do normal web browsing. On the other hand, a trivial

approach to achieve much higher rates is to encode Internet

traffic into the video signals carried over VoIP connections.

This requires designing efficient modulator/demodulators for

encoding data into video, which we leave for future research.

C. Traffic analysis

In order to resist traffic analysis, FreeWave VoIP con-

nections should have communication patterns similar to

that of regular VoIP connections. Note that FreeWave uses

encrypted VoIP connections, so a censor will not be able to

analyze packet contents (popular VoIP providers like Skype

provide/mandate encrypted VoIP connections). The two traf-

fic patterns that may be used for traffic analysis in this case

are packet rates and packet sizes. Most of the standard VoIP

codecs, like the widely used G.7 series [53], use fixed bit

rates and fixed packet sizes during a given connections, or

even across all connections [53]. This prevents any kind of

traffic analysis against FreeWave connections that use these

codecs. In fact, these codecs are widely used by different

VoIP providers, e.g., the Google Voice service [54]. On

the other hand, several VoIP codecs use variable bit-rates,

most notably Skype’s proprietary SILK [55] codec. When

FreeWave uses a VoIP service that uses variable-bit-rate

codecs, special care needs to be taken to prevent traffic

analysis. We have analyzed the FreeWave traffic sent over

Skype in our prototype implementation, and have compared

its traffic patterns with regular Skype traffic. We observe that

there are two states in a regular Skype call: “Skype-Speak”,

in which the callee is speaking over Skype, and “Skype-

Silence”, in which the callee is silent (e.g., she is listening

to the person on the other side of the line).

Table II shows the average communication statistics for

the three different types of Skype traffic, i.e, Skype in the

Skype-Speak state, Skype in the Skype-Silent, and Skype

tunneling FreeWave. All the analysis is done for the same

pair of Skype peers. As can be seen from the table, FreeWave

over Skype generates communication patterns very similar

to regular Skype in the Skype-Speak state, while the Skype-

Silent state generate lower packet rates and smaller packet

sizes. This is because Skype’s SILK [55] codec reduces its

packet rate and uses smaller packets when the audio signal

captured by Skype client is weak, in order to conserve band-

width. We observe that, based on this analysis, a FreeWave

over Skype call makes communication patterns very similar



Client location
MoDem parameters

Data rate
Packet

Q 1/T RC drop rate

Berlin, Germany 4 8 kHz 0.5 16000 bps 0

Frankfurt, Germany 4 8 kHz 0.5 16000 bps 0

Paris, France 4 8 kHz 0.5 16000 bps 0

Maidenhead, UK 4 8 kHz 0.5 16000 bps 0

Manchester, UK 4 8 kHz 0.5 16000 bps 0

Lodz, Poland 4 8 kHz 0.5 16000 bps 0.06

Chicago, IL 4 9.6 kHz 0.5 19200 bps 0.01

San Diego, CA 4 9.6 kHz 0.469 18000 bps 0

Table I
EVALUATION RESULTS OF FREEWAVE.

to a typical Skype call: In a typical Skype call, when one

side of the connection is in the Skype-Speak state the other

side is usually in the Skype-Silent state (i.e., listening to

the other side). In a FreeWave over Skype call, also, when

one side of the connection is sending data the other side is

usually idle, e.g., a web traffic is a serious of HTTP GET

and HTTP RESPONSE messages that appear in a sequence.

Furthermore, simple modifications can be made to FreeWave

client and server software in order to better hide its traffic

pattern; for instance, one side can stop sending data if the

other side is sending data, or a dummy audio can be sent

if both sides have been silent for a long time. Once again,

note that this is only required if FreeWave is deployed on a

VoIP system that uses a variable-length audio codec.

IX. COMPARISON WITH SIMILAR SYSTEMS

Recently, there have been two proposals for censorship

circumvention that, similar to FreeWave, use the openness

of VoIP to evade censorship. Due to their similarity with

FreeWave we describe the advantages of FreeWave over

them in this section.

A. SkypeMorph

SkypeMorph [28] is a pluggable transport [24] for Tor.

SkypeMorph is designed to obfuscate the connections be-

tween Tor [8] users and Tor bridges [15] so that they look

like legitimate Skype traffic. The main goal of SkypeMorph

is to make it hard for a censor to distinguish between

obfuscated Tor bridge connections and actual Skype calls

using deep-packet inspection and statistical traffic analysis.

A big implementation-wise difference with our proposal

is that SkypeMorph does not completely run, but mimics,

Skype, whereas FreeWave runs the target VoIP protocol in

its entirety. FreeWave has the following main advantages

over SkypeMorph:

Server obfuscation: Similar to the most of existing

obfuscation-based techniques, SkypeMorph only provides

traffic obfuscation, but it does not provide server obfus-

cation. A censor may not be able to identify SkypeMorph

traffic through statistical analysis, since SkypeMorph shapes

it to look like a regular Skype traffic. However, if a censor

discovers the IP address of a SkypeMorph Tor bridge, e.g.,

through bridge enumeration [16], [17], SkypeMorph’s ob-

fuscations does not provide any protection since the censor

can easily block its traffic by IP addresses matching. As

an indication to the severity of this problem, the Chinese

censors were able to enumerate all bridges in under a month

[30]. Once a Tor bridge is known to a censor, SkypeMorph

is not able to provide any protection.

On the other hand, FreeWave provides server obfuscation

in addition to traffic obfuscation. Instead of morphing the

traffic into VoIP, FreeWave uses the overlay network of

VoIP systems to route the connections among users and

servers. As a result, FreeWave’s VoIP traffic gets relayed

by “oblivious” VoIP nodes, hiding the identity (e.g., the

IP address) of the FreeWave server. Even a censor who

knows the IP address of a FreeWave server will not be

able to identify and/or block client connections to that

server, since these connections do not go directly to the

server. For instance, if Skype is used by FreeWave the

FreeWave connections get relayed by Skype supernodes,

which are oblivious Skype users residing “outside” the cen-

soring ISP (please see Section IV-B for further discussion).

Note that there is not a one-to-one correspondence between

supernodes and FreeWave servers, i.e., various supernodes

relay traffic to a particular FreeWave server for different

connections. As another example, if Google Voice is used

by FreeWave, all the FreeWave connections get relayed by

Google servers, hiding FreeWave servers’ IP addresses. Note

that we assume that VoIP connections are also encrypted.

Comprehensive traffic obfuscation SkypeMorph shapes

Tor traffic into Skype calls, but it does not run the actual

Skype protocol (except for the Skype login process) [28].

This can enable sophisticated attacks that can discriminate

SkypeMorph from Skype by finding protocol details that

are not properly imitated by SkypeMorph. For instance,

SkypeMorph fails to mimic Skype’s TCP handshake [56],

which is essential to every genuine Skype call. Also, Skype

protocol may evolve over time and SkypeMorph would need

to follow the evolution. FreeWave, on the other hand, runs

the actual VoIP protocol in its entirety, providing a more

comprehensive traffic obfuscation.

No need to pre-share secret information: SkypeMorph



Pattern
FreeWave

Skype-Speak Skype-Silent
over Skype

Average packet rate (pps) 49.91 50.31 49.57

Average packet size 148.64 146.50 103.97

Minimum packet size 64 64 64

Maximum packet size 175 171 133

Table II
COMPARING COMMUNICATION PATTERNS OF REGULAR SKYPE WITH FREEWAVE-OVER-SKYPE.

needs to secretly share its Skype ID with its clients, as

well as its IP address and port number (this can be done

using Tor’s BridgeDB [57] as suggested by the authors).

Once this secret information is disclosed to a censor (e.g.,

through bridge enumeration) the identified Tor bridge will

need to change both its IP address and its Skype ID, as

suggested in [28], to reclaim its accessibility by clients.

FreeWave, however, does not need to share any information

with its clients: even the VoIP IDs of the FreeWave servers

are publicly advertised without compromising the provided

unobservability.

Obfuscation diversity: SkypeMorph is designed to morph

traffic only into Skype. As a result, if a censor decides to

block Skype entirely SkypeMorph will be blocked as well.

FreeWave, on the other hand, is a general infrastructure and

can be realized using a wide selection of VoIP services.

Needless to say, SkypeMorph may also be modified to mimic

other popular VoIP services, but it requires substantial effort

in understanding and analyzing the candidate VoIP system.

FreeWave, however, can be used with any VoIP service

without the need for substantial modifications.

B. CensorSpoofer

A key goal in the design of CensorSpoofer [31] is to

provide unobservability, as is the case in FreeWave. Cen-

sorSpoofer decouples upstream and downstream flows of a

connection; the upstream flow, which is supposed to be low-

volume, is steganographically hidden inside instant messages

(IM) or email messages that are sent towards the secret IM or

email addresses of the CensorSpoofer server. The IM IDs or

the email addresses of the CensorSpoofer server need to be

shared securely with clients through out-of-band channels.

The CensorSpoofer server sends the downstream flow of a

connection by spoofing a randomly chosen IP address, in

order to obfuscate its own IP address. This spoofed flow

is morphed into an encrypted VoIP protocol to obfuscate

traffic patterns as well. A CensorSpoofer client also needs

to generate “dummy” packets towards the spoofed IP address

to make the connection look bidirectional. FreeWave makes

the following contributions over CensorSpoofer:

No invitation-based bootstrapping: A new CensorSpoofer

client needs to know a trusted CensorSpoofer client in

order to bootstrap [31]. The trusted client helps the new

client to send her personalized upstream ID and SIP ID

to the CensorSpoofer server. Finding an existing, trusted

CensorSpoofer client might be challenging for many new

clients unless CensorSpoofer is widely deployed. Also note

that even an existing CensorSpoofer client needs to re-

bootstrap its CensorSpoofer connectivity if her personalized

CensorSpoofer IDs are discovered by the censors. FreeWave,

on the other hand, does not require an invitation-based

bootstrapping.

Comprehensive traffic obfuscation Unlike FreeWave and

similar to SkypeMorph, CensorSpoofer does not entirely

run the VoIP protocol. This can enable sophisticated attacks

that are able to find protocol discrepancies between Cen-

sorSpoofer and genuine VoIP traffic. Also, the use of IP

spoofing by CensorSpoofer may enable active traffic analysis

attacks that manipulate its downstream VoIP connection and

watch the server’s reaction.

Bidirectional circumvention: In CensorSpoofer VoIP con-

nections only carry the downstream part of a circumvented

connection. The upstream data are sent through low-capacity

steganographic channels inside email or instant messages

[31]. FreeWave, however, provides a high-capacity channel

for both directions of a circumvented connection.

X. OTHER RELATED WORK

Censorship circumvention systems have been evolving

continuously to keep up with the advances in censorship

technologies. Early circumventions systems simply used

network proxies [58] residing outside censorship territories,

trying to evade the simple IP address blocking and DNS

hijacking techniques enforced by pioneer censorship sys-

tems. Examples of such proxy-based circumvention tools

are DynaWeb [6], Anonymizer [9], and Freenet [59].

Proxy-based circumvention tools lost their effectiveness

with the advent of more sophisticated censorship technolo-

gies such as deep-packet inspection [2], [3]. Deep-packet

inspection analyzes packet contents and statistics looking

for deviations from the censor’s regulations. This has led

the circumvention tools to correspondingly sophisticate their

techniques to remain accessible to their users. Many cir-

cumvention designs seek availability by sharing some secret

information with their users so that their utilization is unob-

servable to the censors agnostic to this secret information.

In Infranet [5], for instance, a user needs to make a special,

secret sequence of HTTP requests to an Infranet server to



request for censored web contents, which are then sent to

him using image steganography. Collage [7] similarly bases

its unobservability on sharing secrets with its clients. A

Collage client and the Collage server secretly agree on some

user-generated content sharing websites, e.g., flickr.com, and

use image steganography to communicate through these

websites. The main challenge for these systems, which rely

on pre-sharing secret information, is to be able to share

secret information with a large set of actual users while

keeping them secrets from censors; this is a big challenge to

solve as indicated in several researches [18]–[20]. Sharing

secret information with users has also been adopted by the

popular Tor [8] anonymity network. The secret information

here are the IP addresses of volunteer Tor relays, known as

Tor bridges [15], that proxy the connections of Tor clients

to the Tor network. This suffers from the same limitation

as censors can pretend to be real Tor users and gradually

identify a large fraction of Tor bridges [16], [17], [29].

More recently, several researches propose to build circum-

vention into the Internet infrastructure [10], [11], [51]. Being

built into the Internet infrastructure makes such circumven-

tion highly unobservable: a client’s covert communication

with a censored destination appears to the censor to be a be-

nign connection to a non-prohibited destination. Telex [10],

Cirripede [11] and Decoy Routing [51] are example designs

using such infrastructure-embedded approach. Decoy Rout-

ing needs to share secrets with its clients using out-of-band

channels, whereas Telex and Cirripede share the secret in-

formation needed to initialize their connections using covert

channels inside Internet traffic. Cirripede uses an additional

client registration stage performed steganographically, dis-

tinguishing it from the other designs. Even though these

systems are a large step forward in providing unobservable

censorship circumvention their practical deployment is not

trivial as they need to be deployed by a number of real-world

ISPs that will make software/hardware modifications to their

network infrastructures, posing a substantial deployment

challenge.

Another research trend uses traffic obfuscation to make

circumvented traffic unobservable. Appelbaum et al. propose

a platform that allows one to build protocol-level obfuscation

plugins for Tor, called pluggable transports [24]. These

plugins obfuscate a Tor client’s traffic to Tor bridges by

trying to remove any statistical/content pattern that iden-

tifies Tor’s traffic. Obfsproxy [25], the pioneer pluggable

transport, removes all content identifiers by passing a Tor

client’s traffic through an additional layer of stream ci-

pher encryption. Obfsproxy, however, does not disguise the

statistical patterns of Tor’s traffic. SkypeMorph [28] and

StegoTorus [27] attempt to remove Tor’s statistical patterns

as well by morphing it into popular, uncensored Internet

protocols such as Skype and HTTP. Flashproxy [60] is

another recently designed pluggable transport that chops

a Tor client’s traffic into multiple connections, which are

proxied by web browsers rendering volunteer websites.

CensorSpoofer [31] is another recent proposal that, similar

to SkypeMorph [28], shapes Tor traffic into VoIP protocols.

CensorSpoofer is unique in separating the upstream and

downstream flows of a circumvented connection, and in

using IP spoofing to obfuscate its server’s identity. A security

concern with morphing approaches [27], [28], [31], [61]

is that they do not provide a provable indistinguishability;

censors may be able to devise advanced statistical classifiers

and/or protocol identifiers to find discrepancies between a

morphed traffic and genuine connections. Another approach

that similarly uses VoIP traffic is TranSteg [62]; it re-encodes

a VoIP call packets using a different, lower-rate codec in

order to free a portion of VoIP packet payloads, which are

then used to send a low-bandwidth hidden traffic.

XI. LIMITATIONS AND RECOMMENDATIONS

Server location: In order to achieve server obfuscation

special care needs to be taken in setting up a FreeWave

server. In the case of Skype, for instance, the FreeWave

server should be completely firewalled such that its Skype

traffic is completely handled by Skype supernodes. Also,

a FreeWave server should use a large, dynamic set of su-

pernodes (i.e., by flushing its supernode cache [34], [35]) so

that one cannot map a FreeWave server to its supernodes. A

corrupt supernode (e.g., controlled by the censors) used by a

FreeWave server can identify the clients that used FreeWave

through that supernode. The mechanisms to protect server

obfuscation vary depending on the utilized VoIP system.

Traffic analysis: If the VoIP service deployed by Free-

Wave uses a variable-length audio codec, like SILK [55],

FreeWave’s traffic might be subject to traffic analysis. In

Section VIII-C, we showed that the current deployment of

FreeWave over Skype performs well against simple traffic

analysis, yet more sophisticated traffic analysis [63] may

be able to distinguish FreeWave’s current prototype from

Skype. A trivial countermeasure is to add some pre-recorded

human speech to FreeWave’s audio, which would further

reduce FreeWave’s data rate. A better approach is to encode

FreeWave’s traffic into video, instead of audio, which is

more robust to traffic analysis and provides much higher

throughputs.

Trusting the VoIP provider: A VoIP provider colluding

with censors can significantly degrade FreeWave’s obfusca-

tion promises if FreeWave deploys it. On the bright side,

FreeWave can choose from a wide range of VoIP providers.

In the case of Skype, in particular, Chinese Skype users get

provided with a special implementation of Skype, TOM-

Skype, which is suspected [64] to have built-in surveillance

functionalities such as text message filtering [65]–[68].

Denial of service: Since FreeWave’s VoIP IDs are

public censors can exhaust FreeWave servers by making

many FreeWave connections. Different approaches can be

taken to limit the effect of such attempts such as the existing



sybil defense mechanisms [69], as well as usage limitation

enforcement per VoIP caller.

XII. CONCLUSIONS

In this paper, we presented FreeWave, a censorship cir-

cumvention system that is highly unblockable by censors.

FreeWave works by modulating a client’s Internet traffic

inside the acoustic signals that are carried over VoIP con-

nections. Being modulated into acoustic signals, as well as

the use of encryption makes FreeWave’s VoIP connections

unobservable by a censor. By building a prototype imple-

mentation of FreeWave we show that FreeWave can be used

to achieve connection bit rates that are suitable for normal

web browsing.
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