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Abstract

Linking network flows is an important problem in intru-
sion detection as well as anonymity. Passive traffic analysis
can link flows but requires long periods of observation to
reduce errors. Watermarking techniques allow for better
precision and blind detection, but they do so by introducing
significant delays to the traffic flow, enabling attacks that
detect and remove the mark, while at the same time slowing
down legitimate traffic. We propose a new, non-blind water-
marking scheme called RAINBOW that is able to use delays
hundreds of times smaller than existing watermarks by elim-
inating the interference caused by the flow in the blind case.
As a result, our watermark is invisible to detection, as con-
firmed by experiments using information-theoretic detection
tools.

We analyze the error rates of our scheme based on a
mathematical model of network traffic and jitter. We also
validate the analysis using an implementation running on
PlanetLab. We find that our scheme generates orders of
magnitudes lower rates of false errors than passive traffic
analysis, while using only a few hundred observed pack-
ets. We also extend our scheme so that it is robust to packet
drops and repacketization and show that flows can still be
reliably linked, though at the cost of somewhat longer ob-
servation periods.

1 Introduction

Internet attackers commonly relay their traffic through
a number of (usually compromised) hosts in order to hide
their identity. Detecting such hosts, called stepping stones,
is therefore an important problem in computer security.
The detection proceeds by finding correlated flows enter-
ing and leaving the network. Traditional approaches have
used patterns inherent in traffic flows, such as packet tim-
ings, sizes, and counts, to link an incoming flow to an out-

going one [17, 24, 8, 20, 3]. More recently, an active ap-
proach called watermarking has been considered [21, 16].
In this approach, traffic characteristics of an incoming flow
are actively perturbed as they traverse some router to create
a distinct pattern, which can later be recognized in outgo-
ing flows. These techniques also have relevance to anony-
mous communication, as linking two flows can be used to
break anonymity, and both passive traffic analysis [12, 6]
and active watermarking [18, 19, 23] have been studied in
that domain as well.

The choice between passive and active techniques for
traffic analysis exhibits a tradeoff. Passive approaches re-
quire observing relatively long-lived network flows, and
storing or transmitting large amounts of traffic character-
istics. Watermarking approaches are more efficient, with
shorter observation periods necessary. They are also blind:
rather than storing or communicating traffic patterns, all the
necessary information is embedded in the flow itself. This,
however, comes at a cost: to ensure robustness, the water-
marks introduce large delays (hundreds of milliseconds) to
the flows, interfering with the activity of benign users, and
making them subject to attacks [13, 11].

Motivated by this, we develop a new scheme for linking
flows, called RAINBOW. As with passive techniques, our
scheme will record traffic timings of incoming flows and
correlate them with outgoing flows. However, we also in-
sert a watermark value by delaying some packets. As the
watermark is generated independently of the flows, this will
diminish the effect of natural similarities between two un-
related flows, and allow a flow linking decision to be made
over a much shorter time period. We use spread-spectrum
techniques to make our delays much smaller than previous
work. We use delays that are on the order of only a few mil-
liseconds; this means that our watermarks not only do not
interfere with traffic patterns of normal users, they are also
virtually invisible, since the delays are of the same magni-
tude as natural network jitter.

We analyze our technique using a mathematical model
of network traffic and delays. We show that in our tech-



nique, low-amplitude watermarks can achieve false-positive
and false-negative rates that are an order of magnitude
smaller than passive traffic analysis with short observation
periods—a few hundred packets. We validate our analy-
sis by building a prototype implementation of our scheme.
We test it by generating flows with timings taken from real
SSH [22] traffic traces, and linking flows that traversed the
Internet between PlanetLab [1] nodes. Our scheme per-
formed quite well in this setting as well. Note that Plan-
etLab introduces significantly more jitter than would be
present in an enterprise network, so in practice, much lower
watermark delays, or smaller packet sizes, can be used. We
also analyze the invisibility of our scheme by subjecting it
to several information-theoretic detection tools [9, 13].

We also extend our scheme to handle dropped or inserted
packets. Such changes to flows will occur naturally due to
packet losses, retransmissions, or repacketization. By ad-
justing our scheme to perform selective correlation, where
packets that do not match up between the incoming and out-
going flows are dropped, our scheme can be made robust to
packets being inserted and deleted, though at the cost of
either longer observation periods or higher watermark am-
plitude.

The rest of this paper is organized as follows: we re-
view the problem of stepping stone detection and existing
schemes in Section 2. The RAINBOW scheme is presented
in Section 3. In Section 4, we use detection theory to ana-
lyze performance of the proposed scheme. We provide im-
plementation results in Section 5, validating the analysis. In
Section 6 we extend RAINBOW by introducing selective
correlation to make it robust to flow modifications. Discus-
sions on watermark invisibility are presented in Section 7,
and paper is concluded in Section 8 along with some future
research directions.

2 Background

In this section, we review the problem of detecting step-
ping stones and then review both the passive and active
approaches to the problem. We compare the advantages
and disadvantages of the two techniques, motivating our ap-
proach.

2.1 Stepping Stone Detection

A stepping stone is a host that is used to relay traffic
through an enterprise network to another remote destina-
tion. Stepping stones are used to disguise the true origin
of an attack. Detecting stepping stones can help trace at-
tacks back to their true source. Also, stepping stones are
often indicative of a compromised machine. Thus detecting
stepping stones is a useful part of enterprise security moni-
toring.

Generally, stepping stones are detected by noticing that
an outgoing flow from an enterprise matches an incoming
flow. For example, in Figure 1(a), flow 2 will have the same
characteristics as flow 5. Since the relayed connections are
often encrypted (using SSH [22], for example), only charac-
teristics such as packet sizes, counts, and timings are avail-
able for such detection. And even these are not perfectly
replicated from an incoming flow to an outgoing flow, as
they are changed by padding schemes, retransmissions, and
jitter. As a result, statistical methods are used to detect cor-
relations among the incoming and outgoing flows. We next
review the passive and active approaches.

2.2 Passive Traffic Analysis

In general, passive traffic analysis techniques operate by
recording characteristics of incoming streams and then cor-
relating them with outgoing ones. The right place to do this
is often at the border router of an enterprise, so the overhead
of this technique is the space used to store the stream char-
acteristics long enough to check against correlated relayed
streams, and the CPU time needed to perform the correla-
tions. In a complex enterprise with many interconnected
networks, a connection relayed through a stepping stone
may enter and leave the enterprise through different points;
in such cases, there is additional communications overhead
for transmitting traffic statistics between border routers.

The passive schemes have explored using various char-
acteristics for correlating streams. Zhang and Paxson [24]
model interactive flows as on–off processes and detect
linked flows by matching up their on–off behavior. Wang
et al. [20] focus on inter-packet delays, and consider sev-
eral different metrics for correlation. More recently, He and
Tong used packet counts for stepping stone detection [10].

Donoho et al. were the first to consider intruder evasion
techniques [8]. They defined a maximum-tolerable-delay
(MTD) model of attacker evasion and suggested wavelet
methods to detect stepping stones while being robust to ad-
versarial action. Blum et al. used a Poisson model of flows
to create a technique with provable upper bounds on false
positive rates [3], given the MTD model. However, for real-
istic settings, their techniques require thousands of packets
to be observed to achieve reasonable rates of false errors.

2.3 Watermarks

To address some of the efficiency concerns of passive
traffic analysis, Wang et al. proposed the use of water-
marks [21]. In this scenario, a border router will modify
the traffic timings of the incoming flows to contain a partic-
ular pattern—the watermark. If the same pattern is present
in an outgoing flow, a stepping stone is detected. This can
be seen in Figure 1(b).
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Figure 1. Stepping Stone Detection

Watermarks improve upon passive traffic analysis in two
ways. First, by inserting a pattern that is uncorrelated
with any other flows, they can improve the detection effi-
ciency, requiring smaller numbers of packets to be observed
(hundreds instead of thousands) and providing lower false-
positive rates (10−4 or lower, as compared to 10−2 with
passive watermarks). Second, they can operate in a blind
fashion: after an incoming flow is watermarked, there is
no need to record or communicate the flow characteristics,
since the presence of a watermark can be detected indepen-
dently. The detection is also potentially faster, as here is
no need to compare each outgoing flow to all the incoming
flows within the same time frame.

Watermarking techniques for network flows have been
based on existing techniques for multi-media watermarking.
For example, Wang et al. based their scheme on QIM water-
marks [4]. Two other watermark schemes [16, 19] are based
on patchwork watermarking [2], and Yu et al. [23] devel-
oped one based on spread-spectrum techniques [5]. Some of
the schemes target anonymous communication rather than
stepping stones as the application area (both involve the
problem of linking flows), but the techniques for both are
comparable.

2.4 Watermark Properties

To motivate our design, we first propose some desirable
properties of network flow watermarks. First of all, a water-
mark should be robust to modifications of the traffic char-
acteristics that will occur inside an enterprise network, such
as jitter. Watermarks should also be resilient to an adversary
who actively tries to remove them from the flow, a property
we call active robustness. The watermarks should also in-
troduce little distortion, in that they should not significantly
impact the performance of the flows. This is important be-
cause in a stepping-stone scenario, most watermarked flows
will be benign. Finally, watermarks should be invisible even
to attackers who specifically try to test for their presence.

Looking at previous designs, all of them fail to be invis-
ible: the watermarks introduce large delays, on the order
of hundreds of milliseconds, on some packets, which can
be easily detected by an attacker [13]. In fact, they cannot
even be considered low-distortion, as such large delays are
easily noticeable and bothersome to legitimate users. The
watermarks are also not actively robust, as demonstrated by
recent attacks [13, 11].

We also observe that active robustness and invisibility
are likely to be impossible to achieve at the same time. This
is because to be invisible, the watermark can only introduce
minute changes to the packet stream. In particular, it can-
not introduce jitter of more than a few milliseconds, since
otherwise it will be possible to tell it apart from the natural
network jitter. However, an active attacker will be willing to
introduce large delays to the network; for example, the max-
imum tolerable delay suggested in previous work is 500ms.
As such, he will be able to destroy any low-order effects
that will be introduced by the watermark.

Further, it is easy to imagine an attacker determined to
hide his tracks using even more drastic measures, such as
using dummy packets to generate a completely independent
Poisson process [3], which will render any linking tech-
niques ineffective. As such, we decided to design a wa-
termark scheme that is robust to normal network interfer-
ence, though not actively robust, and is invisible. This will
serve to detect stepping stones where attackers are unwill-
ing (or unable) to actively distort their stream as it crosses
a stepping stone. Further, as the watermark will be invisi-
ble, attackers will not be able to tell if they are being traced
and thus will be less likely to try to apply costly watermark
countermeasures.

3 RAINBOW Watermark

We next present a design of a new watermark scheme
we call RAINBOW, for Robust And Invisible Non-Blind



Watermark. Our scheme is robust (to passive interference)
and invisible. However, to achieve invisibility while main-
taining detection efficiency, we make the scheme non-blind;
that is, incoming flows timings are recorded and compared
with the timings of outgoing flows. This allows us to make a
robust watermark test with even low-amplitude watermarks.

3.1 Watermark Embedding

In this section, we explain the watermark embedding
process as shown in Figure 2. Suppose that a flow with
the packet timing information {tui |i = 1, .., n + 1} enters
border router where it is to be watermarked (we use the su-
perscript u to denote an “unwatermarked” flow). Before
embedding the watermark, the inter-packet delays (IPDs) of
the flow, τui = tui+1 − tui are recorded in an IPD database,
which is accessible by the watermark detector. The water-
mark is subsequently embedded by delaying the packets by
an amount such that the IPD of the ith watermarked packet
is τwi = τui +wi. The watermark components {wi}ni=1 take
values ±a with equal probability:

wi =

{
+a w. p. 1

2

−a w. p. 1
2

(1)

The value a is chosen to be small enough so that the arti-
ficial jitter caused by watermark embedding is invisible to
ordinary users and attackers1.

In order to apply watermark delays on the flow, out-
put packet ti is delayed by w0 +

∑i−1
j=1 wi, where w0 is

the initial delay applied to the first packet. This results in
τwi = τui + wi, as desired. Since we cannot delay a packet
for a negative amount of time, w0 must be chosen large
enough to prevent this from happening. Since the sequence
wi is generated from a random seed, the watermarker can
calculate all of the partial sums

∑i−1
j=1 wi in advance and

adjust w0 accordingly. If a particular random seed requires
a very large initial delay w0, a different seed can be chosen.

As the flow traverses the network, it accumulates extra
delays. Let di be the delay that the packet accumulates by
the time it reaches the watermark detector; i.e., the packet
is received at the detector at time tri = twi + di. The IPD
values at the detector are then:

τ ri = tri+1 − tri = τui + wi + δi (2)

where δi = di+1 − di is the jitter present in the network.

3.2 Detection Scheme

Our detection scheme is non-blind and therefore the de-
tector had access to the IPD database where the unwater-
marked flows are recorded. Given an observed flow at the

1Throughout this paper, by attacker we mean the attacker to the water-
marking scheme.

detector with IPDs τ r and a previously recorded flow τu,
the detector must decide whether the two flows are linked
or not. To do this, it computes the difference of the received
and the recorded flow y, where:

yi = τ ri − τui (3)

If the flows are in fact the same, then:

yi = wi + δi (4)

At this point, the watermark detection problem can be mod-
eled as detecting a known spread spectrum signal w com-
bined with noise given by network jitter, δ. Previous re-
search in the multimedia area has used normalized corre-
lation as an efficient detection scheme for spread-spectrum
watermarks [5]. A normalized correlation is the inner prod-
uct of two sequences, divided by their norms:

N(a,b) =
〈a,b〉
||a|| · ||b||

=
∑n
i=1 aibi√

(
∑n
i=1 a

2
i ) (
∑n
i=1 b

2
i )

(5)

If the normalized correlationN(y,w) exceeds some thresh-
old, we declare that the watermark is present; otherwise, the
detector will pick the next flow from the IPD database and
try again. Note that only recent flows need to be stored in
the database, based on the total expected delay in the net-
work. We next present an analysis of the error rates ex-
pected from the RAINBOW scheme.

4 System Analysis

To analyze the performance of RAINBOW, we must first
define a model for the network traffic and delay. We will
model network flows as independent Poisson processes,
thus the IPDs will be distributed exponentially. We will
model network delays as i.i.d. exponential as well, which
implies that the jitter (difference of two delays) is i.i.d.
according to a zero-mean Laplace distribution denoted by
Lap(0, bδ), where 2b2δ is the variance of the jitter. Of course,
in a real network, delays will have some correlation; we
compare the PDF of real observed jitter on a connection
over PlanetLab [1] with a best-fit Laplace distribution in
Figure 3. We can see that the real PDF has greater support
at 0, and the Laplace distribution has a heavier tail. This
means that our analysis of error rates will be conservative,
since 0 jitter will result in no error for our detection scheme.
We have also conducted similar experiments with the same
results on Tor anonymous network [7] to consider the other
application of watermarking.

4.1 Hypothesis Testing

We use hypothesis testing [15] to analyze performance
of the RAINBOW for the normalized correlation detector
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of (5). For ease of presentation, we start by analyzing a
correlation decoder and then derive the error probability of
the normalized correlation detector.

Let us define the test statistic to be the correlation be-
tween subtracted IPD, y = τ r − τu, and the watermark
sequence, w, as:

T [y] = 〈y,w〉 = Σyiwi (6)

We aim to distinguish between two different hypotheses:

• H0 (null hypothesis): τ r is a new, unwatermarked flow,
unlinked to τu, and

• H1: τ r is the result of a watermarked flow τu passing
through the network.2

Under hypothesis H0, the received IPD is τ r = τu∗ + δ,
for some unrelated flow τu∗ . After subtracting the flow of
interest τu, we have

2Note that there is another possibility, namely that τr is a watermarked
flow, but not corresponding to τu. However, we ignore this case because
errors in this scenario do not matter: if the flow is said to be watermarked,
then the detection algorithm is correct, and if it is said to be unwater-
marked, it will later be tested against the correct τu.

{
y|H0 = (τu∗ + δ)− τu = (τu∗ − τu) + δ

y|H1 = w + δ
(7)

The corresponding correlation test statistics of (6) under the
two hypotheses are{

T [y|H0 ] = 〈τu∗ − τu,w〉+ 〈δ,w〉
T [y|H1 ] = 〈δ,w〉+ 〈w,w〉 = 〈δ,w〉+ na2

(8)

where n is the number of packets in the observed flows and
a is the watermark absolute amplitude as defined in (1).

4.2 False Errors

The decision rule for detecting watermarks uses a thresh-
old η, such that if T [y] ≥ η, the watermark is said to be
present, and absent otherwise. We can therefore express the
false positive and false negative rates in terms of η:

PFP = P (T [y|H0 ] ≥ η) (9)
PFN = P (T [y|H1 ] < η) (10)



Before analyzing the false error rates, we present the fol-
lowing lemma:

Lemma 1. If X1 and X2 are two independent random
variables distributed according to X1 ∼ Lap(0, b1) and
X2 ∼ Lap(0, b2), the tail of the distribution of X1 + X2

can be approximated by Lap(0,
√
b21 + b22).

Proof. The characteristics function of Lap(0, b) is Φ(t) =
1

1+b2s2 . Since X1 and X2 are independent, the characteris-
tic function of the distribution of X1 +X2 is:

1
1 + b21s

2
· 1

1 + b22s
2

=
1

1 + (b21 + b22)s2 + b21b
2
2s

4
(11)

For small s (which corresponds to the tail of distribu-
tion), s4 becomes vanishingly small with respect to other
terms, and so the characteristic function approaches that of
Lap(0,

√
b21 + b22).

Corollary 1. SupposeX1, . . . , Xn are i.i.d distributed with
Lap(0, b). For Y =

∑n
i=1Xi, the tail of Y ’s distribution

can be approximated by Ỹ ∼ Lap(0,
√
nb).

Given hypothesis H1 is true, from (8) we have

T [y|H1 ] = 〈δ,w〉+ na2 (12)

=
n∑
i=1

wiδi + na2 (13)

=
n1∑
i=1

(aδi)︸ ︷︷ ︸
(∗)

+
n∑

i=n1+1

(−aδi)︸ ︷︷ ︸
(∗∗)

+na2 (14)

where n1 is the number of wi’s that are positive (We can
assume without loss of generality that wi’s are sorted, since
δi’s are i.i.d.). Since the Laplace distribution is symmetric,
both δi and −δi are distributed as Lap(0, bδ). We apply the
Corollary 1 to the terms (*) and (**) separately and then to
the resulting terms to obtain:

〈δ,w〉 ∼ Lap(0,
√
nabδ) (15)

Therefore:

T [y|H1 ] ∼ Lap(na2,
√
nabδ) (16)

For H0, we need to consider two terms: 〈τu∗ − τu,w〉
and 〈δ,w〉. For the first term, recall that τu

∗
and τu are

IPDs from two independent exponential distributions. If
the rates of the corresponding Poisson processes are both
equal to λ (which is the worst case scenario for false errors)
τu

∗

i − τui will be distributed according to Lap(0, 1/λ). By
applying a similar analysis to above, we have that:

〈τu∗ − τu,w〉 ∼ Lap(0,
√
na

λ
) (17)

Combining (15) and (17), and applying the lemma, we have:

T [y|H0 ] ∼ Lap(0, a
√
n(b2δ + 1/λ2)) (18)

Normalized Correlation: Normalized correlation will
divide the above test statistic by the norms of the two distri-
butions, i.e.:

T̃ [y] =
T [y]

||y|| · ||w||
(19)

We know that ||w|| =
√
na. For large n, we can approxi-

mate ||y|| by
√
nE(y2

i ) by the law of large numbers. Tak-
ing λ = λ∗ as before, we have:

E(y2
i ) = 2(b2δ + 1/λ2) under H0 (20)

E(y2
i ) = 2b2δ under H1 (21)

Therefore:

T̃ [y|H0 ] =
Lap(0, a

√
n(b2δ + 1/λ2))

√
na ·

√
2n(b2δ + 1/λ2)

(22)

= Lap(0,
1√
2n

) (23)

T̃ [y|H1 ] =
Lap(na2,

√
nabδ)√

na ·
√

2nbδ
(24)

= Lap(
a√
2bδ

,
1√
2n

) (25)

= Lap(γ,
1√
2n

) (26)

where γ is the ratio of watermark amplitude to jitter stan-
dard deviation:

γ = a/
√

2bδ, (27)

Recall that the cumulative distribution function for the
Laplace distribution Lap(µ, b) is:

F (x) =

{
1
2e
−µ−xb if x < µ

1− 1
2e
− x−µb if x ≥ µ

(28)

If we let F0(x) and F1(x) be the cumulative distribution
functions of the two Laplace distributions above, we will
have that P̃FP = 1 − F0(η̃) and P̃FN = F1(η̃), where η̃
is the decision threshold used in the detector. Note that in
practice, we want to set 0 < η̃ < γ, since outside that range
either false positive or false negative rate will be at least 1/2.
Therefore, we have:

P̃FP = 1−
(

1− 1
2
e−eη√2n

)
(29)

=
1
2
e−eη√2n (30)
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Figure 4. Cross-over error rate for different γ
and n.

P̃FN =
1
2
e−(γ−eη)√2n (31)

=
1
2
e(eη−γ)√2n (32)

4.3 Discussion

The error rates are a function of the number of packets,
n, and the ratio of watermark amplitude to jitter, γ of (27),
which can be thought of as a signal-to-noise ratio (SNR). To
remain invisible, we must use low-powered watermarks, re-
ducing γ, and therefore we need to compensate by increas-
ing n.

This tradeoff can be seen in Figure 4. We plot the er-
ror rate for different choices of γ and n. Since by chang-
ing η̃ we can trade off false positives for false negatives,
we measure the cross-over error rate (COER), which is the
point where PFN = PFP. The important observation to
be drawn is that, even for γ = 0.5, low error rates can be
achieved with fewer than 1000 packets. This small value of
γ promises tiny watermark amplitudes as small as 5 mil-
liseconds which are highly invisible, as visibility experi-
ments show in Section 7. We also sketch the probability of
false negative when the false positive is fixed to 10−3 and
10−6 for different choices of γ and n in Figure 5. In some
scenarios, we can sacrifice false positive for false negative
to improve the watermarking system efficiency. As an ex-
ample, we can achieve false positive of 10−3 and false neg-
ative of 10−6 for SNR ratio of γ = 1 and n = 200 number
of watermarked packets (Figure 5(a)).

Note that in our analysis, bδ models the jitter within the
enterprise network. However, to be unnoticeable to the at-
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Figure 6. Normalized correlation test statistic
for different watermark amplitudes.

tacker, the watermark amplitude needs to be small relative
to the jitter observed by the attacker, which includes the jit-
ter in the Internet connection from the attacker to the enter-
prise. This will tend to be considerably larger, and so we
expect that installations may be able to use γ values of 2 or
more, resulting in extremely efficient detection.

5 Implementation Results

We implemented the watermarking scheme and tested it
by using replayed SSH connections, using timings collected
from real traces at the North Carolina State University, as
well as at the University of Illinois. Our tests were carried
out over the PlanetLab infrastructure.

In the first experiment, we watermarked SSH flows be-
tween two specific nodes for different values of watermark
amplitude (1, 3, 5, 7, 10, 20msec). We show the test statics
for both true correlation (hypothesis one) and false corre-
lation (hypothesis zero), along with their standard devia-
tions in Figure 6 (each experiment is run for 20 times and
the average jitter standard deviation over the link is about
δb = 10msec). As we expect from analysis, false detection
metric has a mean of around zero, and a variance steadily
constant (because n is fixed). For hypothesis one, the statis-
tic mean increases linearly with watermark amplitude (re-
call that mean of true correlation is a√

2bδ
), and variance

shows not much change for different experiments.
In the second experiment we watermarked 100 SSH

flows of length N = 5000 packets with fixed watermarked
amplitude of a = 10ms between two specific nodes (and
also the same watermark bits). The high number of flows
helps to measure the variance of metrics with more confi-
dence. Figure 7(a) shows true detection metric, and false
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Figure 5. False Negative error for different values of γ and n (False ).

detection metric along with their standard deviation for dif-
ferent number of packets n. Mean of true correlation does
not vary with n because watermark amplitude is fixed and
network jitter does not vary that much; mean of false cor-
relation is almost zero as we expect from analysis. Stan-
dard deviation of true correlation shows to vary with 1/

√
n

as we expect from analysis. Fortunately, false correlation
shows a slightly smaller standard deviation which results in
even fewer false positives. This is because we considered
the worst case in analysis, i.e., equal rate unwatermarked
flows. Figure 7(b) shows the COER estimated by fitting the
errors rates to a Laplace distribution; comparing with Fig-
ure 4 for γ = 1 this experimental COER highly matches the
analytical results. Based on this, we can achieve the tiny
COER of 10−6 with fewer than 400 packets, which means
that a typical SSH connection can be classified as a stepping
stone or not within about 3 minutes. Similar passive and
watermarking schemes require much more time to achieve
similar error rates.

Comparing error rates of RAINBOW with those of pre-
vious passive schemes and blind watermarking schemes,
RAINBOW outperforms them by orders of magnitude. The
passive scheme of [20] which uses similar correlation mech-
anisms as RAINBOW, achieves false errors of 10−2 for dif-
ferent parameters. IPD-based watermarking scheme of [21]
achieves false negative rates of 10−2 and false positive rates
of at most 10−5. These are far worse than what RAINBOW
achieves.

5.1 Resource constraints

In this section we evaluate the required resources for
RAINBOW in the case of stepping stone configurations.
Of course, the resources required will be dependent on the

number of low-rate connections, which in turn will depend
on the size of the organization. We estimate the parameters
needed to detect stepping stones in an organization such as
the Coordinated Science Laboratory (CSL) at the University
of Illinois at Urbana–Champaign. CSL has about 400 mem-
bers, so we will assume as a worst-case that each member
is performing a low-rate connection from the outside. Us-
ing a C++ implementation of RAINBOW, running on a 1.6
GHz Linux server with 1 GB of RAM, we can perform se-
lective correlation (a more resource-intensive method that
is robust to packet deletions and insertions, discussed in the
next section) with 400 flows, using a watermark length of
n = 5000, in 0.4µs. Table 1 lists the storage requirements
for the IPD table for various choices of n.

Given the small size of the CPU and memory constraints,
and the fact that they scale linearly with the number of
flows, it is easy to see that much larger organizations can
be supported using a commodity PC. For extremely large
organizations, stepping stone detection can be partitioned
among routers within sub-networks; e.g., in an organization
such as the University of Illinois, each department can run
its own stepping stone detection.

The choice of n presents a tradeoff between detection
accuracy, watermark amplitude, and resource constraints.
However, as we saw earlier, RAINBOW is effective with
only a few hundred packets, whereas other passive schemes
require many more packets [17, 24, 8, 20, 3], hence the
resource constraints of RAINBOW will be significantly
lower.

6 Selective Correlation

In the previous sections we analyzed the performance of
the detector based on normalized correlation. In our anal-
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Figure 7. Experimental detection performance for different watermark lengths.

Table 1. Maximum memory usage of the RAIN-
BOW watermarking system for a medium-size
network.

n parameter Memory (MB)
50 0.15

100 0.3
200 0.6
500 1.5

1000 3.1

ysis and implementation, we assumed that there is a one-
to-one relation between packets of watermarked flow and
received flow; i.e., no packets are added to or removed from
the flow between watermark insertion and watermark detec-
tion. This is often not the case, however, as real-world im-
plementations introduce several causes for packets removal
and insertion. For example, retransmissions at the TCP
layer will introduce packets into one of the streams.1 Ap-
plications may also repacketize flows while relaying them.
Setup packets, such as TCP SYN/ACK packets and packets
sent to initialize an SSH connection will also show up in
only one of the two flows.

So, a practical watermark detector should be robust to
packet addition and removal, i.e., work efficiently despite
them. Among existing work, only recent schemes have con-
sidered repacketization and other natural perturbations [16,
23], while other work has looked at the presence of adver-
sarial packet insertion and removal, or chaff [8, 3, 19]. Our
normalized correlation scheme analyzed thus far is fragile
to packet addition and removal, but with a modification we
call Selective Correlation it shows promising performance

1Though proper parsing of the TCP packets can be used to detect such
retransmissions and remove them from consideration.
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Figure 8. Selective Correlation

dealing with packet addition and removal carried out at a
relatively high rate.

Selective Correlation scheme: For selective correla-
tion, we add a matching step to the detector, which will
pre-process τ r, τ r, and w, before they are passed to the nor-
malized correlation step. The aim of this step is to find and
remove packets that do not have a corresponding match in
the other flow.

The main idea is to use sliding windows to match IPD
values of one flow by those of the other flow. Figure 8 illus-
trates how the matching step works. For any IPD value of
the received flow, τ ri , if the absolute difference from the cor-
responding IPD in database, τuj , is smaller than ηM , packets
are passed through as matched, along with the correspond-
ing watermark bit. If not, the matching block tries to find
an IPD in a [j − L, j + L] window of τu with the smallest
IPD difference from τ ri that is also smaller than ηM . If no
match is found the packet is dropped. L is the maximum
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Figure 9. Selective correlation performance for different ratio of add/drop packets (r).

expected change in number of packets and ηM depends on
jitter variance.

To account for the case where too many packets are
not matched, the detector also monitors the percentage of
matched packets and declares the received flow as unwater-
marked if this number is smaller than a threshold ηR.

Implementation results: We implemented selective
correlation scheme over the same watermarked connections
in PlanetLab, after adding and removing different percent-
ages of packets to the flows. We set ηM to be twice the av-
erage standard deviation of jitter; i.e., ηM = 20ms, and L
twice the maximum number of packets expected to be added
or removed. Figure 9 illustrates true selective correlation
and false selective correlation along with the percentage of
packets matched in each case. If percentage of matched
packets falls bellow some reasonable threshold, ηR, detec-
tor decides flow to be not watermarked.

For the case that we do not have packet count changes
(Figure 9(a)), selective correlation outperforms the simple

correlation scheme (Figure 7(a)). This is because selective
correlation removes IPDs with high jitter added. As fraction
of packets added and/or removed increases, mean of true
selective correlation decreases as shown in Figures 9(b) and
9(c). This leads detection performance to decrease, but even
for 20 percent of packets changed (10% added and 10% re-
moved), detection can be performed efficiently.

7 Watermark Invisibility

An efficient network flow watermarking scheme needs
to be invisible to prevent the watermark from being de-
tected and possibly removed by an active attacker. This also
prevents the watermark from interfering with normal users
traffic. Because of embedding large amplitude watermarks,
previous flow watermarking schemes are not invisible; sev-
eral interval-based watermarking schemes [19, 16, 23] have
shown to be subject to detection and removal [11] (it should
be mentioned that changing some watermarking parame-



ters, e.g. interval length, in these schemes from the origi-
nal values in the corresponfing papers improves invisibility,
but drastically ruins false detection errors which make the
schemes practically useless). Peng et al. [13] show how the
Kolmogrov–Smirnov test (K–S test) is efficient in detecting
large amplitude QIM watermarks applied to inter-packet de-
lays. We use the Kolmogorov–Smirnov test to discuss invis-
ibility of RAINBOW flow watermarking scheme.

The K-S test is used to determine whether two samples
from a sequence of two observations (or one observation
and samples drawn from a references probability distribu-
tion function) belong to the same distribution by measur-
ing the maximum distance between empirical distribution
functions (or the empirical distribution function and the ref-
erence distribution function). In case of a given reference
distribution function F (x), the value of the K–S test is:

sup
x
|Fn(x)− F (x)|,

where Fn(x) denotes the empirical distribution function
from a sample of n observations.

In the first experiment we ran the K–S test against the
non-watermarked and watermarked version of a SSH flow,
transmitted in the same network (with similar network de-
lay). The average K–S distance between them (averaged
over 10 connections) is 0.0082 which results in a 98% con-
fidence in declaring them to be from the same distribution.
In other words, watermark presence on the flows would be
transparent to normal users and (limited) attackers.

In the second experiment we considered a more intelli-
gent/powerful attacker who sends a flow to the watermarker
and receives it on another compromised host. Since the at-
tacker has the original flow, he only needs to discriminate
between w+ δi and δj , where δi and δj are different jitters
(measured over PlanetLab). We compared two scenarios:
K–S test betweenw+δ1 and δ2 and K–S test between δ3 and
δ4. Figure 10 shows the difference between K–S statistics
in the two different scenarios for different values of γ. As
γ decreases, the attacker loses his chance to distinguish be-
tween watermarked and unwatermarked flows. Comparing
with results of Section 4, we see that there is a tradeoff be-
tween different watermarking attributes, i.e., invisibility and
robustness. A similar K–S experiment on other flow water-
marking schemes returns much higher differences, which
makes them suspect to attacks [11].

Gianvecchio et al. use information theory tools to invent
new metrics for efficient detection of covert timing chan-
nels [9]. We use their entropy-based tools, EN and CCE
tests, on a number of watermarked SSH flows (each 5000
packets) and their corresponding unwatermarked (but jit-
tered) flows. Table 2 shows the averaged test metrics for
regular (unwatermarked) and watermarked SSH flows. As
results show, even for large values of γ, watermarking does
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Figure 10. Kolmogorov–Smirnov test differ-
ence

not change EN and CCE test results significantly (the de-
cision thresholds for EN and CCE tests are 21.20 and 2.17,
respectively). This shows that RAINBOW remains invisible
in the face of these information-theoretical tools.

8 Conclusions and Future Research

We proposed a novel non-blind network flow watermar-
king scheme called RAINBOW, for linking flows. RAIN-
BOW combines some of the advantages of passive traffic
analysis with watermarking schemes. Like passive traffic
analysis, RAINBOW does not interfere with regular users
by inserting large delays that are used in existing watermar-
king schemes; in fact, we show that RAINBOW is invis-
ible to detection by an attacker. Like other watermarking
schemes, RAINBOW achieves very low false error rates. In
fact, we show, both through analysis and by means of exper-
iment, that the false error rates of RAINBOW are orders of
magnitude lower for short observation periods than existing
passive and active schemes. RAINBOW can also be made
robust to high rates of packet addition and removal by in-
troducing selective correlation, at the cost of somewhat in-
creased observation period lengths. In our future work, we
intend to explore coding tools to increase the efficiency of
RAINBOW and explore the possibility of a blind or semi-
blind watermark scheme that remains invisible.
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