
Metrics for Security and Performance in
Low-Latency Anonymity Systems

Steven J. Murdoch and Robert N. M. Watson

Computer Laboratory, University of Cambridge, UK
http://www.cl.cam.ac.uk/users/{sjm217,rnw24}

Abstract. In this paper we explore the tradeoffs between security and
performance in anonymity networks such as Tor. Using probability of
path compromise as a measure of security, we explore the behaviour of
various path selection algorithms with a Tor path simulator. We demon-
strate that assumptions about the relative expense of IP addresses and
cheapness of bandwidth break down if attackers are allowed to purchase
access to botnets, giving plentiful IP addresses, but each with relatively
poor symmetric bandwidth. We further propose that the expected la-
tency of data sent through a network is a useful performance metric,
show how it may be calculated, and demonstrate the counter-intuitive
result that Tor’s current path selection scheme, designed for performance,
both performs well and is good for anonymity in the presence of a botnet-
based adversary.

1 Introduction

The Tor network [1] is the most widely deployed anonymous communication
system, whose estimated 250 000 users include companies, human rights workers
and law enforcement. The network’s security is therefore critical for the safety
and commercial concerns of its users. In common with other deployed low-latency
anonymity networks, Tor is vulnerable to an attacker who is able to monitor a
user’s communication both as it enters and leaves the system. Through traffic
analysis, the attacker can use timing characteristics to confirm which incoming
connection corresponds to an outgoing one, and so discover the user behaviour
Tor seeks to hide. It is thus important to understand how the routing of connec-
tions through the Tor network affects the risk of their compromise.

A frequently stated problem with Tor is that it significantly slows down
web browsing speed. This is, in part, a consequence of the volunteer-operated
nature of servers – many are on slow connections or shared with other activity.
It is therefore important to make the best use of the limited capacity available,
when selecting the path over which a user’s traffic will be routed through the
Tor network. In order to prevent an attacker manipulating path selection, the
servers on each path are selected by the initiator. For best performance, the path
selection algorithm must therefore fairly distribute connections based on server
capacity, using only information known to the initiator, while being difficult for
an adversary to game.



In this paper we present an analysis of path selection algorithms for Tor, in-
cluding the currently used ones and proposed improvements. We consider their
anonymity and performance consequences, based on simulations and models
driven by data collected from the deployed Tor network.

In contrast to previous work, we examine a more realistic threat model, in
which attackers are limited not only by number of nodes they control, but also
their bandwidth capacity. We find that by introducing this generalisation the
relative security of different path selection algorithms is substantially changed.

Previous work has shown that alternative algorithms have improved perfor-
mance, when only the client tested is modified. We show that, by modelling a
network where the new algorithm is fully deployed, performance substantially
deviates from previous predictions.

The remainder of the paper is structured as follows: Section 2 introduces
the basic operation of Tor, and the threat model we will consider; Section 3
discusses related work on alternative path selection algorithms, metrics for eval-
uating their anonymity, and attacks which exploit their weaknesses; Section 4
describes, in detail, how the existing Tor path selection algorithm operates; Sec-
tion 5 introduces our metric for path selection security and presents simulation
results; finally, Section 6 evaluates the performance of path selection algorithms,
when all clients are assumed to be using the new scheme.

2 Design of Tor

The Tor anonymity network, the latest generation of the Onion Routing project,
aims to anonymise TCP traffic while maintaining a low enough latency to be us-
able for interactive protocols such as web browsing. When the Tor server software
on a node (an onion router) is first configured, it generates a public/private key
pair and sends the public half and other routing details to the directory author-
ities, in the form of a router descriptor. The directory authorities communicate
between themselves and establish the subset of onion routers which they are all
aware of and sign the resulting consensus directory.

Users install the Tor client software on their computer and configure their
applications to use Tor as a SOCKS proxy (an onion proxy). On receiving a con-
nection, the client establishes the desired destination and selects a path consist-
ing of three Tor nodes listed in the consensus directory (which was downloaded
from a directory authority or a mirror). The client then connects to each node on
the path (a hop) in turn and builds an encrypted tunnel secured by a session key
established through an authenticated Diffie-Hellman exchange. Each connection
is made through the previous tunnel, so an external observer can only see the
connection to the first hop (the entry node).

The client requests that the last hop (the exit node) connects to the desired
destination, then splits data to be sent into 512 byte cells, encrypts them under
all session keys for the path, and sends them to the entry node. Each node on
the path removes one layer of encryption, establishes which is the next hop, and
sends the cell on. Once the cell reaches the exit node, the final layer of encryption



is removed and the data sent to the destination server. Replies from the server
follow the reverse process.

The full details of the procedure are covered in the Tor specification [2], but
all that is required to understand for the remainder of the paper is that an
encrypted tunnel can be built through the Tor network. Our focus will be on
how the onion proxy selects the onion router nodes for each path. Section 4 will
describe the path selection algorithms in detail, but we will first discuss what
we assume about our attacker’s goals and abilities.

2.1 Threat Model

Tor imposes no restrictions on who can join the network, which has led to the
rapid growth of network capacity, but increases the risk that some nodes in the
network are malicious. We assume that an attacker’s goal is to link senders with
receivers – that is, to de-anonymise the endpoints of traffic. A global-passive
adversary, conventionally assumed in the study of high-latency anonymity net-
works, can break the anonymity properties of currently deployed low-latency
systems by correlating traffic patterns; however in many situations such a pow-
erful attacker is unrealistic. Instead, we will consider a weaker attacker who is
only capable of monitoring traffic on nodes he has injected into the network.

Tor does not intentionally delay messages, or introduce dummy traffic other
than limited message padding, so traffic patterns remain almost unchanged as
they pass through the network. For this reason, it was assumed and subsequently
demonstrated [3, 4] that by observing both ends of a connection, timing patterns
are enough to confirm a suspected link between sender and receiver. This attack
has also been shown to work even if only a small proportion (e.g. 1 in 2 000)
of packets can be observed [5]. We will thus assume that a connection is de-
anonymised if both the first and last hop on the path are malicious.

In contrast to Tor, JAP [6] requires that operators promise not to engage
in malicious behaviour before being admitted. JAP is also a cascade system, in
which traffic from all users flow over the same path. If an attacker were able to
compromise or monitor the single entry and exit nodes for a given cascade then
all of its users could be de-anonymised. Our threat model is only appropriate
to a network where data may follow arbitrary paths (a free route system), and
where nodes may freely join and leave. We will not further discuss JAP-style
networks in this paper.

3 Related Work

3.1 Path Selection Algorithms for Tor

At a high level, Tor’s path selection algorithm works in two stages. For each
hop on the path, Tor first builds a list of nodes which meet requirements (such
as reachability and stability) and second, picks a random node according to a
weighting scheme. When the design document [1] was written, Tor uniformly



weighted random node selection. This was initially adequate, but as heterogene-
ity of node bandwidth capabilities increased, path selection was changed to take
into account bandwidth capacity of nodes. The basic algorithm is described by
Bauer et al. [3], and our updated description is in Section 4.

Several proposals from the literature, on improving the Tor selection algo-
rithm, have already been applied to the mainline Tor distribution. These include
guard nodes [4] and bandwidth/uptime caps [3]. One further notable paper is
by Snader and Borisov [7], in which two proposals are made. Firstly, they sug-
gest that bandwidth estimates used for making routing decisions be measured
by opportunistically sampling actual throughput, rather than nodes reporting
their own capacity. Secondly, they propose a tunable algorithm for selecting
nodes, which weights faster nodes more heavily, depending on user preferences
for anonymity versus performance. In this paper we will primarily discuss the
latter proposal, but will return to the former in Section 5.

While the current Tor path selection algorithm picks nodes with a probability
proportional to their contribution to the total network bandwidth, the Snader
Borisov (S-B) tunable variant only uses advertised node capacity to produce a
rank ordering of nodes. The probability that a particular node will be selected
depends solely on its position within this ordering. More precisely, let the family
of functions fs be defined as:

fs(x) =
1− 2sx

1− 2s
(for s 6= 0) (1)

f0(x) = x (2)

To select each node, the n candidates are sorted in descending order of band-
width and a number x selected uniformly at random from the interval [0, 1). The
selected node is at index bn × fs(x)c. This is equivalent to selecting a random
number according to the cumulative distribution function (CDF) defined by the
inverse of fs(x).

The value of s is selected by the client according to their preference for
faster nodes. For s = 0, nodes are selected uniformly (intended for users with
high anonymity requirements) but the higher s is, the more will faster nodes be
preferred (for users willing to compromise anonymity for better performance). A
practical upper limit is suggested to be 10, at which with n = 1000, the highest
ranked node will be selected with probability 6%. By modifying a single client to
adopt the new strategy, the authors experimentally confirm that higher values
of s leads to better performing connections.

A potential problem with parametrised node selection is that if it is possible
to identify a user’s selection preference, their actions can be linked. Snader and
Borisov used a näıve Bayesian classifier in order to establish how accurately a
user’s selection preference could be fingerprinted, based on path selection. They
found that with a training set of 100 000 paths, the probability of correctly
identifying s does not exceed 21%.



3.2 Metrics for Path Selection

The general consensus from the literature is that the further a path selection
algorithm deviates from uniform weighting of nodes, the lower the anonymity
it provides. Following this intuition, Bauer et al. adopt normalised Shannon
entropy as their definition of anonymity. i.e. if the probability of selecting node
xi is qi, for 1 ≤ i ≤ n, the entropy is:

H = −
n∑

i=1

qi log2 qi (3)

H is maximal at log2(n) when the selection probability is uniform over all nodes,
hence entropy can be normalised, giving a quantity 0 ≤ S ≤ 1 representing how
skewed the probability distribution is:

S =
H

log2(n)
(4)

Entropy and normalised entropy have been used extensively in the study of
high-latency remailers, although over users rather than the paths. For example,
a traffic analysis attack which attempts to establish the sender of a message will
result in a probability distribution over all system users. The users for which
the probability is non-zero make up the anonymity set. One simple metric for
anonymity system security is the size of the anonymity set, but this does not
capture the non-uniformity. For this reason, Danezis and Serjantov [8] proposed
entropy of the anonymity set as the effective size, and Diaz et al. [9] proposed
normalised entropy as the system’s degree of anonymity.

Snader and Borisov have adopted a different metric, the Gini coefficient, but
it also measures the deviation from uniform path selection. The Gini coefficient G
equals the normalised area between the CDF of the probability distribution being
measured, and the uniform CDF. Thus G = 0 represents uniform distribution
over all candidate nodes and G = 1 indicates that the same single node will
always be chosen.

3.3 Attacks on Path Selection

A number of previous publications have taken advantage of Tor’s path selection
algorithm in developing attacks. Øverlier and Syverson [4] showed that, by caus-
ing a client to repeatedly generate fresh paths, an attacker can quickly gain a
high probability of controlling both the first and last hop. This was performed in
the context of hidden services, a feature of Tor which permits the pseudonymous
operation of a server, but the same concepts apply to normal connections.

In order to de-anonymise connections through Tor, an attacker can simply
add enough nodes to maintain a high probability that a connection will start and
end with a malicious node – effectively a Sybil attack [10]. However, a much more
economical variant, proposed by Øverlier and Syverson [4], is to exploit the fact
that load-balancing calculations are based on nodes’ self-reported bandwidth.



Bauer et al. [3] demonstrated that by artificially inflating bandwidth claims, an
attacker could compromise 46% of connections while controlling only 6 out of the
66 nodes on a private Tor network. In this paper we will expand on the results of
Bauer et al., simulating this attack while varying path selection algorithm. We
also employ node parameters from the real Tor network, rather than a private
one, and use a version of the Tor path selection algorithm adapted to respond
to Bauer’s attack by capping per-node advertised bandwidth.

4 Path Selection in Tor

In this section, we discuss the Tor path selection algorithm and proposed vari-
ants. Because the Tor path selection algorithms have changed over time, we have
chosen a version from late 2007 based on information from a combination of the
Tor path selection specification [11] and the Tor source code.

Tor clients base their path decisions on two types of information: a database
of Tor node properties provided by Tor directory authorities in the consensus di-
rectory, and the specific requirements of the requested connection. We detail the
path selection algorithm in Tor in terms of node properties, path requirements,
and node selection weighting.

4.1 Node Properties

Table 1. Node properties used in selecting paths

Network address The IP address of the node
Node family Administrator-configured equivalence class
Node bandwidth Average, burst, and observed capacity; for most pur-

poses, the average bandwidth is used, capped to
10MB/s in order to limit bandwidth-based attacks

Node uptime Time since node came online
Node status Whether the node is running or is currently hibernat-

ing and so unwilling to accept connections
Exit policy What, if any, types of exit node use is permitted
Publication timestamp When this information was last received by a directory

authority
Tor version Version of Tor on the node

Table 1 lists the node properties which are reported by nodes to the Tor direc-
tory authorities, and to some extent monitored for accuracy. The path selection
algorithm takes, as input, the following properties derived from the consensus
directory:



– A node is valid if the version of Tor running on the node is not one of a
number of known-bad versions, which render the node unsuitable for use as
an entry or exit node.

– A node is active if the publication timestamp in the consensus directory is
no more than 20 hours old, the node is valid and is marked as running.

– A node is stable if its self-reported uptime is among the top half of Tor
network nodes, or whose uptime at least 30 days1.

– A node is fast if its capped advertised bandwidth is among the top 7/8 of Tor
network nodes, or whose capped advertised bandwidth is at least 100 kB/s.

4.2 Path Requirements

For any path, no two nodes may be in the same equivalence class, i.e. if their IP
addresses have the same most significant 16 bits (in the same /16, following CIDR
notation [12]), or if both nodes declares the other to be in the same family. This
helps to avoid two nodes on a path being in the same administrative domain, as
well as limiting the effectiveness of injecting many nodes using easily attainable
/24 address ranges.

A stable path is one made solely of stable nodes. Stable paths will be used
for connections that are expected to be long-lived, currently determined using
a table of port numbers. For example, SSH and IRC connections will use stable
paths, with the intent of providing more reliable service.

A fast path is one made up solely of fast nodes. Fast paths will be used for
almost all connections, except for setting up and connecting to hidden services.
The intent here is to provide the latter greater anonymity by allowing more
nodes from the network to be used for these security-critical functions.

4.3 Node Selection Weighting

Once the list of acceptable candidate nodes is built, three random selection
algorithms may be used to select from them:

– Simple random selection (SRS), in which the node is selected from a set of
candidate nodes with uniform probability.

– Bandwidth-weighted random selection (BWRS), in which the node is selected
from a set of candidate nodes with probability proportional to their individ-
ual capped bandwidth.

– Adjusted bandwidth-weighted random selection (ABWRS), where bandwidth-
weighted selection is used, but exit nodes are entirely eliminated from selec-
tion if less than one third of overall network bandwidth is advertised by exit
nodes, or weighted in order to reduce the chances of selecting an exit node
for other points on the resulting path.

1 More recent versions of Tor directory authority implement basic validity checking on
uptime; as we do not specifically consider time as a resource, this does not change our
analysis. However, high-uptime malicious nodes are not difficult for an appropriately
resourced attacker to create.



Nodes are selected randomly from the set of suitable nodes using one of
two path selection algorithms: SRS for paths requiring additional security, and
BWRS and ABWRS for fast paths. Entry and middle node selection are adjusted
to avoid overload of potential exit nodes. Nodes are selected beginning with the
exit node, typically the most constrained in choice due to the need to use a node
with a suitable exit-policy, followed by the entry node, and then middle nodes.

5 Measuring the Probability of Path Compromise

Our metric of security is probability, with respect to cost and selection algorithm,
that an attacker compromises a connection by controlling the first and last hop.
While many factors could be considered in a definition of investment, we address
the cost of attack in terms of two elements that act as inputs to the path selection
algorithms: the number of nodes available to the attacker, and the bandwidth
available for each node.

After one node in a family is selected, other nodes in the same family will be
ignored during further path selection so we assume that attackers will invest in
nodes only in different families in order to avoid wasting resources. While not
traditionally considered, this approach is consistent with an attacker controlling
a botnet, because bots are geographically and network topologically diverse. IP
addresses and bandwidth could be further mapped into real-world costs, such as
the costs of co-location and hardware, if desired.

Our analysis assumes optimal performance by Tor in determining the correct
uptime and throughput of nodes; if nodes are able to lead Tor directory author-
ities to incorrectly publish information on their performance, this may lead to a
greater success rate for the attacker, but is beyond the scope of this work. While
Tor is currently unable to fully assess whether the advertised bandwidth of a
node is accurate, proposals have been made to do so [7]; likewise, Tor increas-
ingly tracks the reputation of nodes in the network in order to evaluate their
stability claims.

5.1 Experimental Design

We have created a Tor path simulator, which accepts as input the existing con-
sensus directory tracked by the Tor directory authorities, and a set of artifi-
cially introduced malicious nodes with given parameters. The simulator gener-
ates paths with specified constraints, such as the requirement for being fast or
stable, and evaluates the probability that each path selected is compromised.

We captured a snapshot of the Tor consensus directory on 7 June 2007, which
includes 1 484 router descriptors, of which 1 044 are considered active and 521 are
considered both active and stable. While the set of nodes available for exit traffic
varies by protocol and destination, 325 nodes in the data set are appropriate for
general HTTP exit traffic.

We then ran the simulator with various path requirements and attacker node
investments in order to evaluate the protection that the path selection algorithms



offered. We consider only the overall probability that any given connection will
be compromised, not whether any given end-user will have their connection
compromised. This requires us to observe the guard requirements for entry nodes,
but not to consider the conditional probability of connection compromise given
a client’s previous path choices.

We compared four path selection algorithms:

B/W: Tor’s default bandwidth-weighted algorithm based on a combination of
the BWRS and ABWRS algorithms.

Uniform: Tor’s uniform selection path algorithm, which uses SRS for more
security-sensitive paths, such as with hidden services.

S-B(1): The S-B path algorithm with parameter s = 1, reflecting a desire for
increased anonymity.

S-B(15): The S-B path algorithm with parameter s = 15, reflecting a desire
for increased performance.

The simulator selects 1 000 random paths through the network and deter-
mines whether the first and last hop are malicious, generating an approximate
probability of compromise given the attacker model and path selection algo-
rithm. We implement two attacker investment strategies that reflect possible
cost models: one in which each additional node adds a fixed amount of band-
width, and a second in which the attacker is able to invest a fixed total amount
of bandwidth over a variable number of nodes.

The former reflects a world in which many sites contribute malicious nodes
with bandwidth, such as a botnet2, and the latter in which a single site is able
to use diverse network addresses over a single link of fixed bandwidth, such
as in a co-location centre3. These represent extremes in strategy, but allow us
to evaluate the effectiveness of different path selection algorithms inside, and
outside, of their assumptions.

5.2 Results

In our first experiment, shown in Figure 1, we compare the rate of path com-
promise when injecting 20 kB/s and 256 kB/s malicious nodes over the four path
selection algorithms. The uniform and S-B(1) algorithms are unaffected and rela-
tively unaffected, respectively, by the differing bandwidth of injected nodes. With
low bandwidth injected nodes, the compromise rate for the bandwidth-weighted
path selection algorithm is similar to S-B(15), but with higher bandwidth in-
jected nodes it is comparable to uniform selection.

2 Dagon [13] has determined that botnets see both high geographic and network topol-
ogy distribution. One small botnet consists of 1 965 members distributed over 305
unique ASes, 70 unique /8s, 1 084 unique/16s, and 1 872 unique /24s.

3 Because collocation centres frequently carry network traffic for many different cus-
tomers and participate fully in BGP, we consider them to also have considerable
address space access, able to span multiple /16 networks.



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●

●●●
●●●●●

●●●●●
●

●

0 1000 3000 5000

0
20

40
60

80
10

0

Malicious nodes injected

C
om

pr
om

is
ed

 p
at

hs
 (

%
)

B/W

Uniform
S−B (1)

S−B (15)

(a) 20 kB/s per node

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●
●●●
●●
●
●
●●
●●
●●
●●●●
●
●
●

●
●●
●●
●●
●●●
●
●●
●
●
●●
●

●
●
●
●
●
●
●
●●●●

●
●

●
●

●
●●●

●●●
●

●

●
●●

●
●

●●
●

●

●

●

●
●

●

●

●
●●●●

●●●
●

●●
●

0 1000 3000 5000

0
20

40
60

80
10

0

Malicious nodes injected

B/W

Uniform

S−B (1)

S−B (15)

(b) 256 kB/s per node

Fig. 1. Percentage of 1 000 generated paths compromised by injecting nodes at 20 kB/s
per node or 256 kB/s per node, using the Tor bandwidth-weighted, uniform, S-B(1) and
S-B(15) path selection algorithms

In our second experiment, shown in Figure 2, we compare compromise rate,
while injecting 20 kB/s nodes for HTTP and SSH connections. Tor requires the
use of a stable path for SSH, due to the expectation of longer connection life
spans, unlike HTTP. As a result of the smaller pool of stable nodes, the com-
promise curve for uniform selection has a significantly steeper slope with SSH
than it does for HTTP. It requires one third fewer malicious nodes (and hence
two thirds the bandwidth) for an attacker to compromise half of the connections
using 20 kB/s malicious nodes.

In our third experiment, shown in Figure 3, we examine the probability of
compromise when a fixed investment of bandwidth (100 MB/s) is shared over a
varying number of nodes. The Tor uniform path selection algorithm exhibits the
expected behaviour that rate of compromise corresponds simply to the number
of nodes injected, and not their bandwidth. S-B(1) tracks the Tor uniform path
selection algorithm, placing little weight on bandwidth. Because the Tor band-
width cap is 10 MB/s per node, the full investment of bandwidth is only realised
once at least ten injected nodes are present. The Tor bandwidth-weighted path
selection algorithm therefore offers essentially a constant compromise rate, once
the bandwidth per node drops below the bandwidth cap.

The S-B algorithm with parameter 15 exhibits quite interesting behaviour:
as long as the malicious node bandwidth is greater than the bandwidth of almost
all Tor nodes, performance grows rapidly to a 50 percent compromise rate at 24
nodes. After that point, the probability of compromise drops rapidly because
the bandwidth of malicious nodes drops and the probability of selecting them is
greatly reduced.



0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0

Malicious nodes injected

C
om

pr
om

is
ed

 p
at

hs
 (

%
)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ● ●

●

●

●
●

●

● ● ●
●

●

● ● ●
● ●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●
●
●●●●

●●
●●●

●
●
●
●●

●
●●●

●●●
●
●

●
●
●
●
●●●

●
●
●
●●

●
●
●
●●

●●

●
●
●
●●

●●
●

●
●●

●
●

●

●
●●

●

●

●

●

●

● ● ●
●

●
●

● ●

●

●
● ●

● ●

●

●
●

● ●
●

●
●

●
●

● ●
● ● ● ●

●

●

●

●

●

B/W SSH
B/W HTTP

Uniform SSH

Uniform HTTP

Fig. 2. Comparison of HTTP and SSH compromise probability when injecting 20 kB/s
malicious nodes

● ● ●
● ●

●
●

●
●

● ●

●●

●

●●●
●●●●●

●●
●
●●

●

●
●●
●
●

●

●
●●

●●
●
●

●

●
●

●
●●●

●●
●●

●

●

●

●

●●

●●●●
●
●●

●
●
●●●

●

●●●

●
●●

●
●●●
●
●●

●
●●
●●
●●●
●
●●●
●●
●
● ●

●
●

●●●
●●

●

●

●●●●●●
●
●●●●

●
●
●
●●

●●
●
●●

●
●
●
●●●●●●

●●
●●●

●

●

●
●
●

●

●
●
●●

●●
●●● ● ●

●

●●
●

●

●

●
●

●●

●
●
●
●

●

●
●●

●
●●

●●
●●

●
●●

●●●

●●
●●
●
●●

1 5 10 50 100 500 5000

0
20

40
60

80
10

0

Malicious nodes injected (log scale)

C
om

pr
om

is
ed

 p
at

hs
 (

%
)

B/W

Uniform

S−B (1)

S−B (15)

S−B (15)

Fig. 3. Compromise rate as a bandwidth budget of 100 MB/s is distributed over a
varying number of malicious injected nodes



These results lead to a surprising conclusion: the Tor bandwidth-weighted
path selection algorithm and S-B(15), tuned for better performance, have a sig-
nificantly lower compromise rate for low-bandwidth malicious nodes injected
in large numbers, than the Tor uniform and S-B(1) path selection algorithms,
which are tuned for better anonymity. Both the Tor uniform and the S-B(1) path
selection algorithms resist attack from a small number of malicious high band-
width nodes. However, botnets allow attackers to obtain large quantities of low-
bandwidth nodes. This is in contrast to the higher bandwidth nodes apparently
envisioned by the Tor designers when implementing the 10 MB/s bandwidth cap.

Metrics of anonymity based solely on uniformity of path selection, such as
entropy or Gini coefficient do not capture these factors. The link between these
metrics and practical security depends on the assumption that cost of injecting
nodes is independent of the path selection algorithm and node parameters. In
the case of Tor, where path selection probability depends strongly on bandwidth,
this is analogous to assuming that an attacker has unlimited bandwidth, but is
constrained by IP addresses. Where a more realistic view of the threat model
is adopted, in which both bandwidth and IP addresses have a cost, path selec-
tion algorithms which are supposedly less secure under the entropy model may
actually resist attack, provided bandwidth capacity can be accurately tracked.

5.3 Generalising the Attacker

In this section, we examined attackers with a variable number of nodes, and
different constraints on bandwidth. We can generalise this approach by modelling
an attacker as having a budget c, and where the cost of buying n nodes each
using b bandwidth is C(n, b). Such an attacker can chose to occupy any point
(n, b) such that C(n, b) ≤ c, and rationally will pick the point at which the
probability of compromising paths is the highest.

Figure 4 shows the path compromise probability for a series of points in the
(n, b) space. Lines overlaid show the bandwidth and node tradeoffs available to
the three attackers discussed in this section – previous graphs represent slices
in Figure 4. The attacker shown in Figure 1(a) and Figure 2, with a variable
number of 20 kB/s nodes can be modelled as b ≤ 20; the attacker shown in
Figure 1(b) is similar, with b ≤ 256. An attacker with a constant bandwidth,
shown in Figure 3, can be modelled as n× b ≤ 100 000.

No one path selection algorithm gives the minimum compromise rate for all
points, so no algorithm is clearly the most secure. Instead, the best-performing
scheme depends on the threat model, which in turn defines allowable points in
the (n, b) space. Once this is done, each strategy can be examined to establish
the attacker’s maximum compromise rate, and the selection algorithm with the
minimum selected.

6 Modelling the Performance of Tor

Our metric for performance is the expected processing time for a cell. One other
proposed metric for performance, as measured by Snader and Borisov, is the



Tor uniform weighting

1 5 50 500

1e
+

01
1e

+
03

1e
+

05

B
an

dw
id

th
 p

er
 n

od
e 

(k
B

/s
) 

(lo
g 

sc
al

e)

Fig. 1(a)/Fig. 2

Fig. 1(b)
Fig.3

Tor bandwidth weighting

1 5 50 500

1e
+

01
1e

+
03

1e
+

05

Fig. 1(a)/Fig. 2

Fig. 1(b)
Fig.3

S-B(1)

1 5 50 500

1e
+

01
1e

+
03

1e
+

05

Malicious nodes injected (log scale)

B
an

dw
id

th
 p

er
 n

od
e 

(k
B

/s
) 

(lo
g 

sc
al

e)

Fig. 1(a)/Fig. 2

Fig. 1(b)
Fig.3

S-B(15)

1 5 50 500

1e
+

01
1e

+
03

1e
+

05

Malicious nodes injected (log scale)

Fig. 1(a)/Fig. 2

Fig. 1(b)
Fig.3

Compromised paths (%)

0 20 40 60 80 100

Fig. 4. Compromise rate versus nodes injected and bandwidth per node, for each path
selection strategy. Dashed lines indicate the slice of points used for previous figures



throughput of a node which adopts the modified selection scheme. This is a
good measure for user desires, but it does not take into account system-level
effects that would result if all nodes adopted the same strategy. In contrast, this
section models the effect of modifying the full network.

In the previous section, we evaluated the performance of four Tor path selec-
tion algorithms with respect to their susceptibility to compromise, concluding
that they vary in response to the injection of malicious nodes. However, that anal-
ysis is not useful in isolation, as the Tor design is intended to balance competing
demands for anonymity and performance. Here, we evaluate the performance of
the path selection algorithms with respect to network performance.

6.1 Queueing Theory Background

We will consider an infinite length queue Q, with mean arrival rate λ cells per
second, and whose requests are processed by a single server, each taking on
average x̄ seconds. Initially we will make no assumptions about the distribution
of processing duration, but the input process is assumed to be Poisson i.e. we
have a M/G/1 queue. The Poisson assumption is known not to perfectly match
actual usage, but with a sufficiently large number of users it should be close
enough for our results to be useful.

The average time a request will wait in the system (firstly waiting in the
queue, then being serviced) is therefore:

t = x̄ + w̄ (5)

Where w̄ is the average time a request will remain in the queue.
Let the utilisation factor for Q be ρ = λx̄. A queue for which 0 ≤ ρ < 1 has

a finite value of w̄.
From the Pollaczek-Khinchin result [14, p16], we can calculate w̄ as follows:

w̄ =
λx2

2(1− ρ)
(6)

6.2 Calculating Waiting Time for a Family of M/D/1 Queues

We will model a single-hop anonymity network as a family of M/D/1 queues,
that is an infinite length queue Qi, for 1 ≤ i ≤ n with a Poisson input process
with rate λi and constant processing time of x. The user-base of the whole
network can be treated as a Poisson process of rate Λ. Each client will select
paths according to a path selection algorithm, which results in node i being
selected with probability qi. The traffic at any individual node λi will therefore
be qiΛ. From Equation 5 and Equation 6, the average time ti a cell will wait in
queue Qi is:

ti = xi +
qiΛx2

i

2(1− qiΛxi)
(7)



The expected waiting time for a cell is ti weighted by the probability of Qi

being selected, i.e.

T =
n∑

i=1

qiti =
n∑

i=1

qixi(2− qixiΛ)
2(1− qixiΛ)

(8)

6.3 Waiting Time for Tor’s Bandwidth-Weighted Algorithm

We will first consider the average waiting time for the Tor network, with the
bandwidth-weighted algorithm. Here, the probability qi of selecting a node is
the ratio between that node’s bandwidth 1/xi and the network total M .

qi =
1

xiM
(9)

From Equation 8 and Equation 9, the time a cell is expected to wait in the
network is:

Tb/w weighted =
n∑

i=1

2− Λ
M

2(M − Λ)
= n

2− Λ
M

2(M − Λ)
(10)

6.4 Waiting Time for Tor’s Uniform Path Selection Algorithm

In contrast, when bandwidth is not considered, the probability of selecting a
node Qi is n−1. Hence from Equation 8 the expected waiting time becomes:

Tuniform =
n∑

i=1

n−1xi(2− n−1xiΛ)
2(1− n−1xiΛ)

(11)

6.5 Waiting Time for the S-B Selection Algorithm

The selection probability qi for the S-B scheme depends on the position of the
node Qi in the bandwidth ranking. From this, TS-B can be found by substituting
the expression for qi into Equation 8. The CDF for the probability distribution
of qi is the inverse of Equation 1 and Equation 2. If xi are sorted in ascending
order the selection probability is therefore:

qi = s−1
(
log2(1−

n− i + 1
n

(1− 2s))− log2(1−
n− i

n
(1− 2s))

)
(12)



Node bandwidth (kB/s) (log scale)

C
um

ul
at

iv
e 

w
ei

gh
te

d 
la

te
nc

y 
(s

) 
(lo

g 
sc

al
e)

●

●

●
●

●
●
● ● ●●●

●●
●● ●●●

●●●●●●●●●
●●●●

●●●●●
●●●●● ●●●●●●

●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●
●
● ● ●●●

●●
●● ●●●

●●●●●●●●●
●●●●●

●●●●●
●●●● ●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●

●
●

●
●
● ● ●●●

●●
●● ●●●

●●●●●●●●●
●●●●

●●●●●
●●●●● ●●●●●●

●●●

●

●

●

1e
−

06
1e

−
04

1e
−

02
1e

−
00

Uniform

S−B (15)

B/W

S−B (1)

1e−01 1e+01 1e+03

Fig. 5. Cumulative weighted expected waiting time at each node in the network. The
rightmost point shows the expected latency for the whole network. Dots are drawn at
nodes which will be overloaded

6.6 Comparing Path Selection Algorithms

We can calculate the expected latency for the whole network from Equation 8,
by establishing the selection probabilities qi for each of the path selection al-
gorithms. Also, we require xi which can be obtained from our Tor consensus
directory snapshot. Finally, we need the input rate for the network. Each Tor
node reports how much traffic it has processed over a number of 900 second
periods, so by taking the median for each node, and summing these, we can
approximate Λ. We find that the utilisation factor for the network is 49.6%.

When calculating the expected network latency, we face the problem that for
the S-B path selection algorithm, some nodes have a utilisation factor greater
than 1 (750 nodes for S-B(1) and 53 nodes for S-B(15)). In our model these
nodes would have an infinite queue length and hence our expected latency for the
network would also be infinite. The expected latency, using the Tor bandwidth-
weighted algorithm, is 4 ms. In contrast, when only a single node was modified
to use S-B(15), its latency approximately halved [7]. The fact that the network
cannot sustain the same overall throughput with the S-B algorithm, strongly
suggests that the current Tor path selection algorithm is superior.

To quantitatively compare path selection algorithms, we can instead drop the
overall throughput and see at which point the expected queue length becomes
non-infinite. Even at 1% throughput, the expected waiting time is still infinite,
but now because of 4 and 1 low-bandwidth nodes for S-B(1) and S-B(15) respec-



tively. The throughput must be reduced to 0.25% for S-B(15) to generate a well
defined expected latency of 13 ms; at the same point Tor’s bandwidth-weighted
algorithm gives 3 ms. At 0.025% throughput, S-B(1) has an expected latency of
48 ms whereas Tor’s bandwidth-weighted algorithm still gives 3 ms.

Alternatively, for nodes which are overloaded, we can clip the expected la-
tency to the maximum value of the rest of the network (analogous to a timeout).
The result is shown in Figure 5. Here we can see that the expected network
latency is still far higher for the S-B selection algorithms: 401 ms for S-B(1) and
275 ms for S-B(15), compared to 4 ms for Tor’s bandwidth-weighted algorithm.
Also, the timeout failures are substantial: 65% for S-B(1), because of the 750
nodes which are overloaded (72% of the network) and 44% for S-B(15), because
the top three nodes are overloaded, which are used for 43.9% of selections.

7 Conclusion

In this paper, we have analysed the effectiveness of several Tor path selection
algorithms with in terms of two metrics: probability of path compromise with
respect to attacker investment, and expected latency. This analysis has demon-
strated the surprising result that not only does Tor’s default bandwidth-weighted
path selection algorithm offer improved performance over the supposedly more
secure Tor uniform path selection algorithm, but also offers improved anonymity
in the presence of node-rich but bandwidth-poor attackers.

The vulnerability of supposedly secure path selection algorithms reflects a
historical assumption that bandwidth is a low-cost commodity to acquire, but
that large numbers of nodes in different equivalence classes are expensive. We
believe that this assumption no longer holds due to the proliferation of botnets,
which frequently have poor upstream bandwidth from each individual node, but
high network and geographical diversity.

Acknowledgements

The authors gratefully acknowledge the Tor Project and Google, Inc. for sup-
porting this research. We would like to thank Nikita Borisov, Richard Clayton,
George Danezis, Roger Dingledine, Markus Kuhn, Nick Mathewson, Andrei Ser-
jantov, and the anonymous reviewers for their feedback, and Claudia Diaz and
Carmela Troncoso, who shepherded the paper. We would also like to thank David
Dagon for providing the botnet data we used in our analysis.

References

1. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium. (August 2004)

2. Dingledine, R., Mathewson, N.: Tor protocol specification. Technical report, The
Tor Project (October 2007) https://www.torproject.org/svn/trunk/doc/spec/
tor-spec.txt.



3. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing
attacks against anonymous systems. Technical Report CU-CS-1025-07, University
of Colorado at Boulder (2007)

4. Øverlier, L., Syverson, P.F.: Locating hidden servers. In: Proceedings of the 2006
IEEE Symposium on Security and Privacy, Oakland, CA, US, IEEE Computer
Society (May 2006)

5. Murdoch, S.J., Zieliński, P.: Sampled traffic analysis by Internet-exchange-level
adversaries. In: Privacy Enhancing Technologies (PET). Volume 4776 of LNCS.,
Ottawa, Canada, Springer (June 2007)

6. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: A system for anonymous
and unobservable Internet access. In Federrath, H., ed.: Proceedings of Designing
Privacy Enhancing Technologies: Workshop on Design Issues in Anonymity and
Unobservability. Volume 2009 of LNCS., Springer (July 2000) 115–129

7. Snader, R., Borisov, N.: A tune-up for Tor: Improving security and performance in
the Tor network. In: Network & Distributed System Security Symposium, Internet
Society (February 2008)

8. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In Dingledine, R., Syverson, P., eds.: Privacy Enhancing Technologies (PET). Vol-
ume 2482 of LNCS., San Francisco, CA, US, Springer (April 2002) 259–263

9. Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In
Dingledine, R., Syverson, P., eds.: Proceedings of Privacy Enhancing Technologies
Workshop (PET). Volume 2482 of LNCS., San Francisco, CA, US, Springer (April
2002) 184–188

10. Douceur, J.: The Sybil Attack. In: Proceedings of the 1st International Peer To
Peer Systems Workshop (IPTPS 2002). Volume 2429 of LNCS., Springer (March
2002)

11. Dingledine, R., Mathewson, N.: Tor path specification. Technical report, The
Tor Project (October 2007) https://www.torproject.org/svn/trunk/doc/spec/
path-spec.txt.

12. Fuller, V., Li, T.: Classless inter-domain routing (CIDR): The Internet address
assignment and aggregation plan. RFC 4632, IETF (August 2006)

13. Dagon, D. Personal communication
14. Kleinrock, L.: Queueing Systems. Volume 2. John Wiley & Sons (1976)


