
A Reputation System to Increase MIX-net

Reliability

Roger Dingledine1, Michael J. Freedman2, David Hopwood3, David Molnar4

1 Reputation Technologies, Inc. (arma@reputation.com)
2 Massachusetts Institute of Technology (mfreed@mit.edu)
3 Independent consultant (david.hopwood@zetnet.co.uk)

4 Harvard University (dmolnar@hcs.harvard.edu)

Abstract. We describe a design for a reputation system that increases
the reliability and thus efficiency of remailer services. Our reputation
system uses a MIX-net in which MIXes give receipts for intermediate
messages. Together with a set of witnesses, these receipts allow senders
to verify the correctness of each MIX and prove misbehavior to the wit-
nesses.

1 Introduction

Anonymous remailers are the most common method of anonymous e-mail com-
munication. Despite wide use of the current global remailer network, this network
is generally considered unreliable. Messages are often dropped, and the news-
group alt.privacy.anon-server contains many examples of a message being
sent two or three times in the hope that one instance will reach the destina-
tion. This unreliability directly affects the number of people using the remailer
network and their traffic patterns, which reduces the anonymity these networks
provide.
One approach to increasing reliability is to write more reliable software [16].

Another approach is to build MIX protocols that give provable robustness guar-
antees [3, 7, 13]. Our approach is to build a reputation system to track MIX
reliability, and to modify the MIX protocol to support it. Because users choose
paths based on the published scores for each MIX, this reputation system im-
proves both reliability (fewer messages get routed through dead MIXes) and
efficiency (the system dynamically rebalances the load based on available reli-
able resources).
Currently deployed remailer reputation systems (better known as remailer

statistics) collect data independently and are treated as trusted third parties
by client software. Reliable statistics servers are good targets for adversaries.
Furthermore, these statistics often only measure secondary properties of the
MIX-net servers, such as up-time.
We describe related MIX-nets and current statistics systems in Section 2.

Section 3 presents a MIX-net design that allows the sender of a message, along
with a collection of weakly trusted third party witnesses, to prove that a MIX



failed to process a message. Section 4 introduces a new set of agents called
scorers, who tally failure proofs and serve them to client software. Because each
failure can be proven to any number of scorers, loss of a scorer will be less
disruptive than loss of a statistics server in current reputation systems.
We stress that this work does not fully solve the problem of MIX reliability.

In presenting a simple reputation system, we hope to stimulate further research
on reputation systems and modelling the increased reliability they provide.

2 Related Work

2.1 MIX-nets

Chaum introduced the concept of a MIX-net for anonymous communications [2].
A MIX-net consists of a series of servers, called MIXes (or MIX nodes), each of
which is associated with a public key. Each MIX receives encrypted messages,
which are then decrypted, batched, their order permuted, and forwarded on af-
ter stripping the sender’s name and identifying information. Chaum also proved
security of MIXes against a passive adversary who can eavesdrop on all commu-
nications between MIXes but is unable to observe the permutation inside each
MIX. That is, the view of a passive adversary gives negliglible advantage over
guessing in linking messages with their senders and receivers.
Current research directions on MIX-nets include “stop-and-go” MIX-nets [8],

distributed “flash MIXes” [7] and their weaknesses [3, 13], and hybrid MIXes [14].
Previous work primarily investigates the robustness of MIX-nets in the context
of a distributed MIX system [7]. A MIX is considered robust if it survives the
failure of any k of n participating servers, for some threshold k. This robustness
is all or nothing: either k servers are good and the MIX works, or they are not
good and the MIX likely will not work.
Robustness has been achieved primarily via zero-knowledge proofs of correct

computation. Jakobsson showed how to use precomputation to reduce the over-
head of such a MIX network to about 160 modular multiplications per message
per server [7], but the protocol was later found to be flawed [13] by Mitsumo
and Kurosawa. Desmedt and Kurosawa’s alternate approach [3] requires many
participating servers. Abe’s MIX [1] provides universal verifiability in which any
observer can determine after the fact whether a MIX cheated, but the protocol
is still computationally expensive.
Our notion of reliability differs from robustness in that we do not try to

ensure that messages are delivered even when some nodes fail. Instead, we focus
on improving a sender’s long-term odds of choosing a MIX path that avoids
failing nodes. We note that the two approaches can be composed: a distributed
MIX with robustness guarantees can be considered as a single node with its own
reputation in a larger MIX-net.

2.2 Deployed Remailer Systems

The first widespread public implementations of MIXes were produced by the
cypherpunks mailing list. These “Type I” anonymous remailers were inspired



both by the problems surrounding the anon.penet.fi service [6], and by theo-
retical work on MIXes. Hughes wrote the first cypherpunks anonymous remailer
[11]; Finney followed closely with a collection of scripts which used Phil Zimmer-
mann’s PGP to encrypt and decrypt remailed messages. Later, Cottrell imple-
mented the Mixmaster system [4], or “Type II” remailers, which added message
padding, message pools, and other MIX features lacking in the cypherpunk re-
mailers. At about the same time, Gulcu and Tsudik introduced the Babel system
[5], which also created a practical remailer design (although one that never saw
widespread use).

2.3 Remailer Statistics

Levien’s statistics pages [12] track both remailer capabilities (such as what kinds
of encryption the remailer supports) and remailer up-times, observed by pinging
the machines in question and by sending test messages through each machine
or group of machines. Such reputation systems improve the reliability of MIX-
nets by allowing users to avoid choosing unreliable MIXes. The Jack B Nymble
2 remailer client [15] allows users to import statistics files and can then pick
remailers according to that data. Users can specify minimum reliability scores,
decide that a remailer should always or never be used, and specify maximum
latency.

2.4 Three Approaches to MIX-Net Reliability

We can build protocols which give specific guarantees of robustness and relia-
bility, and prove theorems about these protocols in suitably specified adversary
models. These results may be quite strong, e.g. “this distributed MIX delivers
correctly if no more than half of its participating servers are corrupt,” yet the
resulting protocols may be complicated and inefficient.
Instead of engineering the MIX-net protocol directly to provide reliability,

we can make use of reputations to track MIX performance. In this approach,
we specify a set of behaviors which characterize a “good” or “bad” MIX. Unlike
the reliability via protocol approach, we are not likely to prove strong theorems.
The goal of reputation is to make the system “better” without guaranteeing
perfection.
A third option is to create economic incentives for MIXes to stay reliable,

or ensure that an adversary who wishes to compromise reliability must spend
a large amount of resources. Currently, Zero-Knowledge Systems is exploring
this approach by paying MIXes for consistent reliability and performance in the
Freedom network [17]. Another variant on this approach is to introduce the use
of payments for each message sent through a MIX.
Reliability via protocol is the most well-studied approach, while reliability

via reputations in the form of Levien statistics is the most widely used. Our
work combines the two approaches: we modify the MIX-net protocol to support
easy tallying of MIX failures and then specify a suitable reputation system.



3 A MIX-net With Witnessed Failures

Verification of transactions in cryptographic protocols is commonly supported
either by performing the transaction publicly, or by using digitally signed re-
ceipts. We use the latter notion to develop a design in which MIXes provide a
receipt for each message they receive.

The sender Alice can query a MIX to see if it has proof that it attempted
to follow the protocol. But the MIX might refuse to provide Alice a receipt for
a particular message either because it failed to send the message, or because
it was unable to obtain a receipt from the next hop. We solve the problem of
pinpointing failures as follows: each message has a deadline by which it must be
sent to the next MIX. A MIX Ni first tries to send a message directly to the next
node, Ni+1. If Ni has not received a valid receipt by a specified period before the
deadline, it enlists several witnesses, who will each independently try to send the
message and obtain a receipt. Each witness that obtains a valid receipt sends it
back to Ni. Any witness that doesn’t will be convinced that Ni+1 is unreliable,
and provides Ni with a signed statement to that effect.

Alice Ni

w1

w2

w3

Ni+1 Bob

Mi+1

Mi+1

Mi+1

Mi+1

Mi+1

RcptRcpt

Stmt

Fig. 1. Message flow example

Thus for each message a MIX sends, it will either have a receipt showing
that it processed the message in the time allowed, or statements signed by any
witnesses it chooses, asserting that the next MIX did not follow the protocol.
We will describe a protocol which uses these receipts and statements to allow
the sender of a failed message to demonstrate that a particular node on the path
failed.



The above argument does not explicitly consider the possibility that several
consecutive MIXes are controlled by an adversary; we cover that in Section 3.5.

While witnesses must be trusted to respond to requests, they need not be
trusted to preserve anonymity, since the messages sent to them are no more
than the view of a passive adversary with complete network access. Therefore,
the proofs of sender and receiver unlinkability that apply to traditional MIX-net
protocols still hold.

3.1 Cryptographic Algorithms

We require a public-key encryption scheme, which should be semantically secure
under adaptive chosen ciphertext attack, and a public-key signature scheme,
which should be existentially unforgeable under adaptive chosen message attack.

The encryption scheme is modelled as a key pair generation algorithm GE , a
randomized encryption algorithm E, and a deterministic decryption algorithm
D. The encryption notation explicitly includes the random value: Er

i (M) means
the encryption of messageM and random value r under the public key of Ni. We
assume that if Ni’s key pair is valid (i.e. was generated by GE), Di(E

r
i (M)) =M

for any plaintext M and random value r.

The signature scheme is modelled as a key pair generation algorithm GS , a
signing algorithm Sign, and a verification algorithm V er. The notation Signi(M)
means the signature of M under the private key of Ni, and V eri(Sig,M) = 1 if
Sig is a valid signature by Ni on M , or 0 otherwise.

We also assume that authentic, distinct encryption and verification public
keys for each MIX are known to all parties. Message recipients are treated as
MIXes.

3.2 Overall MIX-net design

Alice wants to send Bob a message anonymously. She chooses a path through
the network consisting of k − 1 MIXes, N1 . . . Nk−1. Alice repeatedly “onion”
encrypts her message, and sends the onion to the first MIX in her path. That
MIX returns a receipt, processes the onion, and passes the unwrapped-by-one-
layer onion to the next MIX, which repeats these steps. If the message does not
reach Bob, the transaction has failed. (Section 3.6 shows how to use “end-to-end
receipts” to ensure that Alice knows when this has occurred.)

Our system should be able to identify the MIX that caused the failure:

– Goal 1, Identify failure: If Ni fails to pass on a well-formed message within
the allowed time to the next node Ni+1, then Alice can prove to any third
party that Ni was the failing MIX (the completeness property).

– Goal 2, Reject false claims: No participant (including Alice) can claim
that Ni failed to pass on a well-formed message to Ni+1 in time, unless it
really did fail (the soundness property).



3.3 Timing Model

We consider time to be split into periods, each of length one time unit, corre-
sponding to batches of messages sent by MIXes. A message received by Ni in
the period ending at time t will have timestamp t on the corresponding receipt
signed by Ni. If Ni is not the final recipient, the message must be sent to Ni+1

in the next period. That is, the deadline for sending it to Ni+1 is t+ 1.
All parties (MIXes, witnesses, senders of messages, and verifiers of failure

claims) have clocks that are loosely synchronized (within Tε of the global time).
Sending a message over a network is assumed to take Tcomm in the worst case.
Therefore, a party needing to send a message by time t should send it before
t−Tε−Tcomm according to its local clock, because its local clock may be slow, and
because it must allow time for the network communication. A party expecting
a message by time t should allow it to be received as late as t+ Tε according to
its local clock, since its clock may be fast.
The protocol requires several system-wide time constants:
Tresponse is the time that a MIX is allowed between receiving a message and

providing a receipt.
Tmargin is the length of time before the deadline at which a MIX will attempt

to send a message via the witnesses, if it has not been able to obtain a receipt
directly from the next node.

Tretain is the time (number of periods) for which receipts are retained by
MIXes. That is, if a MIX is asked for a receipt in the period ending at t, it
need only provide it if the receipt has timestamp t− Tretain or later. This value
determines the length of time for which failure claims can be directly verified.

Time

t

Period t+ 1

t+ 1

Period t+ 2

t+ 2
A

Tmargin

B C

Tresponse

Fig. 2. Timing example

Figure 2 depicts an example time line (showing only global time):

– time A is the point at which Ni stops trying to send to Ni+1 directly.
– time B is when a witness w tries to contact Ni+1.
– time C is the latest time at which Ni+1 can respond to w with a receipt (this
could also be before the deadline t+1).



3.4 Transmitting a Message

This section describes the protocol for transmitting a message from Alice to Bob.

Procedure Transmit(Alice, Bob, P laintext):

1. Alice chooses k − 1 MIXes N1, . . . Nk−1 to form a “MIX path”. Let N0 be
Alice, and let Nk be Bob.

2. Alice picks k random seed values r1, r2, . . . rk.
3. Alice creates an initial packet M1, defined as

M1 = Er1
1 (N2, E

r2
2 (N3, . . . E

rk−1

k−1
(Bob,Erk

k (Plaintext)) . . .))

4. Let now be Alice’s current local time, and let Deadline1 = dnowe.
5. Try to send M1 and Deadline1 directly to N1, waiting for a receipt.
6. If a receipt Rcpt is received, check that

V erdest(Rcpt,“Receipt: M1, Deadline1”) = 1; if so, stop.
7. If no receipt is returned, set Deadline1 := Deadline1 + 1, and use the pro-
cedure Hop-send(N1,M1, Deadline1) below to resend M1 to N1.

If all parties follow the protocol, the message will then be processed by
N1, . . . Nk−1 as follows:

– N1 reads M1 from Alice, and processes it according to the procedure
Hop-receive(Alice,N1,M1, Deadline1).

– N1 decrypts M1 to give (N2,M2), where

M2 = Er2
2 (N3, . . . E

rk−1

k−1
(Bob,Erk

k (Plaintext)) . . .)

– Let Deadline2 = Deadline1 + 1.
– N1 uses the procedure Hop-send(N2,M2, Deadline2) to send M2 to N2.
– This process is repeated by N2, which sends M3 to N3, and so on for

N3, N4, . . . Nk−1.
– Eventually, Erk

k (Plaintext) is sent to Bob. Bob can decrypt this message,
so the plaintext has successfully been transmitted.

Procedure Hop-send(Ndest, Message, Deadline):

1. Try to send Message and Deadline to Ndest directly, waiting for a receipt.
2. If a receipt Rcpt is received, check that

V erdest(Rcpt,“Receipt: Message,Deadline”) = 1.
3. If a valid receipt is not received before Deadline − Tmargin − Tε (by the
sending node’s local clock),
(a) Let W be a set of witnesses.
(b) Send “Witness: Ndest,Message,Deadline” to each w ∈ W (causing

Witness to be called on each w). Wait for any w to send back a re-
ceipt.



(c) If a receipt Rcpt is received, check that
V erdest(Rcpt,“Receipt: Message,Deadline”) = 1.

(d) If no valid receipt is received, store any statements returned by the wit-
nesses.

Note that an imposter witness or MIX may send fake receipts to the sender
in order to try to confuse it. The sender should ignore any receipts that are not
valid. If the sender receives more than one valid receipt, it need only store one
(chosen arbitrarily).

Procedure Hop-receive(Nsrc, Ndest, Message, Deadline):

1. Let now be the current time.
2. If now > Deadline+ Tε or now < Deadline− 1− Tε, drop the message and
respond with an error.

3. Otherwise, decrypt Message, and queue for transmission in the next period
by Hop-send.

4. Send back the receipt Signdest(“Receipt: Message,Deadline”) to Nsrc.

Procedure Witness(Nsrc, Ndest, Message, Deadline):

1. Let now be the current time.
2. (The witness must be sure that Ndest has time to respond:) If now >

Deadline − Tcomm − Tε or now < Deadline − 1 + Tε, drop the message
and respond with an error.

3. Try to send Message to Ndest directly, waiting for a receipt.
4. If a receipt Rcpt is received, check that

V erdest(Rcpt,“Receipt:Message,Deadline”) = 1. If so, send it back toNsrc.
5. If a valid receipt is not received before Deadline+ Tresponse + Tε, Ndest has
failed; send back a statement “Failed: Ndest,Message,Deadline”, signed by
the witness, to Nsrc.

3.5 Identifying and Proving Failed Transactions

Alice can prove to any chosen verifier (call him Victor) a claim that a MIX failed
to deliver a message. Section 4 describes Victor’s duty in our reputation system.
Suppose that Ni (1 ≤ i < k) is the first node on the path that does not follow

the protocol, i.e., it fails to handle a message Mi that Ni−1 sends to it, within
the allowed time. Alice wants to prove to Victor that Ni failed to process this
message (which she might discover by a binary search over her MIX path).
Because Ni−1 behaved according to protocol, it will have a receipt Rcpti for

the messageMi with deadlineDeadlinei. As Alice knows all the random padding
values, she can compute the message that Ni is supposed to send to Ni+1:

(Ni+1,Mi+1) = Di(Mi) = (Ni+1, E
ri+1

i+1 (. . . E
rk−1

k−1
(Bob,Erk

k (Plaintext)) . . .))

She suspects that Mi+1 was not sent to Ni+1, so she prepares a claim by
obtaining the Rcpti from Ni−1, and calculatingMi+1 as above. Then Alice sends
“I blame Ni, claim: ri, Ni+1,Mi+1, Deadlinei, Rcpti”, which Victor verifies:



Procedure Verify-claim(Ni, ri, Ni+1, Mi+1, Deadlinei, Rcpti):

1. Check that Ni and Ni+1 refer to valid MIXes, andMi+1 is the correct length
for an intermediate message.

2. Calculate Mi = Eri

i (Ni+1,Mi+1), and check that
V eri(Rcpti,“Receipt: Mi, Deadlinei”) = 1.

3. Let now be the current time. If Deadlinei + 1 < now − Tretain + Tε, then
it is too late for the claim to be verified, since Ni may legitimately have
discarded its receipt; the claim is therefore rejected.

4. Send “Receipt request: Ni+1,Mi+1” to Ni.
5. If “Receipt response: Rcpti+1, T imestamp” is received from Ni within time

Tresponse, such that V eri+1(Rcpti+1,“Receipt: Mi+1, T imestamp”) = 1
and Timestamp ≤ Deadlinei + 1, then reject the claim.

6. If statements “Failed: Ni+1,Mi+1, T imestamp” signed by a sufficient set of
witnesses are received, for some Timestamp ≤ Deadlinei+1, conclude that
Ni made a reasonable attempt to send the message, and reject the claim.
(See Section 3.7 for discussion of trust requirements on witnesses.)

7. Otherwise, conclude that Ni failed – either because it did not process the
original message, or because it did not respond to the receipt request.

Proving that a delivery failure results in a proper claim: Ni+1 will only
give out a receipt for which V eri+1(Rcpti+1,“Receipt:Mi+1, Deadlinei+1”) = 1
if it received the messageMi+1 by time Deadlinei+1. If it did not receiveMi+1

by then, assuming Ni+1’s signatures cannot be forged, Ni will not be able to
provide such a signature. Thus, Victor will conclude that it failed.
NodeNi+1 might be controlled by the adversary; in this case, it might provide

a receipt on Mi+1 in order to exonerate Ni, even though Mi was not actually
processed. However, Alice can then use this receipt in the same protocol to
attempt to prove that Ni+1 failed. Therefore, the adversary will be able to choose
which of the contiguous MIXes it controls can be proven unreliable. However,
since there are only k − 2 other nodes on the path, Alice will be able to prove
that some node failed, after at most k − 1 iterations of the protocol.
Because Alice can always prove that some MIX failed if it did in fact fail, we

satisfy Goal 1, being able to identify failures in the MIX-net.
We note that knowledge of the fact that Ni and Ni+1 are part of Alice’s

chosen path is not part of the view of a passive adversary in a normal MIX-net
protocol. The closer Ni+1 is to the end of the path, the more likely it is that
this additional information will allow an adversary to link Alice with Bob. To
avoid giving away this information, Alice may send all the messages needed for
the failure proof over the MIX-net. When requesting receipts she can include a
reply block, so that the node will be able to send back the receipt while Alice
remains anonymous.
It may seem circular to rely on the MIX-net to send messages needed for a

failure proof, when the goal of the proof protocol is to improve MIX-net relia-
bility. However, since these messages are only used to prove failure and do not
convey any other information, it is not critical that all of them are successfully



transmitted. Alice can repeat any attempts to obtain receipts and to send the
claim message to Victor as often as necessary, using random independent paths
for each attempt. This will succeed quickly provided the probability of a message
making it through the MIX-net (from Alice) is not too small.

Proving that false claims are rejected: We wish to show that no participant
can claim that Ni failed to pass on a well-formed message sent by Alice to Ni+1,
unless it really did fail to send such a message. Without loss of generality, we
will consider the adversary to be Alice.
Recall that Alice’s claim to Victor is of the form “I blame Ni, claim: ri, Ni+1,

Mi+1, Deadlinei, Rcpti”. Victor then calculates Mi = Eri

i (Ni+1,Mi+1). De-
crypting both sides, we obtain Di(Mi) = (Ni+1,Mi+1), assuming Ni’s key pair
is valid.1

– Suppose Alice caused the message Mi to be sent to Ni by time Deadlinei,
and then tried to claim that Ni failed. A well-behaving Ni will decrypt Mi

to give the next hop and intermediate message (Ni+1,Mi+1), and try to
send Mi+1 to Ni+1 using Hop-send. Either Ni will obtain a receipt for this
message (signed by Ni+1 and having the timestamp Deadlinei + 1), that
refutes Alice’s claim, or it will have signed statements from a sufficient set
of witnesses (see Section 3.7) saying that Ni+1 refused to provide a receipt
when it was obliged to do so. In either case, Ni will be exonerated.

– Suppose Alice did not cause Mi to be sent to Ni by Deadlinei.
In order to make a credible claim, Alice needs a receipt Rcpti such that
V eri(Rcpti,“Receipt: Mi, Deadlinei”) = 1 (since Victor will check this).
However, if Ni did not receiveMi, it will not have given out any such receipt,
and so assuming thatNi’s signatures cannot be forged,

2 it will be exonerated.

A node could also be falsely accused of failure if there are “sufficient” witness
statements against it as defined in Section 3.7. We assume that this does not
occur, because the adversary is not able to subvert witnesses in the core group.
Therefore, we satisfy Goal 2. Note that the above argument covers the case

in which Alice attempts to send messages to Ni that either do not decrypt, or
decrypt to ill-formed plaintexts, since we have proven that for Alice’s claim to
be accepted, Ni must have received a message with a well-formed (Ni+1,Mi+1)
pair as the plaintext.
Many MIX-net protocols require MIXes to refuse to pass on a message if

it is a replay — a message the MIX had already received within a given time
period (see [5] for a rationale). We prevent MIXes from losing reputation because
of this behavior as follows. When a MIX receives a replayed message (using
Hop-receive as normal), it will already have a receipt from the previous time it

1 We can assume that Ni’s public key is valid because it is chosen by Ni, who could
only hurt its own reputation via an invalid key.

2 We take the position that if Ni’s private key has been compromised, it should be
considered to have failed.



sent that message (or else witness statements showing that it tried to send it).
Steps 5 and 6 of Verify-claim show that it can provide the earlier receipt or
statements when challenged with a failure claim. We define the length of time for
which replays are remembered to be the same as Tretain. A MIX that receives a
replayed message should delay the expiration of the earlier receipt or statements
for a further Tretain periods.

3.6 End-to-End Receipts

If Alice is posting to a public forum like Usenet, she (and any verifier) can see
whether the message was posted correctly. Otherwise, if the MIX-net supports
reply blocks or another method for two-way communication, Bob’s software can
immediately send an end-to-end receipt back through the MIX-net to Alice. Since
a failure can also occur on the return path, Alice should be able to prove one of
three cases: a MIX on the forward path failed; a MIX on the reply path failed;
or Bob failed to send a receipt.
With careful design of message formats, it is possible to make receipt mes-

sages indistinguishable from forward messages to nodes on the reply path. In
that case, the same protocol used to claim failures in sending forward messages
will be applicable to reply messages.

3.7 Trust Requirements for Witnesses

Dishonest witnesses do not compromise anonymity, but they can compromise
reliability. Witnesses could either refuse to give a statement or receipt for a MIX
that has failed, or (especially if users trust an arbitrary set of witnesses chosen
by a sending node) make false statements in order to frame a MIX that has not
in fact failed. We suggest defining a core group of witnesses who are relatively
widely trusted. If some threshold number of this core group provide statements
implying that a node Ni+1 has failed, that would be considered sufficient for the
purposes of Verify-claim. Specifying a fixed (or even slowly changing) group of
witnesses is not ideal, but if the messages sent to this group are also published,
other parties can duplicate their actions and gain confidence in their behavior.

4 Reputation Systems

Reputations have been suggested as a means of improving MIX-net reliability
[10, 12]. In layering on a reputation system, we add two more agents to the
system. Raters make observations about the performance or honesty of MIXes.
In our case, the raters are both the sender Alice and any MIXes that make use
of the witnesses. Scorers tally observations from raters and make these tallies
(or scores) available. For simplicity, we choose to give the scorer the duties of
verifier and witness as well.
As in [15], sender software must be configurable to automatically use scores.

Any user of the MIX-net must be able to contribute ratings. The scoring system



must be verifiable: scorers can determine the credibility of ratings, and other
users can verify that scorers are tallying ratings correctly. Clients must be able
to draw conclusions from scores that lead to “good” predictions. The overall
scoring algorithm must be dynamic, recognizing and reflecting recent trends
in MIX performance. While achieving all of these goals, the system must also
maintain the level of anonymity provided by the MIX-net.

4.1 Reputation System Overview

We introduce a set of scorers, each named Sally. Each Sally keeps her own
database of performance scores for MIXes. She receives, verifies, and tallies fail-
ure claims. Sally also sends test messages to distinguish reliable MIXes (few
delivery failures due to good performance) from new MIXes (few delivery fail-
ures because nobody has tried them yet).
If we simply count the number of messages that each MIX drops, an effective

attack would be to constantly add new unreliable MIXes. Therefore scores in-
clude both a count of negative ratings, and also a “minimum number of positive
ratings” requirement, which is a threshold configurable on the client side. Client
software downloads Sally’s reputation database, and allows the user to specify
parameters when selecting acceptable MIX paths, such as “expected success of
transmission”.
If our assumptions in Section 3.5 hold, there is no way to spoof negative

ratings. Note that an adversary may be able to force negative ratings on a MIX,
while goal 2 still holds: if he floods that MIX’s incoming bandwidth (either di-
rectly or via witnesses), the MIX will no longer be able to sustain the load.
However, this is exactly the point where the MIX demonstrates that it is un-
reliable. Causing MIXes to lose reputation in the face of successful flooding is
consistent with our scoring system goals: the scoring system measures reliability
and capabilities, not intent.

4.2 Increasing Confidence in Positive Ratings

An adversary can easily fake a positive rating by building a message which uses
a MIX path entirely owned by him, and then generating a transcript which
“proves” successful transmission. We need to make positive ratings actually re-
flect a MIX’s ability to successfully deliver Alice’s message in the future.
One approach to making positive ratings more reliable (and thus more mean-

ingful) is to build a graph based on rater credibility such as that employed by
Advogato [9]. Similar to the PGP web of trust, this metric aims to reduce the
damage that an adversary can cause by pseudospoofing – creating a multitude
of identities each controlled by that adversary. Another approach is to treat
reputation as a probability: an estimate of the expected outcome of a transac-
tion with that MIX. Scores might simply be the sum of ratings, normalized and
weighted by the credibility of raters. Other designs employ neural networks or
data clustering techniques to apply non-linear fitting and optimization systems
to the field of reputation.



Our solution emphasizes simplicity and ease of implementation and eval-
uation. We solve the positive rating credibility problem by having each Sally
produce positive ratings herself — after all, if Sally sends the test messages her-
self, she knows they are unbiased ratings. MIXes that process her message will
earn positive ratings that Sally knows to be accurate.
It may be possible for an adversary to guess whether a message has been

received directly from a sender (i.e. the adversary is the first hop on the path,
N1), or if it is being sent to the final recipient (i.e. the adversary is Nk−1).
Unfortunately, it is difficult to produce simulated messages that are completely
indistinguishable from real messages in these cases. We do not have a fully
satisfactory solution to this for positive ratings; instead, we rely on negative
ratings to expose an adversary that behaves unreliably only when it is the first
or last hop.
Sally should expire her memories of transactions after a certain amount of

time so that old failures do not haunt a MIX forever. Similarly, MIXes need
to have a threshold of recent successes in order to stay “in the running”. Alice
configures her client software to choose only MIXes that have some minimum
number of positive ratings. Out of this pool, she weights the MIXes she uses for
her path based on the number of verified delivery failures observed for this MIX.
This system reacts quickly to a decrease in reliability of a MIX. A MIX with

high reputation will have many users routing messages through it. if it suddenly
stops delivering messages, these users will quickly deliver a series of negative
ratings. This negative feedback process serves to stabilize the system so scores
reflect reality.
For redundancy and to allow verifiability of scorers, Alice can remember

which mails had a corresponding end-to-end receipt, tally her transactions, and
build her own score table in which she is confident of both the positive ratings
and the negative ratings. Periodically comparing her score tables with those of
the available Sally’s allows Alice to “test the waters” herself and weakens the
trust requirements on scorers. If claims for dropped messages are published,
anybody can verify them. Thus Alice might keep track of negative ratings for a
few weeks, then compare with Sally to determine if Sally’s scores are actually
reflecting all of the negative ratings.

4.3 Implications for Traffic Analysis

The addition of witnesses to the protocol may introduce new attacks. Direct com-
munications between nodes can use link encryption, but encrypting the messages
to witnesses would have little benefit (and would be incompatible with publish-
ing these messages, as suggested in Section 3.7). So if an adversary can force
the witnesses to be used instead of direct communication, this may weaken the
security of the network.
The reputation system also introduces new attacks. Eve could gain a high

reputation and thus get more traffic routed through her MIX, in order to make
traffic analysis easier. In a system without reputations, the way to purchase more
traffic to analyze is not so clear; now it is simply a matter of maintaining a reliable



MIX. In addition, the adversary now has incentive to degrade or sabotage the
performance of other nodes to make his relative reputation higher. This kind of
attack was described by RProcess as “selective denial of service”: the bad guys
want traffic to go through their nodes, so they ensure that all other nodes are
less reliable [16]. As recent distributed denial of service attacks demonstrate,
crippling an Internet host can be easy. Scorers must expire ratings promptly
enough to prevent an adversary from easily tarnishing the reputations of all
other MIXes; this system tuning will be extremely complex and difficult.

On the other hand, we may be making the system more anonymous by mak-
ing it more reliable. Currently, users may have to send a message many different
times, through many different paths, before it gets through. These re-sends of
the same message offer more information to traffic analyzers. A better theoret-
ical framework for traffic analysis needs to be established before we can make
any quantifiable statements about the implications of the proposed protocol.

5 Conclusion and Future Directions

We have described a reputation system for remailer networks, based on a MIX-
net design that employs receipts for intermediate messages. There are a number
of directions for future research:

– Create a “reliability metric” and an accompanying model which will allow
us to quantify the behavior of our reputation system. For instance, we might
consider as a metric the expected probability of a message making it from
sender to receiver. Then we would calculate reliability with and without the
reputation system in place and see whether reliability improves. A parallel
model characterizing efficiency of a MIX network might be very enlightening,
especially from a network flow optimization viewpoint.

– Can we achieve some further measure of reliability (or resource management)
through the use of electronic cash or similar accountability measures?

– Can we defend against the selective DoS attack described in Section 4.3?
How can we protect against adversaries who want their MIXes listed as
most reliable?

– Can we make a reputation system that is both efficient and universally ver-
ifiable? Currently, only Alice can prove that a message did not reach its
destination. Can we apply zero-knowledge proofs so that Alice does not leak
any information about the next hop, while remaining practical? Can we
extend this so that anyone can detect a failed MIX?

This paper provides a foundation for further analysis of MIX-net reliability
and reputations. Our reputation system is designed to be simple and easily
extensible. Much work remains in a wide variety of directions before a reliable,
secure, and ubiquitous remailer network can be put in place.



Acknowledgements

We thank Nick Mathewson and Blake Meike for help with the reputation system;
Nick Feamster, Kevin Fu, Chris Laas, Anna Lysyanskaya, and Marc Waldman
for discussions; and our anonymous reviewers for many useful comments.

References

1. Masayuki Abe. Universally verifiable MIX with verification work independent of
the number of MIX servers. In Advances in Cryptology - EUROCRYPT 1998,

LNCS Vol. 1403. Springer-Verlag, 1998.
2. David Chaum. Untraceable electronic mail, return addresses, and digital pseudo-

nyms. Communications of the ACM, 4(2), February 1982.
3. Yvo Desmedt and Kaoru Kurosawa. How to break a practical MIX and design

a new one. In Advances in Cryptology - EUROCRYPT 2000, LNCS Vol. 1803.
Springer-Verlag, 2000.

4. Electronic Frontiers Georgia (EFGA). Anonymous remailer information.
<http://anon.efga.org/Remailers/>.

5. C. Gulcu and G. Tsudik. Mixing E-mail with Babel. In Network and Distributed

Security Symposium - NDSS ’96. IEEE, 1996.
6. J. Helsingius. anon.penet.fi press release.

<http://www.penet.fi/press-english.html>.
7. Markus Jakobsson. Flash Mixing. In Principles of Distributed Computing - PODC

’99. ACM, 1999.
8. D. Kesdogan, M. Egner, and T. Büschkes. Stop-and-go MIXes providing prob-

abilistic anonymity in an open system. In Information Hiding Workshop 1998,

LNCS Vol. 1525. Springer Verlag, 1998.
9. Raph Levien. Advogato’s trust metric.

<http://www.advogato.org/trust-metric.html>.
10. Tim May. Cyphernomicon.

<http://www2.pro-ns.net/˜crypto/cyphernomicon.html>.
11. Tim May. Description of early remailer history. E-mail archived at <http://

www.inet-one.com/cypherpunks/dir.1996.08.29-1996.09.04/msg00431.html>.
12. Tim May. Description of Levien’s pinging service.

<http://www2.pro-ns.net/˜crypto/chapter8.html>.
13. M. Mitomo and K. Kurosawa. Attack for Flash MIX. In Advances in Cryptology -

ASIACRYPT 2000, LNCS Vol. 1976. Springer-Verlag, 2000.
14. M. Ohkubo and M. Abe. A Length-Invariant Hybrid MIX. In Advances in Cryp-

tology - ASIACRYPT 2000, LNCS Vol. 1976. Springer-Verlag, 2000.
15. RProcess. Potato Software. <http://www.skuz.net/potatoware/>.
16. RProcess. Selective denial of service attacks.

<http://www.eff.org/pub/Privacy/Anonymity/1999 09 DoS remail vuln.html>.
17. Zero Knowledge Systems. Freedom version 2 white papers.

<http://www.freedom.net/info/whitepapers/>.


