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Abstract. A user is only anonymous within a set of other users. Hence,
the core functionality of an anonymity providing technique is to establish
an anonymity set. In open environments, such as the Internet, the estab-
lished anonymity sets in the whole are observable and change with every
anonymous communication. We use this fact of changing anonymity sets
and present a model where we can determine the protection limit of an
anonymity technique, i.e. the number of observations required for an at-
tacker to “break” uniquely a given anonymity technique. In this paper,
we use the popular MIX method to demonstrate our attack. The MIX
method forms the basis of most of the today’s deployments of anonymity
services (e.g. Freedom, Onion Routing, Webmix). We note that our ap-
proach is general and can be applied equally well to other anonymity
providing techniques.

1 Introduction

Anonymity and unobservability techniques to prevent network traffic analysis
are not new. The basic techniques in this area date back to the 1970’s and
1980’s when David Chaum and others suggested several revolutionary techniques
including broadcast and implicit addresses, MIXes and DC-Networks [1–5]. The
goal of these techniques is to preserve the privacy of users by hiding the traffic
information—who has communicated with whom, for how long and from which
location. Pfitzmann and Waidner presented the basic techniques in their seminal
paper [5]. Since then various enhancements and extensions in theory and practice
have been proposed. It can be shown that their technique forms the basis of the
most known works3 and that they can provide perfect4 protection if applied in

3 In more recent times, a new technique providing perfect protection was discovered
independently by two different groups [6, 7]. This technique, known as Private Infor-
mation Retrieval (PIR), has similarities to the DC-Networks.

4 MIX technique uses public key encryption, thus the technique provides perfect
anonymity, iff encryption is not considered as a limiting factor [2, 8].



closed environments, e.g. the number of users is known and is not too large (say
less than 1000).

Among these techniques, the MIX concept can be considered as the most
popular and deployment friendly. As a result, it has been proposed for various
networks like GSM, ISDN and the Internet [9–14, etc.]. Since these networks
cannot be considered as closed environments, a natural question arises: what
happens to the protection level of anonymity providing techniques when the
application environment changes from closed to open? In this paper, we address
this question.

2 Basic Notions: Open environments, Anonymity and
Anonymity Set

The challenge for anonymity-providing techniques in an open environment is to
accomplish their basic goal even if:

a) The underlying communication network is global and is not subject to any
topology restrictions. And as a consequence of this, we assume:
• The set of users of an anonymity technique is an undetermined subset

of all subjects worldwide.
• There are no general time agreements between these subjects, thus the

participants of the anonymity technique vary from time to time.
b) The attacker5 E is able to tap all transmission lines of the communication

network and controls all but one intermediary switching node. The attacker
E is not able to break the cryptographic techniques chosen in the commu-
nication network.

The question now is how to hide the existence of any communication relationship,
i.e. that a message was sent (sender anonymity) or received (receiver anonymity)
by a user. Although the content of a message can be effectively protected by cryp-
tographic techniques, the use of cryptography alone cannot guarantee anonymity.
The omnipresent attacker E can observe the sender of a message and follow the
message up to the receiver, thereby detecting the communication relation with-
out any need to read the content of the transmitted message.

Hence, the decisive goal of an anonymity technique is to organize additional
traffic in order to confuse the adversary and conceal communication relation-
ships. To achieve this goal, the sender and/or receiver of a message must be
embedded in a so-called anonymity set [15].

Definition 1 Given an attacker model E and a finite set of all users Ψ . Let R
be a role for the user (sender or recipient) with respect to a message M . If, for
an attacker according to model E, the a-posteriori probability p that a user u ∈ Ψ
has the role R with respect to M is non-zero (p > 0), then u is an element of the

5 Note that the same attacker model in open environments leads to a stronger attacker
than in closed environments.



anonymity set A ⊆ Ψ . A technique (method) provides an anonymity set of size
n if the cardinality of A is n (n ∈ N).

Thus, the sender or the receiver is anonymous only within the anonymity set.
In the proposed open environment scenarios, the anonymity set of a particular
user would change with time, and indeed, the changing anonymity sets of a
particular user may be disjoint, be the same or may overlap. In our work we
analyze these changing anonymity sets and show that it is possible to discover all
peer communication partners of a chosen subject (e.g. of Alice) without requiring
a large number of anonymity sets of the subject.

In the next sections we will present the MIX technique and use it as the
object of our investigation.

3 The MIX Concept

MIXes collect a number of packets from distinct users (anonymity set) and pro-
cess them so that no participant, except the MIX itself and the sender of the
packet, can link an input packet to an output packet [2]. Therefore, the ap-
pearance (i.e. the bit pattern) and the order of the incoming packets have to be
changed within the MIX. The change of appearance is a cryptographic operation,
which is combined with a management procedure and a universal agreement to
achieve anonymity:

User Protocol: All generated data packets including address information are
padded to equal length (agreement), combined with a secret random number
RN , and encrypted with the public key of the MIX node (see also [16]). A
sequence of MIXes is used to increase the reliability of the system.

MIX Protocol: A MIX collects b packets (called batch) from distinct users
(identity verification), decrypts the packets with its private key, strips off the
RNs, and outputs the packets in a different order (lexicographically sorted
or randomly delayed). Furthermore, any incoming packet has to be compared
with formerly received packets (management: store in a local database) in
order to reject any duplicates. Every MIX (except the first) must include
a functionality ensuring that each received packet is from a distinct user,
e.g. apply an anonymous loop back6, because only the first MIX can decide
whether or not the packets are from distinct senders.

E.g. assume that Alice wants to send a packet M to Bob (Fig. 1). A must
encrypt the packet two times with the public keys ci of the respective MIXes
and include the random numbers RNi: c1(RN1, c2(RN2, B,M))

6 Loop back: Every MIX knows the sender anonymity set. It signs the received packets
and broadcasts them to the respective users. Each user inspects whether his own
packet is included or not and transmits a yes or no. The MIX goes on if it receives
yes from all members of the anonymity set.
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Fig. 1. Cascade of two mixes

Applying this protocol in closed environments where all subjects participate
in all anonymity sets, the MIX method provides full security. The relation be-
tween the sender and the recipient is hidden from an omnipresent attacker as
long as:

a) One honest MIX is in the line of the MIXes which the packet passes.
b) The (b − 1) other senders do not all cooperate with the attacker.

[8] states that the MIX method provides information-theoretic deterministic
anonymity based on complexity-theoretic secure cryptography.

3.1 Related Works: Vulnerabilities of the MIXes

In the literature, several attacks have been proposed on anonymity techniques
(see e.g. [17, 18, etc.]). Our work in this paper is most closely related to the inter-
section attack. The intersection attack gains information about a targeted user
through repeated observations of the anonymity sets belonging to the targeted
user. Since the intersection of two different anonymity sets is likely to be smaller
than either of the anonymity sets (due to the assumed regularity in behavior),
different intersections of anonymity sets could be used to gain information about
the targeted user (see for such an analysis e.g. [18, 19]).

A more powerful attack is the (n−1)-Attack tackling directly the anonymity
function of a MIX [8]. If a MIX cannot decide whether the packets are from
different senders7, the attacker can intercept the incoming packets, isolate each
packet, and forward it together with (n − 1) of his own packets. This is also
known as a trickle attack [10]. Note that also MIX variants like MIXmaster [20]
are insecure against this attack [10, 21].

In [15] a MIX method (i.e. Stop-and-Go Mixes) an alternative approach is
suggested with the goal of providing probabilistic security against the (n − 1)-
Attack with a security parameter µ. It was shown that a linear change of this

7 Unfortunately, this is the case for all deployments in the Internet. Either the loop
back functionality is not implemented or they assume a global Public Key Infras-
tructure (PKI), which is not existent yet.



parameter µ should have an exponential effect on the protection level of the
method and on the achieved anonymity size n. However, recent research work
[22, 23] limits the exponential effect on the size of the anonymity set by ne-
glecting small probabilities, e.g. by neglecting all participants with a-posteriori
probability less than p ≤ 0.0001 (see Definition 1).

In our work we abstract from a special MIX realization and assume that a
MIX can build a secure anonymity set. Furthermore, we assume that all known
or unknown problems (i.e. vulnerabilities) attacking the anonymity function of
a MIX are solved. These assumptions allow us to compute the fundamental
weakness of anonymity techniques regardless of a particular implementation. To
crystallize these notions, in the next section we will present a formal model of a
MIX.

4 Formal Model: The Random Communication Model
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Fig. 2. Formal Model

In the literature, several extensions and modifications (see e.g. [17]) have
been proposed to the original MIX technique. Since the focus of this paper is on
analyzing the fundamental protection bounds of MIXes, we will assume a formal
MIX model which is secure except for the fact that not all users are synchronized.

Our formal model is based on the following assumptions:

– There are N users U1, U2, . . . , UN in the system.
– The untraceability providing system, i.e. a MIX, provides perfect untrace-

ability between incoming and outgoing packets.
– The batch size of the system is b, where 1 < b < N , and a batch may contain

a receiver more than once. Thus, the size n of the anonymity set fulfills the
following condition n ≤ b (see also Definition 1).

– The b packets in a batch are created by b different senders.
– Alice is one of the senders Si, 1 � i � N , and she uses the system to hide

her m, 1 � m � N , communication partners.



– Alice chooses her communication partner in each communication uniformly
among her m partners.

– Other senders choose their communication partners uniformly among all N
users.

– The attacker E takes notice of each untraceable communication act of Alice.
This triggers the attacker to write down all recipients who are involved in
this untraceable communication process, that is, the attacker simply records
only those recipient sets which include a communication partner of Alice.
For the sake of simplicity, we will enumerate the time t with increasing integer
numbers whenever Alice sends a packet. Thus, when Alice communicates for
the first time, t = 1, when she communicates for the second time, t = 2, and
so on. We will denote the recipient set at time t by Rt = {R1

t , . . . , R
n
t }.

We now make several comments about these assumptions:

– Our formal model contains three essential parameters, namely user pop-
ulation N , batch size b, and the number of communication partners of
the intended target m. These parameters can be easily identified in other
anonymity providing techniques.

– The random communication behavior of the users determines the size of
anonymity set n.

– Typically in open environments, the total number of users N is large. The
anonymity size and the batch size (n ≤ b) is likely to be small in comparison
to N .

– Note that the number of communication partners of the intended target
(Alice) m includes pseudo partners chosen by the target for sending dummy
packets.

We note that our formal model contains three critical assumptions: Alice has
m communication partners, she chooses her communication partners at random,
and the recipient sets of all users are uncorrelated8. Later in this section, we
will provide a justification for these assumptions. However, before we can justify
these assumptions, we need to discuss our attack.

First, we make the following claim for our model:

Claim 1 The MIX method is insecure if m � �N/n�.

Proof A potential attacker can proceed in two stages: the learning phase and
the excluding phase. In the learning phase the attacker waits until he observes
m mutually disjoint recipient sets (R1, . . . , Rm), i.e., for all i �= j, Ri ∩ Rj = ∅.
After the learning phase, the attacker can be sure that in each set Ri, there is
only one peer communication partner of Alice. In the excluding phase of the
attack, the recipient sets (R1, . . . , Rm) are refined using further observations.
This can be done by using a new recipient set R which intersects with only one

8 This assumption leads to a uniform distribution for the (b − 1) other recipients in a
batch.



prior recipient set, that is, if R ∩ Ri �= ∅ and R ∩ Rj = ∅ for all j �= i. In that
case, Ri can be refined to Ri ∩R. The refinement process is continued until each
of the sets R1, . . . , Rm contains only one user. It is clear that the remaining m
users in R1, . . . , Rm are the communication partners of Alice. �

We call the above attack the disclosure attack.

4.1 Success of the Disclosure Attack

Since the senders are not coordinated, the probability that one of the phases
does not find the needed batches (i.e. m disjoint batches or batches that overlap
with only one of these) converges to zero as the number of observations grows.
Hence, we can deduce that with probability one the attack succeeds after a finite
number of observations. This number forms an upper bound on the protection
limit of the MIXes.

The number of observations that our attack needs to succeed clearly depends
on the composition of the batches, which can be seen as a stochastic process as
the senders are not coordinated. Thus the number of observations is a random
variable X. Our task is to calculate the statistical characteristics such as the
mean E(X) and the variance σ2 of this number.

4.2 Explanation of the Critical Assumptions

Now we can justify the three critical assumptions made in our formal model.
Clearly it is unrealistic to assume that Alice has a constant number of commu-
nication partners m for her whole life time. Thus, it is reasonable to restrict the
time to a period of T , where Alice communicates frequently to m peer partners.
Assuming this, following strategy can be applied to determine the number of
communication partners of Alice:

Assume, the real number of partners in a given time period is m̄.
If the attacker overestimates9 m such as m = m̄ − k where k > 0 and
k ∈ N, then the first phase of the disclosure attack can not be applied.
Thus, the attacker adjusts m to m := m − 1 and applies the first phase
again until the first phase is successful.

We note that the above strategy to find m could be computationally
intensive. However, in this paper we are interested in the fundamental
limits of the MIXes regardless of the computation power of the adversary.

The second critical assumption of our formal model, that is, Alice chooses
her communication partners randomly, is also unrealistic. However, here we are
interested just in the upper bounds on the protection provided by a MIX.

9 Of course, the attacker can only be sure that he has a false estimation for m, if he has
already “enough” observations to apply the disclosing attack. To decide the point
“when it is enough”, depends on the stochastic structure of the random model. We
will analyze this in the next sections.



Since some partners occur more frequently than others, the attacker
would need more observations to conclude the learning phase and the
excluding phase of the attack. Thus, the number computed by assuming
equally frequently partners would be a lower limit on the number of
observation required by an adversary. In other words, it would provide
an upper limit10 on the protection provided by the MIXes.

Our third assumption can also be justified on the similar grounds. If the
recipient sets for different users were correlated, then it would take an adversary
more time to conclude the learning and excluding phase. For example, this would
be the case, if another user had exactly the same set of recipients as Alice and
contributed frequently to the MIX. In this case any batch in which this user
and Alice send a packet would have two communication partner of Alice and the
observation would be useless for the learning phase. Thus our assumption leads
to a lower bound on the number of observations needed by an adversary, or in
other words, an upper limit on the protection level of the MIXes.

5 Simulation Results

In order to determine the statistical characteristics of the number of observation
required by an adversary, we wrote a simulator, which performs the attack de-
scribed above. In the following subsections, we will describe the four main parts
of this simulator.

5.1 Generating Observations

The simulator identifies each of the N possible recipients by a unique number out
of {1, . . . , N}. Without any loss of generality, we assume that the numbers of the
subset {1, . . . , m} represent the m communication partners of Alice. Hence, an
observation is represented by a set of b numbers out of {1, . . . , N}, where at least
one of these numbers is from the range {1, . . . , m}. To generate an observation,
the simulator draws randomly a single number out of {1, . . . , m} and (b−1) more
numbers out of {1, . . . , N}. Note that a recipient set may contain a number more
than once.

FUNCTION generateObservation(N,b,m)
r := random(1,m);
R := {r};
FOR i := 1 TO (b-1)
r := random(1,N);
R := R ∪ {r};

RETURN R;

10 In order to determine the protection bound of a security scheme two approaches are
common. Either the strongest possible attack which cannot break the scheme has to
be determined or the weakest attack which can break the scheme.



The function random(x,y) returns a random integer number out of the range
[x, . . . , y]. For simplicity, we use a standard random number generator that pro-
vides uniformly distributed numbers.

5.2 Learning Phase

The goal of the first phase is to find m mutually disjoint recipient sets. We are
interested in the number of observations that an attack needs to reach this goal.
The program iteratively generates new observations and checks if m recipient
sets of these observations are mutually disjoint. When the check is successful,
the number of observations and the found recipient sets are returned.

FUNCTION learning_phase(N,b,m)
t := 0;
O := ∅;
WHILE O = ∅

t := t + 1;
Rt := generate_observation(N,b,m);
O := find_disjoint_sets({R1,...,Rt},m);

RETURN t,O;

Clearly, the function find_disjoint_sets({R1,...,Rt},m) is the most in-
teresting part. It searches for m mutually disjoint sets within {R1, . . . , Rt}. Un-
fortunately, this problem turns out to be NP-complete. Note that solving this
problem is a serious matter for us, but not for the attacker, if he is assumed to
have unlimited computing power. In fact, the function find_disjoint_sets()
forms the major performance bottleneck of the simulation. Our approach to solve
this problem is to use enhanced backtracking algorithms. Therefore we transform
the problem into a binary Constraint Satisfaction Problem (binary CSP, see [24])
and use well-known backtracking methods on the transformed problem. A CSP
consists of a set of m variables X = {x1, . . . , xm}, a value domain Da for each
variable xa and a set of constraints. Each value domain is a finite set of values,
one of which must be assigned to the corresponding variable. A constraint is a
subset of the Cartesian product of the domains of some variables. This subset
contains all allowed combinations of values for the corresponding variables. In a
binary CSP all constraints are defined over pairs of variables. The goal of a CSP
is to assign a value to each variable, so that all constraints are satisfied.

FUNCTION find_disjoint_sets({R1,...,Rt},m);
csp := transform_to_csp({R1,...,Rt},m);
solution := solve_csp(csp);
O := retransform_solution(solution);
RETURN O;

A straightforward transformation is to take each observation Ri as a value
i (i = 1, . . . , t). Hence, the CSP is to assign values out of 1, . . . , t to the m
variables x1, . . . , xm , so that these values correspond to observations that are



mutually disjoint. Therefore, the binary constraints consist of all pairs of values,
whose corresponding observations are disjoint, i.e. the pair (xa = i, xb = j) is
allowed for all a, b ∈ {1, . . . ,m}, if and only if Ri ∩ Rj = ∅.

FUNCTION transform_to_csp({R1,...,Rt},m);
constraints := ∅;
FOR a := 1 TO m
Da := 1,...,m; (domain of variable xa)

FOR a := 1 TO m
FOR b := 1 TO m

FOR i := 1 TO t
FOR j := 1 TO t
IF Ri ∩ Rj = ∅

THEN constraints := constraints ∪ {(xa=i,xb=j)};
RETURN ({x1,...,xm},{D1,...,Dm},constraints);
For common input sizes, this transformation results in a huge search space

and the search is often computationally infeasible. For our simulation, we use
supplementary knowledge about the observations to significantly reduce the
search space.

Firstly, we delete all observations that contain more than one of the peer
partners. Since every observation in the solution contains exactly one of the
peer partners, this deletion does not affect the completeness of the search.

Secondly, we divide the observations into m classes C1, . . . , Cm. Each class
Ca consists of all observations that contain the peer partner a. Clearly, a solution
consists of m observations, one out of each class. Hence, we can take the classes
as domains for the CSP, i.e. the domain Da consists of all observations that also
belong to the class Ca.

FUNCTION transform_to_csp({R1,...,Rt},m);
constraints := ∅;
FOR i := 1 TO t
IF contains_two_partners(Ri) THEN delete(Ri);

FOR a := 1 TO m
Da = {i | a ∈ Ri} (domain of variable xa)

FOR a := 1 TO m
FOR b := 1 TO m

FOREACH i IN Da
FOREACH j IN Db
IF Ri ∩ Rj = ∅

THEN constraints := constraints ∪ {(xa=i,xb=j)};
RETURN ({x1,...,xm},{D1,...,Dm},constraints);
Note that, in general, the attacker does not have the supplementary knowl-

edge used by us. However, the attacker would find the same constraints as the
ones found above even if he does not use the supplementary knowledge. Thus,
using the supplementary knowledge significantly speeds up our simulations, but



the results, i.e. the number of required observations for a successful attack, would
be the same for both transformation procedures.

The function solve_csp(csp) searches for a solution of the transformed
problem and returns the first solution found, if any exists. This may be done
by traditional backtracking algorithms. Our simulator makes use of a C-library
developed by van Beek [25] that provides more sophisticated procedures to solve
CSPs. An overview of the implemented procedures can be found in [24] and [26].
We experienced significant performance improvements by using the procedures
developed by van Beek.

When solve_csp(csp) has found a valid variable assignment for the CSP,
the function retransform_solution(solution) converts the returned solution
to a solution O of the original problem. The observation Ri is an element of O, if
and only if the solution of the CSP contains i. If solve_csp(csp) has not found
a solution, the empty set ∅ is returned.

5.3 Excluding Phase

The goal of the second phase is to exclude elements from the recipient sets
returned by the learning phase until each recipient set contains exactly one
element, representing the peer partner. Again, we are interested in the number
of observations the attacker needs to succeed.

For simplicity, we denote the set of mutually disjoint recipient sets returned
by the learning phase by O = {O1, . . . , Om} and the recipient set of the new
observation by Ri (i = 1, 2, . . .) . The simulation iteratively generates new
recipient sets Ri and checks, if it is disjoint to all but one recipient set Oj ∈ O.
If this is the case, Oj is replaced by the intersection Oj ∩ Ri.

Even if the recipient set of a new observation overlaps with more than one Oi,
it may be applicable later, when some elements are excluded from the affected
recipient sets in O. Therefore, every time a new recipient set is found to be
intersecting with only one recipient set in O, we have to check if any of the
previously generated recipients sets is now applicable. Likewise, every time an
old recipient set is found to be intersecting with only one recipient set in O, we
have to check all old observations again for their applicability.

FUNCTION excluding_phase(N,b,m,O={O1,...,Om})
t := 0 ;
REPEAT
t := t + 1;
Rt := generate_observation(N,b,m);
IF ∃i (Oi∩Rt�= ∅ ∧ ∀j�=i Oj∩Rt=∅)

THEN
Oi := Oi∩Rt;
Rt := ∅; (Rt should not be checked again)
REPEAT
changed := FALSE;
FOR k := 1 TO (t-1)



IF ∃i (Oi∩Rk�= ∅ ∧ ∀j�=i Oj∩Rk=∅)
THEN
changed := TRUE;
Oi := Oi∩Rk;
Rk := ∅; (Rk should not be checked again)

UNTIL changed = FALSE
UNTIL ∀i∈{1,...,m} |Oi|= 1
RETURN t,O;

When this function intersects an observation Ri with an observation out of
O, Ri must not be checked again, because this would lead to an infinite loop.
Hence, we set Ri = ∅, so that the IF-clauses return FALSE when Ri is checked.

Note that some of the observations generated during the learning phase may
be usable for the excluding phase. Hence, if we are interested in the total number
of observations needed for both phases, we have to also check the observation
generated during the learning phase for their intersection with O.

Repeating the Simulation. It is clear that the number of observations de-
pends on the randomly generated observations. Therefore we need to repeat a
simulation several times with different streams of random numbers in order to
compute a mean that satisfies some desired statistical requirements.

After each simulation, we compute a 95% confidence interval for the mean,
that is an interval which contains the real mean with a probability of 0.95. In
general, the size of the confidence interval decreases with an increasing number
of repetitions. We stop repeating the simulation when the confidence interval is
sufficiently small, i.e. the size of the interval does not exceed 5% of the computed
mean.

5.4 First Results

In our first simulations we were interested in in the effect of N , b and m on
the number of observations an attacker needs to succeed. To see the effect of
changing, N , b, and m, we first chose typical values for these parameters, viz,
N = 20000, b = 50 and m = 20. Then we ran simulations with different values
for one of the parameters while keeping the other two parameters unchanged.

We note that our simulations in the excluding phase do not make use of
observations generated during the learning phase. Therefore, the total number
of observations needed to complete the whole attack may be less than the sum
of the numbers needed for each phase as shown here.

Number of Peer Partners (m). For a fixed number of total users N , and
batch size b, as the number of peer partners m grows, it clearly becomes more
difficult to find m mutually disjoint sets during the first phase. Similarly during
the excluding phase, it gets harder to find sets that overlap with only one of
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Fig. 3. Effect of m on the number of observations

the observations found in the learning phase since as m grows the number of
elements in m mutually disjoint sets also grows.

Figure 3 shows a graph of the number of required observation for both phases
of the attack. For high values of m, the excluding phase turned out to be more
critical than the learning phase. For low numbers the difference between the
number of observation required for two stages is insignificant. Further analysis
showed that for large values of m (m > 30), the number of observation needed
during the excluding phase grows exponentially in m.

Size of the Batch (b). One way for the anonymity provider to influence the
security of the system is to take care of a suitably large batch size. Obviously, as
b grows the attacks becomes very difficult, because if the total number of users N
stays the same, it is much harder to find m large sets that are mutually disjoint
than to find m small ones. Similarly, the probability that a set overlaps with
only one of m sets becomes very small for large values of b. Hence the number
of observations needed is expected to grow in b. The graph of the simulation
results in Figure 4 supports this hypothesis. Again, the excluding phase turned
out to be the more critical one for large values of b.

For b < 50, the number of observations is nearly constant. We deduce that
for small batches other parameters are more important. On the other hand, for
70 < b ≤ 85 the number of required observations made out a fast exponential
growth in b, approximately doubling the number of observations needed for the
excluding phase every time the batch size grows by five elements.

Total Number of Users (N). In contrast to m and b, the attack becomes
harder as N decreases, because the probability to generate a set that is disjoint
to (m − 1) mutually disjoint sets or to generate a set that overlaps with only
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one of these sets, is very small if you can choose the recipients only from a small
domain. Figure 5 shows a graph of our results.
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Fig. 5. Effect of N on the number of observations

Similar to the graph for the effect of b, we can see that for N > 20000, the
observations needed remain nearly constant. On the other hand, for N < 10000
the graph for the excluding phase shows an exponential behavior. Again, when
the total number of users becomes less, the number of observations needed for
the excluding phase increase faster than for the learning phase.



Summary. The first experiments showed that it is essential for the security of an
anonymity system to choose the three critical parameters, b,m and N , carefully.
To achieve a sufficient anonymity, b and m should be as big as possible, and the
total number of users must not exceed a certain limit.

One quite surprising result is that, when the problems get harder, that is for
large b and m, and for small N , the excluding phase requires significantly more
observations than the learning phase. On the other hand, the learning phase
requires a lot more of computing power.

6 Conclusions

This paper presents a formal model of an anonymity service and identifies three
critical parameters of such a service: the total number of users, batch size, and
the number of peer communication partners. These parameters determine the
fundamental protection provided by an anonymity service independent of the
computing power of a potential adversary. The paper also provides a methodol-
ogy to determine an upper limit on the fundamental protection provided by an
anonymity service.

Specifically, the paper applies this methodology to the MIXes, and shows
that the protection limit of a MIX increases exponentially in the three critical
parameters once these parameters cross a certain threshold. The paper provides
these thresholds for typical values of the parameters for a MIX.

In the hindsight provided by this paper, it is clear that the optimum values
for these parameters are dependent on each other. Just choosing these values
independently of each other does not necessarily result in a more secure system.
In order to compute the optimum batch size it is essential to consider the to-
tal number of users in the system and the average number of communication
partners of a user and compute the minimum threshold value for the size of the
batch.

In our future work, we would explore the stochastic nature of our formal
model. It turns out that the learning phase and the excluding phase of the
attack can be modelled as a Markov process. Our goal is to give analytical
formulas to compute the threshold limits and verify them using the simulations.
Furthermore, we would examine the effect of three critical assumptions made in
this paper on the tightness of our limit on the protection level of an anonymity
service.
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