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Abstract. We propose a hew keyword-based Private Information Retrieval (PIR)
model that allows private modification of the database from which information is
requested. In our model, the database is distributed oww@rvers, any one of
which can act as a transparent interface for clients. We present protocols that
support operations for accessing data, focusing on privately appending labelled
records to the databaspush) and privately retrieving the next unseen record
appended under a given labglu(l). The communication complexity between

the client and servers is independent of the number of records in the database (or
more generally, the number of previqussh andpull operations) and of the num-

ber of servers. Our scheme also supports access control oblivious to the database
servers by implicitly including a public key in eagush, so that only the party
holding the private key can retrieve the record pidl. To our knowledge, this is

the first system that achieves the following properties: private database modifica-
tion, private retrieval of multiple records with the same keyword, and oblivious
access control. We also provide a number of extensions to our protocols and, as
a demonstrative application, an unlinkable anonymous communication service
using them.

1 Introduction

Techniques by which a client can retrieve information from a database without expos-
ing its query or the response to the database was initiated with the study of oblivious
transfer [17]. In the past decade, this goal has been augmented with that of minimiz-
ing communication complexity between clients and servers, a problem labelled Private
Information Retrieval (PIR) [8]. To date, PIR has received significant attention in the
literature, but a number of practically important limitations remain: queries are lim-
ited to returning small items (typically single bits), data must be retrieved by address
as opposed to by keyword search, and there is limited support for modifications to the
database. Each of these limitations has received attention (e.g., [9, 8, 14, 6]), but we are
aware of no solution that fully addresses these simultaneously.

In this extended abstract we present novel protocols by which a client can privately
access a distributed database. Our protocols address the above limitations while retain-
ing privacy of queries (provided that at most a fixed threshadfl servers is compro-
mised) and while improving client-server communication efficiency over PIR solutions



at the cost of server-server communication. Specifically, the operations we highlight
here include:

— push In order to insert a new record into the database, the client perfopusta
operation that takes a label, the record data, and a public key as arguments.

— pull  To retrieve a record, a client performspall operation with a label and a
private key as arguments. The response pulhindicates the number of records
previouslypushed with that label and a corresponding public key, and if any, re-
turns the first such record that was not previously returnecpulgor no record if
they all were previously returned).

Intuitively, thepull operation functions as a type of “dequeue” operation or list iterator:
each successiyaull with the same label and private key will return a new reqarshed

with that label and corresponding public key, until these records are exhausted. We
emphasize that the above operations are private, and thus we call this paradigm Private
Push and Pull (B.

As an example application of these protocols, suppose we would like to construct a
private bulletin board application. In this scenario, clients can deposit messages which
are retrieved asynchronously by other clients. An important requirement is that the com-
munication between senders and receivers remains hidden to the database servers, a
property calledunlinkability. Clients encrypt messages for privacy, and label them with
a keyword, the mailbox address of the recipient. If multiple clients send messages to
the same recipient, there exist multiple records in the database with the same keyword.
We would like to provide the receiver with a mechansim to retrieve some or all the
messages from his mailbox. Thus, the system should allow insertion and retrieval of
multiple records with the same keyword. Another desirable property would be to pro-
vide oblivious access contrpkuch that a receiver can retrieve from its mailbox only
if he knows a certain private key. In addition, the database enforces the access con-
trol obliviously, i.e., the servers do not know the identity of the intended recipient. All
these properties are achieved by odipRotocols and the construction of such a private
bulletin board is an immediate application of these protocols.

Our protocols have additional properties. Labels in the database, argumpuashto
andpull requests, and responseptdl requests are computationally hidden from up to
maliciously corrupted servers and any number of corrupted clients. The communication
complexity incurred by the client duringpaush or pull operation is independent of both
the number of servers and the number of records in the database, and requires only a
constant number of ciphertexts. While communication complexity between the servers
is linearly dependent on both the number of servers and the number of records in the
database, we believe that this tradeoff—i.e., minimizing client-server communication at
the cost of server-server communication—is justified in scenarios involving bandwidth-
limited or geographically distant clients.

Beyond our basipush andpull protocols, we will additionally provide a number of
enhancements to our framework, such ggeek protocol that, given a label and private
key, privately retrieves theth recordpushed with that label and corresponding public
key; a modification tqoull to permit the retrieval of arbitrary-length records; and the
ability to perform apull based not only on identical label matching, but based on any
predicate on labels (with additional cost in server-server communication complexity).



We define security of the3Rprotocols in the malicious and honest-but-curious ad-
versary models. The definition of security that we employ is very similar to the defi-
nition of secure multi-party computation [11]. Proofs thatdatisfies the definition of
security in the malicious adversary model will be given in the full version of the paper.
We also propose a more efficient Protocol that is secure in the honest-but-curious
model. We thus achieve a tradeoff between the level of security guaranteed by our pro-
tocols and their computational complexity.

To summarize, the contributions of our paper are:

— The definition of a new keyword-based Private Information Retrieval model
Our model extends previous work on PIR in several ways. Firstly, we enable private
modification of the database, where the database servers do not learn the modified
content. Secondly, we allow retrieval of a subset or all records matching a given
keyword. And, finally, we provideblivious access contrpsuch that only the in-
tended recipients can retrieve messages and the servers do not know the identity of
message recipients.

— The construction of secure and efficient protocols in this model
We design P protocols, that achieve a constant communication complexity (in
number of ciphertexts) between the clients and the servers and that are provably
secure in the malicious adversary model.

— The design of an unlinkable [16] anonymous messaging service using the new pro-
posed protocols
The anonymous messaging service we design is analogous to a bulletin board,
where clients deposit messages for other clients, to retrieve them at their conve-
nience. The security properties of th&otocols provide the system with unlink-
ability.

2 Related Work

As already mentioned, our*Rprimitive is related to other protocols for hiding what
a client retrieves from a database. In this section we differentiafeoPh these other
protocols.

Private information retrieval (PIR) [9, 8, 3] enables a client holding an inglex
1 < i < d, to retrieve data item from a d-item database without revealinigo the
database. This can be trivially achieved by sending the entire database to the client, so
PIR mandates sublinear (and ideally polylogarithmic) communication complexity as a
function of d. Our approach relaxes this requirement for server-to-server communica-
tion (which is not typically employed in PIR solutions), and retains this requirement for
communication with clients; our approach ensures client communication complexity
that isindependentf d. In addition, classic PIR does not address database changes and
does not support labelled data on which clients can search.

Support for modifying the database was introducegriiivate information stor-
age[14]. This supports both reads and writes, without revealing the address read or
written. However, it requires the client to know the address it wants to read or wtite. P
eliminates the need for a client to know the address to read from, by allowing retrieval



of data as selected by a predicate on labelsides not allow overwriting of values, but
allows clients to retrieve all records matching a given query.

The problem of determining whether a keyword is present in a database without re-
vealing the keyword (and again with communication sublinedl) is addressed in [6].
The P framework permits richer searches on keywords beyond identical matching—
with commensurate additional expense in server complexity —thodigisiRg identi-
cal keyword matching is a particularly efficient example. Another significant difference
is that P returns the data associated with the selected label, rather than merely testing
for the existence of a label.

Also related to P is work onoblivious keyword searcii3], which enables a client
to retrieve data for which the label identically matches a keyword. Like work on obliv-
ious transfer that preceded it, this problem introduces the security requirement that the
client learn nothing about the database other than the record retrieved. It also imposes
weaker constraints on communication complexity. Specifically, communication com-
plexity between a client and servers is permitted to be linedr in

3 Preliminaries

A public-key cryptosystem is a triplet of probabilistic algorithif@, E, D) running
in expected polynomial time> (1% ) is a probabilistic algorithm that outputs a pair of
keys(pk, sk), given as input a security parameters . Encryption, denoted a8, (m),
is a probabilistic algorithm that outputs a ciphertexior a given plaintextn. The
deterministic algorithm for decryption, denoted iag; (c), outputs a decryptiom of
c. Correctness requires that for any messagé ., (E,x(m)) = m.

The cryptosystems used in our protocols require some of the following properties:

— message indistinguishability under chosen plaintext attack (IND-CPA security) [12]:
an adversary is given a public ke, and chooses two messageg, m; from the
plaintext space of the encryption scheme. These are given as input to a test oracle.
The test oracle choosés«—p {0,1} and gives the adversa®,,(m;). The ad-
versary must not be able to guésaith probability more than negligibly different

from L.
2
— (t,n) threshold decryption: a probabilistic polynomial-time (PPT) share-generation
algorithmsS, givenpk, sk, t, n, outputs private shareg, . . ., sk,, such that parties

who possess at least- 1 shares and a ciphertextan interact to comput®(c).
Specifically we requirén — 1, n) threshold decryption, where the private shares
are additive over the integers, such thlat= """ , sk;.

— threshold IND-CPA security [10]: the definition for threshold IND-CPA security
is the same as for normal IND-CPA security, with minor changes. Firstly, the ad-
versary is allowed to choose up taservers to corrupt, and observes all of their
secret information, as well as controlling their behaviour. Secondly, the adversary
has access to a partial decryption oracle, which takes a message outputs alh
shares (constructed just as decryption proceeds) of the decryption of an encryption
of m.



— partial homomorphism: there must be PPT algorithmsg;, , —,, , -pr for ad-
dition and subtraction of ciphertexts, and for the multiplication of a known con-
stant by a ciphertext such that for allb, in the plaintext domain of the encryption
scheme¢ € Z, such that the result of the desired operation is also in the plaintext
domain of the encryption scheme:

Dy, (Epk(a) +pk Epk- (b)) =a-+b
Dsk:(Eplc(a) —pk Epk(b)> =a-—0>
Duile i Epil(a) = ca

— blinding: there must be a PPT algorithm Bljadwhich, given a ciphertextwhich
encrypts message, produces an encryption of, pulled from a distribution which
is uniform over all possible encryptions of.

— indistinguishability of ciphertexts under different keys (key privacy) [1]: the adver-
sary is given two different public keysk,, pk; and it chooses a message from the
plaintext range of the encryption scheme considered. Given an encryption of the
message under one of the two keys, chosen at random, the adversary is not able
to distinguish which key was used for encryption with probability non-negligibly
higher than}.

3.1 Notation

— al|b denotes the concatenationwéndb;

— x « D denotes that is sampled from the distributiopP;

— Z denotes an encryption afunder an encryption scheme, that can be inferred from
the context;

- & = (G, E, D), an IND-CPA secure, partially homomorphic encryption scheme,
for which we can construct proofs of plaintext knowledge and blind ciphertexts. For
the construction in Sec. 5, we also require the key privacy property. The security
parameter fo€ is denoted as¢.

— T& = (G", E", threshDecrypt), a threshold decryption scheme, which is thresh-
old IND-CPA securethreshDecrypt is a distributed algorithm, in which each party
uses its share of the secret key to compute a share of the decryption. In addition, it
should have the partial homomorphic property and we should be able to construct
proofs of plaintext knowledge. The security parameterféris denoted agr¢.

- Mfk denotes the plaintext space of the encryption sch&ifioe public keypk.

— II = zkp[p] denotes the zero-knowledge proof of predigatd = zkpk[p] denotes
the zero-knowledge proof of knowledge of

3.2 Palillier

The Paillier encryption scheme defined in [15] satisfies the first six defined properties.
In the Paillier cryptosystem, the public key is an RSA-modulisind a generatay

that has an order a multiple & in Z3... In order to encrypt a message € Zy, a
randomyr is chosen irZy, and the ciphertext is = g™+ mod N2. In this paper, we



will consider the plaintext space for the public k&Y, g) to be My 4 = (—%, ) SO
that we can safely computez, givenz in the plaintext space.

For the construction in Sec. 5, we need key privacy of the encryption scheme used.
In order to achieve that, we slightly modify the Paillier scheme so that the ciphertext is
¢+ uN?, wherey is a random number less than a thresHbld= 24;,# (k7e is the
security parameter).

The threshold Paillier scheme defined in [10] can be easily modified to use additive
shares of the secret key over integers (as this implies share®/ovéy ), and thus with
the modification given above, satisfies the properties required for

The unmodified Pailler cryptosystem satisfies the requiremenss #aro-knowledge

proofs of plaintext knowledge are given in [7].

w2

3.3 System Model

We denote by the number of servers, artdhe maximum number that may be cor-
rupted. Privacy of the protocols is preserved & n.

Assuming the servers may use a broadcast channel to communicate, every answer
returned to a client will be correct if < n or all servers are honest-but-curious. This
does not, however, guarantee that an answer will be given in response to every query.
If every server may act arbitrarily maliciously (Byzantine failures), a broadcast channel
may be simulated if < 7.

We do not address this issue in this paper, but liveness (answering every query) can
be guaranteed with < % if every misbehaving server is identified and isolated, and
the protocol is restarted without them. Note that this may take multiple restarts, as not
every corrupted server must misbehave at the beginning.

In the malicious model, our protocols are simulatable [11], and thus the privacy of
client queries, responses to those queries (including the presence or absence of infor-
mation), and database records is preserved. In the honest-but-curious model, we may
achieve this privacy property more efficiently. For lack of space, we defer the proofs to
the full version of this paper.

The database supports two types of operations. pnsh operation, a client pro-
vides a public keyk, a label¢, and data). In a pull operation, the client provides a
secret keysk and a labele, and receives an integer and a data item in response. The
integer should be equal to the number of previpush operations for which the label
¢ = x and for which the public keyk is the corresponding public key fat. The
returned data item should be that provided to the first queth operation that has
not already been returned in a previqudl. If no such data item exists, themwneis
returned in its place.

4 The P? Protocol

We start the description of’Rwith the push protocol. Before going into the details of
the pull protocol, we construct several building block protocols. We give several ex-
tensions to the basic protocols. We then analyze the communication complexity of the



proposed protocols. At the end of the section, we suggest a more efficient implementa-
tion of our protocols in the honest-but-curious model.

In the protocols given in this paper, the selection predicate is equality of the given
labelz to theith record label;, under a given secret key:. This selection predicate is
evaluated using the protoctstRecord. The P system can be modified by replacing
testRecord with a protocol that evaluates an arbitrary predicate, e.g., using [7].

4.1 Initial Service-Key Setup

During the initial setup of a®Psystem, the servers collectively generate a public/private
key pair (PK, SK) for the threshold encryption scherfie€, wherePK is the public
key, and the servers additively share the corresponding privat&Kewe call the
public/private key pair the systemérvice keyWe require thatl < ¢, n - d - ¢*> <
2r7e—1 % < 2r7e—l gnd2retl 4 3. 228e+2 < 9r7e—1 g0 that the operations
(presented next) over the message spelCe (which is an integer interval of length
about27¢, centered around) will not “overflow”. Here d denotes the number of
records in the database, aps a prime.

For notational clarity, the protocols are given under the assumption that the data sent
to the server in @ush operation can be represented as an elemeft, o his can be

trivially extended to arbitrary length records (see 4.5).

4.2 The Private Push Protocol

When a client wants to insert a new record in the distributed database, it first generates
a public key/secret key paipk, sk) for the encryption schem&¢ and then invokes a
push operationpush p (pk, £, ). Here PK is the service key is the label and is
the data to be inserted. The protocol is a very simple one and is given in FFHg-.)lis
a cryptographically secure hash function, e.g., MD5.

Note that the data is sent directly to the server, and thus if privacy of the contents of
the data is desired, the data should be encrypted beforehand.

pUShPK (pk7 e? 6)

ClientC computesy «— E}.(¢) and sendgy, H(5)||5) together with a zero knowledg
proof of knowledgell = zkpk[l : | € Zq, Dsi(y) = 1].

This server adds the tuplg, (H(5), §), E% (1)) to the shared database.

Fig. 1. The push protocol

4.3 Building Block Protocols

The Decrypt Share ProtocolWWhen thedecryptShare protocol starts, one of the servers
receives a ciphertextencrypted using the public key: of the threshold homomorphic



encryption schem@ £. It also receives an integét representing a randomness range
large enough to statistically hide the plaintext corresponding Ye assume that the
servers additively share the secret k@ycorresponding t@k, such that each server
knows a sharek;. After the protocol, the servers additively share the corresponding
plaintextrn. Each server will know a shanme, such thaty_" ; m; = m and it will
output a commitment of this share{ = E;;k(mi)). The protocol is given in Fig. 2 and

is similar to the Additive Secret Sharing protocol in [7].

decryptShare,, .. (¢, R)
We assume that an arbitrary server halds- assume it isS;.

1. Forl <i<mn,S; chooses,; < [0,..., R], computes; — E} (a;).
2. Fori =1,...,n,S; broadcastg; together with a zero knowledge proof of plaintext
knowledge ofe;: IT; = kak[ai ta; € [0, ey R}, Dsk(ci) = CLL]
3. All the servers check the zero knowledge proofs received from the other servers. If
some proofs do not verify, then the servers that sent them are excluded from the pro-

tocol.

4. S; computes’ «— ¢ +pi €1 +pk C2 tpk cc Fpk Cn

5. All servers participate im’ = threshDecrypt,, . (¢)).

6. The additive share of: for S; ism; = —a; + m’ and the commitment:; can be
computed asn; = ¢ —pr ¢
The additive share af for S;, i # j is m; = —a; and the commitment; can be
computed asn; = —pi Ci.

Fig. 2. ThedecryptShare protocol

The Multiplication Protocol. Themult protocol receives as input two encrypted values
Z andy under a public keyk of the threshold homomorphic encryption schemg,
and an integeR?, used as a parameter decryptShare. We assume that the servers
additively share the secret key corresponding t@k, such that each server knows a
sharesk;. The output of the protocol is a valdesuch thatD,; (Z) = xy. The protocol

is given in Fig. 3 and is similar to the Mult protocol in [7].

The Share Reduction Protocollhe shareModQ protocol receives as input a prime
an encrypted valug under a public kepk of the threshold homomorphic encryption
schemeZ &, and an integeR, used as a parameterdecryptShare. We assume that
the servers additively share the secret kkygorresponding tpk, such that each server
knows a sharek;. The output of the protocol ig st Dy.(7) = Do (Z), 9 = y1 +--- +
Yn,Yi € Zq. The protocol is given in Fig. 4.

The Modular Exponentiation ProtocolThe expModQ protocol receives as input an
encrypted valuer under a public keyk of the threshold homomorphic encryption
schemeTl &, an integer exponerit and a prime modulug, and and an integeR, used
as a parameter tdecryptShare. The output of the protocol i§ such thatD(7) =



mult,x(Z, 7, R)

1. All the servers participate idecryptShare,, . (g, R), ending with additive
shares of): y1, . . ., y» and commitments of these shaigs. . ., yn.

2. Forl < i < mn,S; computes; = T -, y; and broadcasts together with a zerg
knowledge proof of knowledg#l; = zkpk[y; : Dsk(9:) = yis ti = T pr Yil-

3. All the servers check the zero knowledge proofs received from the other servers. If
some proofs do not verify, then the servers that sent them are excluded from the pro-
tocol.

4. The output of the protocol =1 +pi ... +pk tn.

Fig. 3. Themult protocol

shareModQ,(z, ¢, R)

1. All the servers participate idecryptShare,, .. (Z, R), ending with additive
shares of:: x1, ..., z, and commitments of these shamgs. .., Z,.

2. Forl < i < n,S; computegy; = z; mod ¢ and broadcastg; = E(y:) together
with a zero knowledge proof of knowleddé; = zkpk|[z:, yi : yi € Zq, Dsr(7:) =
Yi, Dsk(jz) =Ti,Yi = T4 mod q].

3. All the servers check the zero knowledge proofs received from the other servers. If
some proofs do not verify, then the servers that sent them are excluded from the pro-
tocol.

4. All the servers computg = y1 +pr ... +pk Un, Which is the output of the proto
col.

Fig. 4. TheshareModQ protocol

D, (Z)*. In addition, the decryption af, y, can be written ag = y; + - - - + ,, With
y; € Z4. We have thus the guarantee thatl y < (¢ — 1)n. The protocol is simply
done by repeated squaring using thalt protocol. After each invocation of thault
protocol, ashareModQ protocol is executed.

4.4 The Private Pull Protocol

We have now all the necessary tools to proceed to the construction jpdiffErotocol.
To retrieve the record associated with the labencrypted under public keyk, the
client C must know bothz and the secret keyk correspondingk. C encrypts both
the labelz and the secret keyk under the public service keyK and picks a pub-
lic/secret key paifpk’, sk’) for the encryption schemg. It then sends;, sk andpk’ to
an arbitrary server.

Overview of the Pull Protocol. The servers will jointly compute gemplateT =
(Ty,...,T4), whered is the number of records in the database. The template is a series
of indicators encrypted unde#’, whereT; indicates whethex matches the labé;



undersk (threshDecrypt,, (¢;) = x) and whethei is the first record that matchés

not previously read. This determines whether it should be returned as a response to the
query (Dg (T;) = 1) or not (Dgx/ (T;) = 0 mod g). The protocol returns to the client

the templatel’ and an encrypted counteT, that denotes the total number of records
matching a given label.

The protocol starts in step 2 (Figure 5) with the servers getting additive shares of
the secret keyk, sent encrypted by the client. In step 3, several flags are initialized, the
meaning of which will be explained in Sec. 4.4. Then, in step 4, it performs an iteration
on all the records in the database, calculating the template entry for each record. In steps
4(a)-4(e), for each recorflin the database with the label encrypted under public key
pk;, a decryption under the supplied kel and re-encryption of the label is calculated
under the service public keg K. In order to construct the template, the additive homo-
morphic properties of the encryption schefhé& are used. For recorgin the database,
the servers jointly determine the correct template value (as explained above), using the
building blocktestRecord.

The return result is constructed by first multiplying each entry in the template with
the contents of the corresponding record, and then adding the resulting ciphertexts using
the additive homomorphic operatior-,, . At most one template value will hold an
encryption ofl, so an encryption of the corresponding record will be returned. All other
records will be multiplied by a multiple af, and will thus be suppressed when the client
performsD,; (T') mod q. The bounds on the size of the plaintext range ensure that the
encrypted value does not leave the plaintext range.

An interesting observation is that our approach is very general and we could easily
change the specification of tipaill protocol, by just modifying théestRecord proto-
col. An example of this is given in Sec. 4.5, when we describg#ek protocol.

Flags for Repeated Keywords.In this section we address the situation in which mul-
tiple records are associated with the same keyword under a single key. The protocol
employs a flagf, which is set at the beginning of eaphll invocation to an encryption

of 1 under the public service key.is obliviously set to an encryption 6fmod ¢ after
processing the first record which both matches the label and has not been previously
read. It will retain this value through the rest of tpell invocation. In addition, each
record: in the database has an associated ffagThe decryption of; is 1 if record:

has not yet beepulled and) mod ¢ afterwards. Initially, during th@ush protocol,7;

is set to an encryption df.

The testRecord Protocol. The equality test protocotestRecord, first computeso
(steps 1-2), such that — px w is an encryption of if z = y mod ¢ and an encryption
of 0 mod ¢ otherwise. In step 3, a flagis computed as an encryption bff the record
matches the label; = 1 (this is the first matching record), amd= 1 (this record has
not been previously retrieved). We then conveitom an encryption under the service
key PK to an encryption under the client's key of the same plaintext indicator
(0 mod ¢ or 1). This is performed in steps 4-7 with resultWe then update the flags
f andr, as well as the counten. Both7 and f are changed to encryptions®inod ¢



if the record will be returned in thpull protocol. The new value af: is obtained by
homomorphically adding the match indicafior- p; w to the old value.
The detailegpull andtestRecord protocols are given in Figs. 5 and 6.

pull(sk, z, pk’, sk’)
The database, is a collection@tuples{D; = (Ep; (¢;),¢;,7; = Ep(r5))}j=1
Herel; € Z, ande; € M, can be parsed as = H(d;)||d;

1. C sends(pk’, & = Ei(z), sk = El«(sk)) to an arbitrary serves$;, who broadcasts

pk'.
2. All the servers participate idecryptShareg, o, (s_k:7 22:f ja) and end with
additive shares ofk: sk1, ..., sk, and commitmentsk, ..., sk,.

3. An arbitrary sever computes«— Ep(1),m «— E,;(0) and broadcasts them to al
the servers.

4. Forl < j <d,do:
(@) The server that hold®; = (E”, (¢;),e;) broadcasts it;

ij
.. . 2
(b) Allthe servers participate idecryptShare,, (Egkj 45), %) and end
with additive shares of}: ¢}y,..., ¢}, and commitments of these shares:

i b (0 = € & sk = sky);
(c) Each serverS; broadcastgjj; — EI}BK(ZQZ-), together with a zero knowledge
proof of plaintext equalityl; = zkp[y;: : Dsk (Jji) = Yji, Dsr(€3) = yjil;
(d) All the servers check the zero knowledge proofs received from the other servers.
If some proofs do not verify, then the servers that sent them are excluded from the

protocol;

(e) Allthe servers computg = g1 +px ... +rPK Yjn;

() All the servers participate irtestRecord, (PK, z, ;, f,7;,7m) to obtain
(T, J.7,m).

(9) Setthe database tugi® to be(EI’,ij (45), €5, 7).
(the template i§71, 7>, ..., Ty))
5. An arbitrary server computés = (11 i €1) +pir -+ +pir (Ta -pr eq) and
sendsl" andm to C.
6. C computes «— D/ (T) mod q,m < Dy () mod g and parses ase = (r, ).
— if m = 0, outputnone;
— otherwise, checl = H(J) and if this holds, output dat& andm number of
matches;
— if consistency check does not hold, outpttor.

Fig. 5. Thepull protocol

4.5 Extensions

Data of Arbitrary Length. The protocols given above can be extended to record data
of arbitrary length as follows. First, theush operation can be naturally extended to



testRecord, .. (PK, Z, 7, f, 7, m)

[EnY

. . 2
. All the servers participate in < shareModQ px (f —pPK U4, %)
2. All the servers participate i@ «— expModQ (2, q—1,q, %)
3. All the servers participate i) <— multp (I —pK W,T, %)

52
ands «— multpg (g, 7, %)

4. All the servers participate idecryptShareg,  gx. (5, %) and end up
with sharess, . . ., s, and commitmentsy, . .., 5,.
5. §; computesu; — Epi(si), = 1,...,n. Then,S; broadcasts:; together with a

zero knowledge proofl; = zkp[t; : Dsx(us) = 85, Dsk (5:) = si).
6. All the servers check the zero knowledge proofs received from the other servers. If
some proofs do not verify, then the servers that sent them are excluded from the pro-
tocol.
7. Allthe servers compute = u1 +pk U2 +pk - +pk Un.

_ 2.2
8. F’HmultpK (f,l —PK 5,% ,

f/ — multpx (f,i —pPK G, Q(n;#)

9. The servers get a re-encryptioniof w under public keyk’, analogously to steps 4-
above. Denote the additive shares/by . . ., h, and the encryption of — w under
pk’ by h. Then, the servers update’ < m +p, h.

10. The output of the protocol is the tugle, f/,7,m’).

[}

Fig. 6. ThetestRecord protocol

include multiple data items, e.qush(E,(¢), 61, ..., dx). Next, step 4 in theull pro-

tocol (Fig. 5) can be performed for each of thelata items, using the same template
(T1, ..., T,;). Note that this does not increase the communication complexity among the
servers. This is particularly efficient for large data records. For example, if the Pail-
lier system is used, then the client/server communication complexity is asymptotically
twice the actual data size transmitted.

The Peek Protocolln order to retrieve a matching record by index, here we sketch a
peek protocol, which can be easily derived from thll protocol.

In addition to the parameters to tipaill protocol, thepeek protocol includes a
flag 7, which is an encryption of the desired indexnder the public service key. The
database will return thé" record matching labelor 0, if this does not exist, as well
as the number of records matching the label. The fiager each record and the flag
f are not used in this version of the protocol. In step 4(f) the parameters passed to
the testRecord protocol arePK, z, j;, andi. These are the only changes to fhel
protocol.

The servers obliviously decremenat each match found in the database, and re-
turn the record at which becomes an encryption 6f After steps 1-2 intestRecord,
we test if7 is an encryption o). We insert a step 2’ after step 2, in whigh«—



expModQp (E, qg—1,q, %) is computedl —px €is an encryption of 1if = 0.

Step 3 changes tb« multpx (i —pr W,1 —pg é,%

the same. In step 8, we update the value of the indéxtex (1 —px w).

). Steps 4-7 remain

Beyond Exact Label MatchingVe have described opush andpull protocols in terms

of exact label matching, though this can be generalized to support retrieval based on
other predicates on labels. Specifically, given a common predi¢ata apull request

with labelx the servers could use secure multiparty computation (the techniques in [7]
are particularly suited in our setting) to compute the temp(#te. . ., 7,) indicating

the records for which the labels matelunder predicaté!.

4.6 Efficiency

Our push, pull andpeek protocols achieve a constant communication complexity in
ciphertexts between the client and the servers. The communication among the servers
in the pull protocol is proportional to the number of records in the distributed database
and the number of servers.

We achieve a tradeoff between the level of security obtained by our protocols and
their computational and communication complexity. If complexity is a concern, then
more efficient protocols can be constructed by removing the zero-knowledge proofs
and the value commitments generated in the protocols. Using standard techniques, we
could show that the protocols constructed this way are secure in the honest-but-curious
model. However, due to space limitations, we do not address this further in the paper.

5 Asynchronous Anonymous Communication

P3 potentially has many uses in applications where privacy is important. As an example,
in this section we outline the design of a simple anonymous message service tising P
as a primitive. This message service enables a client to deposit a message for another
client to retrieve at its convenience.

The messaging scheme is as follows:

— A sender uses thpush protocol to add a label, encrypted under the receiver’s
public key, and a message to the database. In this context we call the tahighax
address

e The message should be encrypted for privacy from the servers.

e The mailbox address can either be a default address or one established by
agreement between the sender and receiver. This agreement is necessary so
that the receiver may retrieve the message.

— A receiver uses theull or peek protocol to retrieve messages sent to a known
mailbox address under his public key.

Because messages will accumulate at the servers, they may wish to determine some
schedule on which to delete messages. Reasonable options include deleting all mes-
sages at set intervals, or deleting all messages of a certain set age.



Privacy. We achieve the content privacy and unlinkability anonymity properties as de-
scribed in [9]. If the sender encrypts the message submitted to the servers, the servers
cannot read the message, and thus achieves content privacy. Unlinkability concerns the
ability for the servers to determine which pairs of users (if any) are communicating. As
the P servers can not determine the public key under which a label was encrypted, the
label itself, or the text of the message, it has no advantage in determining the intended
recipient of a message. Nor can they determine which message a client retrieved, if any,
or even if a message has been retrieved by any client at any past time. Thus the servers
have no advantage in determining which client was the actual recipient of any given
message.

As well as these properties, we achieve anonymity between senders and receivers.
Any party may either retain this anonymity, or identify himself to other parties.

Senders are by default anonymous to receivers if they address their message to the
default mailbox address. Note that the key with which they addressed their message
is invisible to the recipient, and so a recipient cannot give a certain public key to a
certain sender to abridge their anonymity. A sender may construct an anonymous return
address, for use in addressing return messages, by encrypting an appropriate label under
the sender’'s own public key. As we require key privacy of the cryptosystem used, the
receiver cannot link the public key used to the identity of the sending party. A sender
may sign their messages using a key to which they have attached an identity, if they do
not wish to be anonymous.

Asynchronous CommunicatiorOur system also benefits from the property of asyn-
chrony, meaning that the senders and receivers do not have to be on-line simultaneously
to communicate. The system is analogous to a bulletin board, where senders deposit
messages and from which receivers retrieve them in a given interval of time. From this
perspective, our system offers a different type of service than most prior approaches to
anonymous communication (e.g., [4, 16, 5, 19, 18]) which anticipate the receiver being
available when the sender sends. A notable exception is [9], which bears similarity to
our approach. However, our use of Permits better communication complexity be-
tween the clients and servers than does the use of PIR in [9].

6 Conclusion

We defined the Private Push and PulP)Rurchitecture. This allows clients to pri-
vately add (through thpush protocol) and retrieve (through thgull or peek proto-

cols) records in the database through transparent interaction with any of the distributed
database servers. Under the protocols given, the servers identify which record is to be re-
turned through keyword matching under a particular secret key. If athodst servers

are actively corrupted, the keyword, key, and return resultmflbor peek protocol is
computationally hidden from the servers, and any number of colluding clients.

Client communication in Pis independent of both the size of the database and the
number of database servers, and requires only the number of ciphertexts corresponding
to encryption of the data. Communication between the servers is linear in both the
number of records in the database and the number of servers.



Using these protocols, we suggest an implementation of an anonymous messag-
ing system. It achieves unlinkability, but both sender and receiver anonymity can be
achieved through slight modifications.
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