
Private Keyword-Based Push and Pull with
Applications to Anonymous Communication

(Extended Abstract)

Lea Kissner1, Alina Oprea1, Michael K. Reiter12, Dawn Song12, and Ke Yang1

1 Dept. of Computer Science, Carnegie Mellon University
{leak,alina,yangke }@cs.cmu.edu

2 Dept, of Electrical and Computer Engineering, Carnegie Mellon University
{reiter,dawnsong }@cmu.edu

Abstract. We propose a new keyword-based Private Information Retrieval (PIR)
model that allows private modification of the database from which information is
requested. In our model, the database is distributed overn servers, any one of
which can act as a transparent interface for clients. We present protocols that
support operations for accessing data, focusing on privately appending labelled
records to the database (push) and privately retrieving the next unseen record
appended under a given label (pull). The communication complexity between
the client and servers is independent of the number of records in the database (or
more generally, the number of previouspush andpull operations) and of the num-
ber of servers. Our scheme also supports access control oblivious to the database
servers by implicitly including a public key in eachpush, so that only the party
holding the private key can retrieve the record viapull. To our knowledge, this is
the first system that achieves the following properties: private database modifica-
tion, private retrieval of multiple records with the same keyword, and oblivious
access control. We also provide a number of extensions to our protocols and, as
a demonstrative application, an unlinkable anonymous communication service
using them.

1 Introduction

Techniques by which a client can retrieve information from a database without expos-
ing its query or the response to the database was initiated with the study of oblivious
transfer [17]. In the past decade, this goal has been augmented with that of minimiz-
ing communication complexity between clients and servers, a problem labelled Private
Information Retrieval (PIR) [8]. To date, PIR has received significant attention in the
literature, but a number of practically important limitations remain: queries are lim-
ited to returning small items (typically single bits), data must be retrieved by address
as opposed to by keyword search, and there is limited support for modifications to the
database. Each of these limitations has received attention (e.g., [9, 8, 14, 6]), but we are
aware of no solution that fully addresses these simultaneously.

In this extended abstract we present novel protocols by which a client can privately
access a distributed database. Our protocols address the above limitations while retain-
ing privacy of queries (provided that at most a fixed thresholdt of servers is compro-
mised) and while improving client-server communication efficiency over PIR solutions

at the cost of server-server communication. Specifically, the operations we highlight
here include:

– push In order to insert a new record into the database, the client performs apush
operation that takes a label, the record data, and a public key as arguments.

– pull To retrieve a record, a client performs apull operation with a label and a
private key as arguments. The response to apull indicates the number of records
previouslypushed with that label and a corresponding public key, and if any, re-
turns the first such record that was not previously returned in apull (or no record if
they all were previously returned).

Intuitively, thepull operation functions as a type of “dequeue” operation or list iterator:
each successivepull with the same label and private key will return a new recordpushed
with that label and corresponding public key, until these records are exhausted. We
emphasize that the above operations are private, and thus we call this paradigm Private
Push and Pull (P3).

As an example application of these protocols, suppose we would like to construct a
private bulletin board application. In this scenario, clients can deposit messages which
are retrieved asynchronously by other clients. An important requirement is that the com-
munication between senders and receivers remains hidden to the database servers, a
property calledunlinkability. Clients encrypt messages for privacy, and label them with
a keyword, the mailbox address of the recipient. If multiple clients send messages to
the same recipient, there exist multiple records in the database with the same keyword.
We would like to provide the receiver with a mechansim to retrieve some or all the
messages from his mailbox. Thus, the system should allow insertion and retrieval of
multiple records with the same keyword. Another desirable property would be to pro-
vide oblivious access control, such that a receiver can retrieve from its mailbox only
if he knows a certain private key. In addition, the database enforces the access con-
trol obliviously, i.e., the servers do not know the identity of the intended recipient. All
these properties are achieved by our P3 protocols and the construction of such a private
bulletin board is an immediate application of these protocols.

Our protocols have additional properties. Labels in the database, arguments topush
andpull requests, and responses topull requests are computationally hidden from up tot
maliciously corrupted servers and any number of corrupted clients. The communication
complexity incurred by the client during apush or pull operation is independent of both
the number of servers and the number of records in the database, and requires only a
constant number of ciphertexts. While communication complexity between the servers
is linearly dependent on both the number of servers and the number of records in the
database, we believe that this tradeoff—i.e., minimizing client-server communication at
the cost of server-server communication—is justified in scenarios involving bandwidth-
limited or geographically distant clients.

Beyond our basicpush andpull protocols, we will additionally provide a number of
enhancements to our framework, such as: apeek protocol that, given a label and private
key, privately retrieves thei-th recordpushed with that label and corresponding public
key; a modification topull to permit the retrieval of arbitrary-length records; and the
ability to perform apull based not only on identical label matching, but based on any
predicate on labels (with additional cost in server-server communication complexity).

We define security of the P3 protocols in the malicious and honest-but-curious ad-
versary models. The definition of security that we employ is very similar to the defi-
nition of secure multi-party computation [11]. Proofs that P3 satisfies the definition of
security in the malicious adversary model will be given in the full version of the paper.
We also propose a more efficient P3 protocol that is secure in the honest-but-curious
model. We thus achieve a tradeoff between the level of security guaranteed by our pro-
tocols and their computational complexity.

To summarize, the contributions of our paper are:

– The definition of a new keyword-based Private Information Retrieval model
Our model extends previous work on PIR in several ways. Firstly, we enable private
modification of the database, where the database servers do not learn the modified
content. Secondly, we allow retrieval of a subset or all records matching a given
keyword. And, finally, we provideoblivious access control, such that only the in-
tended recipients can retrieve messages and the servers do not know the identity of
message recipients.

– The construction of secure and efficient protocols in this model
We design P3 protocols, that achieve a constant communication complexity (in
number of ciphertexts) between the clients and the servers and that are provably
secure in the malicious adversary model.

– The design of an unlinkable [16] anonymous messaging service using the new pro-
posed protocols
The anonymous messaging service we design is analogous to a bulletin board,
where clients deposit messages for other clients, to retrieve them at their conve-
nience. The security properties of the P3 protocols provide the system with unlink-
ability.

2 Related Work

As already mentioned, our P3 primitive is related to other protocols for hiding what
a client retrieves from a database. In this section we differentiate P3 from these other
protocols.

Private information retrieval (PIR) [9, 8, 3] enables a client holding an indexi,
1 ≤ i ≤ d, to retrieve data itemi from a d-item database without revealingi to the
database. This can be trivially achieved by sending the entire database to the client, so
PIR mandates sublinear (and ideally polylogarithmic) communication complexity as a
function ofd. Our approach relaxes this requirement for server-to-server communica-
tion (which is not typically employed in PIR solutions), and retains this requirement for
communication with clients; our approach ensures client communication complexity
that isindependentof d. In addition, classic PIR does not address database changes and
does not support labelled data on which clients can search.

Support for modifying the database was introduced inprivate information stor-
age [14]. This supports both reads and writes, without revealing the address read or
written. However, it requires the client to know the address it wants to read or write. P3

eliminates the need for a client to know the address to read from, by allowing retrieval

of data as selected by a predicate on labels. P3 does not allow overwriting of values, but
allows clients to retrieve all records matching a given query.

The problem of determining whether a keyword is present in a database without re-
vealing the keyword (and again with communication sublinear ind) is addressed in [6].
The P3 framework permits richer searches on keywords beyond identical matching—
with commensurate additional expense in server complexity —though P3 using identi-
cal keyword matching is a particularly efficient example. Another significant difference
is that P3 returns the data associated with the selected label, rather than merely testing
for the existence of a label.

Also related to P3 is work onoblivious keyword search[13], which enables a client
to retrieve data for which the label identically matches a keyword. Like work on obliv-
ious transfer that preceded it, this problem introduces the security requirement that the
client learn nothing about the database other than the record retrieved. It also imposes
weaker constraints on communication complexity. Specifically, communication com-
plexity between a client and servers is permitted to be linear ind.

3 Preliminaries

A public-key cryptosystem is a triplet of probabilistic algorithms(G, E, D) running
in expected polynomial time.G(1κ

T E) is a probabilistic algorithm that outputs a pair of
keys(pk, sk), given as input a security parameterκT E . Encryption, denoted asEpk(m),
is a probabilistic algorithm that outputs a ciphertextc for a given plaintextm. The
deterministic algorithm for decryption, denoted asDsk(c), outputs a decryptionm of
c. Correctness requires that for any messagem, Dsk(Epk(m)) = m.

The cryptosystems used in our protocols require some of the following properties:

– message indistinguishability under chosen plaintext attack (IND-CPA security) [12]:
an adversary is given a public keypk, and chooses two messagesm0,m1 from the
plaintext space of the encryption scheme. These are given as input to a test oracle.
The test oracle choosesb ←R {0, 1} and gives the adversaryEpk(mb). The ad-
versary must not be able to guessb with probability more than negligibly different
from 1

2 .
– (t, n) threshold decryption: a probabilistic polynomial-time (PPT) share-generation

algorithmS, givenpk, sk, t, n, outputs private sharessk1, . . . , skn such that parties
who possess at leastt+1 shares and a ciphertextc can interact to computeDsk(c).
Specifically we require(n − 1, n) threshold decryption, where the private shares
are additive over the integers, such thatsk =

∑n
i=1 ski.

– threshold IND-CPA security [10]: the definition for threshold IND-CPA security
is the same as for normal IND-CPA security, with minor changes. Firstly, the ad-
versary is allowed to choose up tot servers to corrupt, and observes all of their
secret information, as well as controlling their behaviour. Secondly, the adversary
has access to a partial decryption oracle, which takes a messagem and outputs alln
shares (constructed just as decryption proceeds) of the decryption of an encryption
of m.

– partial homomorphism: there must be PPT algorithms+pk , −pk , ·pk for ad-
dition and subtraction of ciphertexts, and for the multiplication of a known con-
stant by a ciphertext such that for alla, b, in the plaintext domain of the encryption
scheme,c ∈ Z, such that the result of the desired operation is also in the plaintext
domain of the encryption scheme:

Dsk(Epk(a) +pk Epk(b)) = a + b

Dsk(Epk(a) −pk Epk(b)) = a− b

Dsk(c ·pk Epk(a)) = ca

– blinding: there must be a PPT algorithm Blindpk which, given a ciphertextc which
encrypts messagem, produces an encryption ofm, pulled from a distribution which
is uniform over all possible encryptions ofm.

– indistinguishability of ciphertexts under different keys (key privacy) [1]: the adver-
sary is given two different public keyspk0, pk1 and it chooses a message from the
plaintext range of the encryption scheme considered. Given an encryption of the
message under one of the two keys, chosen at random, the adversary is not able
to distinguish which key was used for encryption with probability non-negligibly
higher than1

2 .

3.1 Notation

– a||b denotes the concatenation ofa andb;
– x← D denotes thatx is sampled from the distributionD;
– x̄ denotes an encryption ofx under an encryption scheme, that can be inferred from

the context;
– E = (G, E, D), an IND-CPA secure, partially homomorphic encryption scheme,

for which we can construct proofs of plaintext knowledge and blind ciphertexts. For
the construction in Sec. 5, we also require the key privacy property. The security
parameter forE is denoted asκE .

– T E = (Gh, Eh, threshDecrypt), a threshold decryption scheme, which is thresh-
old IND-CPA secure.threshDecrypt is a distributed algorithm, in which each party
uses its share of the secret key to compute a share of the decryption. In addition, it
should have the partial homomorphic property and we should be able to construct
proofs of plaintext knowledge. The security parameter forT E is denoted asκT E .

– ME
pk denotes the plaintext space of the encryption schemeE for public keypk.

– Π = zkp[p] denotes the zero-knowledge proof of predicatep, Π = zkpk[p] denotes
the zero-knowledge proof of knowledge ofp

3.2 Paillier

The Paillier encryption scheme defined in [15] satisfies the first six defined properties.
In the Paillier cryptosystem, the public key is an RSA-modulusN and a generatorg
that has an order a multiple ofN in Z∗

N2 . In order to encrypt a messagem ∈ ZN , a
randomr is chosen inZN , and the ciphertext isc = gmrN mod N2. In this paper, we

will consider the plaintext space for the public key(N, g) to beM(N,g) = (−N
2 , N

2) so
that we can safely compute−x, givenx in the plaintext space.

For the construction in Sec. 5, we need key privacy of the encryption scheme used.
In order to achieve that, we slightly modify the Paillier scheme so that the ciphertext is
c + µN2, whereµ is a random number less than a thresholdT = 24κT E

N2 (κT E is the
security parameter).

The threshold Paillier scheme defined in [10] can be easily modified to use additive
shares of the secret key over integers (as this implies shares overNλ(N), and thus with
the modification given above, satisfies the properties required forT E .

The unmodified Pailler cryptosystem satisfies the requirements forE . Zero-knowledge
proofs of plaintext knowledge are given in [7].

3.3 System Model

We denote byn the number of servers, andt the maximum number that may be cor-
rupted. Privacy of the protocols is preserved ift < n.

Assuming the servers may use a broadcast channel to communicate, every answer
returned to a client will be correct ift < n or all servers are honest-but-curious. This
does not, however, guarantee that an answer will be given in response to every query.
If every server may act arbitrarily maliciously (Byzantine failures), a broadcast channel
may be simulated ift < n

3 .
We do not address this issue in this paper, but liveness (answering every query) can

be guaranteed witht < n
3 if every misbehaving server is identified and isolated, and

the protocol is restarted without them. Note that this may take multiple restarts, as not
every corrupted server must misbehave at the beginning.

In the malicious model, our protocols are simulatable [11], and thus the privacy of
client queries, responses to those queries (including the presence or absence of infor-
mation), and database records is preserved. In the honest-but-curious model, we may
achieve this privacy property more efficiently. For lack of space, we defer the proofs to
the full version of this paper.

The database supports two types of operations. In apush operation, a client pro-
vides a public keypk, a label`, and dataδ. In a pull operation, the client provides a
secret keysk and a labelx, and receives an integer and a data item in response. The
integer should be equal to the number of previouspush operations for which the label
` = x and for which the public keypk is the corresponding public key forsk. The
returned data item should be that provided to the first suchpush operation that has
not already been returned in a previouspull. If no such data item exists, thennone is
returned in its place.

4 The P3 Protocol

We start the description of P3 with thepush protocol. Before going into the details of
the pull protocol, we construct several building block protocols. We give several ex-
tensions to the basic protocols. We then analyze the communication complexity of the

proposed protocols. At the end of the section, we suggest a more efficient implementa-
tion of our protocols in the honest-but-curious model.

In the protocols given in this paper, the selection predicate is equality of the given
labelx to theith record label̀ i, under a given secret keysk. This selection predicate is
evaluated using the protocoltestRecord. The P3 system can be modified by replacing
testRecord with a protocol that evaluates an arbitrary predicate, e.g., using [7].

4.1 Initial Service-Key Setup

During the initial setup of a P3 system, the servers collectively generate a public/private
key pair (PK,SK) for the threshold encryption schemeT E , wherePK is the public
key, and the servers additively share the corresponding private keySK. We call the
public/private key pair the system’sservice key. We require thatd < q, n · d · q2 <

2κT E−1, 22κE+3n
n−t < 2κT E−1, and2κE+1 + 3 · 22κE+2 < 2κT E−1 so that the operations

(presented next) over the message spaceMT E
pk (which is an integer interval of length

about2κT E , centered around0) will not “overflow”. Here d denotes the number of
records in the database, andq is a prime.

For notational clarity, the protocols are given under the assumption that the data sent
to the server in apush operation can be represented as an element ofZq. This can be
trivially extended to arbitrary length records (see 4.5).

4.2 The Private Push Protocol

When a clientC wants to insert a new record in the distributed database, it first generates
a public key/secret key pair(pk, sk) for the encryption schemeT E and then invokes a
push operationpushPK(pk, `, δ). HerePK is the service key,̀ is the label andδ is
the data to be inserted. The protocol is a very simple one and is given in Fig. 1.H(·) is
a cryptographically secure hash function, e.g., MD5.

Note that the data is sent directly to the server, and thus if privacy of the contents of
the data is desired, the data should be encrypted beforehand.

pushPK(pk, `, δ)
Client C computesy ← Eh

pk(`) and sends〈y, H(δ)||δ〉 together with a zero knowledge
proof of knowledgeΠ = zkpk[l : l ∈ Zq, Dsk(y) = l].
This server adds the tuple〈y, 〈H(δ), δ〉, Eh

PK(1)〉 to the shared database.

Fig. 1.Thepush protocol

4.3 Building Block Protocols

The Decrypt Share Protocol.When thedecryptShare protocol starts, one of the servers
receives a ciphertextc encrypted using the public keypk of the threshold homomorphic

encryption schemeT E . It also receives an integerR representing a randomness range
large enough to statistically hide the plaintext corresponding toc. We assume that the
servers additively share the secret keysk corresponding topk, such that each server
knows a shareski. After the protocol, the servers additively share the corresponding
plaintextm. Each server will know a sharemi such that

∑n
i=1 mi = m and it will

output a commitment of this share (m̄i = Eh
pk(mi)). The protocol is given in Fig. 2 and

is similar to the Additive Secret Sharing protocol in [7].

decryptSharesk1,...,skn
(c, R)

We assume that an arbitrary server holdsc — assume it isSj .

1. For1 ≤ i ≤ n, Si choosesai ← [0, . . . , R], computesci ← Eh
pk(ai).

2. Fori = 1, . . . , n, Si broadcastsci together with a zero knowledge proof of plaintext
knowledge ofci: Πi = zkpk[ai : ai ∈ [0, . . . , R], Dsk(ci) = ai].

3. All the servers check the zero knowledge proofs received from the other servers. If
some proofs do not verify, then the servers that sent them are excluded from the pro-
tocol.

4. Sj computesc′ ← c +pk c1 +pk c2 +pk · · · +pk cn.
5. All servers participate inm′ = threshDecryptsk1,...,skn

(c′).
6. The additive share ofm for Sj is mj = −aj + m′ and the commitment̄mj can be

computed as̄mj = c′ −pk cj ;
The additive share ofm for Si, i 6= j is mi = −ai and the commitment̄mi can be
computed as̄mi = −pk ci.

Fig. 2.ThedecryptShare protocol

The Multiplication Protocol.Themult protocol receives as input two encrypted values
x̄ andȳ under a public keypk of the threshold homomorphic encryption schemeT E ,
and an integerR, used as a parameter todecryptShare. We assume that the servers
additively share the secret keysk corresponding topk, such that each server knows a
shareski. The output of the protocol is a valuēz such thatDsk(z̄) = xy. The protocol
is given in Fig. 3 and is similar to the Mult protocol in [7].

The Share Reduction Protocol.TheshareModQ protocol receives as input a primeq,
an encrypted valuēx under a public keypk of the threshold homomorphic encryption
schemeT E , and an integerR, used as a parameter todecryptShare. We assume that
the servers additively share the secret keysk corresponding topk, such that each server
knows a shareski. The output of the protocol is̄y stDsk(ȳ) = Dsk(x̄), ȳ = y1 + · · ·+
yn, yi ∈ Zq. The protocol is given in Fig. 4.

The Modular Exponentiation Protocol.The expModQ protocol receives as input an
encrypted valuēx under a public keypk of the threshold homomorphic encryption
schemeT E , an integer exponentk and a prime modulusq, and and an integerR, used
as a parameter todecryptShare. The output of the protocol is̄y such thatDsk(ȳ) =

multpk(x̄, ȳ, R)

1. All the servers participate indecryptSharesk1,...,skn
(ȳ, R), ending with additive

shares ofy: y1, . . . , yn and commitments of these sharesȳ1, . . . , ȳn.
2. For1 ≤ i ≤ n, Si computes̄ti = x̄ ·pk yi and broadcasts̄ti together with a zero

knowledge proof of knowledgeΠi = zkpk[yi : Dsk(ȳi) = yi, t̄i = x̄ ·pk yi].
3. All the servers check the zero knowledge proofs received from the other servers. If

some proofs do not verify, then the servers that sent them are excluded from the pro-
tocol.

4. The output of the protocol is̄z = t̄1 +pk . . . +pk t̄n.

Fig. 3.Themult protocol

shareModQpk(x̄, q, R)

1. All the servers participate indecryptSharesk1,...,skn
(x̄, R), ending with additive

shares ofx: x1, . . . , xn and commitments of these sharesx̄1, . . . , x̄n.
2. For1 ≤ i ≤ n, Si computesyi = xi mod q and broadcasts̄yi = Eh

pk(yi) together
with a zero knowledge proof of knowledgeΠi = zkpk[xi, yi : yi ∈ Zq, Dsk(ȳi) =
yi, Dsk(x̄i) = xi, yi = xi mod q].

3. All the servers check the zero knowledge proofs received from the other servers. If
some proofs do not verify, then the servers that sent them are excluded from the pro-
tocol.

4. All the servers computēy = ȳ1 +pk . . . +pk ȳn, which is the output of the proto-
col.

Fig. 4.TheshareModQ protocol

Dsk(x̄)k. In addition, the decryption of̄y, y, can be written asy = y1 + · · ·+ yn with
yi ∈ Zq. We have thus the guarantee that0 ≤ y ≤ (q − 1)n. The protocol is simply
done by repeated squaring using themult protocol. After each invocation of themult
protocol, ashareModQ protocol is executed.

4.4 The Private Pull Protocol

We have now all the necessary tools to proceed to the construction of thepull protocol.
To retrieve the record associated with the labelx encrypted under public keypk, the
client C must know bothx and the secret keysk correspondingpk. C encrypts both
the labelx and the secret keysk under the public service keyPK and picks a pub-
lic/secret key pair(pk′, sk′) for the encryption schemeE . It then sends̄x, s̄k andpk′ to
an arbitrary server.

Overview of the Pull Protocol. The servers will jointly compute atemplateT =
(T1, . . . , Td), whered is the number of records in the database. The template is a series
of indicators encrypted underpk′, whereTi indicates whetherx matches the label̀i

undersk (threshDecryptsk(`i) = x) and whetheri is the first record that matches`i

not previously read. This determines whether it should be returned as a response to the
query (Dsk′(Ti) = 1) or not (Dsk′(Ti) = 0 mod q). The protocol returns to the client
the templateT and an encrypted counter,̄m that denotes the total number of records
matching a given label.

The protocol starts in step 2 (Figure 5) with the servers getting additive shares of
the secret keysk, sent encrypted by the client. In step 3, several flags are initialized, the
meaning of which will be explained in Sec. 4.4. Then, in step 4, it performs an iteration
on all the records in the database, calculating the template entry for each record. In steps
4(a)-4(e), for each recordj in the database with the label encrypted under public key
pkj , a decryption under the supplied keysk and re-encryption of the label is calculated
under the service public keyPK. In order to construct the template, the additive homo-
morphic properties of the encryption schemeT E are used. For recordj in the database,
the servers jointly determine the correct template value (as explained above), using the
building blocktestRecord.

The return result is constructed by first multiplying each entry in the template with
the contents of the corresponding record, and then adding the resulting ciphertexts using
the additive homomorphic operation+pk′ . At most one template value will hold an
encryption of1, so an encryption of the corresponding record will be returned. All other
records will be multiplied by a multiple ofq, and will thus be suppressed when the client
performsDsk′(T) mod q. The bounds on the size of the plaintext range ensure that the
encrypted value does not leave the plaintext range.

An interesting observation is that our approach is very general and we could easily
change the specification of thepull protocol, by just modifying thetestRecord proto-
col. An example of this is given in Sec. 4.5, when we describe thepeek protocol.

Flags for Repeated Keywords.In this section we address the situation in which mul-
tiple records are associated with the same keyword under a single key. The protocol
employs a flaḡf , which is set at the beginning of eachpull invocation to an encryption
of 1 under the public service key.̄f is obliviously set to an encryption of0 mod q after
processing the first record which both matches the label and has not been previously
read. It will retain this value through the rest of thepull invocation. In addition, each
recordi in the database has an associated flag,r̄i. The decryption of̄ri is 1 if recordi
has not yet beenpulled and0 mod q afterwards. Initially, during thepush protocol,r̄i

is set to an encryption of1.

The testRecord Protocol. The equality test protocol,testRecord, first computesw̄
(steps 1-2), such that1̄ −PK w̄ is an encryption of1 if x = y mod q and an encryption
of 0 mod q otherwise. In step 3, a flaḡs is computed as an encryption of1 if the record
matches the label,f = 1 (this is the first matching record), andr = 1 (this record has
not been previously retrieved). We then converts̄ from an encryption under the service
key PK to an encryption under the client’s keypk of the same plaintext indicator
(0 mod q or 1). This is performed in steps 4-7 with resultu. We then update the flags
f̄ andr̄, as well as the counter̄m. Both r̄ andf̄ are changed to encryptions of0 mod q

if the record will be returned in thepull protocol. The new value of̄m is obtained by
homomorphically adding the match indicator1̄ −PK w̄ to the old value.

The detailedpull andtestRecord protocols are given in Figs. 5 and 6.

pull(sk, x, pk′, sk′)
The database, is a collection ofd tuples{Dj = 〈Eh

pkj
(`j), ej , r̄j = Eh

PK(rj)〉}dj=1

Here`j ∈ Zq andej ∈Mpk′ can be parsed asej = H(δj)||δj

1. C sends(pk′, x̄ = Eh
PK(x), s̄k = Eh

PK(sk)) to an arbitrary serverSj , who broadcasts
pk′.

2. All the servers participate indecryptShareSK1,...,SKn

“
s̄k, 22κE+3

n−t

”
and end with

additive shares ofsk: sk1, . . . , skn and commitments̄sk1, . . . , s̄kn.
3. An arbitrary sever computes̄f ← Eh

PK(1), m̄ ← Epk′(0) and broadcasts them to all
the servers.

4. For1 ≤ j ≤ d, do:
(a) The server that holdsDj = 〈Eh

pkj
(`j), ej〉 broadcasts it;

(b) All the servers participate indecryptSharesk1,...,skn

“
Eh

pkj
(`j),

2q2

n−t

”
and end

with additive shares of̀ ′j : `′j1, . . . , `
′
jn and commitments of these shares:

¯̀′
j1, . . . , ¯̀′

jn (`′j = `j ⇔ sk = skj);
(c) Each serverSi broadcasts̄yji ← Eh

PK(`′ji), together with a zero knowledge
proof of plaintext equalityΠi = zkp[yji : DSK(ȳji) = yji, Dsk(¯̀′ji) = yji];

(d) All the servers check the zero knowledge proofs received from the other servers.
If some proofs do not verify, then the servers that sent them are excluded from the
protocol;

(e) All the servers computēyj = ȳj1 +PK . . . +PK ȳjn;
(f) All the servers participate intestRecordpk′(PK, x̄, ȳj , f̄ , r̄j , m̄) to obtain

(Tj , f̄ , r̄′j , m̄).
(g) Set the database tupleDj to be〈Eh

pkj
(`j), ej , r̄

′
j〉.

(the template is(T1, T2, . . . , Td))
5. An arbitrary server computesT = (T1 ·pk′ e1) +pk′ · · · +pk′ (Td ·pk′ ed) and

sendsT andm̄ to C.
6. C computese← Dsk′(T) mod q, m← Dsk′(m̄) mod q and parsese ase = (r, δ).

– if m = 0, outputnone;
– otherwise, checkr = H(δ) and if this holds, output dataδ andm number of

matches;
– if consistency check does not hold, outputerror.

Fig. 5.Thepull protocol

4.5 Extensions

Data of Arbitrary Length.The protocols given above can be extended to record data
of arbitrary length as follows. First, thepush operation can be naturally extended to

testRecordpk(PK, x̄, ȳ, f̄ , r̄, m̄)

1. All the servers participate in̄z ← shareModQPK

“
x̄ −PK ȳ, q, 2q2

n−t

”
.

2. All the servers participate in̄w ← expModQPK

“
z̄, q − 1, q, 2q2

n−t

”
.

3. All the servers participate in̄g ← multPK

“
1̄ −PK w̄, r̄, 2q2

n−t

”
ands̄← multPK

“
ḡ, f̄ , 2q2

n−t

”
.

4. All the servers participate indecryptShareSK1,...,SKn

“
s̄, 2(n−1)2q2

n−t

”
and end up

with sharess1, . . . , sn and commitments̄s1, . . . , s̄n.
5. Si computesui ← Epk(si), i = 1, . . . , n. Then,Si broadcastsui together with a

zero knowledge proofΠi = zkp[ti : Dsk(ui) = si, DSK(s̄i) = si].
6. All the servers check the zero knowledge proofs received from the other servers. If

some proofs do not verify, then the servers that sent them are excluded from the pro-
tocol.

7. All the servers computeu = u1 +pk u2 +pk · · · +pk un.

8. r̄′ ← multPK

“
r̄, 1̄ −PK s̄, 2(n−1)2q2

n−t

”
,

f̄ ′ ← multPK

“
f̄ , 1̄ −PK ḡ, 2(n−1)2q2

n−t

”
.

9. The servers get a re-encryption of1−w under public keypk′, analogously to steps 4-6
above. Denote the additive shares byh1, . . . , hn and the encryption of1 − w under
pk′ by h. Then, the servers updatēm′ ← m̄ +pk h.

10. The output of the protocol is the tuple(u, f̄ ′, r̄′, m̄′).

Fig. 6.ThetestRecord protocol

include multiple data items, e.g.,push(Epk(`), δ1, ..., δk). Next, step 4 in thepull pro-
tocol (Fig. 5) can be performed for each of thek data items, using the same template
(T1, ..., Td). Note that this does not increase the communication complexity among the
servers. This is particularly efficient for large data records. For example, if the Pail-
lier system is used, then the client/server communication complexity is asymptotically
twice the actual data size transmitted.

The Peek Protocol.In order to retrieve a matching record by index, here we sketch a
peek protocol, which can be easily derived from thepull protocol.

In addition to the parameters to thepull protocol, thepeek protocol includes a
flag ī, which is an encryption of the desired indexi under the public service key. The
database will return theith record matching labeli or 0, if this does not exist, as well
as the number of records matching the label. The flagsr̄j for each record and the flag
f̄ are not used in this version of the protocol. In step 4(f) the parameters passed to
the testRecord protocol arePK, x̄, ȳj , and ī. These are the only changes to thepull
protocol.

The servers obliviously decrementī at each match found in the database, and re-
turn the record at which̄i becomes an encryption of0. After steps 1-2 intestRecord,
we test if ī is an encryption of0. We insert a step 2’ after step 2, in which̄e ←

expModQPK

(
ī, q − 1, q, 2q2

n−t

)
is computed.̄1 −PK ē is an encryption of 1 ifi = 0.

Step 3 changes tōt ← multPK

(
1̄ −PK w̄, 1̄ −PK ē, 2(n−1)2q2

n−t

)
. Steps 4-7 remain

the same. In step 8, we update the value of the index toī −PK (1̄ −PK w̄).

Beyond Exact Label Matching.We have described ourpush andpull protocols in terms
of exact label matching, though this can be generalized to support retrieval based on
other predicates on labels. Specifically, given a common predicateΠ, on apull request
with labelx the servers could use secure multiparty computation (the techniques in [7]
are particularly suited in our setting) to compute the template(T1, . . . , Td) indicating
the records for which the labels matchx under predicateΠ.

4.6 Efficiency

Our push, pull andpeek protocols achieve a constant communication complexity in
ciphertexts between the client and the servers. The communication among the servers
in thepull protocol is proportional to the number of records in the distributed database
and the number of servers.

We achieve a tradeoff between the level of security obtained by our protocols and
their computational and communication complexity. If complexity is a concern, then
more efficient protocols can be constructed by removing the zero-knowledge proofs
and the value commitments generated in the protocols. Using standard techniques, we
could show that the protocols constructed this way are secure in the honest-but-curious
model. However, due to space limitations, we do not address this further in the paper.

5 Asynchronous Anonymous Communication

P3 potentially has many uses in applications where privacy is important. As an example,
in this section we outline the design of a simple anonymous message service using P3

as a primitive. This message service enables a client to deposit a message for another
client to retrieve at its convenience.

The messaging scheme is as follows:

– A sender uses thepush protocol to add a label, encrypted under the receiver’s
public key, and a message to the database. In this context we call the label amailbox
address.
• The message should be encrypted for privacy from the servers.
• The mailbox address can either be a default address or one established by

agreement between the sender and receiver. This agreement is necessary so
that the receiver may retrieve the message.

– A receiver uses thepull or peek protocol to retrieve messages sent to a known
mailbox address under his public key.

Because messages will accumulate at the servers, they may wish to determine some
schedule on which to delete messages. Reasonable options include deleting all mes-
sages at set intervals, or deleting all messages of a certain set age.

Privacy. We achieve the content privacy and unlinkability anonymity properties as de-
scribed in [9]. If the sender encrypts the message submitted to the servers, the servers
cannot read the message, and thus achieves content privacy. Unlinkability concerns the
ability for the servers to determine which pairs of users (if any) are communicating. As
the P3 servers can not determine the public key under which a label was encrypted, the
label itself, or the text of the message, it has no advantage in determining the intended
recipient of a message. Nor can they determine which message a client retrieved, if any,
or even if a message has been retrieved by any client at any past time. Thus the servers
have no advantage in determining which client was the actual recipient of any given
message.

As well as these properties, we achieve anonymity between senders and receivers.
Any party may either retain this anonymity, or identify himself to other parties.

Senders are by default anonymous to receivers if they address their message to the
default mailbox address. Note that the key with which they addressed their message
is invisible to the recipient, and so a recipient cannot give a certain public key to a
certain sender to abridge their anonymity. A sender may construct an anonymous return
address, for use in addressing return messages, by encrypting an appropriate label under
the sender’s own public key. As we require key privacy of the cryptosystem used, the
receiver cannot link the public key used to the identity of the sending party. A sender
may sign their messages using a key to which they have attached an identity, if they do
not wish to be anonymous.

Asynchronous Communication.Our system also benefits from the property of asyn-
chrony, meaning that the senders and receivers do not have to be on-line simultaneously
to communicate. The system is analogous to a bulletin board, where senders deposit
messages and from which receivers retrieve them in a given interval of time. From this
perspective, our system offers a different type of service than most prior approaches to
anonymous communication (e.g., [4, 16, 5, 19, 18]) which anticipate the receiver being
available when the sender sends. A notable exception is [9], which bears similarity to
our approach. However, our use of P3 permits better communication complexity be-
tween the clients and servers than does the use of PIR in [9].

6 Conclusion

We defined the Private Push and Pull (P3) architecture. This allows clients to pri-
vately add (through thepush protocol) and retrieve (through thepull or peek proto-
cols) records in the database through transparent interaction with any of the distributed
database servers. Under the protocols given, the servers identify which record is to be re-
turned through keyword matching under a particular secret key. If at mostt of n servers
are actively corrupted, the keyword, key, and return result of apull or peek protocol is
computationally hidden from the servers, and any number of colluding clients.

Client communication in P3 is independent of both the size of the database and the
number of database servers, and requires only the number of ciphertexts corresponding
to encryption of the data. Communication between the servers is linear in both the
number of records in the database and the number of servers.

Using these protocols, we suggest an implementation of an anonymous messag-
ing system. It achieves unlinkability, but both sender and receiver anonymity can be
achieved through slight modifications.

References

1. M. Bellare, A. Boldyreva, A. Desai, D. Pointcheval.Key-Privacy in Public Key Encryption.
In Advances in Cryptology — Asiacrypt’01, LNCS 2248.

2. M. Blum, A. De-Santis, S. Micali, G. Persiano.Noninteractive Zero-Knowledge. In SIAM
Journal on Computation, vol. 20, pp. 1084-1118, 1991.

3. C. Cachin, S. Micali, M. Stadler.Computational Private Information Retrieval with Polylog-
arithmic Communication. In Advances in Cryptology — Eurocrypt ’97, pp. 455-469, 1997.

4. D. Chaum.Untraceable electronic mail, return addresses, and digital pseudonyms. In Com-
munications of the ACM24(2):84–88, February 1981.

5. D. Chaum.The Dining Cryptographers Problem: Unconditional Sender and Recipient Un-
traceability. In Journal of Cryptology, 1(1), pp 65-75, 1988.

6. B. Chor, N. Gilboa, M. Naor.Private Information Retrieval by KeywordsTechnical Report
TR CS0917, Department of Computer Science, Technion, 1997

7. R. Cramer, I. Damg̊ard, J. Buus Nielsen.Multiparty Computation from Threshold Homomor-
phic Encryption. In Advances in Cryptology – Eurocrypt 2001, pp. 280-299, 2001.

8. B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan.Private information retrieval. In Proc. 36th
IEEE Symposium on Foundations of Computer Science, 1995.

9. D. A. Cooper, K. P. Birman.Preserving privacy in a network of mobile computers. In Pro-
ceedings of the 1995 IEEE Symposium on Security and Privacy, pages 26–38, May 1995.

10. P. Fouque, G. Poupard, J. Stern.Sharing Decryption in the Context of Voting of Lotteries. In
Financial Crypto 2000, 2000.

11. O. Goldreich. Secure Multi-Party Computation. Working draft available at
http://theory.lcs.mit.edu/˜oded/gmw.html .

12. S. Goldwasser, S. Micali.Probabilistic Encryption. In Journal of Computer and Systems
Sciencee, vol. 28, pp 270-299, 1984.

13. W. Ogata, K. Kurosawa. Oblivious keyword search. Available at
http://eprint.iacr.org/2002/182/.

14. R. Ostrovsky, V. Shoup.Private information storage. In Proceedings of the 29th ACM Sym-
posium on Theory of Computing, 1997.

15. P. Paillier.Public-key cryptosystems based on composite degree residue classes. In Advances
in Cryptology – EUROCRYPT ’99(LNCS 1592), pp. 223–238, 1999.

16. A. Pfitzmann, M. Waidner.Networks without user observability. Computers & Security
2(6):158–166, 1987.

17. M. Rabin.How to exchange secrets by oblivious transfer. Technical Report, Tech. Memo.
TR-81, Aiken Computation Laboratory, Harvard University, 1981.

18. M G. Reed, P. F. Syverson, D. M. Goldschlag.Anonymous connections and onion routing.
IEEE Journal on Selected Areas in Communication, Special Issue on Copyright and Privacy
Protection, 1998.

19. M. K. Reiter, A. D. Rubin.Crowds: Anonymity for web transactions. ACM Transactions on
Information and System Security1(1):66–92, November 1998.

