
Improving Security and Performance in Low Latency

Anonymity Networks

by

Kevin Scott Bauer

B.S., University of Denver, 2005

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

2011



This thesis entitled:
Improving Security and Performance in Low Latency Anonymity Networks

written by Kevin Scott Bauer
has been approved for the Department of Computer Science

Prof. Dirk Grunwald

Prof. Shivakant Mishra

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



Bauer, Kevin Scott (Ph.D., Computer Science)

Improving Security and Performance in Low Latency Anonymity Networks

Thesis directed by Co-Chairs Prof. Dirk Grunwald and Prof. Douglas Sicker

Conventional wisdom dictates that the level of anonymity offered by low latency anonymity

networks increases as the user base grows. However, the most significant obstacle to increased

adoption of such systems is that their security and performance properties are perceived to be

weak. In an effort to help foster adoption, this dissertation aims to better understand and improve

security, anonymity, and performance in low latency anonymous communication systems.

To better understand the security and performance properties of a popular low latency

anonymity network, we characterize Tor, focusing on its application protocol distribution, geopo-

litical client and router distributions, and performance. For instance, we observe that peer-to-peer

file sharing protocols use an unfair portion of the network’s scarce bandwidth. To reduce the con-

gestion produced by bulk downloaders in networks such as Tor, we design, implement, and analyze

an anonymizing network tailored specifically for the BitTorrent peer-to-peer file sharing protocol.

We next analyze Tor’s security and anonymity properties and empirically show that Tor is vulner-

able to practical end-to-end traffic correlation attacks launched by relatively weak adversaries that

inflate their bandwidth claims to attract traffic and thereby compromise key positions on clients’

paths. We also explore the security and performance trade-offs that revolve around path length

design decisions and we show that shorter paths offer performance benefits and provide increased

resilience to certain attacks. Finally, we discover a source of performance degradation in Tor that

results from poor congestion and flow control. To improve Tor’s performance and grow its user

base, we offer a fresh approach to congestion and flow control inspired by techniques from IP and

ATM networks.



Dedication

To my parents.



Acknowledgements

This thesis is the culmination of over five years of work and I wish to thank the many people

who have made invaluable contributions both to this thesis and to my professional development

as a researcher. First, I thank my academic advisers, Dirk Grunwald and Doug Sicker, without

whose encouragement and support this work would not have been possible. Second, I thank my

thesis committee, Nikita Borisov, Shiv Mishra, and Stefan Savage, for their invaluable comments

and suggestions.

I would also like to thank the many research collaborators and co-authors for their con-

tributions to this thesis and to my professional development. I am particularly thankful to J.

Trent Adams, Mark Allman, Mashael AlSabah, Eric Anderson, Aaron Beach, Markus Breitenbach,

Nikita Borisov, Anders Drachen, Ian Goldberg, Harold Gonzales, Ben Greenstein, Greg Grudic,

Dirk Grunwald, Asa Hardcastle, Joshua Juen, Yoshi Kohno, Hyunyoung Lee, Janne Lindqvist, Qin

(Christine) Lv, Damon McCoy, Sears Merritt, Vern Paxson, Caleb Phillips, Stefan Savage, Micah

Sherr, Doug Sicker, Robin Sommer, Parisa Tabriz, Rob Veitch, Geoff Voelker, and Gary Yee.

In addition, I am grateful to Nikita Borisov, Roger Dingledine, Paul Syverson, and countless

anonymous reviewers for offering helpful and constructive comments and suggestions that improved

the quality of various parts of this thesis. I also especially thank Roger Dingledine for his two visits

to UCSD in August and December 2010, during which time he offered invaluable expert guidance

through Tor’s various layers of congestion control and flow control.

I would like to especially acknowledge J. Trent Adams at The Internet Society and Tom

Lookabaugh formerly at PolyCipher for their generous financial support that, in part, made this



vi

research possible. In addition, I thank Stefan Savage, Geoff Voelker, and Damon McCoy for spon-

soring my brief stint as research staff at UCSD from August–December 2010, during which time

part of this thesis was completed. Lastly, I thank Vern Paxson for sponsoring my research visit

to the International Computer Science Institute’s Center for Internet Research (ICSI/ICIR) in

Berkeley, CA during summer 2010, where I became fully immersed in the challenges of large-scale

Internet measurement and network-based intrusion detection.

If I’ve learned anything in graduate school, I learned that research is a social activity. This

thesis contains text, figures, tables, data, and ideas drawn from the following jointly authored

papers: [49, 54–56,60–63,158,159].

Finally, and most importantly, I thank my family for encouraging me to follow my dreams

and for providing the emotional and financial support that enabled me to complete my education.

Of course I would be remiss if I neglected to thank my furry friends Snoopy, Bridget, and Murphy

(one canine, two felines) for not excessively peeing and pooping on the carpet or otherwise trashing

our apartment while I worked many long nights to finish this thesis. Lastly, I thank Catherine, my

friend and partner in life, for her love and support that makes everything I do worthwhile.



vii

Contents

Chapter

1 Introduction 1

1.1 Need for Privacy Enhancing Technologies . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Better Performance Leads to Better Anonymity . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Fundamental Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 7

2.1 Preliminaries and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Anonymity Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 High Latency Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Low Latency Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Anonymity Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Crowds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Tarzan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.4 IPpriv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.5 UDP-OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.6 Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



viii

2.3.7 HerbivoreFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.8 Anonymous Remailers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.9 P 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.10 Nonesuch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.11 AP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.12 Cashmere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.13 Salsa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.14 Java Anonymous Proxy (JAP) . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.15 Freenet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.16 Privacy-preserving File Sharing Protocols . . . . . . . . . . . . . . . . . . . . 39

2.4 Anonymity Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.1 Degrees of Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 An Information-theoretic Approach . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4.3 Metrics for Low-latency Systems . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Anonymity Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5.1 Traffic Analysis with Packet Sizes and Timing . . . . . . . . . . . . . . . . . 44

2.5.2 Packet Counting and Timing Analysis Attacks . . . . . . . . . . . . . . . . . 44

2.5.3 Predecessor Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.4 Disclosure, Intersection, and Statistical Disclosure Attacks . . . . . . . . . . . 46

2.5.5 Onion Routing Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Characterizing a Popular Low Latency Anonymous Network 50

3.1 Data Collection Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Protocol Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Interactive vs. Non-interactive Web Traffic . . . . . . . . . . . . . . . . . . . 54

3.2.2 Is Non-interactive Traffic Hurting Performance? . . . . . . . . . . . . . . . . . 54



ix

3.2.3 Insecure Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Malicious Router Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Detection Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Misbehaving Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Geopolitical Client and Router Distributions . . . . . . . . . . . . . . . . . . . . . . 59

3.5.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.2 Modeling Router Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Circuit-level Performance Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6.1 Diurnal Patterns in Traffic Load . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.2 End-to-end Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6.3 End-to-end Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6.4 Circuit Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6.5 Circuit Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Ethics and Community Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Broader Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Practical Attacks against Low Latency Anonymous Networks 80

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Tor’s Router Selection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.2 Tor’s Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Compromising Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2.1 Phase One: Setting Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.2 Phase Two: Linking Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



x

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.3.2 Measuring Bias in Router Selection . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.4 Attack Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Effects of Exit Bandwidth Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.3 Mitigating Circuit Compromise for Limited Bandwidth Protocols . . . . . . . 107

4.5 Attack Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.6 Traffic Analysis on the Live Tor Network . . . . . . . . . . . . . . . . . . . . . . . . 110

4.7 Defenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7.1 Resource Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.7.2 Mitigating Sybil Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7.3 Alternative Routing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.7.4 Mitigating Selective Disruption DoS Attacks . . . . . . . . . . . . . . . . . . 114

4.8 Broader Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Improving Performance (and Security) with Two-Hop Paths 117

5.1 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.1 Path Compromise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.2 Adaptive Surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.1.3 Entry Guard Linkability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Blending Different Paths Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.1 Circuit Length Discovery through Traffic Analysis . . . . . . . . . . . . . . . 127



xi

5.3.2 Blending Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.1 User-configurable Path Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4.2 Potential Liabilities for Exit Routers . . . . . . . . . . . . . . . . . . . . . . . 130

5.4.3 Secure Bandwidth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4.4 Does a Two-hop Design Discard Too Many Routers? . . . . . . . . . . . . . . 131

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6 Crowds-style Anonymity for BitTorrent 134

6.1 Case Study: Information Leaks in BitTorrent . . . . . . . . . . . . . . . . . . . . . . 135

6.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.2 Accurate and Efficient Monitoring . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6.2 BitBlender: Light-weight Anonymity for BitTorrent . . . . . . . . . . . . . . . . . . 149

6.3 Degrees of Anonymity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.4 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4.2 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 The BitBlender Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5.1 Relay Peer Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5.2 Anonymity Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.6 Protocol Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.6.1 Expected Path Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.6.2 Comparison to Tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.6.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



xii

6.7 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.7.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.8 Protocol Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.8.1 Confidentiality and Access Control . . . . . . . . . . . . . . . . . . . . . . . . 164

6.8.2 Traffic Analysis Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.8.3 Selective Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.9 Legal Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Improving Congestion and Flow Control in Tor 168

7.1 Tor’s Approach to Congestion and Flow Control . . . . . . . . . . . . . . . . . . . . 169

7.1.1 Congestion and Flow Control Mechanisms . . . . . . . . . . . . . . . . . . . . 170

7.1.2 Alternate Proposals to Reduce Congestion . . . . . . . . . . . . . . . . . . . . 172

7.2 Improving Tor’s Congestion and Flow Control . . . . . . . . . . . . . . . . . . . . . . 173

7.2.1 Improving Tor’s Existing End-to-end Flow Control . . . . . . . . . . . . . . . 173

7.2.2 ATM-style Congestion and Flow Control for Tor . . . . . . . . . . . . . . . . 175

7.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.3.1 Small-scale Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3.2 Larger-scale Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

7.4.1 Optimality and Comparison to an Alternative Transport Design . . . . . . . 190

7.4.2 Incremental Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.4.3 Anonymity Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

7.4.4 Performance over Asymmetric Links . . . . . . . . . . . . . . . . . . . . . . . 195

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196



xiii

8 Conclusions and Future Work 198

8.1 Fundamental Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.1.1 First Characterization of a Live Anonymity Network . . . . . . . . . . . . . . 198

8.1.2 Low-resource Traffic Confirmation Attacks and Defenses . . . . . . . . . . . . 199

8.1.3 Security and Performance Evaluation of Path Length . . . . . . . . . . . . . . 200

8.1.4 Improving Performance by Offering an Alternative for BitTorrent . . . . . . . 200

8.1.5 Improving Tor’s Congestion and Flow Control . . . . . . . . . . . . . . . . . 200

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.2.1 Additional Performance Improvements . . . . . . . . . . . . . . . . . . . . . . 201

8.2.2 Improving Router Selection with Link-based Metrics . . . . . . . . . . . . . . 201

8.2.3 Secure Bandwidth Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Bibliography 203

Appendix

A Extended Circuit Compromise Results from Simulations 219



xiv

Tables

Table

2.1 A taxonomy of anonymous communications systems . . . . . . . . . . . . . . . . . . 22

3.1 Exit traffic protocol distribution by number of TCP connections, size, and number

of unique destination hosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Geopolitical client distributions, router distributions, and the ratio of Tor users rel-

ative to Internet users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Bandwidth distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 The raw number of compromised circuits . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 The number of predicted and actual circuits compromised in the 40 node PlanetLab

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 The number of predicted and actual circuits compromised in the 60 node PlanetLab

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 The empirical normalized entropy Snorm for each experimental configuration . . . . . 96

4.6 Tor’s distribution of exit bandwidth for web browsing, outgoing e-mail, and peer-to-

peer file sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Daily statistics for clients per entry guard and information estimates . . . . . . . . . 123

6.1 Summary of data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



xv

6.2 The average fraction of peers identified in one, five, and ten iterations of the moni-

toring across all ten torrents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Size of each probe type (assuming no TCP options) . . . . . . . . . . . . . . . . . . 148

A.1 Path compromise rate for each protocol’s default port as the number of passive

malicious routers increases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

A.2 Tor’s distribution of exit bandwidth by each protocol’s default port . . . . . . . . . . 221



xvi

Figures

Figure

2.1 An example of how a subject’s attribute information can be used to reconstruct

identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Tor’s system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Degrees of anonymity expressed as a spectrum, given the adversary’s probability p

of knowing that a subject had a role in a message . . . . . . . . . . . . . . . . . . . . 40

3.1 Malicious exit router logging detection technique . . . . . . . . . . . . . . . . . . . . 57

3.2 Distribution of Tor router bandwidth around the world . . . . . . . . . . . . . . . . 62

3.3 PDFs of Tor’s traffic distribution over its routers during a one hour snapshot . . . . 63

3.4 The observed circuit connections are plotted over the course of one data collection

period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Asian, European, and North American circuit connections as a function of the time

of day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 CDF of end-to-end latency through Tor circuits . . . . . . . . . . . . . . . . . . . . . 67

3.7 CDF of end-to-end latency through Tor circuits in September 2010 . . . . . . . . . . 68

3.8 CDF of end-to-end throughput through Tor circuits . . . . . . . . . . . . . . . . . . 69

3.9 CDF of end-to-end throughput through Tor circuits in September 2010 . . . . . . . . 70

3.10 CDF of Tor circuits’ durations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.11 Quantile-Quantile plot of the duration observations from the January and December

data collection periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



xvii

3.12 CDF of Tor circuits’ durations in September 2010 . . . . . . . . . . . . . . . . . . . . 72

3.13 CDF of data transferred over Tor circuits . . . . . . . . . . . . . . . . . . . . . . . . 73

3.14 Quantile-Quantile plot of the kilobytes transferred from the January and December

data collection periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.15 CDF of data transferred over Tor circuits in September 2010 . . . . . . . . . . . . . 74

3.16 CDF of stream size within Tor circuits in September 2010 . . . . . . . . . . . . . . . 75

3.17 CDF of number of streams within Tor circuits in September 2010 . . . . . . . . . . . 75

4.1 Attack Model: Malicious Tor routers are positioned at both the entry and exit posi-

tions for a given client’s circuit to the requested destination server through the Tor

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 A sequential packet diagram of Tor’s circuit building process . . . . . . . . . . . . . 89

4.3 Empirical router selection probabilities for all routers in each experimental network

(malicious nodes are shown in red) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Router selection probability distributions for the non-adversarial 40 node, 60 node,

and real Tor networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Fraction of circuits compromised for web browsing, outgoing e-mail, and peer-to-peer

file sharing traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Fraction of circuits compromised for FTP and SSH traffic . . . . . . . . . . . . . . . 106

5.1 Observed router counts and bandwidth distribution used for simulations . . . . . . . 119

5.2 Fraction of HTTP circuits compromised . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Download time comparisons between two- and three-hop paths for 15 popular websites125

5.4 Cumulative distribution of download time across all 15 websites . . . . . . . . . . . . 126

5.5 Percent increase in download time for three-hop circuits compared to two hops . . . 126



xviii

5.6 Circuit building messages. K1, K2, and K3 are the symmetric keys derived from

Tor’s telescoping Diffie-Hellman key establishment shared between the client and

the entry guard, middle router, and exit router, respectively. Also, note that all

messages are further protected by TLS. . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.7 Bandwidth contributions from middle-only routers . . . . . . . . . . . . . . . . . . . 132

6.1 BitTorrent message exchange to start a piece transfer . . . . . . . . . . . . . . . . . 138

6.2 Over ten runs, the cumulative fraction of peers identified with connections, hand-

shakes, bitfields, and block requests across all ten torrents . . . . . . . . . . . . . . . 145

6.3 Total amount of traffic necessary to monitor each torrent using active probing and

pings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4 The BitBlender protocol system architecture. The protocol proceeds as follows: (1)

A relay peer joins the blender; (2) The tracker requests relay peers; and (3) Relay

peers probabilistically join the torrent. A piece request through two relay peers is

shown (the path length is three hops). . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.5 The expected path length (l) plotted as a function of the ratio of relay peers to total

peers (r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.6 Mean download time with 95% confidence intervals as a function of the ratio of relay

peers to normal peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.1 A Tor router’s queuing architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.2 The exit router’s circuit queue delays for a 300 KiB download . . . . . . . . . . . . . 172

7.3 N23 credit-based flow control in Tor . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.4 A simple topology with a middle router bandwidth bottleneck and 80 ms link RTTs 178

7.5 Bottleneck topology performance comparisons between stock Tor and Tor without

any congestion and flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.6 Bulk circuit’s circuit queue length at the exit router observed over the course of a

download with no congestion and flow control in a bottleneck topology . . . . . . . . 180



xix

7.7 Performance comparisons for window approaches in a bottleneck topology . . . . . . 182

7.8 Bulk client’s circuit queues at the exit router over the course of a download . . . . . 182

7.9 Performance comparisons for window approaches in a non-bottleneck topology . . . 183

7.10 Performance comparisons for window-based congestion and flow control in combina-

tion with circuit scheduling prioritization . . . . . . . . . . . . . . . . . . . . . . . . 184

7.11 Performance comparisons for Tor and N23 in a bottleneck topology . . . . . . . . . . 186

7.12 Download time comparison for Tor and N23 in a non-bottleneck network . . . . . . . 187

7.13 Circuit queue length with bottleneck: N3 = 70, N2 = 20 . . . . . . . . . . . . . . . . 188

7.14 Performance results for large-scale experiments . . . . . . . . . . . . . . . . . . . . . 190

7.15 Small-scale bottleneck performance results for TCP-over-IPsec . . . . . . . . . . . . 192



Chapter 1

Introduction

“If you have something that you don’t want anyone to know, maybe you shouldn’t be doing it in the

first place.”

– Eric Schmidt, Chairman of Google

The TCP/IP protocol suite is among the fundamental building blocks of the Internet. How-

ever, it was designed without any regard for protecting the privacy of Internet users. Since the

Internet’s inception, protocols for protecting the confidentiality, integrity, and authenticity of com-

munications have been developed and are now deployed ubiquitously to protect sensitive commu-

nications including financial transactions, personal e-mails, and social networking activities. While

such protocols offer privacy by hiding the contents of a communication from unauthorized third-

parties, they cannot alone conceal the fact that two parties are communicating.

During the Internet’s early days, perhaps there was little need to communicate privately or

anonymously. However, today’s online world feels more like George Orwell’s prophetic vision in 1984

of widespread surveillance and data mining than a technological utopia. Today, targeted behavioral

advertising is commonplace [160], web search data is often aggregated and retained indefinitely [25],

an arsenal of tracking technologies monitor and report on web browsing habits [38], fingerprint-

ing techniques [30, 109] enable website operators or third-party advertising agencies to re-identify

and track users even in the absence of explicit identifiers, large-scale domestic surveillance has been

carried out by the U.S. National Security Agency (NSA) in collusion with telecommunications com-



2

panies [29], and Internet users who reside in parts of the world controlled by autocratic governments

are closely monitored and filtered by sophisticated deep packet inspection firewalls [165].

Commonly the “I have nothing to hide” argument justifies breaches of privacy in the name

of national security or public safety; however, this justification is based on the faulty premise that

privacy is about hiding amoral, illegal, or otherwise socially unacceptable behavior [214]. Rather,

it has been argued that privacy is about protecting and controlling the flow of information about

oneself to others [231], such as corporations that may wish to gather information to better target

products at likely buyers or governments that surveil citizens in the name of public good.

1.1 Need for Privacy Enhancing Technologies

Given the absence of personal privacy protections built into the Internet, a variety of privacy

enhancing technologies (PETs) have been designed and developed in an effort to give end-users

effective tools to control and manage how their personal information is released and shared. For

example, the Transport Layer Security (TLS) protocol [95] is the most widely used PET available

today. TLS is a session layer security protocol that secures web logins, bank transactions, and

personal communications from a third-party observer. While TLS ensures confidentiality, integrity,

and authenticity, it cannot conceal the parties involved in a transaction or communication.

A variety of techniques have been designed and developed to hide the identities of parties

engaged in communication. Single-hop anonymizing proxies such as Ipredator [22], BTGuard [11],

and anonymizer.com [6] offer a form of anonymous communication by routing traffic from the

sender through an intermediate proxy server and then on to the destination. While the identities of

both communicating parties are hidden from network observers residing between the sender and the

proxy or between the proxy and the destination, the proxy itself knows the identities of both parties

and could betray them [124]. To overcome this limitation, de-centralized architectures consisting

of multiple anonymizing proxies are employed, to reduce the amount of information that any single

proxy knows about the sender or receiver. Anonymizing networks such as Tor [103], I2P [20], and

AN.ON [134] attempt to conceal communicating parties’ identities from both network observers and



3

the anonymization infrastructure itself. In combination with privacy enhancing proxy filters [31,33]

that sanitize web page data, these PETs offer a strong form of privacy to protect users from invasive

monitoring via deep packing inspection by network operators, profiling by website operators, and

data mining of online behavior carried out by third-party advertising firms.

Anonymizing networks also offer a means to resist Internet censorship and filtering, promote

freedom of speech and press online, and protect cyber-dissidents and activists. For example, Tor

has been used to facilitate online protests following a highly contested Iranian presidential election

in 2009 [44] and to help organize an Egyptian pro-democracy movement in 2011 [46]. PETs that

enable anonymous and censorship resistant communications not only promote freedoms online, such

tools can also be instrumental in affecting social or political change in the real world.

1.2 Better Performance Leads to Better Anonymity

It is generally accepted that a security system that is easy to use provides better security than

one that may offer stronger security properties, but is harder to use. This is simply because there

is a greater chance that the user may not configure the system properly or other may otherwise

misuse the system in a manner that compromises security. In the realm of anonymity, this general

principle also applies. Anonymity systems that are easy to use will attract a greater number of users,

enlarging the system’s anonymity set, increasing the difficulty of traffic analysis, and ultimately,

offering better anonymity properties to all users [102].

We propose the following corollary to this principle: anonymity systems that offer high se-

curity and performance will attract a greater number of users, enlarging the system’s anonymity

set, increasing the difficulty of traffic analysis, and, ultimately, offering better anonymity properties

to all users. Perhaps ironically, the greatest obstacle to the increased adoption of systems for low

latency anonymous communications is their unacceptably high delays [92,105,184,187,230], which

discourage delay-sensitive web users from participating. By reducing these delays, ideally to a

level that makes such systems’ performance indistinguishable from the native Internet, there will

be fewer obstacles to participation. While any multi-hop anonymizing architecture may inherently



4

necessitate an additional performance cost due to intentionally routing packets through multiple

countries, autonomous systems (ASes), or Internet Service Providers (ISPs) to resist traffic analy-

sis, ensuring that the performance cost associated with the anonymity system is as low as possible

will attract users who otherwise may not tolerate the delays.

1.3 Problem Statement

While it is clear that the design of low latency anonymity networks involves a careful con-

sideration of security and performance trade-offs, current systems offer weaker security and worse

performance than may be expected by users. In this dissertation, we seek to improve the security

and performance properties of low latency anonymity networks. We assert the following thesis:

Low latency anonymity networks can offer greater anonymity and better perfor-
mance than provided by existing systems.

We focus primarily on improving Tor, which has become the most popular low latency anonymity

network with an estimated 200,000 daily users [151] and the defacto platform for research. We

begin our analysis with a comprehensive characterization of real-world Tor usage to obtain an

understanding of the strengths and weaknesses of a currently deployed low latency anonymity

network. Armed with the results of this study, we proceed by offering a variety of solutions that

collectively improve Tor’s security, anonymity, and performance.

1.4 Fundamental Contributions

This thesis contributes the following to the field of anonymous communications.

• Real-world anonymity network characterization. (Chapter 3) To better understand

the security and performance of currently deployed low latency anonymity networks, we

characterize the Tor network in terms of application usage, geopolitical client and router

distributions, performance for end-users measured over the course of four years, and the



5

potential for abuse. Among other findings, we show that peer-to-peer file sharing proto-

cols such as BitTorrent consume an unfair portion of the available network bandwidth.

This degrades performance for users who wish to anonymize their web browsing or instant

messaging traffic.

• Traffic confirmation attacks and defenses. (Chapter 4) We experimentally explore

how Tor is vulnerable to end-to-end traffic confirmation attacks by weak adversaries who

misrepresent their bandwidth to attract traffic. Also, we propose and evaluate a novel

circuit linking technique that accurately correlates clients and destinations before any data

traffic is sent. We develop a wide range of defenses, many of which have been adopted and

deployed on the live Tor network.

• Path length implications for security and performance. (Chapter 5) We study

the performance and security trade-offs that revolve around path length design decisions.

While we empirically verify that performance improves with shorter paths, we also find

that shorter paths are more resilient to certain attacks relative to longer paths.

• An alternative anonymity system for file sharing. (Chapter 6) To alleviate the high

traffic load and congestion in networks like Tor that results from bulk transfer protocols

such as BitTorrent, we design, implement, and evaluate an anonymizing network designed

specifically for BitTorrent. With an alternative anonymity system for bulk traffic, low

latency anonymity networks such as Tor may experience less congestion and offer faster

service for delay-sensitive web users.

• Improved congestion and flow control. (Chapter 7) We seek to improve Tor’s per-

formance by diagnosing the shortcomings of its window-based congestion and flow control

and offering the design, implementation, and performance analysis of a per-link congestion

and flow control strategy from ATM networks. We argue that by improving performance,



6

Tor becomes more attractive to users, and enlarging the user base ultimately enhances the

system’s anonymity properties.

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 offers a survey of the rel-

evant background and related work from the anonymity and privacy literature. Chapter 3 analyzes

how Tor has been used in practice, who uses Tor, how Tor performs from the end-user’s perspec-

tive, and how Tor’s anonymity properties may be mis-used. Chapter 4 studies Tor’s security and

anonymity properties, focusing on how a adversary with very modest computing resources can com-

promise the system’s fundamental anonymity properties. Chapter 5 examines the anonymity and

performance trade-offs that are related to path length design decisions in Tor. Chapter 6 presents

a case study of information leaks in BitTorrent to motivate the need for an anonymizing protocol

tailored to enhance privacy for peer-to-peer file sharers. The design, implementation, and analysis

of a Crowds-style anonymity network built into the BitTorrent protocol is also presented. Chapter 7

aims to improve Tor’s performance by critically evaluating its end-to-end window-based congestion

and flow control mechanics and proposing alternative approaches that leverage techniques from IP

and ATM networks. Finally, Chapter 8 summarizes the fundamental contributions of this thesis

and highlights a variety of avenues for future work.



Chapter 2

Background and Related Work

The Internet’s fundamental architecture built around the TCP/IP protocol suite was osten-

sibly designed without any regard for preserving Internet users’ privacy or facilitating anonymous

communications. For example, while globally unique identifiers such as IP addresses have made

routing packets at the network layer a relatively easy task, they can also be used to monitor and

track a user’s online activities. Enabling users to communicate anonymously is inherently difficult,

since a packet’s source and destination fields are explicitly provided in the IP header. In an effort

to enable anonymity without redesigning the fundamental architecture of the Internet, a variety of

overlay solutions have been proposed to effectively re-write the packet’s source and destination in

such a manner that hides the true sender and receiver.

This chapter provides an overview of the fundamental terminology, techniques, protocols,

and systems from the anonymity literature. In particular, we provide a survey of the fundamental

techniques for achieving anonymous communications including mix networks, dining cryptographers

networks, onion routing, and information slicing. These methods are analyzed in terms of their

security and performance properties. Next, an overview of a sample of the systems that implement

these techniques is provided. Finally, this literature survey concludes with a discussion of the

common metrics that help to understand and quantify the degree of anonymity that a system

provides.



8

2.1 Preliminaries and Definitions

Before discussing the fundamental techniques that enable anonymous communications and

the various systems that implement them, we first define the key terminology that will be used

throughout the remainder of this document. All defined terms are based on Pfitzmann and Hansen’s

proposal for a common vocabulary [179].

Definition 1 Anonymity of a subject means that the subject is not identifiable within a set of

subjects, the anonymity set.

The notion of an anonymity set was proposed by Chaum [76] and further discussed by

Sweeney [218]. In this model, users are indistinguishable within a set of k subjects, the anonymity

set. These subjects could be the users of a particular system or servers that make up the necessary

infrastructure of an anonymous communication system. In the best case, an adversary should have

no better than a 1/k chance of identifying a subject from within this set. This corresponds to an

adversary without any prior knowledge about the anonymity set guessing at random about a user’s

identity with the anonymity set. In information theoretic terms, the entropy over the probability

distribution within the anonymity set is maximized (Chapter 2.4 introduces information theoretic

anonymity metrics). Defining anonymity in terms of a set of indistinguishable subjects provides an

easily quantifiable metric that can be applied to help reason about anonymity.

This anonymity property may hold for certain subjects and not for others. For example,

some systems are said to provide sender anonymity, where a message initiator’s identity is hidden.

Some systems may protect the responder’s identities, providing receiver anonymity. Systems may

also provide both sender and receiver anonymity.

Definition 2 Identifiability of a subject from an attacker’s perspective means that the attacker

can sufficiently identify the subject within a set of subjects, the identifiability set.



9

Being identifiable within the anonymity set with a probability significantly greater than 1/k

makes the subject identifiable. The precise probability that implies identifiability is subjective and

can be defined on a case by case basis.

Definition 3 Unlinkability of two or more items of interest from an attacker’s perspective means

that within the system, the attacker cannot sufficiently distinguish whether these items of interest

are related or not.

In addition to quantifying the degree of anonymity in terms of the anonymity set, it is

often necessary to describe relationships between subjects within the anonymity set. Unlinkability

captures the degree to which subjects’ relationships are hidden from an adversary. For example,

an anonymous communication service may wish to guarantee that messages being sent to the

anonymity service are unlinkable from messages leaving the service. This ensures that the senders

are unlinkable to their respective receivers. In addition, unlinkability can also be defined in terms

of sender unlinkability or receiver unlinkability.

Definition 4 Linkability of two or more items of interest from an attacker’s perspective means

that within the system, the attacker can sufficiently distinguish whether these items of interest are

related or not.

Linkability is the inverse of unlinkability. This captures the degree to which an adversary

can discern a relationship between subjects of interest. For example, suppose that an adversary

can infer patterns in the messages entering and leaving an anonymous communication service. The

adversary is said to be able to link the communications, revealing the sender’s and/or receiver’s

identities.

Definition 5 Undetectability of an item of interest from an attacker’s perspective means that the

attacker cannot sufficiently distinguish whether it exists or not.

Denying the existence of an item of interest, such as a message in a communication channel,

implies that third parties who are not involved in the message (as a sender or receiver) should not



10

be able to infer the existence of the message. Suppose that a system sends constant rate cover traffic

(or dummy traffic) in a manner that is indistinguishable from real messages that are processed by

the system. If an external adversary cannot distinguish this cover traffic from real traffic, then the

system is said to provide the property of undetectability.

Definition 6 Unobservability of an item of interest implies the following: (1) Undetectability of all

items of interest against all subjects uninvolved in it, and (2) Anonymity of the subject(s) involved

in the items of interest even against the other subjects involved in that item of interest.

A service that satisfies the properties of undetectability with regard to external observers and

anonymity of all subjects involved in the system is said to be unobservable. Adding cover traffic to

an anonymous communication service in such a manner that (1) legitimate items of interest cannot

be distinguished from the cover traffic and (2) all subjects are anonymous themselves. Only one of

the subjects can identify its own item of interest within such a system.

Definition 7 A pseudonym is an identifier of a subject other than one of the subject’s real names.

Definition 8 A subject is pseudonymous if a pseudonym is used as an identifier instead of one of

its real names.

A pseudonym is simply an alternate identifier. While the pseudonym and the real identifier

refer to the same identity, the pseudonym may be semantically different. For example, a real iden-

tifier such as an IP address can be made pseudonymous by applying a one-way keyed cryptographic

hash to produce a pseudonym. This pseudonym enables the real identifier’s actions to be linked,

but it may conceal additional semantic information such as the identifier’s Internet service provider,

autonomous system, etc. By studying the subject’s behavior or learning its attributes, it may be

possible to infer the mapping between pseudonyms and real identities.1

1 An example of how easy it often is to identify real identities from their pseudonyms is the AOL search data
release of 2006 [14]. AOL released an “anonymized” data set consisting of the contents and times of it’s customer’s
search queries. Data from over 650,000 users over the course of three months was released to the general public. Each
user was assigned a pseudonym to protect their real identity. However, it quickly became clear that this data could
be de-anonoymized by analyzing the contents of the user’s search queries and correlating their searches with external
data sources [41].



11

Figure 2.1: An example of how a subject’s attribute information can be used to reconstruct identities

Definition 9 An identity is any subset of attributes of an individual person which sufficiently

identifies this individual person within a set of persons.

An identity could be an explicit identifier such as a name, social security number, or a network

address. Identity can also be defined in more subtle terms. A set of attributes, or information about

a subject, could themselves be used to construct an identity. These attributes could be unique or

they could form an anonymity set with a very large k. For example, the attribute “U.S. citizen”

creates an anonymity set with k ≈ 227, 000, 000. However, a particular set of attributes may — in

some cases — establish an identity that only one subject possesses.

Consider the following example: In Massachusetts, the Group Insurance Commission (GIC)

released the medical records of state employees in an “anonymized” form consisting of only the

following set of attributes {ethnicity, visit date, diagnosis, procedure, medication, total charge,

ZIP code, date of birth, sex}. No explicit identifiers such as names or social security numbers

were released. However, a clever graduate student named Latanya Sweeney believed that this data

could be used to re-identify patients. To prove her point, she obtained a voter registration list

consisting of {name, address, date registered, party affiliation, date late voted, ZIP code, date

of birth, sex} and cross-referenced the two data sources as shown in Figure 2.1. Through this

process, Sweeney was able to uniquely identify William Weld, the then-Governor of Massachusetts,



12

and send his office a copy of his medical records [218]. Anonymizing data is a challenging problem,

since a subset of a subject’s attribute information can be used to reconstruct an explicit identifier

such as an individual’s name. Similarly, anonymizing network traffic shares many of the same

challenges. In the next section, we survey the fundamental techniques that have historically been

applied to overcome these challenges and enable anonymity of network traffic.

2.2 Anonymity Techniques

Unlike the traditional properties that are required to establish a secure communication chan-

nel, anonymous communication cannot be provided using cryptographic primitives alone. For

example, encryption can be applied to ensure confidentiality, digital signatures or message au-

thentication codes (MACs) can prove the authenticity of an identity, and hash functions verify a

message’s integrity to ensure that no data has been unknowingly modified. However, anonymous

communication necessitates resistance to traffic analysis, which involves hiding the identities of the

communicating parties.

One trivial solution to the traffic analysis problem is to relay all communications through

a centralized and trusted authority. However, this ostensibly places enormous trust upon this

centralized authority, since the authority knows the identities of the two communicating parties and

could arbitrarily disclose this information to another third-party such as a law enforcement agency

or a political regime. Thus, it is desirable to design an anonymous communication infrastructure

that is decentralized and spans several authoritative jurisdictions [114]. In such a decentralized

architecture, it should be infeasible for the identities of the two communicating parties to be

discovered unless the entire infrastructure colludes.

In this section, we present an overview of the most fundamental techniques for realizing

anonymous communication. These approaches fall into two general categories: high latency (or

message-based) and low latency (or stream-based).



13

2.2.1 High Latency Anonymity

High latency techniques attempt to hide timing information that could be used as a side

channel to facilitate traffic analysis. While high latency anonymity techniques provide the most

optimal security properties, they are often impractical due to their requirements that traffic be

delayed, reordered, or otherwise manipulated in a manner that hides timing information.

2.2.1.1 Single Mix

The mix is the fundamental building block of most high latency anonymous communication

systems [75]. A mix is a server that maintains a asymmetric key pair (Kpub, Kpriv). The mix

publishes Kpub with a trusted public key infrastructure. Users wishing to send messages anony-

mously simply encrypt their message with Kpub using a well-known public key cryptosystem such

as RSA [191] and send the encrypted message to the mix.

A single mix can hide the correspondences between senders and receivers with the following

procedure: First, suppose that all users have access to a public key infrastructure that distributes

public keys. Also, suppose that a user wants to send a message M anonymously to another

user at address A. The user prepares M by first padding it with a random string R0 to pre-

vent chosen-ciphertext attacks [185] and then encrypting M with the recipient’s public key KpubA
.

This encrypted message and the recipient’s address are added with another random string R1 and

encrypted with the mix’s public key Kpub:

Kpub[R1, KpubA
[R0, M ], A] →mix1

KpubA
[R0, M ], A

The message on the left-hand side of the arrow is the input to mix1. On receipt of this encrypted

message, mix1 uses its private key Kpriv to decrypt the message. Now, mix1 can see the recipient’s

address A, so it can deliver the message. Finally, the recipient A decrypts the message with its

own private key KprivA
.

The mix stores each message for some time and forwards messages in batch to their intended

destinations. Batching prevents an eavesdropper who is monitoring the links between (1) the sender



14

and the mix and (2) the mix and the destination from inferring the source and destination pairs by

observing the timing properties of the messages entering and leaving the mix. Thus, mixes attempt

to frustrate traffic analysis by perturbing temporal information. While this increases the latency

of the communications by artificially manipulating message timings, it provides strong anonymity

guarantees even in the presence of a passive and global adversary. The precise manner in which the

mix processes the batches is referred to as the flushing algorithm. Attacks on the flushing strategies

are collectively referred to as blending attacks.

Anonymous return addresses. Suppose that the recipient A wants to reply to the initial

sender, but A doesn’t know the identity of the sender. To facilitate anonymous replies, the initial

sender creates an untraceable return address of the form:

Kpub[R1, A], Kpubx
[.]

where A is it’s real address, R1 is a random bit string chosen by the sender, and Kpubx
is a one-

time use public key chosen by the sender. The sender sends this untraceable return address to the

recipient using the technique described above. The recipient replies with the following through the

mix:

Kpub[R1, A], Kpubx
[R0, M ] →mix1

A, R1[Kpubx
[R0, M ]]

The mix decrypts with its private key Kpriv1
and re-encrypts the message with the random bit

string R1. Only the original sender A knows both the private key Kprivx
and the random string R1,

since it chose R1, so only the initial sender can decrypt the reply message. These anonymous return

addresses can be generalized to a mix network or mix cascade using layered public key encryptions

in a similar fashion as above.

This technique is useful to issue a receipt, as a form of certified e-mail, in a privacy-preserving

online voting system. However, in such an online voting system, it would be essential to ensure

that only eligible and registered voters cast ballots and that votes are cast only once per voter. To

ensure these properties, it is necessary to provide digital pseudonyms, which are unique public keys

that can identify voters.



15

We now discuss a sample of high latency mix schemes and their security properties (the

proceeding summary is based primarily on [196]).

Threshold mix. Chaum’s mix uses a threshold scheme in which the mix flushes all messages

after every n-th message is received [75]. However, this flushing approach is vulnerable to an active

attack called the flooding attack. In this attack, the adversary first causes the mix to flush by

flooding the mix with dummy message. After it flushes, the adversary waits for a target message

to enter the mix, and again floods the mix with dummy traffic until the mix flushes with precisely

one legitimate message and n − 1 dummy messages. Since the adversary can identify and ignore

their dummy messages, the only remaining message (that is not theirs) is a legitimate message.

The adversary can identify the target message and its destination. Cover traffic has been proposed

to defend against this n − 1 attack [89].

Timed mix. The timed mix flushes all messages every t seconds. The timed mix can be defeated

by the trickle attack, in which an adversary delays all messages entering a mix for precisely t

seconds. The adversary then allows only a single target message to enter the mix. Since there is

only a single message in the mix, it is easy for the adversary to observe the message’s destination.

Threshold or timed mix. The threshold or timed mix flushes every t seconds or after n messages

have been received. This flushing algorithm is vulnerable to both the trickle attack, the flooding

attack, or a combination of both. This design provides no additional benefit over each individual

flushing method.

Threshold and timed mix. The threshold and timed mix flushes every t only when at least n

messages have entered the mix. This flushing strategy is vulnerable to a combination of the trickle

and flooding attacks.

Threshold pool mix. The threshold pool mix flushes after n + f messages are received. A pool

of precisely f messages (f is a random number) are kept in the mix at each flush while the other n

are forwarded. Which messages are kept and which are forwarded are also chosen at random. To

defeat this flushing, the adversary first floods the mix to flush all messages. Next, the adversary

forwards the target message to the mix. The adversary again floods the mix and counts how many



16

of the adversary’s messages leave the mix. If j < f of their messages leave, then f − j messages are

still in the mix. The adversary delays all other messages entering the mix and flushes the remaining

messages. Finally, the target message is flushed.

Timed pool mix. The timed pool mix flushes every t seconds and keeps a pool of f message in

the mix. f is chosen at random. The mix flushes only if there are greater than f messages in the

mix. An adversary may flood the mix in the hope that all f of the messages are their messages.

Timed dynamic-pool mix. The timed dynamic-pool mix flushes every t seconds only if there are

n+ fmin messages in the mix. Rather than always sending n messages, the mix sends max(1, ⌊m×

frac⌋) and keeps the remaining messages in the mix. m + fmin is the number of messages in the

mix, subject to m ≥ n. frac is a parameter that selects what fraction of messages should be kept

in the mix. The timed pool mix attacks are still possible, but now the probability of all of the

attacker’s messages being kept in the mix is a function of frac.

2.2.1.2 Mix Networks and Mix Cascades

While the single mix provides strong anonymity properties against a powerful adversary,

it is often vulnerable to a variety of active attacks, depending on the flushing algorithm used.

Furthermore, the mix server itself knows the message’s sender and the destination. To prevent any

single entity from linking messages, Chaum proposed the first decentralized protocol for providing

anonymous communications [75].

A mix network is a store-and-forward network in which a series of single mixes are used

to process messages after they are sent and before they are received. The procedure to send a

message through a single mix generalizes to a network of n mixes as follows. The sender encrypts

the message with the public keys of each of the n mixes in a layered fashion and delivers it to the

first mix in the path, mixn:

Kpubn
[Rn, Kpubn−1

[Rn−1, ..., Kpub2 [R2, Kpub1 [R1, KpubA
[R0, M ], A]]...]] →mixn



17

When a message is received by mixn, it removes a layer of encryption by decrypting with its private

key Kprivn
and forwarding the message to the next mix mixn−1 in the network. mixn−1 receives

the following:

Kpubn−1
[Rn−1, ..., Kpub2 [R2, Kpub1 [R1, KpubA

[R0, M ], A]]...] →mixn−1

In order to determine the sender and recipient pair, it is necessary for all n mixes to collude. The

message leaving the mix network has the form KpubA
[R0, M ], A which is the same as the single mix.

Any of the flushing algorithms discussed in Chapter 2.2.1.1 can be applied to the network of mixes.

Decentralized anonymity systems built with a series of mixes need to have a methodical

way to choose which mixes to use. A user can choose mixes in a free-route manner, where the

user source-routes their traffic through a path of mixes of a particular length. Alternatively, mix

cascades require that users always route their traffic through the same fixed route of mixes [106].

Mix cascades ostensibly place a tremendous amount of trust on the mix cascade while free-route

mixes need some way to distribute information about the available mixes (such as their IP addresses

and public keys) in a secure manner.

2.2.2 Low Latency Anonymity

In contrast to high latency techniques that attempt to mask timing information, a variety of

approaches have been proposed to enable low latency anonymous communications by processing

messages in real-time. These systems make a compromise. They provide a lower security guarantee,

but provide performance sufficient to transport interactive traffic. This inherent trade-off between

performance and security is explored further in this section.

2.2.2.1 Single Hop Proxy

A naive method for achieving a very weak form of anonymity is to proxy all traffic between a

user and a destination server through a single intermediate server, such as a virtual private network

(VPN) server. Examples of this centralized approach in practice include anonymizer.com [6],



18

BTGuard [11] and Ipredator [22]. From the destination server’s perspective, the traffic appears to

originate at the VPN server. Also, an eavesdropper monitoring the user’s link would not be able to

determine the true destination of the user’s traffic. While the single hop proxy is simple and elegant,

the proxy itself trivially knows the identities of both the user and the destination. Consequently,

a decentralized approach where no single entity knows both endpoints of the communications is

desirable.

2.2.2.2 Onion Routing

Onion routing attempts to limit a network’s vulnerability to traffic analysis by providing a bi-

directional, real-time virtual circuit of layered encryption between two communicating parties [122].

In contrast to mix networks that employ batching and re-ordering to alter the temporal properties

of a communication session, onion routing attempts to provide sufficient performance to support

interactive applications such as HTTP. Consequently, onion routing is vulnerable to statistical

correlation attacks at the end-points of the network that mix networks inherently resist. The first

implementation of onion routing used proxies to transparently connect the user’s application to

the onion routing infrastructure. However, in the initial implementation, a distinct proxy must be

written for each application to be used. In later generations of onion routing, a more generic proxy

interface such as SOCKS is used.

Onion routing architecture. An onion routing network consists of a set of routing nodes

that proxy traffic using a layered encryption scheme. To obscure the correspondence between the

initiator and the responder, the traffic is source-routed through a subset of the onion routers. The

onion routing technique’s ability to obscure the sender’s and receiver’s identities comes from the

assumption that any single onion router can only know the identities of the it’s previous and next

node in the onion router chain. For instance, if a particular onion router is the first hop along the

path from the initiator, then this onion router trivially knows the identity of the initiator. However,

since this router forwards the traffic to another router, it cannot know the final destination’s identity.

In the original design, the number of routers that should be used for a communication session is



19

not strictly specified — it could be fixed or some random number i > 1. In the model, it is assumed

that if an adversary controls the first node in the onion chain and the final onion router before the

destination, then that adversary can learn the identities of both communicating parties.

To mitigate this threat, it is suggested that the number of onion routers used on a path from

the initiator to the responder be sufficiently high to ensure that the probability of a single entity

controlling the routers at both endpoints is sufficiently small. However, as more routers are used

for these paths, the performance degrades. Therefore, it is important to find a suitable balance

between performance and security when choosing the number of routers through which to forward.

For instance, in Tor [103] — perhaps the most popular and successful anonymous communication

system based on the onion routing design — the number of routers is fixed at three.

Virtual circuits of layered encryption. Onion routing allows users to establish a virtual

circuit through multiple onion routers using a data structure called an onion that is encrypted in

layers. The basic structure of the onion is based on the route to the responder that is chosen by the

initiator. For instance, the initiator chooses to route its message M through onion routers OR1,

OR2, and OR3 in that order. Using the routers’ public keys, the initiator prepares an onion with

M at the center:

KOR1
(KOR2

(KOR3
(M)))

Having prepared the message as an onion, the initiator forwards the message to OR1, which has

the private key SOR1
. OR1 uses its private key to remove the outer-most layer of encryption from

the onion and forwards KOR2
(KOR3

(M)) to the next router specified. This continues until the final

layer of encryption is removed, revealing the final destination address and payload. This process

can establish a virtual circuit, which enables the initiator to send messages and the respondent to

reply via the same circuit (i.e., set of onion routers). Reply messages are forwarded in a similar

fashion, except that each onion router adds a layer of encryption. In most implementations, circuits

are identified with a unique circuit identifier. Once a virtual circuit is created, the initiator can

send data along the circuit and the respondent can reply similarly. To destroy a circuit when the



20

communication session is coming to an end, the initiator can send a special destroy message along

the circuit to remove that circuit.

2.2.2.3 A Network Coding Approach

Mix networks and onion routing both require a public-key infrastructure (PKI). To eliminate

the need for a PKI, information slicing chops a message into multiple components and then sends

those components over multiple disjoint paths. Recent work [138] shows how messages can be broken

into multiple parts using pseudo-randomized decompositions, preventing information leakage. Here,

portions of a message from Alice to Bob are injected in the network at two points (Alice and Alice’).

The parts are delivered via disjoint paths to Bob, who can then reassemble them. However, these

approaches require the simultaneous use of multiple links (Alice and Alice’). For most network users,

it is impractical to have multiple physical network connections. In the case of physical surveillance,

this form of anonymity provides little confidence because both lines could be monitored at the

sender’s location.

2.2.2.4 DC-Nets

Another anonymous communication protocol was proposed by Chaum which can mask the

identities of the parties that send messages [76], providing unobservability properties. A protocol

based upon a solution to the dining cryptographers problem is presented that is either uncondition-

ally secure — if a one-time pad is used — or is cryptographically secure if public key cryptography

is used. Unconditional security is the “gold standard,” however realizing one-time use keys is not

practical. We next discuss the DC-Nets protocol to highlight its appealing theoretical properties.

The dining cryptographers problem. The dining cryptographers problem is stated as follows:

Suppose that three cryptographers are eating dinner and their waiter informs them that a third-

party has generously picked up their bill. The cryptographers wonder if one of them is paying the

bill, or if the NSA is paying. They resolve this question using a clever protocol: Each cryptographer

secretly flips an unbiased coin and shares the outcome with the cryptographer to her right — so



21

only two of the cryptographers know the outcome. Next, each cryptographer states aloud whether

the two coins she sees fell on the same or different sides. This is logically equivalent to performing

the exclusive or operation on the two outcomes. If one of the cryptographers, in fact, paid the bill,

then she should say the opposite of what she sees. If there is an odd number of differences stated

at the table, then one of the cryptographers is paying. Otherwise, if there is an even number of

differences, then someone else is paying the bill. Note that if one of the cryptographers did pay the

bill, their identity remains anonymous.

DC-nets as a theoretical construct. To make the protocol more concrete, consider the following

example: Suppose that the three cryptographers flip coins in secret and the outcomes are A, B,

and C. The outcomes are shared according to the protocol described above, so AB = A ⊕ B,

BC = B⊕C, and CA = C⊕A. These three values are shared and AB⊕BC⊕CA reveals whether

one of the cryptographers paid the bill. Put another way, suppose that one of the cryptographer

wants to broadcast a message m anonymously. That cryptographer simply performs the exclusive or

operation with their message, for instance, CA = C ⊕A⊕m. Now, when the three cryptographers

share their outcomes with a third-party mediator, the message is revealed: AB ⊕ BC ⊕ CA = m.

The cryptographer who pays is an analogy for the one sending m. The message is revealed, but

the identity of sender is secret. Note that this scheme is secure to a globally passive eavesdropper

who can see every message sent, since m is composed by all parties. Similarly, no subset of the

cryptographers can learn the identity of the sender.

This simple protocol achieves unconditional security since each cryptographer cannot know

for certain if the coin flip is the same or different from the cryptographer’s coin that she cannot

see. Thus, it is not possible to determine who is honest and who has lied (i.e., who actually paid

or sent m).

This solution to the dining cryptographers can be generalized to n participants. Suppose

that each participant has a secret key, of which one bit is shared in common with every other

participant. Each participant shares a single bit with another participant. After the sharing, each

participant takes the sum modulo two of all shared key bits. The protocol proceeds in rounds. If



22

Table 2.1: A taxonomy of anonymous communications systems

Security Performance

Anonymity Undetectability Unobservability High Lat. Low Lat.
Anonymizer.com X X

Tor X X

Crowds S X

Tarzan X X X X

Mixminion X X X X

Mixmaster X X X X

Morphmix X X X X

Herbivore X X X X

P 5 X/S/R X

JAP/AN.ON X X

Nonesuch X S S X

AP3 X X

Cashmere X X

Freenet X X

Salsa X X

Freedom X X

UDP-OR X X

IPpriv X X

no participant transmits a message during this round, then the sum modulo two is zero, since every

bit appears precisely twice. Otherwise, one of the participants transmitted a message. However,

it is possible that if an even number of participants transmit during a single round, then the sum

is zero. Similarly, if an odd number of participants transmit during a single round, then the sum

is one. This type of message collision is mitigated if each participant has a jth bit of their key in

common with every other participant, and the ith bit (for i ≤ j) is used for the ith round. Chaum

proposes a public-key distribution technique that can be used to construct a computationally secure

channel with sender anonymity.

Despite its strong anonymity properties, DC-Nets presents significant practical obstacles to

deployment. Since participants are modeled as nodes in a fully connected graph where the edges are

shared keys, it is necessary to share n(n−1)
2 = O(n2) keys. This becomes impractical as n grows.

2.3 Anonymity Systems

Having presented the fundamental techniques for achieving anonymity in a network setting,

in this section, we provide a brief overview of a variety of systems that have been proposed and

implemented to achieve anonymous communications. These systems provide anonymity properties



23

with high latency or low latency performance properties. In addition, systems built on peer-to-peer

(P2P) and client/server architectures have been developed. Table 2.1 provides a taxonomy of these

systems in terms of the security properties that they provide and their performance (Xindicates

that the property holds for both senders and receivers, S indicates that the property holds for

only senders, and R indicates that the property holds for only receivers). These systems are

classified according to the security properties of anonymity, undetectability, and unobservability

and according to whether they provide high latency or low latency service. In the remainder of this

section, we discuss each system in turn, highlighting their distinguishing features.

2.3.1 Crowds

Crowds is unique in that it derives its anonymity properties from the concept of “blending into

a crowd.” Crowds’ architecture uses a set of special Jondo nodes that simply proxy HTTP traffic

on behalf of the nodes. When a Jondo receives a message, it either forwards it to another Jondo

node or delivers it to its final destination with a certain probability p which is decided before-hand.

This probability defines the degree of anonymity or the level of certainty that a particular Jondo

has that the previous node was the initiator. To prevent local eavesdroppers from inspecting the

traffic, link encryption is used between Jondos (such as TLS), however, no cryptography is required

to satisfy the system’s anonymity properties. Crowds achieves a certain level of source anonymity,

but since any Jondo can see the payload, the destination’s identity is not hidden. Crowds provides

sender anonymity and sender/receiver unlinkability.

2.3.1.1 When is Crowds-style Anonymity Appropriate?

Crowds was initially proposed for anonymizing HTTP traffic. However, due to the dynamic

content of HTTP, it is likely that a user may inadvertently identify themselves in an HTTP request,

perhaps by visiting a website with an non-TLS-protected login process. Thus, we assert that HTTP

is not ideal for the Crowds-style of anonymity. In Chapter 6, we argue that peer-to-peer file sharing



24

protocols (such as BitTorrent) is more well-suited to this form of anonymity since the content is

publicly available and there is no dynamic content that could reveal identifying information.

2.3.2 Tarzan

Tarzan is an anonymity-preserving network layer based on a peer-to-peer overlay model that

is transparent to higher-layer applications [116]. Tarzan uses layered encryptions much like mix

networks or onion routing and it also provides cover traffic to frustrate an adversary’s ability to

conduct traffic analysis and infer the initiator of a message. Of particular interest is Tarzan’s

ability to select peers in such a way that’s difficult for an adversary to influence. A network address

translator (NAT) is used to bridge hosts using Tarzan and those using standard IP.

2.3.2.1 Design Goals

Most importantly, Tarzan attempts to provide an anonymity-preserving network layer that,

like IP, is transparent to existing applications and services. Both sender and receiver anonymity

should be ensured even in the presence of colluding nodes. Fault-tolerance and availability should

also be guaranteed in the presence of colluding nodes that attempt to disrupt service. In addition,

since Tarzan has been proposed as an anonymity-capable replacement for IP, it should provide the

highest level of performance possible. Finally, perhaps its most ambitious design goal is to maintain

sender and receiver anonymity even against a global eavesdropper, i.e., an eavesdropper who can

monitor the entire network. We next describe how Tarzan is able to achieve these goals.

2.3.2.2 System Architecture

Tarzan uses a distributed peer-to-peer architecture of relays that use layered encryption in

the style of the Chaumian mix, where each relay either adds or removes a layer of encryption

(depending upon the packet’s direction). Suppose that a client desires anonymity for a particular

communication session. The client chooses a set of relay peers through which to route its traffic.

The client establishes session keys with these peers and establishes a tunnel using these nodes. The



25

client sends its data through the tunnel, and the final relay peer forwards the data to the intended

destination. The peers use a NAT to bridge their private address space with the Internet.

For peer discovery, Tarzan uses a simple gossip protocol and peers are selected by clients with

a diverse set of IP prefixes. For instance, the assumption is that an adversary may control a set

of peers within the same /16 subnet (according to CIDR notation). This mitigates an adversary’s

ability to compromise an entire path.

One particularly interesting aspect of Tarzan’s design is its use of cover traffic to defend

against traffic analysis. By forwarding cover traffic that consists of real (replayed) traffic in a

constant manner, it becomes difficult for an eavesdropper to analyze the usage patterns and link a

message to its initiator. While this approach offers additional security, it has a performance cost.

2.3.2.3 Security Analysis of Tarzan

Tarzan is among the only anonymous communication systems that is based on a peer-to-peer

model. This approach offers desirable scalability properties and is difficult to explicitly block by

an ISP or a government. Similar to onion routing networks, if the last relay peer is compromised,

then it is possible to determine both the content of the message and the destination’s identity.

However, if the first relay is compromised, the payload is still secure (since it is encrypted), but it

is not clear whether the identity of initiator is revealed. Due to the peer-to-peer architecture, it is

unclear whether the initiator sent the message, or is merely a relay. Additional traffic analysis is

required to obtain more information. Thus, Tarzan’s peer-to-peer architecture offers more security

against corrupt nodes at the beginning of the path than onion routing offers. In addition, since

Tarzan uses constant cover traffic that is hard to distinguish from real traffic, it is difficult for an

eavesdropper to determine if certain peers are forwarding real data or cover traffic.

2.3.3 Tor

Tor exemplifies the greatest success to date of research and development in practical anony-

mous communications systems. Based on an onion routing architecture, Tor attempts to provide



26

Figure 2.2: Tor’s system architecture

low-latency anonymity service for TCP with perfect forward secrecy, a standard proxy interface,

no mixing, TCP stream multiplexing over circuits, variable exit policies, and support for location

hidden services (see [147, 153, 164, 172] for an overview of Tor’s hidden services, as our work does

not address hidden services). In Chapter 3, we show that Tor is used widely across 126 different

countries, particularly those where the policies of local governments restrict Internet freedoms. As

of October 2009, there are over 1,400 active Tor routers operated by volunteers around the world.

Tor clearly exists as the most successful and widely adopted anonymity solution. As such, it is also

the defacto platform for research in anonymous communications. Perhaps the greatest explanation

for Tor’s success is that it is easy to use with standard proxies such as SOCKS and browser plug-

ins and more importantly, it has achieved a sufficient balance between security and performance

to enable applications that require a low-latency transport such as HTTP while still resisting a

variety of attacks.



27

2.3.3.1 Tor’s Design

Tor is the second generation of the onion routing design, built as a circuit-switching overlay.

Tor’s system architecture (illustrated in Figure 2.2) consists of Tor routers and a set of directory

server replicas to advertise the Tor routers’ addresses, public keys, and other information to Tor

clients. To establish a virtual circuit, a client chooses precisely three Tor routers and constructs

an onion structure around messages in a similar fashion as described in Chapter 2.2.2.2, but with

a few important differences. Since public key decryptions are computationally slow, Tor creates

circuits in such a way that establishes shared symmetric keys between the client and each router in

the circuit in a telescoping fashion. Once the circuit is established, the client shares a symmetric

key with each router along the circuit, so it can build the onion structure using layered symmetric

key encryption such as AES. Similar to the original onion routing design, each router along the

circuit removes its respective layer of encryption and forwards the packet to the next hop or the

final destination when the final layer of encryption has been removed.

To mitigate traffic analysis attacks that try to correlate packets entering and leaving the

network based on their sizes, Tor pads all packets, or cells to a fixed size of 512 bytes. Fairness

is ensured at each Tor router by employing round-robin circuit queuing. Routers may also be rate

limited to obey desired bandwidth constraints.

2.3.3.2 The Evolution of Tor’s Design

Tor has changed significantly since its initial design. Through Tor’s active and open volunteer

development process, changes are constantly being made to its protocol. Here, we focus upon a

significant change that brings to light a fundamental challenge in designing and implementing

practical anonymous communications systems. Initially, Tor clients chose the routers for their

circuits uniformly at random. This provides a relatively strong resistance to the traffic correlation

attack, since the probability of an adversary controlling both the first and last Tor routers is (c/n)2,

which is negligible as n is large. However, as Tor has grown in popularity, it has been necessary to



28

ensure that the traffic load is balanced across the available bandwidth in the network. Thus, Tor

clients now choose their routers by weighting their selection by the amount of perceived bandwidth

that a Tor router has available. However, verifying a router’s available bandwidth is fundamentally

difficult, since available bandwidth is a shared resource that is variable as a function of time or

other factors. In Chapter 4, we show that this load balancing has increased Tor’s vulnerability to

traffic correlation attacks from low resource adversaries who only control a few nodes and little

bandwidth.

In addition to load balancing, Tor has added entry guard nodes [172] to mitigate the impact

of the predecessor attack. Recall that the predecessor attack allows an adversary the ability to

profile a large number of users by simply accepting connections and examining the previous node

in the circuit to see if it’s a client. To mitigate this, Tor restricts routers that can be used as the

first hop in a circuit. More specifically, only nodes that have uptime and bandwidth capabilities

that are at or above the median of all routers in the network are entry guards. Each client chooses

a set of precisely three entry guards to be used exclusively for that client until these guard nodes

become unavailable. In doing so, this makes the predecessor attack more difficult, since a malicious

router must be an entry guard and then can only profile the clients for whom it is an entry guard

– presumably a small subset of the entire client population. In the low resource routing attacks

presented in Chapter 4, we also show that an adversary can report a very high uptime values to

not only become an entry guard, but also cause all non-malicious guard nodes to lose their entry

guard flags. This guarantees that the first hop is always compromised for new clients.

In response to our attack on entry guards, the entry guard selection mechanism was modified

to keep track of the mean time between failures (MTBF) for each router, rather than self-reported

(and therefore untrustworthy) uptime. Only those routers with a MTBF in the top half of all

routers can be entry guards. The rationale is that MTBF is harder to fake than self-reported

uptime statistics. In addition, to enforce greater location diversity within routers on the same

path, Tor does not build paths with more than one router from the same /16 network according to

CIDR notation.



29

2.3.3.3 Tor’s Path Selection Algorithm

The manner in which Tor clients select their routers has serious implications for the network’s

security properties. For example, if a client chooses malicious routers, then they may experience

lost anonymity. At Tor’s conception, it was composed of only a few high-bandwidth routers and

had few users, so it was sufficient to select routers uniformly at random. As the network grew

in popularity and router bandwidth diversity, it became necessary to balance the traffic load over

the available bandwidth resources, which can be achieved by selecting routers according to their

bandwidth capacities. However, Tor routers self-advertise their bandwidth capacities. In Chapter 4,

we demonstrate that an adversary can falsely advertise high bandwidth claims to attract traffic

and increase their ability to compromise circuits.

Recent work has proposed methods to securely verify these self-reported bandwidth claims [212].

In addition, active measurements have been integrated into the Tor network’s directory servers to

verify routers’ bandwidth claims [176]. However, the security of these active measurements has yet

to be evaluated.

Tor’s router selection algorithm [101] chooses routers according to the following constraints:

• A router may only be chosen once per circuit.

• To prevent an adversary who controls a small network from deploying a large number of

routers, each router on a circuit must be from a distinct /16 subnet. Tor also allows an

operator of many relays to set an advisory Family flag that will ensure that their nodes

are not chosen twice per circuit.

• Each router must be marked as Valid and Running by the authoritative directory servers.

• For non-hidden service circuits, each router must be marked as Fast, indicating that the

router has at least 100 KB/s of bandwidth or is within the top 7/8 of all routers ranked by

bandwidth.



30

• The first router on the circuit must be marked as an Entry Guard by the authoritative

directory servers. Clients select precisely three entry guards to use on all of their circuits.

• The last router (called an “exit router”) on the circuit must allow connections to the client’s

destination host and port.

For general purpose circuits, Tor’s path selection algorithm weighs router selection by each router’s

perceived bandwidth capacity. In order to ensure that there is sufficient exit bandwidth available,

the bandwidth of Exit routers is weighted differently depending on the fraction of bandwidth that

is available from non-Exit routers. Suppose that the total exit bandwidth is E and the total

bandwidth available is T . If E < T/3, then Exit routers are not considered for non-exit positions.

Otherwise, their bandwidth is weighted by (E − (T/3))/E [101].

Entry guards were introduced to Tor’s design to mitigate the threat of profiling and the

predecessor attack [172]. Entry guard nodes have special uptime and bandwidth properties. A

router is marked as a Guard by the authoritative directory servers only if its mean time between

failures is above the median of all “familiar” routers and its bandwidth is greater than or equal

to 250 KB/s [100]. A router is “familiar” if one-eighth of all active routers have appeared more

recently than it [100]. By default, clients choose precisely three entry guards to use for their circuits.

To ensure that there is sufficient guard bandwidth available, guard node selection is weighted by

(G − (T/3))/G, where G is the amount of available guard bandwidth. If G < T/3, then guard

nodes are not considered for non-guard positions [101].

Persistent applications such as FTP and SSH that establish sessions that are long-lived require

more stable circuits than applications with short-lived sessions like HTTP. For such long-lived

applications, Tor builds circuits solely with routers that are marked as stable by the trusted

directory servers. A router is stable if it has been observed by the directory servers for 30 days or

if it is above the median of all routers in terms of mean time between failures [157].

Finally, since routers self-advertise their bandwidth capabilities, we show in Chapter 4 that an

adversary can attract traffic and increase their probability of controlling the endpoints of circuits by



31

falsely reporting high bandwidth values. To mitigate the effectiveness of this attack, all bandwidth

advertisements are restricted with by an upper limit. More details about Tor’s path selection

algorithm may be found in the path specification [101].

2.3.3.4 Censorship and Blocking Resistance

In addition providing source-destination unlinkability for TCP traffic, Tor also attempts to

resist censorship and blocking. For example, in early 2010, China explicitly blocked access to Tor

from behind the so-called Great Firewall of China. Consequently, Chinese users were unable to use

Tor. In response to this and other blocking attempts by governments or Internet Service Providers,

Tor introduced “bridges.” A bridge is effectively a normal Tor client that helps other clients who

reside within networks that block Tor’s directory and router infrastructure to reach Tor. These

bridges are advertised in an ad-hoc manner, often via e-mail or social networking channels, and

they should be hard to identify and enumerate, which is a difficult practical problem [161].

2.3.3.5 Tor Attacks

Due to Tor’s status as the current platform for research in anonymous communications and its

extensive use in practice, a wide variety of attacks have been proposed to degrade Tor’s anonymity.

These include the following: determining the circuit of routers that are used by increasing conges-

tion [166], locating hidden services within the Tor network [172], inferring the source of a request

through Tor using cell counts [149], locating hidden services with recognizable clock skew [164,237],

using network coordinate systems to infer Tor routers on a circuit using latency [127], examining

how attacks on reliability (i.e., DoS attacks) can reduce anonymity [61,67], injecting a covert signal-

ing mechanism with AES counter mode decryption error propagation [183], injecting a watermark

using variations in packet sizes [150], congesting routers with long paths [113], and understanding

the extent of Tor’s vulnerability to traffic correlation attacks [61,167].

Tor certainly does not provide a perfectly secure anonymity service. However, to achieve

performance suitable to support delay-sensitive applications, Tor’s designers made explicit com-



32

promises in the system’s anonymity properties to achieve low latency performance. Understanding

the trade-offs between anonymity and performance is a topic of considerable interest both research

perspective and practical perspectives. We discuss these issues in Chapter 2.5.5.1.

2.3.3.6 Tor’s Transport Design

Tor uses pairwise TCP transport between Tor routers, and thus, it can leverage TLS link

security to further resist traffic analysis by hiding virtual circuit identifiers from a network eaves-

dropper. In addition, multiple circuits may be multiplexed over the same TCP connection, which

has been shown to result in an unfair application of TCP’s congestion control mechanisms when

large flows compete with small flows for service [187,188]. In Chapter 7.1, we overview and analyze

Tor’s TCP-based transport design, particularly as it effects congestion and flow control. In the

remainder of Chapter 7, we diagnose a source of performance degradation due to poor congestion

and flow control and we offer solutions.

2.3.4 IPpriv

Motivated by the desire to remove all congestion controlled links within the anonymizing

overlay, Kiraly et al. [142, 143] address the performance anomalies of contemporary low latency

anonymity networks by designing an anonymizing technique that operates at the network layer,

rather than the transport layer. Their solution employs an overlay of IPsec [139] onion routers

and they design a telescoping session key establishment procedure that leverages standards such

as ESP [140] and IKEv2 [70]. Experiments show that this network layer approach to anonymity

offers improved performance in terms of faster web download times relative to Tor. By removing all

congestion control loops within the overlay, this solution relies only on the single end-to-end con-

gestion control loop provided by the TCP connection between the client and destination. Ignoring

the cryptography necessary to implement the onion routing, this solution functions in a manner

similar to traditional IP.



33

By tunneling end-to-end TCP connections over multiple IPsec routers using layered encryp-

tion, this approach achieves the same protection for the source and destination’s addresses in the IP

header as Tor. While anonymity is provided to the network layer, this solution preserves the end-

points’ transport headers, revealing information including source and destination ports, sequence

numbers, and flags (for TCP). Furthermore, information revealed by the transport layer can be

used to profile the client, by employing passive operating system fingerprinting [173], TCP/IP

stack fingerprinting [32], and clock-skew fingerprinting [144, 164]. Such information could aid in

conducting traffic analysis and deanonymizing clients. Also, unreliable transport enables a new and

inexpensive traffic confirmation attack that works as follows. A malicious exit router drops cells

and – if it can watch a set of clients, either by controlling several entry guards nodes or by watching

the network traffic between a set of clients and the Tor network – can correlate exit traffic with

clients by identifying which client re-transmits the dropped cells. While unreliable transport may

offer desirable performance properties, it also enables new attacks and side channels for information

leakage.

2.3.5 UDP-OR

UDP-OR also endeavors to improve Tor’s performance by eliminating Tor’s pairwise TCP

transport. Viecco [227] proposes an alternate architecture for low latency anonymity networks

where all overlay routers communicate over connection-less, best effort UDP transport; reliability,

in-order packet delivery, and congestion control are handled by the endpoints on a per-circuit

basis. In this design, the client’s TCP packets are encapsulated over UDP and transported through

a chosen circuit. Clients establish a TCP connection with the chosen exit router, which is also a

SOCKS proxy, tunneled over the unreliable UDP entry and middle routers. By removing TCP from

the overlay core, inter-circuit interference during congestion control is eliminated and the client’s

native TCP implementation provides congestion and flow control, as it would over an ordinary IP

network.



34

TCP tunneled over an unreliable, best effort UDP transport offers the potential to remove

undesirable transport layer interactions. However, this approach may have limitations. First, UDP

link security is provided by an un-verified and non-standard security protocol designed by the au-

thor. Consequently, its implementation may be insecure. Furthermore, it is unclear if removing

reliability guarantees from the overlay while still providing end-to-end reliability improves perfor-

mance. Circuits with high latency (due to dropped packets in the unreliable overlay) may require

superfluous re-transmissions at the end-points. Further experiments are necessary to understand

the full performance implications of this design. Also, like the IPsec proposal, this design is vulner-

able to client OS, TCP/IP stack, and clock-skew fingerprinting. However in this design, the client’s

TCP stack is exposed to the exit router that may be able to learn information about the client.

2.3.6 Freedom

The Freedom Network [51, 68] was a commercial anonymizing overlay developed by Zero

Knowledge Systems, Inc. In addition to employing a decentralized architecture of anonymizing

proxy servers, Freedom enabled users to create pseudonyms for each of their distinct types of online

activity, to reduce the possibility for linkability across these activities. Freedom’s proxy servers

were operated by Zero Knowledge Systems and their partner organizations. Freedom clients select

routes through the network of proxies, implement the cryptography needed to secure the routers,

and manage pseudonyms. Freedom clients interface with the proxies by first intercepting the client’s

networking system calls (e.g., send(), sendto(), recv(), recvfrom(), etc.) and redirecting them

to filters that sanitized application-layer data in addition to identifying features of the IP, TCP, or

UDP headers. Also, the anonymizing proxies transport encrypted IP packets using a custom kernel

module.

2.3.7 HerbivoreFS

Starting with Chaum’s DC-Nets design, an anonymity-preserving file sharing system based

upon a peer-to-peer model is proposed called HerbivoreFS [210]. To improve the practicality of



35

Chaum’s original design, they make the following modifications. First, to eliminate the coin tosses,

they use a cryptographically secure pseudo-random number generator to produce the bit stream

(or key). Each participant now simply shares their seed value and uses these seeds to produce each

other participant’s bit stream. Next, HerbivoreFS assumes a fully connected graph and eliminates

the third-party mediator using a broadcast network. Finally, they assume that participants can only

transmit at an assigned time slot – this eliminates the confusion caused when multiple participants

transmit at once.

HerbivoreFS is able to scale to many participants by partitioning the entire network into

smaller anonymizing cliques. Each clique can communicate efficiently within itself, and is connected

to the other cliques using a Pastry distributed hash table (DHT) [192]. A prototype is implemented

and evaluated on the PlanetLab testbed. The results indicate that the expected throughput is

dependent upon the size of the cliques. To highlight their results, for small cliques of 10 nodes,

HerbivorFS achieves throughput of over 200 Kb/s when there is a single sender, and nearly 150 Kb/s

when there are four senders. As the clique grows to 40 nodes, a single sender network achieves just

under 100 Kb/s and a four sender network achieves over 50 Kb/s. These results are encouraging

and represent the first and only real anonymous communications system based upon the DC-Net

design. Clearly there is an inherent trade-off between the strength of the anonymity that can be

provided and the level of performance that can be maintained.

2.3.8 Anonymous Remailers

High latency anonymous communication techniques have bean popular for asynchronous

communications such as e-mail. The Cypherpunks remailer is a Type I anonymous remailer [83].

To send an anonymous message with the remailer, the user retrieves the remailer’s public key and

imports the public into a PGP [71] software implementation such as GPG [19]. The message is

encrypted using the PGP algorithm and sent to the Cypherpunk remailer. The remailer, upon

receipt of a message, decrypts the message with its private key and then forwards the message to



36

the intended recipient named in the anon-to: field of the SMTP body. A special STMP field

called latent time tells the remailer how long to hold the message before delivering it.

Type I remailers are built on a centralized architecture where the remailer knows the mes-

sage’s sender and receiver. A decentralized architecture is more desirable so that no single entity

can de-anonoymize the message. Mixmaster is a Type II anonymous remailer that sends messages

in fixed-size packets through a Chaumian mix network [163]. Mixmaster does not allow anonymous

replies nor does it offer any mechanism to try to mitigate abuse. Mixminion, a Type III anony-

mous remailer, offers anonymous reply blocks, forward security by using TLS-protected SMTP with

ephemeral keys for each message, replay protection and key rotation, exit policies to allow mixmin-

ion node operators to curb abusive or hateful anonymous messages, integrated directory servers to

organize mixminion nodes, and dummy traffic to further mitigate traffic analysis vulnerabilities [87].

2.3.9 P 5

The Peer-to-Peer Personal Privacy Protocol, or P 5, provides sender, receiver, and sender-

receiver anonymity [204]. P 5 is based on a broadcast channel to which participants can send

messages to all other participants, such as a peer-to-peer ring topology. Nodes wishing to send

a message broadcast their message and nodes that have no message to send broadcast a dummy

message. Sender anonymity is provided since all messages to a particular receiver come from

previous hop node, so the receiver does not know the true identity of the sender. Receiver anonymity

is provided, too, since the sender does not know the receiver is located in the broadcast channel.

Broadcasting messages around a ring-like topology is very inefficient. P 5 instead creates a hierarchy

of progressively smaller broadcast channels and allows each individual participant to choose their

position in the hierarchical broadcast channel, thereby choosing to trade-off between anonymity

and communication efficiency.



37

2.3.10 Nonesuch

Nonesuch is a high latency mix network that allows senders to submit messages obliviously

by embedding steganographically encoded messages within images that are posted to newsgroups

or social networking pages [125]. The system provides the same degree of anonymity and sender-

receiver unlinkability as mix cascades, but it also provides a stronger degree of sender anonymity.

The protocol uses the Minx packet format [88]. To submit a message to Nonesuch, the user chooses

a route through the mix network and creates a layered onion using a key for each mix in the path.

The sender next steganographically encodes the completed packet within an image file and posts

the file to a new group or social network site. All non-steganographically encoded image files are

regarded as cover traffic.

2.3.11 AP3

AP3 [162] is an anonymizing overlay network that provides anonymous message delivery,

anonymous communication channels, and secure pseudonyms in a light-weight manner similar to

Crowds [189]. The notion of anonymity provided by AP3 is “probable innocence,” which means

that an adversary cannot identify the sender of a message through the overlay with a probability

greater than 0.5. Anonymous message delivery is achieved with the help of a set of overlay nodes

that forward an initiator’s message to other overlay nodes with a certain probability pf before

delivering the message to the destination. Anonymous communication channels can be constructed

in this manner with each node in the forwarding chain remembering its previous and next hop

nodes so that the channel is consistent for all of the initiator’s messages. Participants can establish

secure pseudonyms by generating their own public/private key pair for each session and signing

messages with their private key.

2.3.12 Cashmere

Cashmere [239] is motivated by the observation that the failure of a single mix or onion router

can result in data loss or high latency as the anonymous path is rebuilt. Built on a structured peer-



38

to-peer overlay, Cashmere provides resilient anonymous routing by selecting regions of the overlay

name space to act as a mix, rather than single mix nodes.

2.3.13 Salsa

Many anonymity systems require centralized points of trust and full knowledge of the routing

information, which limits scalability. Salsa [169] attempts to distribute trust and improve scala-

bility by giving each user a partial view of the network by using a distributed hash table routing

mechanism. Using a virtual tree structure, nodes do not need global knowledge to route look ups.

2.3.14 Java Anonymous Proxy (JAP)

JAP is an anonymizing network built on a low latency mix cascade design [134]. Users route

their traffic through a fixed set of mix nodes which remove layers of encryption and finally forward

the data to its intended destination. Unlike traditional mixes, these mixes do not attempt to

perturb timing information to frustrate traffic analysis. As a result of the mix cascade design, users

must trust each mix operator not to keep logs or disclose information to third-parties such as law

enforcement or governments. Today, there are two JAP variants. JonDo [23] is a commercial mix

cascade and AN.ON is freely available.

2.3.15 Freenet

Freenet [80] provides an anonymous publishing, replication, and retrieval service using a peer-

to-peer storage model. To obtain data, a user computes a hash of a descriptive string to obtain

the file’s look up key and sends the look up key to the nearest node in its routing table. Once the

requested data is found, it is sent back through each of the requesting intermediate nodes until

it reaches the original requester. Anonymity for both data requesters and providers is provided

because no single node knows whether the request came from the previous hop or another node

several hops away. Similarly, it is unclear which node fulfilled the data request, since the data could

have been provided by the previous hop or a node several hops aways.



39

2.3.16 Privacy-preserving File Sharing Protocols

Peer-to-peer file sharing protocols such as BitTorrent provide fast and efficient content dis-

semination, since the available bandwidth to share files scales with the number of peers. However,

to enable efficient peer discovery, these protocols typically operate by publicly advertising all partic-

ipating peers’ network addresses. This has led to a climate of large-scale surveillance of peer-to-peer

file sharing networks by copyright investigators [180,182,208].

To improve privacy in peer-to-peer file sharing networks, Friend-to-Friend (F2F) networks

have been proposed, with systems such as Turtle [181] and OneSwarm [130]. F2F networks leverage

existing trust relationships among peers to reduce the possibility of a peer participating for the sole

purpose of monitoring the other peers’ activity. In Chapter 6, we offer an alternate technique to

improve privacy for peer-to-peer file sharers: we propose an anonymizing ad-hoc relay network

similar to Crowds, but specifically designed for BitTorrent, called BitBlender. BitBlender offers

a degree of plausible deniability for the set of peers returned through any of BitTorrent’s peer

discovery mechanisms. Choffnes et al. offer a similar approach, where peers participate in random

file sharing swarms in an effort to hide their real file sharing behaviors [78].

2.4 Anonymity Metrics

Chaum introduces the concept of an anonymity set in his security analysis of DC-Nets [76].

Even though individual participants cannot be directly identified as having sent a message in this

framework, the size of the anonymity set gives the number of other participants with whom the

sender may be confused, depending on the attacker’s knowledge of a subset of the participants’ keys.

In an attempt to formalize this concept, Pfitzmann and Hansen propose the following definition of

anonymity: “Anonymity is the state of being not identifiable within a set of subjects, the anonymity

set” [179]. They further qualify this definition by arguing that anonymity is stronger when the

anonymity set is larger and the sending and receiving of messages is evenly distributed across the

subjects within the set. In general, this implies that the more uniform the messages are across



40

Figure 2.3: Degrees of anonymity expressed as a spectrum, given the adversary’s probability p of
knowing that a subject had a role in a message

the participants of the system, the stronger the level of anonymity provided. Thus, understanding

the different probabilities of various participants in the anonymity set of having sent or received a

message gives an adversary additional useful information that can be used to profile users beyond

the anonymity set alone.

2.4.1 Degrees of Anonymity

Reiter and Rubin present a notion of anonymity where an attacker knows that a user sent

a message with a certain probability p [189]. The degree of anonymity is defined as 1 − p. The

possible p values are regarded as a spectrum ranging from absolutely privacy (p = 0) to provably

exposed (p = 1) as shown in Figure 2.3. The endpoints of the spectrum correspond to the case

where an adversary has no information about a subject’s role in a particular message and where an

adversary has absolute confidence that they have identified a subject, respectively. The remaining

points along the spectrum are more subjectively defined. “Beyond suspicion” means that it is very

improbable that the subject had a role in a message. “Probable innocence” means that the subject

most likely had no role in a message. The space between “probable innocence” and “possible

innocence” corresponds to the case of a subject having an equal chance of having a role or not in a

message (i.e., p = 0.5). The “exposed” state implies that the subject has a high likelihood of having

had a role in a message. In Chapter 6, we present the design, implementation, and analysis of an

anonymizing system designed specifically for BitTorrent that derives its anonymity from Reiter and

Rubin’s notion of degrees of anonymity.



41

While expressing degrees of anonymity in this manner provides a convenient mapping between

an adversary’s probabilistic confidence p in having identified a subject and a qualitative description,

it does not provide useful information about how indistinguishable users are from one another within

the anonymity set. We next discuss an alternative metrics that provides a quantifiable anonymity

measure.

2.4.2 An Information-theoretic Approach

In high-latency anonymity systems, a global attacker endeavors to reduce the size of the

anonymity set of participants to a probability distribution that has low entropy. First, we first

describe the metric that considers the state of the anonymous communication system from the

perspective of a single message or single user. Next, we explain how anonymity can be quantified

from a whole-network perspective.

2.4.2.1 Entropy

Suppose that each participant in the anonymity set has a probability distribution associated

with having sent or received a particular message. More formally, let Ψ be the set of users in the

anonymity set and let r ∈ R be a role for the user, where R = {sender, receiver}. Let U be the

attacker’s probability distribution of the users u ∈ Ψ having a role r with regard to a message

m such that
∑

u∈Ψ U(u, r) = 1. U may assign a probability of 0 to certain users, if there was

no chance that they had a role in m, or U may assign a non-zero probability to certain users if

there is evidence that they had a role in m. Serjantov and Danezis define the effective size of the

probability distribution S as the classical entropy of the distribution [195]:

S = −
∑

u∈Ψ

pu log2(pu) (2.1)

for pu = U(u, r).

The common interpretation of this metric is the number of additional bits of information that

the attacker needs in order to identify the user. If S = 0, then the system provides no anonymity.



42

This corresponds to the case where some user u ∈ U has a probability of 1 of having a role in the

message. Also, note that S is bounded by the logarithm of the set size such that 0 ≤ S ≤ log2 |Ψ|.

Finally, the ideal entropy which corresponds to the probability distribution being uniform over the

set of users is S = log2 |Ψ|. This knowledge provides a quantifiable scale to express the degree of

anonymity provided by a system in a particular configuration of users and messages.

Diaz et al. propose a similar metric for quantifying anonymity that is normalized by the

maximum entropy possible for a system configuration:

Snorm = −

∑

u∈Ψ pu log2(pu)

log2 |Ψ|
(2.2)

This provides an anonymity measure relative to the maximum possible anonymity, which corre-

sponds to the case where all users have an equal chance of having a role in m. While entropy metrics

are not typically applied to low-latency systems, in Chapter 4 we propose an information-theoretic

metric that describes the degree of non-uniformity in router selection in Tor-like networks.

2.4.2.2 The Limitations of Entropy

Entropy and normalized entropy capture a system’s anonymity with regard to a single message

or user, but not to the anonymity provided system as a whole. Edman et al. propose a metric that

quantifies the degree of anonymity offered to all users of an anonymous communications system

based on the permanent of a matrix [110]. This measures the amount of information needed by

an observer to reveal the global communication patterns between both senders and receivers in an

anonymity network.

2.4.3 Metrics for Low-latency Systems

In low-latency systems, entropy is generally not applied because attacks against such systems

either succeed (reducing the entropy to zero) or fail (with a non-zero entropy). Instead, low-

latency systems typically measure their security as the probability that an adversary occupies the

right positions on a path to compromise security, e.g., the path’s endpoints. In the original onion



43

routing design that assumed uniform router selection, the probability is approximated as (c/n)2,

where there are c corrupt onion routers in a network of n nodes [122]. In Chapter 4, we show

that for modern onion routing systems like Tor that select routers with non-uniform probabilities,

this analytical security model under-estimates the attack’s probability of success. We adopt an

empirical approach to measuring Tor’s security by implementing attacks and observing the fraction

of paths that are compromised. Subsequently, similar empirical approaches have been adopted by

Murdoch and Watson [167] and Snader and Borisov [211].

2.4.3.1 Measures of Bias in Router Selection

The manner in which routers are selected in low-latency systems can dramatically impact the

system’s security properties. Modern systems such as Tor have a large and diverse set of volunteer

routers, making it necessary to balance the traffic load over the heterogeneous distribution of routers

and bandwidth that exists in the network. Routers are chosen with a bias toward those that appear

to offer higher bandwidth capacities to provide traffic load balancing.

Since there exists bias in the router selection process, it is desirable to express some notion

of system’s security as a function of the bias in router selection. In Chapter 4, we propose an

information theoretic measure that applies Shannon’s entropy over the router selection probability

distribution and normalizes this value by the maximal (optimal) entropy for the system in a manner

similar to Diaz et al. [94] (defined in Equation 2.2). This metric captures the degree to which the

router selection probability distribution is uniform or skewed. A value of Snorm = 1 implies that

routers are selected uniformly at random and values Snorm < 1 imply a bias. There is an inverse

relationship between Snorm and the degree of selection bias.

To measure inequality in router selection, Snader and Borisov [211] adopt the Gini coeffi-

cient [119], an equality metric commonly used in the field of economics to express the distribution

of wealth. The Gini coefficient is defined as the ratio between the line of perfect equality and an



44

empirical cumulative distribution function of router selection. Mathematically, this is expressed as:

G =
1

µ

∫ ∞

0
CDF (x)(1 − CDF (x)) dx (2.3)

where µ is the mean of the cumulative distribution function and CDF (x) is the observed cumu-

lative distribution function of router selection. A Gini coefficient G = 0 implies perfectly equal

router selection, i.e., router selection with a uniformly random probability. G = 1 implies perfect

inequality, or the same single router is deterministically chosen always.

2.5 Anonymity Attacks

We now turn our attention toward understanding how anonymous communication systems

can be attacked and caused to fail.

2.5.1 Traffic Analysis with Packet Sizes and Timing

Despite even the best security practices, it is often possible to use side channel information

such as packet sizes, counts, and timing information to identify the underlying application-layer

protocol, and even the content, in some cases. Statistical and machine learning techniques are

commonly applied to identify applications and infer users’ behavior. Such behaviors can leak

information about who the user is and what they are doing. Examples of the types of information

that may be inferred by a third-party eavesdropper from observed secure connections include videos

watched [193], passwords typed [215], web pages viewed [126, 149, 217], languages and phrases

spoken [232,233], and applications run [234].

2.5.2 Packet Counting and Timing Analysis Attacks

It is well understood that there exists a fundamental trade-off between security and perfor-

mance. In Back et al. [52], several threats to low-latency anonymous communications systems are

enumerated. Suppose that an anonymous communication system is modeled as a black-box. An ad-

versary can see packets entering the network and packets leaving the network. To link a sender with



45

a receiver, an adversary notes that it saw j packets from client x and a short time-period later, saw

precisely j packets leaving the network being delivered to y. This is called a packet counting attack.

The adversary can conclude with certain confidence that x and y are communicating. Suppose that

the entrance and exit nodes of an onion routing network, for instance, are used infrequently, then

the adversary can be nearly certain that x and y are communicating, since there are little or no

other possible initiator/destination pairs during that time period. For instance, a similar technique

has been used to locate hidden services within Tor [172]. Traffic shaping methods to ensure that

all nodes have a constant traffic rate help to mitigate this vulnerability.

Another fundamental traffic analysis technique described by Back et al. is the latency attack.

Suppose that an adversary measures the latency through every possible path in an anonymity

network. Then, if an initiator contacts a destination server that is controlled by the adversary,

then the adversary can measure the observed latency for this session and make a reasonable guess

about the full path of routers that is being used. With the full path, it may be possible to find the

initiator. One could envision an adversary with access to latency measurements between the nodes

(similar to the King data set [118]) in the anonymity network to estimate the end-to-end latency

of the anonymous paths. Hopper et al. used a network coordinate system to determine how much

information is leaked by latency knowledge in Tor [127]. However, as the size of the anonymity

network grows, the number of false positives, i.e., the number of paths that have indistinguishable

end-to-end latencies, may increase.

The following variant of the latency attack is also proposed. Suppose that the adversary has

latency information for paths in the network. Next, if the adversary induces load on a particular

path – perhaps by issuing a flood of requests through a path – the effect of this flood of requests

would be detectable at the destination by a spike in latency, if this is the client’s path. This is called

the clogging attack. This attack has been successfully implemented on the early Tor network [166]

and more recently on the mature Tor network [113].

These clever attacks all exploit the low-latency requirement of certain anonymous communi-

cation systems. In general, all low latency anonymity systems are vulnerable to some extent to the



46

attacks outlined above. For a comprehensive discussion and analysis of additional attacks against

specific systems, see Wright et al. [235].

2.5.3 Predecessor Attack

This attack occurs in a multi-hop network when an adversary can infer that the previous

node is the source of an anonymous communication [236]. For example, Crowds is vulnerable to a

set of timing attacks where a Jondo node can determine if the previous Jondo on the path is the

initiator of a request based upon an analysis of the time that elapses until the request is fulfilled.

If the time is sufficiently small, then the intermediate node can conclude with certain confidence

that the preceding node is the initiator. Over time, an adversary’s confidence increases and the

initiator is identified.

Tor is trivially vulnerable to the predecessor attack. A malicious router can attempt to

enumerate all clients by simply observing their connection’s previous hop and comparing it to the

list of all known Tor routers obtained by the trusted directory servers. Tor mitigates the risk of

predecessor attacks by using entry guards (see Chapter 2.3.3.2). Entry guards ensure that if a

client chooses a malicious entry guard, their first-hop is always compromised. However, for clients

that do not have this misfortune, their first-hop is never compromised.

2.5.4 Disclosure, Intersection, and Statistical Disclosure Attacks

Suppose that an adversary observes the messages coming in and out of a mix and wishes to

identify a sender and the corresponding receiver for a message. Suppose that the initiator sends

messages to precisely n distinct receivers. The adversary can observe precisely n mutually disjoint

sets of recipients (one for each of the receivers). Each set contains exactly one of the sender’s

communication endpoints. This is referred to as the disclosure attack [141].

The adversary can isolate the receiver in each set by observing new sets by finding the one

receiver that is in the intersection of these sets. The attack may proceed in multiple rounds, where



47

each round reduces the size of this intersection until only one receiver remains – the true receiver

of the message. This is known as the intersection attack [64, 90].

The disclosure attack requires the adversary to find n mutually disjoint sets. Kesdogan et

al. show that this problem can be reduced to the binary Constraint Satisfaction Problem, which

is NP-complete [141]. Danezis relaxes the requirements of the disclosure attack by proposing the

statistical disclosure attack, where an adversary’s goal is to infer the sender’s most likely recipi-

ents [85].

2.5.5 Onion Routing Attacks

Onion routing networks have the ability to provide better performance in terms of higher

throughput and lower latency than its predecessor the mix network since onion routing does not

re-order or delay messages. Consequently, onion routing networks are more vulnerable to attacks

by individual onion router operators. In particular, there are three cases of compromise to con-

sider [219]. Suppose that there are r total routers in the network and c < r of the routers are

compromised. For the remainder of this discussion, assume that routers are chosen uniformly at

random. First, suppose that the first router on a client’s circuit is malicious. In this case, the

adversary can profile the client’s behavior, but cannot examine the contents of its messages, since

the client pre-encrypts its outgoing traffic. However, despite message confidentiality, it is possible

for a malicious entry router to conduct any one of a variety of traffic analysis attacks using the

number of packets sent and their timings to infer information about the user’s application-layer

behavior [149,193,215,217,232,234]. The probability of an adversary compromising the first router

on a circuit is given by c/r.

Next, suppose that the adversary compromises the final onion router on a circuit. In this

case, the adversary removes the last layer of encryption and forwards the payload to the indented

destination. The adversary now knows the identity of the destination as well as any potentially

identifying information about the initiator that may be contained within the payload. For instance,

in Chapter 3 we note that Tor clients are at risk of inadvertently revealing identifying information



48

based on our observations of the relatively high volume of insecure (i.e., non-TLS) traffic that flows

through exit routers [158]. For example, instant messaging protocols – such as the popular AIM –

send user names in plain-text and popular websites such as myspace do not use TLS for their login

process, so user names and passwords are revealed. The probability of this case – again assuming

uniform router selection – is c/r.

Finally, assume the worst-case, where the adversary has compromised both the beginning

and the end of a circuit. In this case, the adversary knows the identities of both the initiator and

the destination, in addition to the contents of the communication session. The probability of this

type of compromise is negligible – (c/r)2 – assuming uniform router selection. However, if there

exists a bias in the router selection method, then it’s possible to exploit this bias and compromise

significantly more circuits, as we demonstrate in Chapter 3. Further analysis of onion routing

security can be found in Syverson et al. [219].

2.5.5.1 Security of Tor’s Path Selection

Murdoch and Watson [167] extend the analysis of our low resource routing attack on Tor

presented in Chapter 4 to analyze how the attack performs when the routing algorithm changes.

They consider the routing strategy proposed by Snader and Borisov where the degree of bias in

the selection is a parameter that can be tuned by the user [211] in comparison to Tor’s default

bandwidth-weighted algorithm along security and performance dimensions. Snader and Borisov’s

algorithm works as follows: if a user requires the strongest anonymity, they would want to choose

routers uniformly at random. However, if anonymity is only a minor concern, they could skew the

selection process even more toward routers that appear to have higher bandwidth – though, at the

risk of a greater possibility of circuit compromise. More formally, the algorithm chooses routers

using a family of functions defined as follows:

f(s, x) =



















1−2sx

1−2s , if s 6= 0

x, otherwise

(2.4)



49

where s is the tunable selection parameter and x ∈ [0, 1) is a random number drawn from a uniform

distribution. Supposing that there are n routers stored in a list ordered by reported bandwidth,

the index of a router to select is given by ⌊n×f(s, x)⌋. For instance, when s = 0, nodes are selected

uniformly at random and as s increases, nodes with higher reported bandwidths will be selected

more often. But even at the higher end, there still exists non-determinism in the selection process;

at s = 10, the highest bandwidth router is chosen only 6% of the time.

Murdoch and Watson simulate Tor’s current router selection algorithm and the new algorithm

of Snader and Borisov at various s values to analyze the routing algorithm’s impact on anonymity.

They consider the fraction of circuits compromised across several simulations as their anonymity

metric (i.e., the fraction of circuits where a malicious router appears at both the beginning and

the end of the circuit). They also present an analysis of the routing algorithm’s effect on expected

performance using models derived from queuing theory. A surprising result is presented: in addition

to providing better performance over uniform router selection, Tor’s current bandwidth-weighted

selection offers improved anonymity in the presence of a botnet adversary (i.e., one that has access

to a large number of low bandwidth nodes). This apparent vulnerability of the uniform path

selection algorithm challenges the conventional wisdom that uniform selection is always the most

secure path selection strategy.

2.6 Summary

We have presented a detailed overview of the significant research within the field of anonymous

communications. In particular, we provided an overview of the three most common and fundamen-

tal techniques for enabling two parties to communicate without the threat of traffic analysis. These

include mix networks, DC-nets, and onion routing. We next discussed their implementations in but

a few of the significant anonymous systems that have been developed. Finally, we explored how

anonymity is commonly understood and measured. Further background on the fundamental tech-

niques, representative systems, and analytical tools from the field of anonymous communications

can be found in Edman and Yener [112] and Danezis et al. [86].



Chapter 3

Characterizing a Popular Low Latency Anonymous Network

Tor is a popular privacy enhancing system that is designed to protect the privacy of Internet

users from traffic analysis attacks launched by a non-global adversary [103]. Because Tor provides an

anonymity service on top of TCP while maintaining relatively low latency and high throughput, it is

ideal for interactive applications such as web browsing, file sharing, and instant messaging. Since its

initial development, researchers have analyzed the system’s performance [105,153,159,184,188,230]

and security properties [55,61,67,111,113,121,127,150,161,164,166–168,172,183,211,237]. In this

chapter, we characterize Tor, utilizing observations made by running a Tor router to answer the

following questions:

How is Tor being used? We analyze application layer header data relayed through our router

to determine the protocol distribution in the anonymity network. Our results show the types of

applications currently used over Tor, a substantial amount of which is non-interactive traffic. We

discover that web traffic makes up the vast majority of the connections through Tor, but BitTorrent

traffic consumes a disproportionately large amount of the network’s bandwidth. Perhaps surpris-

ingly, protocols that transmit passwords in plain-text are fairly common, and we propose simple

techniques that attempt to protect users from unknowingly disclosing such sensitive information

over Tor.

How is Tor being mis-used? To explore how Tor is currently being misused, we examine

both malicious router and client behaviors. Since insecure protocols are common in Tor, there

is a potential for a malicious router to gather passwords by logging exit traffic. To understand



51

this threat, we develop a method to detect when exit routers are logging traffic, under certain

conditions. Using this method, we did, in fact, catch an exit router capturing POP3 traffic (a

popular plain-text e-mail protocol) for the purpose of compromising accounts.

Running a router with the default exit policy provides insight into the variety of malicious

activities that are tunneled trough Tor. For instance, hacking attempts, allegations of copyright

infringement, and bot network control channels are fairly common forms of malicious traffic that

can be observed through Tor.

Who is using Tor? In order to understand who uses Tor, we present the geopolitical distribution

of the clients that were observed. Germany, China, and the United States appear to use Tor the

most, but clients from 126 different countries were observed, which demonstrates Tor’s global

appeal. In addition, we provide a geopolitical breakdown of who participates in Tor as a router.

Most Tor routers are from Germany and the United States, but Germany alone contributes nearly

half of the network’s total bandwidth. This indicates that implementing location diversity in Tor’s

routing mechanism is not possible with the current distribution of router resources.

How does Tor perform? We lastly present a circuit-level performance analysis based on mea-

surements collected in 2007 and 2010. Our observations in 2007 indicate that Tor users experience

high and variable delays and generally receive low throughput service. However, by 2010, these

delays are reduced the throughput is increased. We hypothesize about the potential reasons for

this apparent improvement in performance.

3.1 Data Collection Methodology

To better understand real world Tor usage, we set up a Tor router on a 1 Gb/s network link.1

This router joined the live deployed Tor network during December 2007 and January 2008. This

configuration allowed us to record a large amount of Tor traffic in short periods of time. While

running, our node was consistently among the top 5% of routers in terms of bandwidth of the

roughly 1,500 routers flagged as Running by the directory servers at any single point in time.

1 Our router used Tor software version 0.1.2.18.



52

We understand that there are serious privacy concerns that must be addressed when collecting

statistics from an anonymity network [207]. Tor is designed to resist traffic analysis from any single

Tor router [103]; thus, the information we log — which includes at most 96 bytes of application-

level data — cannot be used to link a sender with a receiver, in most cases. We considered the

privacy implications carefully when choosing what information to log and what was too sensitive to

store. In the end, we chose to log information from two sources: First, we altered the Tor router to

log information about circuits that were established though our node and cells routed through our

node. Second, we logged only enough data to capture up to the application-level protocol headers

from the exit traffic that was relayed through our node.

In order to maximize the number of entry and exit connections that our router observed, it

was necessary to run the router twice, with two distinct exit policies:2 (1) Running with an open

exit policy (the default exit policy3 ) enabled our router to observe numerous exit connections, and

(2) Prohibiting all exit traffic allowed the router to observe a large number of clients.

Entrance/middle traffic logging. To collect data regarding Tor clients, we ran our router

with a completely restricted exit policy (all exit traffic was blocked). We ran our Tor router in

this configuration for 15 days from January 15–30, 2008. The router was compiled with minor

modifications to support additional logging. Specifically, for every cell routed through our node,

the time that it was received, the previous hop’s IP address and TCP port number, the next hop’s

IP address and TCP port number, and the circuit identifier associated with the cell is logged.

Exit traffic logging. To collect data regarding traffic exiting the Tor network, we ran the Tor

router for four days from December 15–19, 2007 with the default exit policy. For routers that

allow exit traffic, the default policy is the most common. During this time, our router relayed

approximately 709 GB of TCP traffic exiting the Tor network.

2 Due to the relatively limited exit bandwidth that exists within Tor, when we ran the default exit policy, our
node was chosen as the exit router most frequently on established circuits. As a result, in order to observe a large
number of clients, it became necessary to collect data a second time with a completely restricted exit policy so that
we would not be an exit router.

3 The default exit policy blocks ports commonly associated with SMTP, peer-to-peer file sharing protocols, and
ports with a high security risk.



53

Table 3.1: Exit traffic protocol distribution by number of TCP connections, size, and number of
unique destination hosts

Protocol Connections Bytes Destinations

HTTP 12,160,437 (92.45%) 411 GB (57.97%) 173,701 (46.01%)
SSL 534,666 (4.06%) 11 GB (1.55%) 7,247 (1.91%)

BitTorrent 438,395 (3.33%) 285 GB (40.20%) 194,675 (51.58%)
Instant Messaging 10,506 (0.08%) 735 MB (0.10%) 880 (0.23%)

E-Mail 7,611 (0.06%) 291 MB (0.04%) 389 (0.10%)
FTP 1,338 (0.01%) 792 MB (0.11%) 395 (0.10%)

Telnet 1,045 (0.01%) 110 MB (0.02%) 162 (0.04%)

Total 13,154,115 709 GB 377,449

In order to gather statistics about traffic leaving the network, we ran tcpdump on the same

physical machine as our Tor router. Tcpdump was configured to capture only the first 150 bytes

of a packet using the “snap length” option (-s). This limit was selected so that we could capture

up to the application-level headers for protocol identification purposes. At most, we captured 96

bytes of application header data, since an Ethernet frame is 14 bytes long, an IP header is 20 bytes

long, and a TCP header with no options is 20 bytes long. We used ethereal [16], another tool

for protocol analysis and stateful packet inspection, in order to identify application-layer protocols.

As a post-processing step, we filtered out packets with a source or destination IP address of any

active router published during our collection period. This left only exit traffic.

3.2 Protocol Distribution

As part of this study, we observe and analyze the application-level protocols that exit our

Tor node. We show in Table 3.1 that interactive protocols like HTTP make up the majority of the

traffic, but non-interactive traffic consumes a disproportionate amount of the network’s bandwidth.

Finally, the data indicates that insecure protocols, such as those that transmit login credentials in

plain-text, are used over Tor.



54

3.2.1 Interactive vs. Non-interactive Web Traffic

While HTTP traffic comprises an overwhelming majority of the connections observed, it is

unclear whether this traffic is interactive web browsing or non-interactive downloading. In order

to determine how much of the web traffic is non-interactive, we counted the number of HTTP

connections that transferred over 1 MB of data. Only 3.5% of the connections observed were bulk

transfers. The vast majority of web traffic is interactive.

3.2.2 Is Non-interactive Traffic Hurting Performance?

The designers of the Tor network have placed a great deal of emphasis on achieving low

latency and reasonable throughput in order to allow interactive applications, such as web browsing,

to take place within the network [103]. However, the most significant difference between viewing

the protocol breakdown measured by the number of bytes in contrast to the number of TCP

connections is that while HTTP accounted for an overwhelming majority of TCP connections, the

BitTorrent protocol uses a disproportionately high amount of bandwidth.4 This is not shocking,

since BitTorrent is a peer-to-peer (P2P) protocol used to download large files.

Since the number of TCP connections shows that the majority of connections are HTTP

requests, one might be led to believe that most clients are using the network as an anonymous

HTTP proxy. However, the few clients that do use the network for P2P applications such as

BitTorrent consume a significant amount of bandwidth. The designers of the network consider P2P

traffic harmful, not for ethical or legal reasons, but simply because it makes the network less useful

to those for whom it was designed. In an attempt to prevent the use of P2P programs within

the network, the default exit policy blocks the standard file sharing TCP ports. But clearly, our

observations show that port-based blocking strategies are easy to evade, as these protocols can be

run on non-standard ports.

4 Recall that our router’s default exit policy does not favor any particular type of traffic. So the likelihood of
observing any particular protocol is proportional to the usage of that protocol within the network and the number
of other nodes supporting the default or a similar exit policy.



55

3.2.3 Insecure Protocols

Another surprising observation from the protocol statistics is that insecure protocols, or those

that transmit login credentials in plain-text, are fairly common. While comprising a relatively low

percentage of the total exit traffic observed, protocols such as POP, IMAP, Telnet, and FTP are

particularly dangerous due to the ease at which an eavesdropping exit router can capture identifying

information (i.e., user names and passwords). For example, during our observations, we saw 389

unique e-mail servers, which indicates that there were at least 389 clients using insecure e-mail

protocols. In fact, only 7,247 total destination servers providing SSL/TLS were observed.

The ability to observe a significant number of user names and passwords is potentially dev-

astating, but it gets worse: Tor multiplexes several TCP connections over the same circuit. Having

observed identifying information, a malicious exit router can trace all traffic on the same circuit

back to the client whose identifying information had been observed on that circuit. For instance,

suppose that a client initiates both an SSL connection and an AIM connection at the same time.

Since both connections use the same circuit (and consequently exit at the same router), the SSL

connection can be easily associated with the client’s identity leaked by the AIM protocol. Thus,

tunneling insecure protocols over Tor presents a significant risk to the initiating client’s anonymity.

To address this threat, a reasonable countermeasure is for Tor to explicitly block protocols

such as POP, IMAP, Telnet, and FTP5 using a simple port-based blocking strategy at the client’s

local socks proxy.6 In response to these observations, Tor now supports two configuration options

to (1) warn the user about the dangers of using Telnet, POP2/3, and IMAP over Tor, and (2) block

these insecure protocols using a port-based strategy [59].

However, this same type of information leakage is certainly possible over HTTP, for instance,

so additional effort must also be focused on enhancing Tor’s HTTP proxy to mitigate the amount of

5 Anonymous FTP may account for a significant portion of FTP exit traffic and does not reveal any information
about the initiating client. Therefore, blocking FTP may be unnecessary.

6 Port-based blocking is easy to evade, but it would protect naive users from mistakenly disclosing their sensitive
information.



56

sensitive information that can be exchanged over insecure HTTP. For instance, a rule-based system

could be designed to filter common websites with insecure logins.

Finally, protocols that commonly leak identifying information should not be multiplexed

over the same circuit with other non-identifying traffic. For example, HTTP and instant messaging

protocols should use separate and dedicated circuits so that any identifying information disclosed

through these protocols is not linked with other circuits transporting more secure protocols.

3.3 Malicious Router Behavior

Given the relatively large amount of insecure traffic that can be observed through Tor, there is

great incentive for malicious parties to attempt to log sensitive information as it exits the network.

In fact, others have used Tor to collect a large number of user names and passwords, some of which

provided access to the computer systems of embassies and large corporations [42].

In addition to capturing sensitive exit traffic, a Tor router can modify the decrypted contents

of a message entering or leaving the network. Indeed, in the past, routers have been caught

modifying traffic (i.e., injecting advertisements or performing man-in-the-middle attacks) in transit,

and techniques have been developed to detect this behavior [176].

We present a simple method for detecting exit router logging under certain conditions. We

suspect — and confirm this suspicion using our logging detection technique — that insecure pro-

tocols are targeted for the specific purpose of capturing user names and passwords.

3.3.1 Detection Methodology

At a high level, the malicious exit router logging detection technique relies upon the assump-

tion that the exit router is running a packet sniffer on its local network. Since packet sniffers such

as tcpdump are often configured to perform reverse DNS queries on the IP addresses that they

observe, if one controls the authoritative DNS server for a specific set of IP addresses, it is possible

to trace reverse DNS queries back to the exit node that issued the query.

More specifically, the detection method works as follows:



57

Tor Client

Malicious Exit Router

Tor Network

Lookup 1.1.1.1

Circuit

SYN 1.1.1.1

Authoritative DNS Server

Figure 3.1: Malicious exit router logging detection technique

(1) We run an authoritative domain name server (DNS) that maps domain names to a vacant

block of IP addresses that we control.

(2) Using a Tor client, a circuit is established using each individual exit router.

(3) Having established a circuit, a SYN ping is sent to one of the IP addresses for which we

provide domain name resolution.

This procedure (shown in Figure 3.1) is repeated for each exit router. Since the IP address does

not actually exist, then it is very unlikely that there will be any transient reverse DNS queries.

However, if one of the exit routers we used is logging this traffic, they may perform a reverse DNS

look-up of the IP address that was contacted. In particular, we made an effort to direct the SYN

ping at ports where insecure protocols typically run (ports 21, 23, 110, and 143).

3.3.2 Results

Using the procedure described above, over the course of only one day, we found one exit router

that issued a reverse DNS query immediately after transporting our client’s traffic. Upon further

inspection, by SYN ping scanning all low ports (1-1024), we found that only port 110 triggered the

reverse DNS query. Thus, this router only logged traffic on this port, which is the default port for

POP3, a plain-text e-mail protocol. We suspect that this port was targeted for the specific purpose

of capturing user names and passwords.



58

Further improvements on this logging detection could be made by using a honeypot approach

and sending unique user name and password pairs through each exit router. The honeypot could

detect any login attempts that may occur. This method would find the most malicious variety of

exit router logging. In fact, upon detecting the logging exit router (using the method described

above), we also used this honeypot technique and observed failed login attempts from the malicious

IP address shortly after observing the logging.

These results reinforce the need to mitigate the use of protocols that provide login credentials

in plain-text over Tor. Given the ease at which insecure protocols can be captured and the relative

ease at which they could be blocked, it is a reasonable solution to block their default ports.

3.3.3 Discussion

This approach to detecting exit router logging has limitations. First, it can only trace the

reverse DNS query back to the exit router’s DNS server, not to the router itself. To complicate

matters more, there exist free domain name resolution services (such as OpenDNS [171]) that

provide somewhat anonymous name resolution for any host on the Internet. If one assumes that

the exit router is logging and performing reverse DNS queries in real-time, then it is easy to correlate

reverse DNS queries with exit routers using timing information.

If reverse DNS is not performed in real-time, then more sophisticated techniques for finding

the malicious exit router are required. For instance, if one controls the domain name resolution for

several IP addresses, then it is possible to embed a unique pattern in the order of the SYN pings to

different IPs through each exit router. This order will be preserved in the exit router’s queries and

can be used to determine the exit router that logged the traffic. Here we can leverage many of the

same principles as explored in [65,205].

The detection method presented makes the key assumption that the logging process will

trigger reverse-DNS queries. However, this is not always the case. For example, exit routers that

transport traffic at high bandwidth cannot feasibly perform reverse DNS queries in real-time. Also,

this technique can be evaded simply by not performing reverse DNS when logging.



59

3.4 Misbehaving Clients

While Tor provides an invaluable service to protecting online privacy, over the course of

operating a Tor router with the default exit policy, we learned about a wide variety of malicious

client behavior. Since we are forwarding traffic on behalf of Tor users, our router’s IP address

appears to be the source of sometimes malicious traffic. The large amount of exit bandwidth

that we provided caused us to receive a large number of complaints ranging from DMCA §512

notices related to allegations of copyright infringement, reported hacking attempts, IRC bot network

controls, and web page defacement. However, an enormous amount of malicious client activity was

likely unreported.

As a consequence of this malicious client behavior, it becomes more difficult to operate

exit routers. For instance, our institution’s administration requested that we stop running our

node shortly after the data for this chapter was collected. Similar accounts of administrative and

law enforcement attempts to prevent Tor use are becoming more common as Tor becomes more

popular to the masses [73]. The Electronic Frontier Foundation (EFF), a group that works to

protect online rights, has provided template letters [34] and offered to provide assistance [96] to

Tor router operators that have received DMCA take-down notices.

One solution to our problems could have been to change our router’s exit policy to reject

all exit traffic, or specific ports (such as port 80) that generate a large portion of the complaints.

However, this is not practical, since Tor requires a certain amount of exit bandwidth to function

correctly. Another solution is to provide a mechanism for anonymous IP address blocking, such as

Nymble [135]. Our first-hand observations with misbehaving clients reinforces the need to further

study anonymous IP address blocking mechanisms.

3.5 Geopolitical Client and Router Distributions

As part of this study, we investigate where Tor clients and routers are located geo-politically.

Recall that a client’s IP address is visible to a router when that router is used as the entrance



60

Table 3.2: Geopolitical client distributions, router distributions, and the ratio of Tor users relative
to Internet users

Client Distribution Router Distribution

Country Total Country Total

Germany 2,304 Germany 374
China 988 United States 326
United States 864 France 69
Italy 254 China 40
Turkey 221 Italy 36
United Kingdom 170 Netherlands 35
Japan 155 Sweden 35
France 150 Finland 25
Russia 146 Austria 24
Brazil 134 United Kingdom 24

Relative Tor Usage

Country Ratio

Germany 7.73
Turkey 2.47
Italy 1.37
Russia 0.89
China 0.84
France 0.77
United Kingdom 0.75
United States 0.62
Brazil 0.56
Japan 0.32

node on the client’s circuit through the Tor network. In the current Tor implementation, only

particular routers, called entry guards, may be used for the first hop of a client’s circuit. A router

is labeled as an entry guard by the authoritative directory servers. All Tor router IP addresses are

maintained by the directory servers, and we keep track of the router IP addresses by simply polling

the directory servers periodically.

In order to map an IP address to its corresponding country of origin, we query the authorities

responsible for assigning IP blocks to individual countries [3,5,7,24,35]. In order to determine the

geopolitical distribution of Tor usage throughout the world, we aggregate IP addresses by country,

and present the client and router location distributions observed during the January 2008 data

collection period.

3.5.1 Observations

In this section, we present our observations regarding the client and router location distribu-

tions.



61

Client geo-political distribution. During a one day period when our Tor router was marked

as an entry guard by the authoritative directory servers, it observed 7,571 unique clients.7 As

depicted in Table 3.2, the vast majority of clients originated in Germany, with China and the United

States providing the next largest number of clients. Perhaps the most interesting observation about

the client distribution is that Tor has a global user base. While most of the clients are from three

countries, during the course of the entire 15 day observation period, clients were observed from 126

countries around the world, many of which have well-known policies of Internet censorship.

To put these raw geopolitical client distributions into perspective, Table 3.2 includes a ratio

of the percentage of Tor users to the percentage of Internet users by country, using data on the

distribution of broadband Internet users by country [128]. These percentages were computed by

dividing the total number of Tor clients located in each country by the total number of Tor clients

we observed, which provides the percentage of Tor users located in each country. For example, the

relative Tor usage for Germany is computed as follows: The percentage of the total Internet users

who are from Germany is 3.9% and according to our client observations, Germany makes up 2,304

of the 7,571 total Tor clients, which is 30.4%. Thus, the ratio of Tor users to Internet users in

Germany is 7.73.

These ratios show that Tor is disproportionately popular in Germany, Turkey, and Italy with

respect the the number of broadband Internet users located in these countries. It is unclear why

there is such a large scale adoption of Tor in these specific countries, relative to Tor usage in other

countries. An investigation of the possible technological, sociological, and political factors in these

countries that are causing this might be an enlightening area of research.

Examining the number of clients that utilized our router as their entry router when it was not

marked as an entry guard provides insight into the approximate number of clients that are using a

significantly old version of the Tor client software. Specifically, this indicates that these clients are

using a version before entry guards were introduced in Tor version 0.1.1.20 (May 2006). Over four

7 We assume that each unique IP address is a unique client. However, dynamic IP addresses or network address
translators (NATs) may be used in some places.



62

Figure 3.2: Distribution of Tor router bandwidth around the world

days, only 206 clients were observed to be using Tor software that is older than this version.

Incidentally, entry guards were added to prevent routers from profiling clients, and indeed

the reliance on entry guards prevented us from profiling a large number of clients beyond what we

describe above. Before entry guards were widely adopted, a strong diurnal usage pattern had been

observed [159]. Since entry guards are now widely adopted, utilizing multiple entry guard perspec-

tives gives a larger snapshot of the clients’ locations and usage patterns. We informally compared

our geopolitical client distribution to that which was observed from other high bandwidth entry

guard routers. The distribution was consistent across each entry guard. However, we attempted

to observe the current client usage patterns, but this required a more global perspective than we

were able to obtain.

Tor router geo-political distribution. During our data collection, we monitored the authori-

tative directory servers to determine the total number and geopolitical distribution of Tor routers.

Over the course of 7 days, we took hourly snapshots of the authoritative directory servers, noting

each router’s IP address and bandwidth advertisements. During this time, on average 1,188 Tor

routers were observed in each snapshot. As shown in Table 3.2, Germany and the United States

together contribute nearly 59% of the running routers. However, in terms of total bandwidth,



63

1 200 400 600 800 1000 1200 1400

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Routers ranked by popularity

P
D

F

(a) PDF of all routers.

1 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Routers ranked by popularity

P
D

F

(b) PDF of the top 100 routers.

Figure 3.3: PDFs of Tor’s traffic distribution over its routers during a one hour snapshot

as depicted in Figure 3.2, Germany provides 45% of the bandwidth and the United States only

provides 23% of the bandwidth.

It has been suggested that location diversity is a desirable characteristic of a privacy en-

hancing system [114]. However, given the current bandwidth distribution, location diversity while

maintaining adequate load balancing of traffic is difficult to guarantee. It is currently possible to

build circuits with at least one router from Germany and the remaining routers from other coun-

tries. However, if a location-aware routing mechanism mandated that a user’s traffic should exit

in a specific country — such as the Netherlands, for example — then it is necessary to ensure that

there is sufficient exit bandwidth in that country. Incentive programs to encourage volunteers to

run routers in under-represented countries should be investigated. In addition, mitigating malicious

client behavior (as noted in Section 3.4) can consequently attract more Tor routers.



64

3.5.2 Modeling Router Utilization

Understanding the distribution with which different routers are utilized on circuits can pro-

vide valuable insights regarding the system’s vulnerability to traffic analysis. In addition, a prob-

ability distribution can be used to build more realistic analytical models and simulations.

By counting the number of times that each router appears on a circuit with our router, we

provide probability density functions (PDFs) to model the probability of each router forwarding a

particular packet (shown in Figure 3.3). In a one hour snapshot during the January data collection

period, the top 2% of all routers transported about 50% of traffic from the perspective of our

router. Within this top 2%, 14 routers are hosted in Germany, 6 are hosted in the United States,

4 are in France, and Switzerland, the Netherlands, and Finland each host a single router. These

numbers are consistent with the bandwidth distributions given in Figure 3.2, and further highlight

the difficulty of providing strict location diversity in Tor’s routing mechanism. The PDF curve

drops sharply; the bottom 75% of the routers together transported about 2% of the total traffic.

The most traffic that any single router transported was 4.1% of the total traffic. This indicates

that the vast majority of Tor traffic is handled by a very small set of routers. Consequently, if

an adversary is able to control a set of the highest performing routers, then its ability to conduct

traffic analysis increases dramatically. Finally, the PDFs calculated from our router’s observations

are very similar to the router distribution based on routers’ bandwidth advertisements, as reported

by Tor’s directory servers.

3.6 Circuit-level Performance Measurements

One of Tor’s most important design goals is to provide a low latency, high throughput trans-

port service that is suitable for supporting interactive applications. However, a common reason

why people do not use Tor is because it is too slow. Tor certainly incurs greater latency when

compared to direct connections, since Tor routes cells through a circuit of three hops (by default),

potentially circling the world multiple times. Some routers are also highly congested since their



65

0
50

00
10

00
0

15
00

0

Time of Day (GMT)

U
ni

qu
e 

C
irc

ui
ts

0:00
1/10

8:00
1/10

16:00
1/10

0:00
1/11

8:00
1/11

16:00
1/11

0:00
1/12

8:00
1/12

16:00
1/12

0:00
1/13

8:00
1/13

16:00
1/13

Figure 3.4: The observed circuit connections are plotted over the course of one data collection
period

limited bandwidth must be shared among several circuits simultaneously, some of which may be

transferring large amounts of data.

We next measure Tor’s performance at the circuit-level. In particular, we examine how Tor

use varies with the time of day, we measure end-to-end circuit latency across a large number of cir-

cuits, and measure circuits’ throughput. We finally look at circuit duration and the amount of data

transported by circuits routed through our Tor router. In the following, we analyze measurements

collected in December 2006, January 2007, and September 2010. Repeating the measurements over

the course of several years enables us to observe and analyze changes in Tor’s performance. Note

that unless otherwise stated, the measurements were collected in December 2006 and January 2007.

3.6.1 Diurnal Patterns in Traffic Load

We did not observe any cyclical patterns in client usage during the December 2007 and

January 2008 observation periods. However, over the course of previous data collection periods



66

0
10

0
20

0
30

0
40

0
50

0

Time of Day (GMT)

U
ni

qu
e 

C
irc

ui
ts

Asia
Europe
North America

0:00
1/10

8:00
1/10

16:00
1/10

0:00
1/11

8:00
1/11

16:00
1/11

0:00
1/12

8:00
1/12

16:00
1/12

0:00
1/13

8:00
1/13

16:00
1/13

Figure 3.5: Asian, European, and North American circuit connections as a function of the time of
day

from December 2006 and January 2007, we observed more prominent daily patterns in traffic load.

We present these observations here.

In order to understand Tor use as a function of time of day, we examine the number of circuits

observed through our router over the course of the data collection periods. We plot the number of

unique connections observed versus time of day in Figure 3.4.

When our Tor router first joined the network, it took several hours to integrate into the

network, and the number of connections slowly increases over this warm-up time. Once integrated,

the graph indicates that Tor use is cyclical, with a period of approximately one complete day. In

addition, peak hours of Tor use occur at 14:00-16:00 GMT, when over 12,000 unique circuits per

hour were observed. Tor use is lowest at 0:00 (midnight) GMT, when less than 9,000 circuits per

hour were observed. The greatest difference between the high and low times was a 37% decrease

from the peak. While the network remains used at all times of day, this shows that a significant

correlation between Tor use and time of day exists.



67

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Latency (s)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 3.6: CDF of end-to-end latency through Tor circuits

We examine the nature of Tor usage within Asia, Europe, and North America separately in

Figure 3.5. To obtain the locations of Tor users over time, it is only possible to ascertain the client’s

location when our Tor router is used as the entrance router in a circuit. Using this data, users from

Asia comprise the most circuit connections, following by Europe and North America. Usage over

time in Asia and the United States does not conform to a clear cyclical pattern; however, European

users are most frequent during European daytime hours and are least abundant during the night.

European users decrease by as much as 62.5% during their off-peak hours. This pattern contributes

highly to the global Tor usage pattern shown in Figure 3.4.

3.6.2 End-to-end Latency

To measure latency of circuits, we used echoping [13], to measure the end-to-end circuit

round-trip time (RTT) over Tor circuits to an echo server running on a machine with a high

bandwidth link. We report end-to-end circuit latencies as RTT/2.

Figure 3.6 shows a CDF of Tor’s end-to-end circuit latency, as experienced by Tor clients. The



68

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Latency (s)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 3.7: CDF of end-to-end latency through Tor circuits in September 2010

graph reveals that the median end-to-end latency of a circuit is 2 seconds with a high variance and

a maximum observed latency of 120 seconds. At the 25th percentile, a circuit experienced under

0.5 second of latency, at the 75th percentile, a circuit incurred about 3.5 seconds of latency, and at

the 90th percentile, 6.5 seconds of latency was observed. The mean was 3.1 seconds with a standard

deviation of 5.1 seconds. In the case of higher latency circuits (above the 90th percentile), it is

probable that the circuit timed out and was reconstructed. While these observations show the cost

of Tor’s anonymity in the form of increased latency, these end-to-end latencies are unacceptably high

for delay-sensitive interactive web users, who must incur precisely two end-to-end circuit round-trip

times before the client receives the first byte of data (one RTT to connect to the destination server,

and a second RTT to issue an HTTP GET and receive the first byte of data in return). These delays

translate to a median web page response delay of 8 seconds before the client receives the first byte

of data, which is unacceptably high.

Figure 3.7 shows a CDF of end-to-end circuit latency as measured in September 2010. The

median latency is 0.6 seconds and 75% of circuits have a latency of 1.6 seconds or less. Interestingly,



69

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Throughput (KiB/s)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 3.8: CDF of end-to-end throughput through Tor circuits

these delays are significantly less than observed in 2006 and 2007, a reduction in delay of nearly

200% at the median. This means that web page response times are significantly faster than they

were a few years ago. Possible explanations are that Tor’s bandwidth capacity has increased or

that the traffic load has significantly decreased. The later explanation is very likely, as the Great

Firewall of China blocked Tor in March 2010 [45], which consequently reduced Tor’s traffic load

significantly. However, despite this large improvement, latency still remains relatively high, which

translates to significant delays for web fetches, which must incur precisely two end-to-end circuit

round-trip times before the client receives the first byte of data; this is a median delay in web page

response time of 2.4 seconds.

3.6.3 End-to-end Throughput

To collect data about throughput over Tor circuits, we transferred a 128 KiB file from a web

server through the Tor network and measured the download time. A base-line was produced by

measuring the throughput while downloading the file directly. The base-line throughput was 270



70

0 100 200 300 400 500 600

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Throughput (KiB/s)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 3.9: CDF of end-to-end throughput through Tor circuits in September 2010

KiB/s with negligible variance. Figure 3.8 shows the CDF for throughput measurements through

Tor circuits. The median throughput was 6.8 KiB/s and the mean was 12.6 KiB/s with a standard

deviation of 15.2 KiB/s. At the 25th percentile, circuit throughput was 3.2 KiB/s, at the 75th

percentile, a circuit provided 14.6 KiB/s, and at the 90th percentile, 35.8 KiB/s throughput was

maintained. The maximum observed throughput during the observation was 180.8 KiB/s. This

demonstrates that most Tor circuits provide low throughput.

Similar to the improvement in end-to-end latency, Tor’s throughput has improved significantly

between 2007 and 2010. Figure 3.9 shows that the median end-to-end circuit throughput is 91 KiB/s

and 75% of streams achieve less than 179 KiB. This is an improvement of an order of magnitude.

3.6.4 Circuit Duration

Circuit duration was measured during our data collection while operating a Tor router. As

depicted in Figure 3.10, the median circuit duration was 30 seconds. At the 25th percentile, a

circuit lasted for under 10 seconds, at the 75th percentile, a circuit is used for 210 seconds, and



71

0 200 400 600 800 1000

0.
2

0.
4

0.
6

0.
8

1.
0

Duration (s)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 3.10: CDF of Tor circuits’ durations

at the 90th percentile, a circuit is used for 610 seconds. The mean circuit duration is 814 seconds

with a standard deviation of 7 900.5 seconds. The longest living circuit was observed for 242 380

seconds, or 67.3 hours. This shows that the vast majority of circuits are short-lived. The median

circuit duration is sufficient for transferring small amounts of data over HTTP, for example.

To demonstrate that the two data collection periods are consistent, we show a quantile-

quantile (QQ) plot in Figure 3.11. A linear relationship between the observed quantiles from the two

data collection periods indicates that the two data sets are taken from the same distribution [131].

This demonstrates that the data collection was consistent between observations.

Figure 3.12 shows that the median circuit lasted for 44 seconds and 75% of circuits lasted

for no longer than 365 seconds. Thus, circuits appear to last longer in 2010 than they did in the

earlier measurements.



72

0 2000 4000 6000 8000 10000 12000

0
20

00
60

00
10

00
0

December Observation Quantiles (s)

Ja
nu

ar
y 

O
bs

er
va

tio
n 

Q
ua

nt
ile

s 
(s

)

Figure 3.11: Quantile-Quantile plot of the duration observations from the January and December
data collection periods

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Duration (s)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 3.12: CDF of Tor circuits’ durations in September 2010

3.6.5 Circuit Capacity

In order to measure capacity of Tor circuits, we observed how many bytes transversed circuits

during our router’s participation in the Tor network. A CDF of the bytes transferred per circuit



73

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Kilobytes (KiB)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 3.13: CDF of data transferred over Tor circuits

are given in Figure 3.13. At the median, 6.1 KiB traversed a circuit. At the 25th percentile,

about 1.0 KiB flowed through a circuit, at the 75th percentile, 31.2 KiB was sent, and at the 90th

percentile, 201.7 KiB was transferred. However, the mean circuit transported 730.8 KiB with a

standard deviation of 10 312.6 KiB.

The maximum amount of data observed to be transferred over a circuit was 1.5 GiB. This

demonstrates that while most circuits transport very little data, there exist outliers that are able

to sustain the circuit for a sufficient amount of time to transfer several orders of magnitude more

data, although this is quite rare. The median circuit capacity would be sufficient to transfer a rela-

tively small web page. These circuit-level measurements are consistent with the observed protocol

distribution. We provide a QQ plot in Figure 3.14 that shows the amount of data transported is

consistent between the December and January data collection periods.

We repeated the circuit capacity measurement in September 2010 and found that circuits tend

to transport far more data than they did in the past. Figure 3.15 shows that the median circuit

transports 640.5 KiB, which is roughly an order of magnitude more than observed in 2007. One



74

0 5000 10000 15000 20000

0
50

00
10

00
0

15
00

0
20

00
0

December Observation Quantiles (KiB)

Ja
nu

ar
y 

O
bs

er
va

tio
n 

Q
ua

nt
ile

s 
(K

iB
)

Figure 3.14: Quantile-Quantile plot of the kilobytes transferred from the January and December
data collection periods

1e+00 1e+02 1e+04 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Circuit size (in Kbytes)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 3.15: CDF of data transferred over Tor circuits in September 2010

possible explanation is that Tor circuits have become more reliable, potentially due to optimizations



75

in the circuit building process such as adaptive circuit building timeouts [77], improvements in Tor’s

load balancing [176], an increase in Tor’s available bandwidth, or a reduction in the traffic load.

1e+00 1e+02 1e+04 1e+06

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Stream size (in Kbytes)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 3.16: CDF of stream size within Tor circuits in September 2010

1 10 100 1000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of streams per circuit

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 3.17: CDF of number of streams within Tor circuits in September 2010



76

To understand the nature of TCP streams within circuits, we measure the size and number

of distinct TCP streams per circuit in September 2010. Figure 3.16 shows that the median stream

tunneled over a circuit Tor is 3.0 KiB, and 75% of all streams are smaller than 12.5 KiB. The largest

stream observed transported 1.7 GiB. As shown in Figure 3.17, the median circuit transported 20

streams and 75% of circuits transported less than 54 streams. These observations are consistent

with the hypothesis that circuit reliability has increased over the years between measurements.

3.6.6 Discussion

In our analysis of Tor performance at the circuit level, we have shown that the volume of Tor

traffic was correlated with the time of day in December 2006 and January 2007, but as Tor became

more popular across different regions of the world, these patterns became less pronounced. We have

also found that in 2006 and 2007, end-to-end circuit latency was higher than is typically expected by

delay-sensitive web clients and that circuit throughput was low, but in 2010 latency had decreased

and throughput had increased significantly. The improvement in performance over nearly four

years is very encouraging. However, perhaps the largest contributing factor to this improvement

comes from the Chinese government’s decision to explicitly block its citizens’ ability to access Tor

in March 2010 [45]. Recall that in Chapter 3.5, we found that China was the second most common

country of origin among Tor clients. This indicates that the departure of most Chinese users likely

reduced Tor’s traffic load significantly. Finally, given the highly dynamic nature of Tor as a system,

some of the observations presented in this chapter could change as user behavior, government or

Internet Service Provider blocking agendas, and other factors change. To understand how Tor

usage has changed since our study, we direct the reader to a contemporary Tor study by Chaabane

et al. based on data collected in 2009 and 2010 [74].

3.7 Ethics and Community Standards

Any large-scale study that involves live users and real traffic must be conducted carefully and

with the highest ethical standards. An important and an ongoing debate has erupted regarding how



77

to balance the potential benefits of live measurement and analysis in cyber-security and privacy

research with the ethical questions, legal constraints, and conformity to community standards that

revolve around such research. To help understand the fundamental issues at stake, Dittrich et

al. conduct a survey of prior cyber-security and privacy research that potentially raises ethical

questions, and offer an initial framework for reasoning about such questions [107]. Also, Sicker et

al. provide a perspective on Internet measurement studies with regard to United States Federal

Law and suggest guiding principles to promote safe measurement including obtaining user consent,

analyzing synthetic data instead of real data, and obeying policies of data anonymization, reduction,

and minimization [207]. While obtaining user consent is not always possible and using synthetic or

simulated data may not enable the researchers to adequately analyze the problem or phenomena

being studied, their final suggestion of anonymization, reduction, and minimization is a reasonable

best practice.

In conducting the Tor measurement study presented in this chapter, we exercised extreme

caution and care to protect any personally identifiable information collected in our traces. Fur-

thermore, we practiced data reduction and minimization by collecting only enough payload data to

enable accurate protocol identification. While we would have liked to anonymize the traces during

the capture process, the amount of data and speed at which it was collected made anonymization

computationally infeasible. In addition, obtaining user consent is inherently impossible, as the users

are, in fact, anonymous. Ultimately, we believe that the potential risk to Tor users from this study

was very low, and the potential to better understand and improve Tor’s design was very high.

Collecting useful data safely from anonymous networks such as Tor remains a challenging

research problem. One approach is to collect and release aggregated statistical data [152]. While

such an approach is promising, it is unclear whether statistical data is as useful as raw data for

analytical purposes. Also, there may be cases where even aggregated statistical data exposes

sensitive information.



78

3.8 Broader Impact

Our primary objective in this chapter has been to better understand how Tor is used, who

uses Tor, how Tor’s anonymity may shroud malicious activities, and how Tor’s performance has

improved over the course of several years. From these observations and measurements, we have

offered a variety of suggestions to improve systems like Tor.

First, given our observation that non-TLS protected protocols, including those used for e-mail

(POP3 and IMAP) and even archaic remote terminal protocols such as telnet are present in Tor

exit traffic. To mitigate the risks associated with not only leaking information about the initiator’s

identity (by observing user names, for instance), but potentially leaking login credentials which

could lead to account compromise, we proposed that Tor explicitly warn the user or block such

protocols at the client’s local proxy [59]. Also, a set of scripts have been developed and deployed

to actively scan Tor exit nodes for malicious behaviors and the BadExit flag has been added to the

trusted directory servers’ consensus information to inform clients not to select these routers [175].

Second, we observed that router bandwidth is centralized within only a few countries. This

has significant implications to Tor’s anonymity properties, as it is well-known that location diversity

reduces the likelihood that a single Internet Service Provider (ISP), autonomous system (AS),

or country-level adversary can observe the network links at circuits’ endpoints [111, 114]. This

observation has motivated additional work that aims to promote router diversity and participation

by employing incentive schemes [50,133,170].

Third, our analysis of malicious activities undertaken by both Tor clients and routers high-

lights the need for effective mechanisms to enforce better accountability, but without sacrificing

anonymity. A large body of work has been developed to improve anonymity networks’ abilities to

block malicious users while not sacrificing anonymity for non-malicious users [82,123,220,224,225].

Fourth, we observed that BitTorrent traffic, while small in terms of the number of TCP

connections, consumes a vastly disproportionate amount of Tor’s scarce bandwidth. Bulk data

transfer is a significant source of congestion that degrades performance for delay-sensitive web users.



79

The observed demand for anonymous file sharing has motivated the development of anonymizing

techniques tailored specifically to preserve privacy within bulk file sharing traffic [62,78,130].

Lastly, this work has, in part, initiated an important discussion on community standards,

norms, and best practices for cyber-security and privacy research studies that involve live users.

The publication of part of this chapter’s work [158] has spurred an ongoing conversation and debate

regarding best practices for such studies [107,117], leading to the formation of a series of academic

workshops to discuss and debate these issues [2, 18] and the development of a community-driven

repository for aggregated statistical Tor data [222].

3.9 Summary

This chapter is focused on understanding Tor usage. In particular, we provided observations

that help understand how Tor is being used, how Tor is being mis-used, and who participates in

the network as clients and routers. Through our observations, we have made several suggestions to

improve Tor’s current design and implementation. First, in response to the fairly large amount of

insecure protocol traffic, we proposed that Tor provide a mechanism to block the ports associated

with protocols such as POP3, IMAP, and Telnet. Given the ease at which an eavesdropping

exit router can log sensitive user information (such as user names and passwords), we developed

a method for detecting malicious logging exit routers, and provided evidence that there are such

routers that specifically log insecure protocol exit traffic. Also, we show the disparity in geopolitical

diversity between Tor clients and routers, and argue that location diversity is currently impossible

to guarantee unless steps are taken to attract a more diverse set of routers. As a final avenue of

study, we characterize Tor’s performance as perceived by end-users.

Due to its popularity, Tor provides insight into the challenges of deploying a real anonymity

service, and our hope is that this work will encourage additional research aimed at (1) providing

tools to enforce accountability while preserving strong anonymity properties, (2) protecting users

from unknowingly disclosing sensitive/identifying information, and (3) fostering participation from

a highly diverse set of routers.



Chapter 4

Practical Attacks against Low Latency Anonymous Networks

We present methods for compromising the security of the Tor overlay network [103]. This

work focuses on the following two scientific questions: (1) how can we minimize the requirements

necessary for any adversary to compromise the anonymity of a flow; and (2) how can we harden

Tor against our attacks?

Central to our attacks is the fact that a lying adversary — by exaggerating its resource

claims — can compromise an unfair percentage of Tor entry and exit nodes. Further, we show how

an adversary can compromise the anonymity of a Tor path before any data is transmitted, which

enables us to further reduce the resource requirements on the attacker. We experimentally evaluate

the efficacy of our attacks via experiments with an isolated Tor deployment on PlanetLab. We also

explore methods for mitigating the severity of our attacks.

Historical balance between anonymity and performance. Conventional wisdom suggests

that it is impossible for practical privacy-enhancing systems to provide perfect anonymity. There-

fore, the designers of such systems must consider restricted threat models. Consider, for example,

an anonymous communications system that routes traffic through multiple intermediate nodes.

While it is generally possible to perform a traffic analysis attack against a connection if both of

the endpoints are compromised, theoretical analyses of anonymity networks show that the likeli-

hood of successfully launching such a traffic analysis attack becomes negligible as the network size

increases [103,189,219].



81

When the Tor network was launched, it consisted of few routers transporting little traffic.

Consequently, in its initial design, Tor provided no traffic load balancing capability, and it was with

respect to this initial design that the above-mentioned theoretical analyses were performed [103].

As the network grew to include nodes with a wide variety of bandwidth capabilities, it became

necessary to ensure that the traffic is efficiently balanced over the available resources in order to

achieve low latency service. Tor’s routing mechanism was modified to prefer high-bandwidth, high-

uptime routers that have the resources to accept new connections and transport traffic. Dingledine,

Mathewson, and Syverson suggested that a non-uniform router selection mechanism may increase an

attacker’s ability to compromise the system’s anonymity [104], though the full security implications

of this load balancing was left to further research.

Our approach. Within Tor’s routing model, an adversary could deploy a few nodes that have

— or appear to have — high-bandwidth connections and high-uptimes. In the latter case, the

adversary is said to lie about its resources. With high probability, such an adversary would be able

to successfully compromise the two endpoints — the entry node and the exit node — of a new Tor

client’s connections. Compromising the entry and exit nodes with non-uniform probability is the

first step in our attack.

As noted above, previous works showed that, upon compromising the entry and exit nodes, it

is possible to compromise the anonymity of a connection via traffic analysis. However, in the spirit

of minimizing the resource requirements for the adversary, we develope an end-to-end method for

associating a client’s request to its corresponding destination before any payload data is sent. This

is important since low-resource malicious nodes may lack the bandwidth to forward significantly

many data packets.

Experimental evaluation. We experimentally show, using an isolated Tor deployment on Plan-

etLab, that adversaries with sparse resources — such as adversaries with a few nodes behind

residential cable modems — can compromise the anonymity of many paths for new clients. In a

Tor deployment of 60 honest and 6 malicious Tor routers, our attack compromised over 46% of the

path-building requests from new clients through the network. This illustrates the inherent diffi-



82

culty of simultaneously attempting to provide optimal anonymity and efficient use of the network’s

resources.

Prior attacks. Other attacks against Tor have focused on traffic analysis and locating hidden

services. Murdoch and Danezis presented a low cost traffic analysis technique that allowed an

outside observer to infer which nodes are being used to relay a circuit’s traffic [166], but could

not trace the connection to the initiating client. Øverlier and Syverson demonstrated a technique

for locating hidden services that used false resource claims to attract traffic [172]. Murdoch and

Zieliński [168] analyze the route selection problem in Tor in the context of Internet exchanges

(IXes), and give a new traffic analysis technique for processing data from IXes. We extend the

attack on hidden services to effectively compromise the anonymity of general-purpose paths using

resource-constrained nodes.

Attack variants and improvements. We consider additional attack variants and improvements

in the body of this chapter. For example, we show how to adapt our attack to compromise the flows

of pre-existing Tor clients; recall that our attack as described above is (generally) only successful

at compromising new clients, who have not already picked their preferred entry nodes. We also

consider further resource reductions, such as using watermarking techniques to, in some cases,

eliminate the need for a compromised exit node. An important extension is an attack on the entry

guard selection process, where we show that it is possible to displace all legitimate entry guards

with malicious nodes. Additionally, we consider methods to improve the effectiveness of our attack,

such as a variant of the Sybil attack [108].

Countermeasures. Next we explore counter-measures to routing attacks in Tor. High-resource

adversaries, even if only in possession of a few malicious nodes, seem to pose a fundamental security

challenge to any high-performance, multi-hop privacy enhancing system. We focus on designing

solutions to mitigate the low-resource attacker’s ability to compromise anonymity. These solutions

include verifying information used in routing decisions, allowing clients to make routing decisions

based on observed performance, and implementing location diversity in routers to mitigate Sybil

attacks.



83

Context. Following the initial disclosure of the primary vulnerability behind these attacks [60],

development began by the Tor community on measures to mitigate the effectiveness of these attacks.

While an adversary’s ability to launch a large number of malicious nodes from the same physical

machine or network has been partially addressed [57], the more challenging problem of verifying

bandwidth claims remains open.

4.1 Background

In order to present the methodology used in our experiments, we first provide a brief overview

of the Tor system architecture, an in depth analysis of Tor’s router selection algorithms, and a

description of Tor’s attack model.

4.1.1 Tor’s Router Selection Algorithms

We next describe Tor’s router selection process as specified and implemented in 2007. Note

that, as a result of the attacks presented in this chapter, some aspects of the router selection

algorithm have changed. We describe the broader impact of these attacks and proposed defenses

in Chapter 4.8.

As of Tor version 0.1.1.23, there are two parts to the algorithm that Tor uses to select which

routers to include in a circuit. The first part is used to select the entry router, and the second part

is used to select subsequent routers in the circuit. We will show methods to exploit both of these

algorithms, as implemented in Tor in 2007, in Section 6.1.2.

Entry router selection algorithm. The default algorithm used to select entry routers was

modified in May 2006 with the release of Tor version 0.1.1.20. Entry guards were introduced to

protect circuits from selective disruption attacks, thereby reducing the likelihood of an attacker

intentionally breaking circuits until they are on a target victim’s circuit [172]. The entry guard

selection algorithm works by automatically selecting a set of Tor routers that are marked by the

trusted directory servers as being “fast” and “stable.” The directory server’s definition of a fast

router is one that reports bandwidth above the median of all bandwidth advertisements. A stable



84

router is defined as one that advertises an uptime that is greater than the median uptime of all

other routers.

The client will only choose new entry guards when one is unreachable. Currently the default

number of entry guards selected is three, and old entry guards that have failed are stored and

retried periodically. There is also an option added to use only the entry guards that are hard-coded

into the configuration file, but this option is disabled by default. This algorithm was implemented

to protect the first hop of a circuit by using a limited pool of nodes.

Non-entry router selection algorithm. The second algorithm to select non-entry nodes is

intended to optimize router selection for bandwidth and uptime, while not always choosing the

very best nodes every time. This is meant to ensure that all nodes in the system are used to some

extent, but nodes with more bandwidth and higher stability are used most often. Tor has a set

of TCP ports that are designated as “long-lived.” If the traffic transiting a path uses one of these

long-lived ports, Tor will optimize the path for stability by pruning the list of available routers to

only those that are marked as stable. This causes Tor’s routing algorithm to have a preference

towards routers marked as stable nodes. For more details on this part of the algorithm, see the Tor

Path Specification [101].

The next part of the algorithm optimizes the path for bandwidth. Briefly, this algorithm

works as follows: Let bi be the bandwidth advertised by the i-th router, and assume that there

are N routers. The probability that the i-th router is chosen is proportional to bi /
(

∑N
j=1 bj

)

.

We assume that
∑N

j=1 bj > 0, since a zero value would imply that the system has no available

bandwidth. We provide pseudocode for the bandwidth optimization part in Algorithm 1.

The most significant feature of this algorithm is that the more bandwidth a particular router

advertises, the greater the probability that the router is chosen. The routing algorithm’s tendency

to favor stable and high bandwidth nodes is fundamentally important to the implementation of our

attack.



85
Algorithm 1: Non-Entry Router Selection

Input: A list of all known Tor routers, router list

Output: A pseudo-randomly chosen router, weighted toward the routers advertising the highest bandwidth

B ← 0, T ← 0, C ← 0, i← 0, router bw ← 0
bw list← ∅

foreach router r ∈ router list do

router bw ← get router adv bw(r)
B ← B + router bw

bw list← bw list ∪ router bw
end

C ← random int(1, B)
while T < C do

T ← T + bw listi

i← i + 1
end

return router listi

4.1.2 Tor’s Threat Model

Tor’s design document [103] lays out an attack model that includes a non-global attacker

that can control or monitor a subset of the network. The attacker can also inject, delay, alter, or

drop the traffic along some of the links. This attack model is similar to the models that other low

latency anonymity systems such as Freenet [80], MorphMix [190], and Tarzan [116] are designed to

protect against.

As a component of Tor’s attack model, the designers acknowledge that an adversary can

potentially compromise a portion of the network. To predict the expected percentage of flows

compromised by such an adversary, a simplified theoretical analysis of a privacy enhancing system

is provided in Tor’s design document [103]. This analysis is based on a combinatorial model that

assumes nodes are chosen at random from a uniform distribution.

4.2 Compromising Anonymity

We now consider how an adversary might compromise anonymity within the Tor threat model

by gaining access to a non-global set of malicious nodes. In our basic attack, we assume that these

malicious nodes are fast and stable, as characterized by high bandwidths and high uptimes. While

even the basic attack squarely compromises anonymity under Tor’s target threat model [103], we

also show how to remove these performance restrictions for an even lower-resource attack.



86

Figure 4.1: Attack Model: Malicious Tor routers are positioned at both the entry and exit positions
for a given client’s circuit to the requested destination server through the Tor network

We focus on attacking the anonymity of clients that run in their default configurations; in

particular, we assume that clients function only as Tor proxies within the network. We also focus

on attacking clients that join the network after the adversary mounts the first phase of our attack

(Section 4.2.1); we shall remove this restriction in Section 6.8.

4.2.1 Phase One: Setting Up

To mount our attacks, an adversary must control a subset of m > 1 nodes in the pool of

active Tor routers. The adversary might obtain such nodes by introducing them directly into the

Tor network, or by compromising existing, initially honest nodes. The adversary may coordinate

these compromised machines in order to better orchestrate the attack.

The basic attack. In our basic attack, the adversary’s setup procedure is merely to enroll

or compromise a number of high-bandwidth, high-uptime Tor routers. If possible, the adversary

should ensure that all of these nodes advertise unrestricted exit policies, meaning that they can

forward any type of traffic.

Resource reduction. We can significantly decrease the resource requirements for malicious

nodes, thereby allowing them to be behind low-bandwidth connections, like residential broadband

Internet connections. This extension exploits the fact that a malicious node can report incorrect

(and large) uptime and bandwidth advertisements to the trusted directory servers [172]. These false



87

advertisements are not verified by the trusted directory servers, nor by other clients who will base

their routing decisions on this information, so these false advertisements will remain undetected.

Thus, from the perspective of the rest of the network, the adversary’s low-resource routers actually

appear to have very high bandwidths and uptimes. It is important that the malicious nodes have

just enough bandwidth to accept new connections. This is achieved by focusing the nodes’ limited

resources toward accepting new client connections.

Selective path disruption. If malicious nodes do not exist at both the entry and exit positions

of a circuit, but at only one position (either entry, middle, or exit), it can cause the circuit to break

simply by dropping all traffic along the circuit. This causes the circuit to be rebuilt with a chance

that the rebuilding process will create a path configuration in which both the entry and exit nodes

are malicious.

What happens next. Since one of Tor’s goals is to provide a low latency service, when a new

client joins the network and initiates a flow, the corresponding Tor proxy attempts to optimize

its path by choosing fast and stable Tor routers. By deploying nodes with high bandwidths and

high uptimes, or by deploying nodes that give the impression of having high bandwidths and high

uptimes, the adversary can increase the probability that its nodes are chosen as both entry guards

and exit nodes for a new client’s circuit. Compromising the entry and exit position of a path is

a necessary condition in order for the second phase of our attack (Section 4.2.2) to successfully

correlate traffic.

As a brief aside, on the real Tor network, roughly half of the Tor routers have restricted exit

policies that do not allow them to be selected as exit nodes for all flows. This situation further

increases the probability that one of the adversary’s nodes will be chosen as a flow’s exit node.

4.2.2 Phase Two: Linking Circuits

We have shown a method that increases the likelihood of a malicious router existing on a

particular proxy’s path through Tor. In the improbable case when the full path has been populated

with malicious nodes, it is trivial to compromise the anonymity of the path. However, in the more



88

likely case, if only the entry and exit nodes are malicious, we have developed a technique that allows

paths to be compromised with a high probability of success (see Figure 4.1). Our approach here

is independent of whether the adversary is implementing the basic or the resource-reduced attack

described in Section 4.2.1.

While others have postulated the possibility that an adversary could compromise the anonymity

of a Tor route if the adversary controlled both the route’s entry and exit nodes [103, 172], to the

best of our knowledge, our approach is the first that is capable of doing so before the client starts

to transmit any payload data. This ability is important, because a resource-starved adversary

should desire to minimize the cost of the attack in order to maximize the number of circuits that

may be compromised. Furthermore, we experimentally verify the effectiveness of our approach in

Section 6.1.3.

Overview. In order for the attack to reveal enough information to correlate client requests to

server responses through Tor, each malicious router logs the following information for each cell

received: (1) its location on the current circuit’s path (whether it is an entry, middle, or exit node);

(2) local timestamp; (3) previous circuit ID; (4) previous IP address; (5) previous connection’s port;

(6) next hop’s IP address; (7) next hop’s port; and (8) next hop’s circuit ID. All of this information

is easy to retrieve from each malicious Tor router. Once this attack has been carried out, it is

possible to determine which paths containing a malicious router at the entry and exit positions

correspond to a particular Tor proxy’s circuit building requests. With this information, an attacker

can associate the sender with the receiver, thus compromising the anonymity of the system. In

order to execute this algorithm, the malicious nodes must be coordinated. The simplest approach

is to use a centralized authority to which all malicious nodes report their logs. This centralized

authority can then execute the circuit-linking algorithm in real-time.

Tor’s circuit building algorithm. Tor’s telescoping circuit building algorithm sends a determin-

istic number of packets in an easily recognizable pattern. Figure 4.2 shows the steps and the timing

associated with a typical execution of the circuit building algorithm. A Tor proxy creates a new

circuit through Tor as follows: First, the proxy issues a circuit building request to its chosen entry



89

}

Step 3

Step 1

Step 2}

}

Tor Proxy

TLS[build_ack]

TLS[build_1]

TLS[build_2]

TLS[build_ack]

E_K1[build_ack]

E_K1[E_K2[extend_3]]

TLS[build_3]

E_K2[extend_3]

TLS[build_ack]

E_K2[build_ack]

E_K1[E_K2[build_ack]]

Entry Router Exit Router

Time

Middle Router

E_K1[extend_2]

Figure 4.2: A sequential packet diagram of Tor’s circuit building process

guard and the entry guard sends an acknowledgment (Step 1). This establishes a shared symmetric

key K1 between the client and the entry guard. Next, the proxy sends another circuit building

request to the entry router to extend the circuit through a chosen middle router. This message

is encrypted with K1 and establishes another shared symmetric key between the entry guard and

the middle router. The middle router acknowledges the new circuit by sending an acknowledgment

back to the client via the entry node (Step 2). Finally, the proxy sends a request to extend the

circuit to the chosen exit node, which is forwarded through the entry and middle routers to the



90

chosen exit router. This extend message is encrypted with K1 and K2 in a layered fashion. This

also establishes a shared secret key K3 between the middle router and the exit router. Once the

exit router’s acknowledgment has been received through the middle and entry nodes, the circuit

has been successfully established (Step 3).

In order to exploit the determinism of the circuit building algorithm, it is necessary to as-

sociate the timing of each step and analyze the patterns in the number and direction of the cells

recorded. A packet counting approach as used to locate hidden services [172] would not be suffi-

cient, since not all cells sent from the Tor proxy are fully forwarded through the circuit; thus, the

number of cells received at each Tor router along the circuit is different. This pattern is highly

distinctive and provides a tight time bound, which we utilize in our circuit linking algorithm.

Circuit linking algorithm. The circuit linking algorithm works as follows:

(1) The entry node verifies that the circuit request is originating from a Tor proxy, not a router.

This is easily determined since there will be no routing advertisements for this node at the

trusted directory servers.

(2) Next, the algorithm ensures that Steps 1, 2, and 3 (from Figure 4.2) occur in increasing

chronological order. Also, it is necessary to verify that the next hop for an entry node is

the same as the previous hop of the exit node.

(3) Finally, in Step 3, it is verified that the cell headed towards the exit node from the entry

node is received before the reply from the exit node.

If every step in the algorithm is satisfied, then the circuit has been compromised.

4.3 Experiments

In this section, we describe the experimental process we used to demonstrate and evalu-

ate our resource-reduced attack. By experimentally evaluating our resource-reduced attack, our

experimental results also immediately extend to the basic attack scenario in Section 6.1.2.



91

Table 4.1: Bandwidth distributions

Tier
Tor Networks

Real Tor 40 Node 60 Node

996 KB/s 38 4 6

621 KB/s 43 4 6

362 KB/s 55 6 9

111 KB/s 140 13 20

29 KB/s 123 11 16

20 KB/s 21 2 3

Total 103.9 MB/s 10.4 MB/s 15.7 MB/s

4.3.1 Experimental Setup

In order to evaluate this attack in a realistic environment, we set up an isolated Tor deploy-

ment on the PlanetLab overlay testbed [177]. We were advised not to validate our attack on the

real Tor network because of its potentially destructive effect [97]; however, we did verify that our

technique for publishing false router advertisements did, in fact, propagate for a single test router

on the real Tor deployment.

To ensure that the experimental Tor networks are as realistic as possible, we surveyed the

real Tor network in August 2006 to determine the router bandwidth distribution. This data is given

in Table 4.1. According to the real trusted Tor directory servers, there are roughly 420 Tor routers

in the wild that forward at least 5 KiB per second. However, due to limitations on the number

of PlanetLab nodes that were available over the course of the experiments, we created smaller

Tor networks according to our analysis of the router quality distribution in the real deployment.

We created two isolated Tor networks on PlanetLab, consisting of 40 and 60 nodes, each running

exactly one router per node. Each experimental deployment has precisely three directory servers,

which are also nodes from PlanetLab.

When choosing nodes from PlanetLab for the experimental deployments, each node was eval-

uated using iperf, a common bandwidth measurement tool [129], to ensure that it had sufficient

bandwidth resources to sustain traffic at its assigned bandwidth class for the course of each ex-



92

periment. Also, as is consistent with the real Tor network, we chose PlanetLab nodes that are

geographically distributed throughout the world.

All Tor routers (both malicious and benign) advertise the same, unrestricted exit policy.

The exit policies of routers in the real Tor network are difficult to accurately model due to the

reduced size of our network. The global use of unrestricted exit policies in our experimental Tor

testbed actually decreases the potential effectiveness of our attack. With the potential for more

restrictive exit policies in a real Tor network, we expect the attack’s performance to improve since

the malicious routers would have a higher probability of compromising the exit position.

To demonstrate the effect of the attack, we introduced a small number of malicious Tor

routers into each private Tor network. In the 40 node network, experiments were conducted by

adding two (2/42) and four (4/44) malicious nodes. In the 60 node network, three (3/63) and six

(6/66) malicious nodes are added. The fraction of each network’s bandwidth that is malicious is

given in Section 4.3.1.2. All experiments were conducted in October 2006 with Tor version 0.1.1.23.

The experiments were conducted as follows: The three trusted directory servers and each

benign Tor router in the network are started first, then the client pool begins generating traffic

through the network. The network is given two hours for the routing to settle and converge to a

stable state,1 at which point the clients are promptly stopped and all previous routing information

is purged so that the clients behave exactly like new Tor proxies joining the network. The malicious

nodes are then added to the network and the clients once again generate traffic for precisely two

hours. This procedure is repeated for the 2/42, 4/44, 3/63, and 6/66 experiments. The results of

these experiments are given in Section 4.3.3.

4.3.1.1 Traffic Generation

To make the experimental Tor deployments as realistic as possible, it is necessary to generate

traffic. For these experiments, we adopt the same traffic generation strategy as Murdoch [164]. To

1 Our attempts to start the network with both honest and malicious nodes at once failed, due to the inability of
the honest nodes to integrate into the hostile network. The two hour time period allowed the honest nodes time to
fully integrate into the routing infrastructure before adding the malicious nodes.



93

generate a sufficient amount of traffic, we used six dual Xeon class machines running GNU/Linux

with 2GB of RAM on a 10 Gbit/s link running a total of 60 clients in the 40 node network, and

a total of 90 clients in the 60 node Tor deployment. These clients made requests for various web

pages and files of relatively small size (less than 10 MiB) using the HTTP protocol. The interface

between the HTTP client and the Tor proxy is made possible by the tsocks transparent SOCKS

proxy library [39]. The clients also sleep for a random period of time between 0 and 60 seconds and

restart (retaining all of their cached state including routing information and entry guards) after

completing a random number of web requests so that they do not flood the network.

4.3.1.2 Malicious Node Configuration

To maximize the amount of the anonymized traffic that an attacker can correlate, each ma-

licious router advertises a read and write bandwidth capability of 1.5 MiB/s and a high uptime.

Furthermore, each malicious node is rate limited to a mere 20 KiB/s for both data and control

packets to make the node a low resource attacker. In terms of the total network bandwidth in each

deployment, the addition of malicious nodes contribute a negligible amount of additional band-

width. In the 2/42 and 3/63 experiments, the malicious nodes comprise 0.38% of each network’s

bandwidth while actually advertising approximately 22% of the total bandwidth. In the 4/44 and

6/66 experiments, malicious nodes make up 0.76% of the bandwidth while advertising about 36%

of the total network’s bandwidth.

In addition, each malicious node logs the necessary information for the path linking algorithm,

as described in Section 4.2.2. The malicious routers’ behavior is aimed at maximizing the probability

that it will be included on a circuit.

4.3.2 Measuring Bias in Router Selection

This attack is a direct consequence of Tor’s necessity to balance the traffic load over the

available bandwidth in the network, thereby introducing bias into the router selection process.

To express the degree of bias, or non-uniformity, in Tor’s router selection algorithms, we apply a



94

Table 4.2: The raw number of compromised circuits

Number of Circuits
Compromised Total

2/42 425 4,774

4/44 3,422 10,199

3/63 535 4,839

6/66 6,291 13,568

measure based on the classical entropy metric from Shannon’s information theory [198] to quantify

the bias in router selection. Entropy was originally applied to express the degree of certainty that

an attacker has regarding whether a particular user is the sender or receiver of a message through

the anonymizing network. We use entropy as a metric of bias over the router selection probability

distribution.

We apply normalized entropy from Diaz et al. [94] which is defined as follows:

Snorm = −

∑

u∈Ψ pu log2(pu)

log2 |Ψ|
(4.1)

where pu is the probability of router u ∈ Ψ being included on a circuit, Ψ is the set of all available

routers, and log2 |Ψ| is the ideal entropy which corresponds to a system in which all routers are cho-

sen uniformly at random. Normalizing the entropy metric relative to the ideal (or maximal) entropy

ensures that Snorm ∈ [0, 1]. We apply this metric in our subsequent analysis of router selection

bias. More details on information-theoretic anonymity metrics can be found in Chapter 2.4.2.

4.3.3 Experimental Results

In this section, we present the results of the experiments on our isolated Tor deployments.

To demonstrate the ability of the attack to successfully link paths through the Tor network, we

measured the percentage of the Tor circuits that our path linking algorithm (Section 4.2.2) can

correctly correlate.

Using the data logged by malicious routers, our path linking algorithm was able to link

a relatively high percentage of paths through Tor to the initiating client. In the 40 Tor router



95

Table 4.3: The number of predicted and actual circuits compromised in the 40 node PlanetLab
network

Experiments
2/42 4/44

Random Selection 0.12% 0.63%

Experimental 8.90% 33.55%

Improvement 75.65x 51.90x

deployment, we conducted experiments by adding two (2/42) and four (4/44) malicious nodes.

The malicious routers composed roughly 4.8% and 9.1% of each network, or 0.38% and 0.76% of

each network’s bandwidth. In the 2/42 experiment, the malicious nodes were able to compromise

approximately 9% of the 4,774 paths established through the network. We then performed the

4/44 experiment, and were able to correlate approximately 34% of the 10,199 paths through the

network. Thus, the attack is able to compromise the anonymity of over one-third of the circuit-

building requests transported through the experimental network.

These experiments are repeated for a network of 60 Tor routers by adding three (3/63) and

six (6/66) malicious nodes. The malicious routers composed about 4.8% and 9.1% of each network,

or 0.38% and 0.76% of each network’s bandwidth. With only three (3/63) malicious routers, the

attack compromises about 11% of the 4,839 paths and in an experiment with six (6/66) malicious

Tor routers, the attack compromised over 46% of the 13,568 paths. The results as percentages of

compromised paths are given in Tables 4.3 and 4.4. The raw number of compromised circuits in

each experiment is given in Table 4.2.

In addition to the correctly correlated paths, there were only 12 incorrectly correlated paths

over all the experiments (one false positive in the 3/63 experiment, three in the 4/44 experiment,

and eight in the 6/66 experiments). The negligible number of false positives shows that our path

linking algorithm is highly accurate; however, the low false-positive rate may also be a result of the

relatively light and uniform traffic load that was generated.

In Tables 4.3 and 4.4, the experimental results are compared to an analytical expectation of



96

Table 4.4: The number of predicted and actual circuits compromised in the 60 node PlanetLab
network

Experiments
3/63 6/66

Random Selection 0.15% 0.70%

Experimental 11.06% 46.36%

Improvement 70.97x 65.30x

Table 4.5: The empirical normalized entropy Snorm for each experimental configuration

Experiment Configuration
0/40 2/42 4/44 0/60 3/63 6/66

Snorm 0.885 0.755 0.579 0.892 0.726 0.504

the percentage of paths that can be compromised by controlling the entry and exit nodes if routers

are selected uniformly at random. The analytical expectation is based on a simple combinatorial

model originally defined in Tor’s design document [103] as ( c
N )2, where c > 1 is the number of

malicious nodes and N is the network size.2 This analytical model does not take into account the

fact that a Tor router may be used only once per circuit. Thus, a more precise expectation can

be described by ( c
N )( c−1

N−1), c > 1. The predicted fraction of compromised circuits if routers were

chosen at random is given in Tables 4.3 and 4.4.

In summary, the distinction between the uniform selection expectations and the experimental

results is clear; the experiments demonstrate that Tor’s addition of load balancing has caused the

number of circuits compromised to increase by 52 and 76 times over uniformly random router

selection.

Analyzing router selection bias. We next analyze the extent of the router selection bias by

calculating the normalized entropy over the router selection process. We model router selection as

an empirically-derived probability distribution P . Let pi be the observed probability of the i-th

router being chosen for a circuit in our experiments, subject to
∑

pi∈P

pi = 1.

2 At its inception, Tor did not provide load balancing, i.e., routers were selected uniformly at random.



97

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Router index

R
ou

te
r 

se
le

ct
io

n 
pr

ob
ab

ili
ty

(a) 0/40

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

Router index

R
ou

te
r 

se
le

ct
io

n 
pr

ob
ab

ili
ty

(b) 2/42

0 10 20 30 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Router index

R
ou

te
r 

se
le

ct
io

n 
pr

ob
ab

ili
ty

(c) 4/44

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

Router index

R
ou

te
r 

se
le

ct
io

n 
pr

ob
ab

ili
ty

(d) 0/60

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Router index

R
ou

te
r 

se
le

ct
io

n 
pr

ob
ab

ili
ty

(e) 3/63

0 10 20 30 40 50 60

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Router index

R
ou

te
r 

se
le

ct
io

n 
pr

ob
ab

ili
ty

(f) 6/66

Figure 4.3: Empirical router selection probabilities for all routers in each experimental network
(malicious nodes are shown in red)



98

Table 4.5 shows the normalized entropy for each experimental configuration. When no ma-

licious nodes are present, routing bias is minimized: In the 40 node deployment, the normalized

entropy is 0.885 and for the 60 node deployment, the entropy is 0.892. These values are less than

one, which shows that the router selection is not uniformly random. This is consistent with Tor’s

by-design tendency to choose routers with a probability that is proportional to their bandwidth

claims. As malicious nodes are added to the networks, the normalized entropy decreases to 0.579

in the 40 node network with four malicious routers and 0.504 in the 60 node network with six ma-

licious routers. This measurement demonstrates that the insertion of malicious nodes introduces

additional bias in the router selection process. This is a surprising result, since the routing bias

should be independent of configuration of the nodes in the network. However, since the attack

attempts to maximize the number of circuits compromised by selectively disrupting circuits for

which the adversary’s nodes do not control both of the circuit’s endpoints, this causes circuits to

be rebuild until the adversary’s nodes do control the endpoints. As a consequence, the malicious

nodes are chosen far more frequently than they should be chosen without the selective disruption

behavior.

Figure 4.3(a)-(e) shows the empirically derived router selection probability density functions

(PDFs) for each of the experimental deployments. All experiments show a clear bias toward par-

ticular routers. However, in the networks with malicious routers (Figures 4.3(b)(c)(e)(f)), the

probability of selecting a malicious router is significantly higher than the probability of selecting a

non-malicious router. Across these experiments, the probability of choosing a malicious router is

at least twice the probability of selection a non-malicious router. In fact, the 6/66 experimental

configuration shows the most extreme bias in router selection. Not surprisingly, this configuration

yielded the lowest normalized entropy (0.504) and the highest fraction of compromised circuits

(46.46%).

Evaluating the realism of the experiments. In order to argue that the results obtained

through our experiments are directly applicable to the larger and more complex real Tor network,

it is necessary to show that the dynamics of the experimental deployments are characteristic of



99

0 10 20 30 40 50 60

0.
00

0.
04

0.
08

0.
12

Routers ranked by popularity

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n 40 node network
60 node network
Real network

Figure 4.4: Router selection probability distributions for the non-adversarial 40 node, 60 node, and
real Tor networks

the real Tor network. In particular, we would like to show that the router selection probability

distribution on the smaller experimental networks is similar to the router selection probability

distribution on the real Tor network.

In Chapter 3, we present observations and measurements obtained by monitoring a Tor

router on the real Tor network. Of particular interest here is the router selection probability

distribution based on observations of the frequency with which other routers appear on circuits

adjacent to our router (see Figure 3.3). Using this information, we can construct a router selection

probability distribution for the real Tor network. Figure 4.4 shows the empirical router selection

probabilities measured in the non-adversarial 40 and 60 node networks. For comparison, the router

selection probability distribution observed on the real Tor network is plotted. This graph shows

that the smaller experimental networks have a greater bias toward the highest bandwidth routers

in comparison to the real Tor network. The observed selection distribution from the real network

shows a slower, more gradual decline in selection probabilities. This is simply a result of the

necessity to scale down the experiments, due to the node constraints on PlanetLab. However, we



100

believe that our expectation of the attack’s success is a best estimate of the attack’s performance

on a larger network.

Scaling the attack to the real Tor network. To better understand the scaling properties of the

attack, we present an analysis of the expected number of malicious nodes needed to achieve results

similar to our experiments on the real network. The 2/42 network configuration compromised

almost 9% of all circuits with about 0.32 probability of choosing a malicious router for a circuit.

The 4/44 network achieved nearly 34% compromise with a 0.54 probability of choosing a malicious

router. The 3/63 network exhibited about 11% compromise with a 0.32 probability of choosing a

malicious router. Finally, the 6/66 network achieved a 46% compromise rate with a 0.60 probability

of choosing a malicious router.

By extrapolation, we can estimate the number of malicious nodes that would be necessary to

achieve similar attack performance on the real network consisting of roughly 1,400 active routers (as

of October 2009). The probability of malicious nodes appearing on a circuit given a total number

of malicious nodes c can be estimated by evaluating the definite integral of the router selection

probability distribution over a fixed interval. The calculation is as follows:

Pagg = argmin
c

∫ c

0
fP (x) dx, such that Pagg ≥ X (4.2)

where fP (x) is the empirical router selection probability density function and c > 0 is the number

of highest performing nodes satisfying the constraint Pagg ≥ X, where 0 ≤ X ≤ 1 is the target

aggregate probability of inclusion on a circuit.

From the data presented in Chapter 3, to obtain a Pagg = 0.32 probability of being on a

circuit on the real network, it is necessary to control only the 15 highest performing routers. This

probability corresponds to about 10% circuit compromise rate from our experiments. 15/1400

routers is roughly the top 1% of the network. Similarly, to obtain Pagg = 0.55 probability of

appearing on a circuit, it is necessary to control the top 45/1400 routers, or the top 3% of the

network. The scaling properties show a super-linear resource requirement in comparison to our



101

smaller experiments. This is because the router selection probability distribution for the real Tor

network is, in fact, less skewed than the distribution for our experiments.

Another, perhaps more meaningful, way to estimate the adversary’s resource requirement and

expectation of attack success is in terms of bandwidth. An adversary contributing between 0.38%

and 0.78% of the network’s aggregate bandwidth is able to compromise up to 46% of the circuits

for new Tor proxies. Suppose that the Tor network has a bandwidth distribution as observed on

the real network in August 2006 (see Table 4.1) with 104 MiB/s of total available bandwidth. If

an adversary contributes an upper bound of an additional 1% of bandwidth — only 1.04 MiB/s —

then the attack should compromise a similar fraction of circuits as in our experiments.

4.3.4 Attack Discussion

It is worth asking why the earlier analytical model based upon uniform router selection that

predicted a strong resistance to this type of attack does not match our experimental results. Besides

enabling malicious nodes to lie about their resources, the primary issue is that the analytical model

assumes resource homogeneity across the set of Tor nodes, when in fact the real Tor network has

a heterogeneous resource distribution (see Table 4.1). As a result, routers are not chosen with an

equal probability; those with higher bandwidth claims are chosen more frequently. Also, our attack

used selective path disruption to cause circuits to fail, which is not considered in the analytical

model.

Furthermore, since routers have finite resources, they must reject new connections once their

resources are consumed. To make matters worse, most of the available bandwidth from low resource

nodes may be exhausted by protocol control overhead, which decreases the effective size of the

network while increasing the probability of a malicious node being selected. This means that if the

Tor network becomes heavily congested, it would magnify the effectiveness of our attack.



102

4.4 Effects of Exit Bandwidth Distribution

The experiments from PlanetLab show that within a realistic network setting, Tor is vulnera-

ble to end-to-end traffic correlation attacks by an adversary who falsely advertises high bandwidth

and uptime values. While these experiments offer value in their realism (i.e., they run real Tor code

on an overlay testbed with real network conditions), there are several interesting aspects to the

attack that we simply cannot evaluate due to the amount of time necessary to construct and deploy

real, live experiments on PlanetLab. The PlanetLab experiments made simplifying assumptions

about the distribution of traffic on the network – we assumed only HTTP with small and large

files to simulate interactive traffic and bulk file transfers. However, from the data presented in

Chapter 3, we found that protocols other than HTTP are common in Tor also. Thus, we wish to

determine if all protocols exhibit the same vulnerability to this attack, or if some are more robust

while others are at higher risk.

In this section, we wish to answer the following lines of questions regarding the attack: How

does the distribution of traffic on Tor effect the attack’s performance? Are certain protocols more

robust to attack? Also, are certain protocols more vulnerable?

4.4.1 Experimental Setup

We evaluate how vulnerability to end-to-end circuit compromise varies between applications

by simulating Tor’s router selection algorithm as described in Chapter 2.3.3.3. We obtained a

snapshot of the active routers from Tor’s trusted directory servers on May 31, 2009. This provides

information such as each router’s bandwidth claim, exit policy, entry guard status, and uptime.

Using this data in our path selection simulation ensures that our results are indicative of what a

client would experience while participating in the real Tor network. This snapshot consists of 1,444

total routers with 403.3 MiB/s of total bandwidth marked as active and valid by the directory

servers. Of these routers, 770 routers with 326.9 MiB/s of total bandwidth are marked as stable.



103

The path selection simulator generates 10,000 circuits for each of the following protocols (and

default port numbers): FTP (21), SSH (22), Telnet (23), SMTP (25), HTTP (80), POP3 (110),

HTTPS (443), Kazaa P2P (1214), BitTorrent tracker (6969), Gnutella P2P (6346), and eDonkey

P2P (4661). This list represents a diverse set of popular applications. The path selection simulator

ensures that an entry guard is chosen for the first router of the circuit. Also, an exit router is

chosen that allows connections to the default port for the application being transported. Each

malicious router advertises an exit policy that allows the client’s application to exit. Finally, the

malicious routers are passive; they do not selectively disrupt circuits for which the endpoints are

not compromised.

4.4.2 Experimental Results

For all applications considered, the path compromise rate increases with additional malicious

routers. Figure 4.5 shows that the compromise rates for web browsing (HTTP), outgoing e-mail

(SMTP), and peer-to-peer file sharing with BitTorrent vary directly with the increase in malicious

bandwidth. Interestingly, the compromise rate is higher and increases faster for certain applications.

For example, an adversary with 60 MiB/s of malicious bandwidth can compromise 7.0% of all

circuits that transport HTTP traffic. However, this same adversary can compromise between 18.5–

21.8% of all circuits transporting SMTP or BitTorrent traffic. The complete results are given in

Table A.1 in Appendix A. The protocols that exhibit a significantly higher path compromise rate

are marked with a † in the table. For each application, the compromise rate shows diminishing

returns as the adversary has more than 760 MiB/s of bandwidth.

We identify two factors that explain this difference in path compromise performance: (1) exit

bandwidth is not uniformly distributed among all application-layer protocols, and (2) long-lived

circuits require stable routers, which reduces the number of candidate routers when choosing a

path.

Exit bandwidth is not uniformly distributed. Since Tor allows router operators to specify

exit policies, operators may choose to block certain ports to curtail complaints of abuse that would



104

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Amount of malicious bandwidth (MiB/s)

F
ra

ct
io

n 
of

 c
irc

ui
ts

 c
om

pr
om

is
ed

HTTP
SMTP
BitTorrent

Figure 4.5: Fraction of circuits compromised for web browsing, outgoing e-mail, and peer-to-peer
file sharing traffic

be directed at the Tor router. For example, outgoing e-mail (SMTP) ports may be blocked to

prevent spam and popular peer-to-peer file sharing ports may be blocked to eliminate DMCA take-

down notices that are often distributed in response to file sharing of copyright-protected content.

In an attempt to protect Tor router operators, Tor’s recommended (default) exit policy blocks the

ports commonly associated with SMTP and peer-to-peer file sharing protocols.

Table 4.6 shows the distribution of exit bandwidth for web browsing, outgoing e-mail, and

BitTorrent (exit bandwidth for all applications is given in Table A.2). BitTorrent and SMTP

have the fewest routers and least amount of exit bandwidth among all applications considered.



105

Table 4.6: Tor’s distribution of exit bandwidth for web browsing, outgoing e-mail, and peer-to-peer
file sharing

SMTP HTTP BitTorrent

Number of routers 13 625 23

Exit bandwidth (in MiB/s) 1.4 116.9 9.1

Since routers are selected in proportion to their bandwidth claims, the malicious routers constitute

a significant fraction of the available exit bandwidth for these applications. Consequently, the

malicious exit routers appear frequently at the exit position, increasing the probability that the

circuit will be compromised. Even if the adversary only controls the exit router, they may be able

to observe unencrypted traffic leaving the Tor network. For HTTP traffic, an adversary with six

routers appears as the exit 33.6% of the time and an adversary with 16 routers (160 MiB/s) controls

the exit 56.5% of the time. For FTP, an adversary with six routers (60 MiB/s) controls the exit

router 46.7% of the time and an adversary with 16 routers (160MiB/s) controls the exit 70.7% of

the time. This is significant because an attacker can observe identifying information and even login

credentials in plaintext leaving their exit router.

It may be tempting to conclude that the additional path compromise threat exhibited by

SMTP and peer-to-peer file sharing protocols is not a significant concern because these protocols

are not popular with Tor in practice. However, in Chapter 3 we found that BitTorrent is the

most popular application after HTTP and HTTPS in terms of number of connections. Thus, an

adversary can expect to compromise a significant number of BitTorrent tracker circuits by deploying

only 6-16 (60-160 MiB/s) routers.

Long-lived circuits require stable routers. Recall that persistent applications with long-lived

sessions build circuits only with stable routers. In these experiments, only 770/1,444 routers are

marked as stable by the directory servers. FTP and SSH are regarded as long-lived and there are

only 184 and 197 routers, respectively, that are suitable to exit these protocols (with 65.4 MiB/s

and 73.7 MiB/s, respectively). Consequently in Figure 4.6, FTP and SSH exhibit a higher path

compromise rate than short-lived applications such as HTTP, POP3, and HTTPS. However, the



106

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Amount of malicious bandwidth (MiB/s)

F
ra

ct
io

n 
of

 c
irc

ui
ts

 c
om

pr
om

is
ed

FTP
SSH

Figure 4.6: Fraction of circuits compromised for FTP and SSH traffic

path compromise is not as high as SMTP or the peer-to-peer file sharing protocols because the

long-lived circuits have significantly more available exit bandwidth.

Discussion. These results indicate that certain applications may be more vulnerable to endpoint

compromise than others, due to the non-uniform distribution of exit bandwidth among applications.

We regard the results presented here as a lower bound on the attack’s attainable performance,

since an active adversary could selectively disrupt circuits that are not compromised to increase

the chances of compromising future circuits. We consider the effects of selective disruption, in

addition to the potential role that entry guards play in mitigating these attacks, in Chapter 5.



107

4.4.3 Mitigating Circuit Compromise for Limited Bandwidth Protocols

In this section we have shown that some applications are inherently more vulnerable to path

compromise than others due to the non-uniform distribution of Tor’s exit bandwidth. One solution

to mitigate the threat is to reduce or eliminate the bias toward high bandwidth routers for these

protocols. Using the Snader-Borisov router selection algorithm described in Chapter 2.5.5.1, Tor

clients can choose routers with less bias toward high bandwidth routers than Tor’s current router

selection algorithm offers. For maximum protection, the clients could choose routers uniformly at

random.

However, since the number of routers available to exit the peer-to-peer and SMTP traffic is

so low, even uniform router selection may not significantly decrease the adversary’s ability com-

promise the exit position. However, it does significantly reduce the adversary’s ability to control

both endpoints. Suppose there are c > 1 malicious routers, N total routers, and E available exit

routers for a particular port. Uniform router selection gives the adversary an expected path com-

promise rate determined by ( c−1
N−1)( c

E ). For BitTorrent, an adversary with six malicious routers

can compromise only 0.09% of circuits, which is a significant improvement over the 18.5% circuit

compromise rate observed using Tor’s default router selection algorithm. However, this increase in

security comes at a performance cost.

4.5 Attack Extensions

Having presented the basic ideas behind our attacks, we consider further attack variants

and improvements, such as attacking existing Tor clients instead of only new Tor clients, router

advertisement flooding, and watermarking attacks.

Compromising existing clients. Clients that exist within the network before the malicious

nodes join will have already chosen a set of entry guard nodes. We present two methods to

compromise the anonymity of existing clients. First, if an attacker can observe the client (i.e., by

sniffing the client’s 802.11 wireless link), he/she can easily deduce the entry guards used by a



108

particular client. The adversary can then make those existing entry guards unreachable or perform

a denial-of-service (DoS) attack on these entry guards, making these nodes unusable. This forces

the client to select a new list of entry guards, potentially selecting malicious Tor routers. Another

method to attack clients that have a preexisting list of entry guard nodes would be to DoS a few

key stable nodes that serve as entry guards for a large number of clients. This would cause existing

clients to replace unusable entry guards with at least one new and potentially malicious entry guard

node.

Improving performance under the resource reduced attack. One concern with the

resource-reduced attack that we describe in Section 6.1.2 is that, by itself, the attack can seri-

ously degrade the performance of new Tor clients. The degradation in performance could then

call attention to the malicious Tor nodes. Naturally, the basic attack in Section 6.1.2 would be

completely indistinguishable from a performance perspective since the basic adversary does not lie

about its resources.

The first question to ask is whether poor performance under an adversarial situation is a

sufficient protection mechanism. We believe that the answer to this question is “no” — it is a

poor design choice for users of a system to have to detect an attack based on poor performance. A

better approach is to have an automated mechanism in place to detect and prevent our low-resource

attack. Furthermore, a resource-reduced adversary could still learn a significant amount of private

information about Tor clients between the time when the adversary initiates the attack and time

when the attack is discovered.

The second, more technical question is to ask what a resource-reduced adversary might do

to improve the perceived performance of Tor clients. One possible improvement arises when the

attacker wishes to target a particular client. In such a situation, the adversary could overtly deny

service to anyone but the target client. Specifically, an adversary’s Tor nodes could deny (or pas-

sively ignore) all circuit-initiation requests except for those requests that the target client initiates.

This behavior would cause the non-target clients to simply exclude the adversary’s nodes from

their lists of preferred entry guards, and would also prevent non-target clients from constructing



109

circuits with the adversary’s nodes as the middle or exit routers. Since circuit-formation failures

are common in Tor [174], we suspect that this attack would largely go unnoticed.

Improving performance. It is possible to target a specific client to monitor, thereby improving

the throughput performance of the malicious nodes that exist on its circuit. This would cause the

victim client to keep sending traffic along the compromised circuit while the malicious nodes can

determine the sender, receiver, and perhaps the contents (if the payload is not encrypted at the

application layer) of the communication session. Forcing other clients to use non-adversarial Tor

servers would also help keep from drawing attention to the adversarial nodes.

Displacing honest entry guards. Recall that Tor uses special entry guard nodes to protect

the entry of a circuit from selective disruption. In order to be marked by the directory servers as

a possible entry guard, a Tor router must advertise an uptime and bandwidth greater than the

median advertisements (in Tor version 0.1.1.23). Another attack, which is a variant of the Sybil

attack [108], can be conducted by flooding the network with enough malicious routers advertising

high uptime and bandwidth. On our isolated Tor network, we successfully registered 20 routers

all on a single IP address and different TCP port numbers.3 Flooding the network with false

router advertisements allows a non-global adversary to effectively have a “global” impact on Tor’s

routing structure. Namely, this attack increases the median threshold for choosing entry guards,

thereby, preventing benign nodes from being marked as potential entry guards. This attack could

help guarantee that only malicious nodes can be entry guards.

Compromising only the entry guard. As another extension to our attack, suppose that an

adversary is less interested in breaking anonymity in general, but is instead particularly interested

in correlating Tor client requests to a specific target website (such as a website containing controlled

or controversial content). Suppose further that the adversary has the ability to monitor the target

website’s network connection; here the adversary might have established the target website to lure

potential clients, or might have obtained legal permission to monitor this link. Under this scenario,

3 The trusted directory servers currently (as of Tor version 0.1.1.23) have no limits as to the number of routers
that can be hosted on a single IP address. In theory, an attacker can register up to 216 − 1 Tor routers to the same
IP address.



110

an adversary only needs to compromise an entry node in order to correlate client requests to this

target website. The critical idea is for the entry router to watermark a client’s packets using a

time-based watermarking technique, such as the technique used in [228]. The adversary’s malicious

entry routers could embed a unique watermark for each client-middle router pair. A potential

complication might arise, however, if the client is using Tor to conceal simultaneous connections to

multiple websites, and if the circuits for two of those connections have the same middle router.

4.6 Traffic Analysis on the Live Tor Network

In order to understand whether our low resource traffic analysis techniques are effective in

de-anonymizing clients on the live Tor network, we deploy our own routers and clients on the live

network and launch our attacks. Of most interest, we wish to confirm that only circuit construction

messages are sufficient to link clients and destinations, even with a realistic traffic load.

Experimental setup. We deploy two Tor routers running version Tor 0.2.1.20. hosted on

a 100 Mb/s network link onto the live Tor network in February 2010. Each router has a distinct

configuration:

(1) One Tor router is configured as a non-exit and after roughly ten days of uninterrupted

operation, it obtained the Guard flag from the authoritative directory servers.

(2) A second Tor router is configured with the default exit policy.4

During their operation, each router sustained roughly 24 Mb/s of traffic.

To evaluate the expected success of traffic analysis tasks, we operate our own Tor clients and

attempt to link their circuits to their destinations. Upon building a circuit, each client downloads

www.google.com, tears down the circuit, and repeats this procedure. To preserve users’ privacy,

4 Ports often associated with outgoing e-mail, peer-to-peer file sharing applications, and high security risk services
are blocked.



111

we ignore traffic at the entry guard that is not produced by one of our clients.5 Note that we do

not retain any linkable data nor do we attempt to de-anonymize any other clients but our own.

Traffic analysis methodology. We apply our traffic analysis technique described in Chapter 4.2

in which circuits are linked by their circuit building messages before the clients send any data cells.

This approach leverages the fact that Tor’s circuit establishment procedure sends a fixed number

of circuit building messages in an identifiable pattern.

Results. On the live Tor network, our clients build a total of 1 696 circuits that always use our

entry guard. Of these 821 circuits use our exit router and 875 circuits use a different exit router.

This setup allows us to count the number of false positives that occur during circuit linking. The

middle routers are chosen according to Tor’s default router selection algorithm. Using our low

resource circuit linking algorithm, we correlate clients and destinations with 97% accuracy, 0.6%

false negatives (6 false negatives in total), and 6% false positives (52 false positives in total). We

regard these results as a lower bound on attainable traffic analysis success, as it should be possible

to increase the accuracy by also using data cells to link circuits. Also, we observe that circuits that

use a popular (i.e., high bandwidth) middle router tend to be more prone to false positives. Thus,

an attacker who sees a positive result with a low bandwidth middle router can be more confident

in the result. To conclude, these results re-enforce the danger that these attacks pose to real Tor

users.

4.7 Defenses

Non-global, but high-resource (uptime, bandwidth), adversaries seem to pose a fundamental

security challenge to any high-performance, multi-hop privacy enhancing system that attempts to

efficiently balance its traffic load, and we welcome future work directed toward addressing this

challenge. We consider, however, methods for detecting non-global low-resource adversaries.

5 This experiment was deemed not to involve human subjects by the University of Colorado’s Institutional Review
Board. See Certificate of Determination: Not Human Subject Research. PI: Kevin Bauer, Protocol: 1209.44, Protocol
Title: “Research Study to Better Understand the Tor Anonymizing Network,” Date: 01/14/2010.



112

In order to mitigate the negative effects of false routing information in the network, it is

necessary to devise a methodology for verifying a router’s uptime and bandwidth claims. Here, we

provide a brief overview of some potential solutions and alternative routing schemes.

4.7.1 Resource Verification

Verifying uptime. A server’s uptime could be checked by periodically sending a small heartbeat

message from a directory server. The additional load on the directory server would be minimal and

it could effectively keep track of how long each server has been available.

Centralized bandwidth verification. Since Tor relies upon a centralized routing infrastruc-

ture, it is intuitive to suggest that the trusted centralized directory servers, in addition to providing

routing advertisements on behalf of Tor routers, also periodically verify the incoming bandwidth

advertisements that are received from Tor routers. The directory server could measure a router’s

bandwidth before publishing the routing advertisement and correct the value if it found that the

router does not have its claimed bandwidth. The difficulty with this approach is that it cannot

detect selectively malicious nodes. Therefore, it is necessary for the bandwidth verification mecha-

nism to continuously monitor each node’s bandwidth. Due to the significant traffic load that would

be placed upon the few centralized directory servers, this centralized bandwidth auditing approach

would create a significant performance bottleneck.

Distributed bandwidth verification. In order to detect false bandwidth advertisements, it may

be tempting to augment the routing protocol to allow Tor routers to proactively monitor each other.

Anonymous auditing [209], where nodes anonymously attempt to verify other nodes’ connectivity

in order to detect collusion, has been proposed as a defense against routing attacks in structured

overlays. A similar technique could be designed to identify false resource advertisements. However,

this technique is also insufficient at detecting selectively malicious nodes. In addition, this approach

introduces additional load in the network and could result in significant performance degradation.

Borisov and Snader propose that routers opportunistically probe other routers’ bandwidth rather

than rely on self-reported bandwidth claims [211].



113

Distributed reputation system. Reputation systems have been proposed for anonymity sys-

tems within the context of reliable MIX cascades [106]. One could envision a reputation system

similar to TorFlow [176], that actively verifies the directory server reported bandwidth claims for

each Tor router and dynamically updates each bandwidth claim. Selectively malicious nodes are

still difficult to detect with such a reputation system. Snader and Borisov propose EigenSpeed [212],

a system that allows routers to opportunistically estimate other routers’ bandwidth capacities in

a distributed fashion and share this reputation information in a manner similar to the EigenTrust

reputation algorithm [137].

4.7.2 Mitigating Sybil Attacks

In order for any reputation system to be effective, it is necessary to address the Sybil at-

tack [108]. Recall that the directory servers place no constraints upon the number of Tor routers

that may exist at a single IP address (as of Tor version 0.1.1.23). This can be exploited to ef-

fectively replace all entry guards with malicious nodes (see Section 4.5). To help mitigate this

kind of attack, the directory servers should limit the number of routers introduced at any single

IP address. Furthermore, enforcing location diversity increases the resources required to perform

this attack [114]. Following the initial disclosure our results in a technical report [60], Tor adopted

countermeasures that (1) allow only three Tor routers to be hosted at any single IP address and

(2) dictate that circuits may not include more than one router from a particular class B address

space [57].

4.7.3 Alternative Routing Strategies

Since Tor’s desire to efficiently balance its traffic over the available resources in the net-

work has left it vulnerable to traffic correlation attacks, it is prudent to consider alternate routing

strategies that may provide adequate load balancing while preserving the network’s anonymity.

Proximity awareness. Secure routing based on proximity awareness has been proposed in

peer-to-peer networks [72]. In such a routing strategy, the next hop is computed by minimizing a



114

distance metric, such as round trip time (RTT). Proximity-based routing may over-optimize and

cause circuits to be built deterministically. Also since paths are multi-hop and source routed,

the client would need distance metrics for the first hop to the second hop and the second hop to

the third hop. In addition, these metrics must be verified. Finally, proximity routing seems to

be incompatible with enforcing location diversity. Sherr et al. proposed that clients use network

coordinate systems to build circuits based on link characteristics such as latency, jitter, loss rate,

and autonomous system traversals rather than node characteristics such as bandwidth [200]. Such

a router selection mechanism could be more challenging for an adversary to influence.

Loose routing. Loose routing in anonymity systems has been proposed in Crowds [189], where

path lengths are non-deterministic since each hop chooses to forward to another intermediate hop

probabilistically. This strategy places a great amount of trust on the entry nodes. A malicious

entry node could simply route all traffic immediately to the exit server. In fact, loose source routing

was also proposed in the original onion routing paper [122].

Local reputation-based routing. Another scheme could be to initially choose paths with a

uniform probability and over time, maintain local reputation information for all nodes used in a

path. At the start, the performance would be expectedly poor, but over time, as clients begin to

choose high quality Tor routers, they can begin to optimize for performance. This approach is not

vulnerable to false advertisements.

4.7.4 Mitigating Selective Disruption DoS Attacks

Danner et al. propose an algorithm to detect selective disruption DoS attacks in Tor based

on probing circuits [91]. This approach could be employed to identify malicious routers who use

DoS attacks to increase their ability to compromise paths.

4.8 Broader Impact

Our primary objective in this chapter is to empirically evaluate how contemporary low latency

anonymity networks such as Tor are vulnerable to de-anonymization attacks via end-to-end traffic



115

correlation. While is it well-known that low latency anonymity networks are vulnerable to traffic

correlation attacks if the endpoints are watched or controlled by an adversary or a pair of colluding

parties [197, 206], we show that load balancing optimizations and an insecure entry guard design

make such attacks practical for adversaries with few nodes and little bandwidth. Since the initial

disclosure of the vulnerabilities and exploits presented in this chapter, there has been a significant

amount of effort aimed at improving Tor’s resilience to such attacks.

To secure entry guards against our honest entry guard displacement attack, we suggested

that Tor’s directory servers limit the believable uptime values that are reported [58]. Later, uptime

was replaced by mean-time-between-failures, a more traditional reliability metric, for determining

entry guard assignment [157]. In addition, Tor has adopted a router bandwidth monitoring strategy

using periodic active measurements and subsequent bandwidth re-weighing [176]. Lastly, to reduce

the number of routers that are controlled by a single (potentially malicious entity), Tor adopted

our recommendations that the number of routers per IP address and the number of routers per /16

network be limited [57].

Subsequent work has sought to further improve Tor’s resilience to our attacks. To mitigate

the low resource attacker’s ability to inflate their bandwidth claims, Snader and Borisov proposed

a tunable router selection strategy, where users who want greater protection against these attacks

should choose routers more uniformly at random and users who want the performance benefits of

bandwidth-weighted routing should skew their selections toward higher bandwidth routers [211,

213]. Also, to reduce an adversary’s ability to influence the router selection process, alternate

selection metrics have been proposed that rely on link-based attributes (such as latency, jitter, loss

rate, or AS-traversals) instead of bandwidth-weighting [199–202]. Also, progress has been made

toward detecting the selective disruption attacks that we describe [91]. While collectively this body

of work has improved Tor’s resilience to the low resource variant of the attacks, Tor still remains

vulnerable to attack by an adversary who controls high bandwidth nodes distributed among several

networks.



116

4.9 Summary

We present a low-resource end-to-end traffic analysis attack against Tor that can compromise

anonymity before any payload data is sent. The attack stems from Tor’s tendency to favor routers

that claim to be high-resource with high-uptime in its routing process in an attempt to optimally

balance the traffic load. However, since there is no mechanism to verify resource claims, we experi-

mentally show that it is possible for even a low-resource adversary to compromise an unfairly large

fraction of the circuit-building requests through the network.

In addition, we illustrate the feasibility of displacing all entry guard nodes with malicious

nodes, thereby having a global effect upon the Tor’s routing mechanism. Attack extensions are

presented that further reduce the cost of launching this attack.

To mitigate the low-resource variety of these attacks, we propose solutions aimed at veri-

fying all bandwidth and uptime claims. However, these attacks highlight the inherent challenge

in designing an anonymity-preserving reputation system that is robust to a selectively malicious

adversary.

Since this chapter shows how anonymity and efficient bandwidth use appear to be diametri-

cally opposed, our hope is that these attacks motivate further research in the area of designing and

implementing optimal routing algorithms in Tor-like overlay networks that deliver a high level of

performance without compromising the security of any aspect of the system.



Chapter 5

Improving Performance (and Security) with Two-Hop Paths

Decisions made in the design of low-latency anonymizing networks frequently involve achiev-

ing a proper balance between security and performance. For example, Tor currently does not

employ padding or add intentional delays in an attempt to provide performance sufficient to sup-

port interactive applications such as web browsing. However, as we experimentally demonstrated in

Chapter 4, this decision has made Tor vulnerable to end-to-end traffic correlation attacks [148,206].

Another key design decision is path length. Tor employs a decentralized architecture of

precisely three routers in order to mitigate any single router’s ability to link a source and its

respective destination. While three-hop paths may offer security benefits relative to shorter paths,

they have a performance cost in terms of high latencies and slow downloads, which negatively

impacts Tor’s usability.

Through critical analysis, simulation fueled by data obtained from the live Tor network, and

experiments conducted on the live Tor network, we evaluate the advantages and disadvantages of

two-hop and three-hop paths from security and performance perspectives. In addition, we identify

and discuss a variety of open issues related to different path length choices.

Path length and security. We first consider an adversary who employs selective disruption

tactics (as in [61, 67, 91, 223]) to force clients onto adversary-controlled circuits. Through simula-

tion of Tor’s router selection algorithms fueled by real router data obtained from Tor’s directory

servers, we show that three-hop paths are up to 7% more vulnerable to path compromise than

two-hop paths under the same attack. In addition, irrespective of path length, we show that entry



118

guards, originally developed to mitigate the threat of the predecessor attack [236], offer significant

protection from end-to-end correlation attacks by increasing the resources necessary for an attacker

to compromise the first router on circuits.

However, one potential disadvantage of a two-hop design is that exit routers can trivially

learn clients’ entry guards (since they communicate directly). Next, we empirically demonstrate

that even with three-hop paths, malicious exit routers can still identify clients’ entry guards by

deploying malicious middle-only routers. For the current Tor network, our results indicate that

an adversary with only ten malicious exit routers and 50 middle-only routers can learn the entry

guards for nearly 80% of all circuits constructed. We lastly analyze entry guard usage data and

quantify the potential to identify clients through knowledge of their entry guards. To mitigate some

of the security risks associated with shorter paths, we propose path length blending and describe

a technique that makes two-hop and three-hop paths appear indistinguishable from a network

observer’s perspective.

Path length and performance. In addition to a security analysis of path length, we show

that shorter paths offer substantially better performance as perceived by end-users. We perform an

analysis of typical web browsing and show that most clients experience a 35% or better improvement

in download time with two-hop paths. Our findings indicate that users who wish to experience

improved performance while maintaining a reasonable degree of anonymity should switch to two-

hop paths.

5.1 Security Analysis

In this section, we first evaluate how an adversary’s ability to compromise circuits varies

between two-hop and three-hop paths. Next, we explore how two-hop paths reveal circuits’ entry

guards and discuss the potential for adaptive surveillance attacks. We also describe an attack where

an adversary with few exit routers and comparatively many middle-only routers can identify the

entry guards on a large fraction of circuits. Lastly, the amount of information about clients that is

revealed by entry guard knowledge is analyzed.



119

N
u

m
b

e
r

B
a

n
d

w
id

th

Number of Nodes

0 500 1000 1500

0 100 200 300 400

MiB/s

Middle Only
Exit
Exit/Guards
Guards

Figure 5.1: Observed router counts and bandwidth distribution used for simulations

5.1.1 Path Compromise

Prior work showed that selective disruption attacks can degrade anonymity in Tor-like net-

works [67]. However, it is unclear how path length effects an adversary’s ability to disrupt circuits.

To better understand this relationship, we conduct experiments through simulation of Tor’s router

selection algorithm (described in [101]).

Simulation setup. We adopt a simulation methodology similar to Murdoch and Watson [167]

in which an increasing number of malicious routers are injected into the network to compromise

circuits. We simulate 1 000 clients as follows. First, each client chooses precisely three entry guards

to use on all circuits. Next, each builds 100 circuits of both length two and three that are suitable

for transporting HTTP traffic.1 We run experiments in which a number of malicious routers

between 5 and 50 are added to the network. Each malicious router has 10 MiB/s of bandwidth,2

offers stability and performance to be an entry guard,3 advertises an exit policy that allows port

80 to exit, and is operated on a distinct /16 subnet from every other malicious router.

1 We simulate HTTP exit traffic (port 80) because prior work found it to be the most common type of traffic on the real
Tor network by connection [152,158].

2 Currently the largest believable bandwidth value.
3 Obtaining the Guard flag only requires that the router demonstrate stability for a relatively short period of time. We

anecdotally found that a new router on a high bandwidth link can obtain the Guard flag after running for roughly seven days.



120

To fuel the simulations, a typical snapshot of all routers was obtained from a directory server

on January 6, 2010. Summarized in Figure 5.1, this snapshot consists of 1 735 total routers marked

as Valid and Running. Note that the snapshot has sufficient entry guard and exit bandwidth such

that both entry guards and exit routers may by used for any position of the circuit, provided that

they have the appropriate flags.4

Results. We first characterize the effect of path length on an adversary’s ability to compromise

circuits through selective disruption tactics. Figure 5.2 shows the fraction of circuits that are

compromised as the number of malicious routers and amount of adversary-controlled bandwidth

increases. Note that for attackers that do not apply selective disruption, the circuit compromise rate

is the same regardless of whether three- or two-hop paths are used. For an adversary who employs

selective disruption, if the client has the misfortune of choosing three malicious entry guards, their

circuits are always compromised. Conversely, if a client chooses no malicious entry guards, their

circuits are never compromised.

For example, when there are 10 malicious routers and clients use three-hop paths, 38% of

clients choose no malicious guards, 47% choose one malicious guard, 13% choose two malicious

guards, and only 1% choose three malicious guards. Of the clients that choose one or two malicious

guards, their circuits are compromised 63% and 85% of the time, respectively. By design [172],

entry guards offer significant protection against circuit compromise, since clients that choose no

malicious entry guards are safe and the threat increases with the selection of additional malicious

entry guards.5

Across all malicious router configurations, the fraction of circuits compromised is up to 7%

higher for three hops relative to two-hop paths. With three-hop paths, when the client selects one

or two malicious guards, circuits are disrupted when they use a non-malicious guard and either

a malicious middle or exit (or both). However with two-hop paths, if the client does not use

4 In order to ensure that there is enough available entry guard and exit bandwidth, Tor’s router selection algorithm requires
that there is at least T/3 bandwidth available for both guards and exits (where T is the total bandwidth). If the entry guard
bandwidth is less than T/3, then entry guards may only be used for the guard position. Similarly, if the available exit bandwidth
is less than T/3, then exit routers may only be used for the exit position.

5 Note that if Tor didn’t use entry guards, the attack could succeed for any client.



121

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Amount of malicious bandwidth (MiB/s)

F
ra

ct
io

n 
of

 c
irc

ui
ts

 c
om

pr
om

is
ed

Length 3 with disruption
Length 2 with disruption
Length 3
Length 2

Figure 5.2: Fraction of HTTP circuits compromised

a malicious guard, only the exit position can disrupt non-compromised circuits. Because three-

hop paths have one extra position from which to disrupt circuits, they exhibit a slightly higher

compromise rate relative to two-hops.

5.1.2 Adaptive Surveillance

In addition to the threat posed by compromised routers, Tor is vulnerable to attacks where

a powerful ISP or government adversary can monitor a targeted circuit’s endpoints’ networks to

identify communication pairs. This attack is believed to be difficult because it relies on a circuit

having the misfortune of choosing an entry and exit router that reside within monitored networks.

Since Tor achieves network diversity in its route selection [111], this attack may require collusion

by many network operators.



122

However with two-hop paths, exit routers can directly observe the entry guards. If an exit

router learns an entry guard for a client of interest (identified perhaps by a distinguishing feature

in the exit traffic), they could adaptively demand logs from the entry guard’s network to reveal the

client.6

While two-hop paths enable adaptive surveillance attacks by leaking entry guards to the exit

router, adaptive surveillance is possible even with Tor’s current three-hop design. If an adversary

deploys malicious exit routers and malicious middle-only routers, they can collude to identify the

entry guards used for every circuit on which they are used for the middle and exit positions. Through

simulation, we next show that an adversary who controls few exit routers and comparatively many

malicious middle-only routers can identify the entry guard used for a large fraction of circuits.

Simulation setup. Experiments are conducted where an adversary injects ten exit routers

configured to exit HTTP (port 80) traffic to the Tor network described in Figure 5.1. The adversary

also injects middle-only routers. All malicious routers have 10 MiB/s of bandwidth and disrupt

circuits when they do not control both the middle and exit positions. We simulate 1 000 clients

who each build 100 circuits.

This attack strategy has a low cost for the adversary, since they do not need to demonstrate

router stability (as is necessary to obtain the guard flag). In addition, all malicious middle-only

nodes could be deployed on the same /16 network and all malicious exit routers could be deployed

on a second /16 network. Thus, the resources required to launch this attack are modest.

Results. For an attacker with ten exit routers and 50 middle-only routers, the adversary can

identify the entry guard for 79% of all circuits constructed. When the attacker deploys 75 middle-

only routers, they discover the client’s entry guard for 85% of all circuits. For these circuits, the

adversary could apply pressure and potentially coerce the entry guard (or its network operator)

into revealing the identity of the client.

Perhaps the most compelling argument in favor of three-hop paths for Tor is that the middle

6 Note that, while well-configured Tor relays do not maintain logs themselves, many ISPs maintain logs of connections and
traffic statistics as part of their standard operating procedures.



123

Table 5.1: Daily statistics for clients per entry guard and information estimates

Minimum Maximum Median 95% CI

No. of clients 680 164 000 8416 (24 104, 27 176)

Bits of information 8.20 0.29 4.57 (3.05, 2.88)

router hides the entry guards from exit routers. By using a middle router, an exit router typically

knows only information about the client that is leaked by their applications. However, if malicious

exits collude with middle routers who can observe the entire circuit, it becomes feasible for the exit

to learn a large fraction of the total client population’s entry guards.

To make matters worse, deploying a relatively large number of middle-only routers causes a

global change in Tor’s router selection process. In these experiments, when 50 middle-only routers

are introduced, the total guard bandwidth G and total exit bandwidth E no longer satisfies G ≥ T/3

and E ≥ T/3, respectively, where T is the total router bandwidth. In this network configuration,

exit routers may only be used for the exit position and entry guards may only be used for the

guard position. This enables the adversary to focus their few exit routers toward occupying the

exit position and maximize their ability to conduct adaptive surveillance.

5.1.3 Entry Guard Linkability

With two-hop paths, exit routers can trivially discover clients’ entry guards. It is also pos-

sible that clients’ entry guards may be uniquely identifying or place clients into dangerously small

anonymity sets. To understand how knowledge of clients’ entry guards may be identifying, we

analyze publicly available data on entry guard usage from the Tor Metrics Project [222]. From this

data set, eleven entry guards provide information about the number of clients that they observe

over 737 total days.7

We measure the amount of information that is revealed about a user by their entry guard

selections. Information is measured in bits according to I(X) = − log2 Pr(X = x), where Pr(X = x)

7 To preserve users’ privacy, this data is aggregated by country of origin, quantized by multiples of eight, and compiled
daily.



124

is the probability that a client uses guard x. The total number of unique Tor users per day is

currently estimated to be around 200 000 [151]. Thus, without any additional knowledge, 17.61

bits of information are necessary to uniquely identify a Tor user. Now suppose that a malicious

exit router knows one of a particular client’s chosen entry guards. On average, roughly 25 000

clients use the same entry guard, so this knowledge leaks only 2.96 bits of information about a

user’s identity. Even in the worst case when a client shares a guard with as few as 680 other clients,

only 8.20 bits are revealed. The full results are shown in Table 5.1.

However, if an attacker knows all three of a client’s entry guards, the client may be far more

identifiable.8 To gain intuition about this threat, we simulate 200 000 clients choosing their three

entry guards and measure the amount of information revealed through their three guard selections.9

We find that 85% of simulated clients are uniquely identifiable and over 99% of clients share their

guards with fewer than six other clients. In the best case, 26 clients share the same set of guards,

which still reveals 12.9 bits of information. Tor clients do, however, expire and rotate their entry

guard selections periodically, which may help to protect users from this type of profiling.

5.2 Performance Analysis

We next examine the performance implications of path length choices. Since the vast majority

of Tor traffic is interactive web browsing [152, 158], we investigate the performance benefits of a

two-hop design in terms of download times from a typical web browsing end-user’s perspective.

Measurement setup. We measure download times for Firefox clients that fetch the fifteen

most popular websites on the Internet10 using Tor 0.2.1.24 with Polipo 1.0.4. Experiments were

conducted over the course of six days from June 16–22, 2010 and measurements were collected as

follows.11 First, a three-hop circuit is built according to Tor’s default router selection algorithm

and a randomly chosen website from the fifteen is downloaded. Next, a two-hop circuit is built using

8 While it is usually difficult to link a client across multiple entry guards, if a client inadvertently identifies herself — perhaps
by logging-in to a website or using an application that does not support SSL/TLS — over time her full set of entry guards
could be leaked to a malicious exit router.

9 This experiment simplifies some details, such as the fact that older guards may be used by more clients than newer guards.
10 According to http://www.alexa.com. These websites vary in size between 14.4–619.8 KiB.
11 This setup takes into account variations in traffic load that may occur at certain times of day or certain days of the week.



125

the same entry guard and exit router and the client downloads the same website. This procedure

allows us to directly measure the performance cost incurred by adding the middle router. In total,

2 726 measurements with both two-hop and three-hop circuits are collected (5 452 combined).

baidu.co
m

ebay.c
om

face
book.c

om

google.cn

google.co
.in

google.co
m

live
.co

m

msn
.co

m

mysp
ace

.co
m
qq.co

m

twitte
r.c

om

wikip
edia.org

ya
hoo.co

.jp

ya
hoo.co

m

yo
utube.co

m

0
50

10
0

15
0

3 hops
2 hops

D
ow

nl
oa

d 
tim

e 
(s

)

Figure 5.3: Download time comparisons between two- and three-hop paths for 15 popular websites

Results. Figure 5.3 compares download times for clients who use two- and three-hop circuits. For

each website, the inter-quartile ranges show longer download times for three-hop circuits. Figure 5.4

shows CDFs of download times aggregated across all websites. Two-hop paths offer faster download

times relative to three-hop paths, by up to seven seconds at the median.

Figure 5.5 shows the performance impact of adding a middle router to each two-hop circuit.

This allows for a direct comparison between two-hop and three-hop circuits that use the same entry

guard and exit router. For 81% of circuits, a middle router adds additional delay beyond the delay

incurred by the entry guard and exit router.12 Additionally, half of all circuits experience at least

a 35% increase in download time and one-quarter of all circuits have more than twice the delay

12 We observe that 19% of 3-hop circuits performed no worse with a middle router than without it. This shows that there
exists some variability in Tor’s performance.



126

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Download time (s)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

3 hops
2 hops

Figure 5.4: Cumulative distribution of download time across all 15 websites

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Relative increase in download time (%)

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Figure 5.5: Percent increase in download time for three-hop circuits compared to two hops

with a middle router than without it. This shows that middle routers often contribute significantly

to circuits’ overall delays.



127

5.3 Blending Different Paths Lengths

One potential obstacle to allowing users to choose their own circuit length is that if an ad-

versary can discover a client’s circuit length, then they may be able to craft attacks specifically

tailored to the path length and more effectively attack Tor’s source-destination unlinkability. Fur-

thermore, leaking information about a client’s desired path length may also reveal whether the

client is concerned more about performance or security, and clients who are known to desire secu-

rity over performance may draw additional attention from adversaries simply because they appear

to have something to hide. Thus, in order for different path lengths to safely co-exist, it is necessary

to mitigate the amount of information that is leaked regarding each client’s path length choice.

In this section, we first demonstrate how an adversary observing the network traffic between a

Tor client and one of their chosen entry guards can infer the length of the client’s circuit by analyzing

the circuit construction traffic. Next, we offer techniques to obfuscate these traffic signatures, and

thereby blend different path lengths together.

5.3.1 Circuit Length Discovery through Traffic Analysis

Tor’s telescoping circuit construction protocol uses a deterministic sequence of messages to

establish shared keys between the client and each router on the circuit as depicted in Figure 5.6(a).

For an adversary who can observe the network traffic between a client and their entry guards, the

construction of a standard three-hop circuit requires precisely three request-reply message pairs

in increasing chronological order. These messages are trivial to identify, because they are always

sent before the client sends or receives any data. Upon observing this unique traffic signature, the

adversary can conclude that the client is using three routers.

Similarly, if the adversary observes only two pairs of request-response messages at the start of

the client’s transaction, as shown in Figure 5.6(b) (non-red lines), then they can conclude that the

client is using only two routers for their circuit. Since it is possible to differentiate two- and three-

hop circuits, an adversary could tailor their attacks for the path length of a client of interest. For



128
  Tor

Client

Entry

Guard
Middle 

Router

  Exit 

Router
build

build_ack

K1(extend)

extend

extend_ack
K1(extend_ack)

K1(K2(extend))

K2(extend)

extend

extend_ack
K2(extend_ack)K1(K2(

  extend_ack))

(a) Three-hop circuit construction

  Tor

Client

Entry

Guard
  Exit 

Router
build

build_ack

K1(extend)

extend

extend_ack
K1(extend_ack)

K1(dummy)

K1(dummy_ack)

(b) Two-hop circuit construction with
length blending cells in red

Figure 5.6: Circuit building messages. K1, K2, and K3 are the symmetric keys derived from Tor’s
telescoping Diffie-Hellman key establishment shared between the client and the entry guard, middle
router, and exit router, respectively. Also, note that all messages are further protected by TLS.

example, if an adversary detects a two-hop path, then they could focus on breaking into the entry

guard or applying legal subpoena pressure to obtain traffic logs from the entry guard’s operator or

Internet Service Provider. Also, even if an adversary detects a standard three-hop path, implying

that the client is particularly concerned about the security of their traffic, they may wish to exert

the effort of applying any one of a variety of traffic analysis techniques [47, 150, 197, 206] because

they know the client’s traffic may be particularly sensitive. Thus, we wish to mitigate a network

observer’s ability to infer circuits’ path lengths.

5.3.2 Blending Techniques

In order to effectively blend two- and three-hop circuits from an observer on the network

link between the client and one of their entry guards, we introduce dummy traffic into the circuit

building process for two-hop paths. In particular, after the client establishes shared keys with their

entry guard and second (exit) router, the client should send a third dummy cell (encrypted with

the key shared between the client and the entry router), to mimic the final circuit building cell that



129

would establish a shared key between the client and the exit router in a standard three-hop circuit.

Upon receiving the dummy cell, the entry guard should also reply with another dummy cell, of

course, adding an intentional delay to simulate the time required for the third circuit construction

cell to be sent to and return from the third (three-hop exit) router. The precise sequence of messages

is depicted in Figure 5.6(b), with the dummy messages illustrated in red.

While a network observer on the client’s link cannot distinguish this dummy traffic from

an ordinary three-hop circuit construction, the entry guard knows that the circuit uses only two

routers and can therefore trivially learn the circuit’s exit router. However, the exit router observes

the exact same sequence of messages for circuit construction in both two- and three-hop circuits;

thus, it does not explicitly learn any information about path length via circuit construction. We

believe that protecting path length information from a network observer watching the client and the

exit router is essential, since otherwise they could collude to trivially de-anonymize clients, or the

exit router could learn a client’s entry guards by linking a pseudonym observed in the exit traffic to

the observed entry guards. Furthermore, clients already have trust relationships established with

their chosen entry guards, since they use the same set of guards over a fairly long period of time.

It is also possible that a network observer on the client’s link may infer path length by

analyzing the round-trip times of the client’s traffic and observing that two-hop paths tend to

have less network latency than longer paths. However, in Chapter 6.7, we showed that 81% of the

time two-hop paths offer faster download times than standard Tor circuits. Interestingly, for the

remaining 19%, there was either no difference in performance, or two-hop paths performed worse

than standard Tor paths. This apparent variability in performance likely would introduce inherent

noise into any attempts to infer path length using performance characteristics.

5.4 Discussion

Having analyzed Tor’s path length from security and performance perspectives, we next

discuss a variety of open issues related to path length.



130

5.4.1 User-configurable Path Lengths

Since two-hop paths offer better performance, it may be tempting to allow users who value

performance over security to use two-hop paths while users who need stronger security may use

three-hop paths. Suppose that most users value performance and consequently, Tor chose a default

path length of two hops. Security-conscious users could optionally use three hops to take advantage

of the additional security that three-hop paths offer against adaptive surveillance. However, clients

who choose to use longer paths may be identified as desiring additional security, which alone could

draw an adversary’s attention. To mitigate this risk, we suggest a blending strategy we present in

Chapter 5.3 to reduce the amount of information leaked about a client’s desire for stronger security

or better performance. Furthermore, it has been argued that most users tend to keep default

options, even when the defaults may not be optimally suited to their needs [102]. Allowing users

to configure their own path lengths assumes that users understand the full security implications

of their choice, which may be unlikely, particularly for novice users. Thus, all users should be

encouraged to use the same path length by selecting a default path length value wisely, and given

our findings, we recommend that two hops be used.

5.4.2 Potential Liabilities for Exit Routers

Two-hop paths could be a legal liability for exit router operators in some jurisdictions. With

three-hop paths, exit routers know nothing about clients other than what may be revealed by their

traffic. However, with two-hop paths, exit routers are exposed to clients’ entry guards; thus, they

are no longer agnostic with regard to the clients whose traffic they transport. Exit routers could

be presented with subpoenas to reveal entry guard information to governments or law enforcement

agents, which increases the risks associated with operating an exit router. Since Tor’s exit band-

width is relatively scarce yet essential to the network’s ability to offer satisfactory performance,

liabilities for exit router operators should be minimized to attract additional exit routers.



131

5.4.3 Secure Bandwidth Estimation

The attacks that we describe in Chapters 5.1.1 and 5.1.2 are particularly dangerous in the

absence of secure bandwidth verification, since malicious routers could otherwise inflate their per-

ceived bandwidth to attract traffic. With secure bandwidth estimates in place, it will no longer be

possible to carry out these attacks with few resources. However, it is important to remember that

such attacks are still within reach of medium-to-large organizations, or even determined individ-

uals: at current hosting rates, running a 10 MiB/s node for one week (long enough for a node to

be declared a guard) can cost less than $1 000;16 thus, the financial resources required to attack

the network successfully are moderate at best. Additionally, attackers may be able to insert their

own high-bandwidth nodes into the Tor network by compromising computers at well-provisioned

institutions.

5.4.4 Does a Two-hop Design Discard Too Many Routers?

Many Tor routers are not configured to allow exit traffic and are not fast and/or stable

enough to be an entry guard. These routers are only used for the middle position. We next

consider whether a two-hop design would discard a significant number of middle-only routers and

their collective bandwidth.

From the directory server snapshot analyzed in Chapter 5.1, we find that 639 routers may

only be used for the middle position. These routers collectively contribute about 85 MiB/s of

bandwidth. To understand how bandwidth is distributed among non-exit and non-guard routers,

Figure 5.7 shows a CDF of these routers’ bandwidth contributions. Half contribute less than

50.3 KiB/s each and only 11% offer the 250 KiB/s necessary to meet the bandwidth criterion for

the guard flag. These higher bandwidth routers collectively contribute 54.3 of the 85 MiB/s of

middle-only bandwidth. If stable enough, they could eventually obtain the guard flag and be used

for the entry position.

16 See, for example, http://aws.amazon.com/s3/.



132

2 5 10 50 200 1000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Bandwidth in KiB/s (log scale)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Figure 5.7: Bandwidth contributions from middle-only routers

5.5 Summary

In summary, we have shown that two-hop paths generally perform better than three-hop

paths and are less vulnerable to endpoint compromise in the presence of an adversary who employs

selective disruption tactics. However, two-hop paths potentially allow an attacker to enumerate

a client’s set of entry guards and increase the liability risk for exit node operators. By outlining

a method to effectively blend two and three hops together from the perspective of a network

eavesdropper, we explore how to get the best of both worlds.

In the end, these are but a few of many potential attacks and defenses associated with path

length choices. There are deep-rooted tussles surrounding the security and performance trade-offs

when choosing path-length and it is not yet clear what the “correct” length is or even if there is

a “correct” length that fits every user’s security and performance threshold and volunteer node

operator’s level of liability risk. We must look at Tor as having many stake-holders (individual



133

user’s privacy and performance, node operator’s liability, and the overall security and performance

offered via Tor to all users) and explore how each is effected by path length variations. Viewed in

this light, our work serves as a piece in the puzzle by identifying the key issues, analyzing potential

directions for solutions, and offering empirical measurements to guide future exploration of this

problem. Our hope is that this work encourages further dialogue about a path length choice that

most appropriately balances security and performance.



Chapter 6

Crowds-style Anonymity for BitTorrent

Since low latency anonymous networks do not artificially perturb the timing characteristics

of their traffic, they are well-suited to anonymize interactive applications such as web browsing

(HTTP) and instant messaging. However, in an analysis of Tor usage by protocol presented Chap-

ter 3, we found that HTTP traffic is the most popular application by the number of connections

observed, but bulk transfer protocols like BitTorrent (a popular peer-to-peer file sharing applica-

tion) consume an unfair amount of the network’s scarce bandwidth. While this analysis shows

a clear demand for an anonymizing solution for bulk transfer protocols, it also implies that bulk

transfers are diminishing the network’s utility for interactive traffic – the targeted audience for

networks such as Tor.

Many users may wish to anonymize bulk transfer protocols not to exercise free speech or cir-

cumvent censorship, but to transfer copyright-protected media files without detection by copyright

enforcement agents. It is well-known that entities representing the film and recording industries

have engaged in widespread monitoring of peer-to-peer file sharing networks to identify individuals

engaged in the illegal transfer of copyright-protected media [180]. Furthermore, a recent study has

found that a single computer’s perspective is sufficient to identify all BitTorrent peers and profile

their uploading and downloading behaviors [66].

In the event of positive identification of such file sharing, copyright-holders have, in some

cases, initiated lawsuits to collect monetary damages from infringers. Such a climate of widespread

surveillance and prosecution may encourage file sharers to endeavor to protect themselves by using



135

strong anonymizing networks like Tor [54], however, at the potential expense of the quality of

service for other users including cyber dissidents, corporate whistle blowers, and those who wish to

exercise free speech.

In this chapter, we seek to further understand why file sharers resort to using anonymizing

networks to hide their file sharing behaviors. We first present a case study, focusing on BitTorrent,

that illuminates a few sources of information leakage in the BitTorrent protocol. We also develop a

series of techniques to collect forensic evidence of file sharing and hypothesize that next-generation

file sharing investigations may incorporate such techniques to improve the accuracy of the current

methodology. Lastly, to mitigate bulk transfer traffic on networks like Tor, we design, implement,

and evaluate an anonymizing network based on the well-studied Crowds protocol [189] that offers

a user-tunable degree anonymity within the BitTorrent protocol itself without any changes to

BitTorrent clients.

6.1 Case Study: Information Leaks in BitTorrent

While BitTorrent provides the ability to transfer files among many users quickly and effi-

ciently, experience has shown that its decentralized architecture also makes it appealing for sharing

copyright protected files illegally. With a peer-to-peer network like BitTorrent, content is dis-

tributed and replicated among a potentially large set of peers, making the process of finding and

contacting each peer hosting the content in question a difficult task. Despite the challenge, entities

acting on behalf of copyright holders have begun to monitor BitTorrent file transfers on a massive

scale to identify and contact users who violate copyright laws.

In fact, a recent study [180] shows how the entities representing copyright holders use näıve

techniques such as querying the BitTorrent tracker servers to identify individual users participating

in an illegal file transfer. After being identified, these entities often distribute DMCA take-down

notices or even pursue more formal legal sanctions against individuals who appear in the tracker’s

peer list. However, this simple approach is prone to a wide variety of errors. For instance, it is

trivial to introduce erroneous information into the tracker lists by explicitly registering fake hosts



136

to the tracker. The authors of the recent study demonstrate this type of false positive identification

by registering networked devices such as printers and wireless access points to tracker lists and

subsequently receiving DMCA take-down notices for their suspected participation in illegal file

transfers.

This strategy of polluting tracker lists with fake peers could be used to frustrate anti-piracy

investigations. The Pirate Bay, a popular tracker hosting site, has allegedly begun to inject arbi-

trary, but valid IP addresses into their tracker lists [43]. This counter-strategy may further increase

the potential for false positive identification, which could have serious consequences as this evidence

can be used to initiate legal action against suspected file sharers.

Given the inaccurate nature of the current techniques for monitoring BitTorrent file transfers

and the clear need for effective anti-piracy tactics, we consider this question: Is it feasible to develop

and deploy an efficient technique for identifying and monitoring peers engaged in file sharing that

is more accurate than querying the trackers?

To answer this question, we propose a technique that is active, yet efficient. Starting with

the tracker’s peer lists, each peer listed by the tracker server is actively probed to confirm their

participation in the file sharing and to collect concrete forensic evidence. Our tool, called BitStalker,

issues a series of lightweight probes that provide increasingly conclusive evidence for the peers’ active

participation in the file sharing.

To evaluate the feasibility of this active approach in practice, we conduct a measurement

study with real, large torrents. In particular, we quantify the number of peers that can be identified,

the potential for falsely identifying peers, the potential for missing peers, and the cost associated

with this technique in terms of bandwidth. Our results indicate that active probing can identify

a sufficiently large portion of the active peers while requiring only 14.4–50.8 KiB/s and about five

minutes to monitor over 20,000 peers (using a commodity desktop machine). We also show that the

active probing can be parallelized and scale to monitor millions of peers inexpensively using cloud

computing resources such as Amazon’s Elastic Compute Cloud (EC2) [4]. Using EC2, we estimate

that our method can monitor the entire Pirate Bay (about 20 million peers) for only $12.40 (USD).



137

6.1.1 Background

Before we describe our method for monitoring large BitTorrent swarms, we first provide a

description of the BitTorrent protocol and an overview of the techniques currently being applied

to identify peers who are sharing a file with BitTorrent.

6.1.1.1 The BitTorrent Protocol

To share a file, BitTorrent first breaks the file into several fixed size pieces and computes

a SHA1 hash of each piece to verify integrity. Pieces are sub-divided into smaller data units

called blocks, typically 16 KiB in size. A metadata file containing the SHA1 hashes for each piece

along with other information necessary to download the file including a URI to the tracker server

is distributed to interested users via an out-of-band mechanism. Once a user has obtained the

metadata for a file of interest, they proceed by contacting the tracker server to obtain a randomly

chosen subset of peers who are sharing the file. This is called the peer list. By obtaining a peer

list from the tracker (or another distributed hash table-based or gossip-based mechanism), the peer

also registers itself with the tracker. The peer then begins requesting blocks of the file. Peers

that are downloading pieces of the file are called “leechers,” while peers that possess all pieces and

participate as uploaders are referred to as “seeders.”

The precise sequence of messages involved in the request of pieces is shown in Figure 1. A

leecher establishes communication with another peer by exchanging handshake messages. The

handshake consists of a plain text protocol identifier string, a SHA1 hash that identifies the file(s)

being shared, and a peer identification field. After the handshake exchange, the leecher transmits

a bitfield message. This contains a bit-string data structure that compactly describes the pieces

that the peer has already obtained. After exchanging bitfields, the leecher knows which pieces

the other peer can offer, and proceeds to request specific blocks of the file. The leecher sends an

interested message to notify the other peer that it would like to download pieces. The other



138
Leecher           Seeder

Handshake

Handshake

      Bit!eld

     Bit!eld

Piece Request

       Piece

  Interested

Unchoke

Figure 6.1: BitTorrent message exchange to start a piece transfer

peer responds with an unchoke message only if it is willing to share pieces with the leecher. Upon

receiving an unchoke message, the leecher asks for specific blocks of the file.

6.1.1.2 BitTorrent Monitoring Practices

While BitTorrent provides an efficient way to distribute data to a large group of users, it is

also an appealing technique to distribute copyright protected files illegally. Copyright enforcement is

particularly challenging within the context of BitTorrent, since the file(s) in question are distributed

among a set of arbitrarily many peers. The copyright holders must first identify every user who

appears to be sharing the file and ask them to stop sharing.

Despite the significant amount of work required to monitor BitTorrent networks, a recent

study has gathered evidence showing that investigative entities acting on behalf of various copy-

right holders are monitoring and tracking BitTorrent users who are suspected of sharing copy-



139

right protected files [180]. These investigators — including BayTSP [9], Media Defender [26], and

Safenet [36] who are hired by organizations such as the Motion Picture Association of America

(MPAA) and the Recording Industry Association of America (RIAA) — are using passive tech-

niques, such as querying the trackers for the peer lists to identify users who are engaged in illegal

file sharing. Once a list of peers has been obtained, an ICMP echo (ping) message is sent to each

IP address to ensure that it is alive.

However, as the aforementioned study notes, these methods for monitoring large BitTorrent

networks can be wildly inaccurate. For instance, it is possible to implicate arbitrary networked

devices by simply registering their IP addresses with the tracker server. In addition, false positive

identification is also possible as a result of naturally occurring (i.e., non-intentional) activity. For

instance, the tracker may provide stale peer information, which may result in a user who recently

obtained a DHCP lease on an IP address being implicated in the file sharing. The very real

potential for false positives could have serious implications, since the investigators who conduct

this monitoring often issue DMCA take-down notices or even initiate legal actions against the

suspected file sharers.

6.1.2 Accurate and Efficient Monitoring

In order to study the feasibility of collecting forensic evidence to concretely prove a peer’s

participation in file sharing, we present BitStalker. BitStalker is active, yet efficient, since it consists

of small probe messages intended to identify whether a peer is actively engaged in a file transfer.

First, to obtain the list of peers who are potentially sharing the file, the tracker is queried. For

each IP address and port number returned, we conduct a series of light-weight probes to determine

more conclusively whether the peer really exists and is participating in the file transfer.

TCP connection. The first probe consists of an attempt to open a TCP connection to the IP

address on the port number advertised by the tracker. A successful TCP connection indicates that

the suspected peer is listening for connections on the correct port.



140

Handshake. If a TCP connection is established, a valid BitTorrent handshake message is sent.

If the handshake succeeds, then the investigator has obtained evidence that the suspected peer is

responding to the BitTorrent protocol, and may even provide information about the BitTorrent

client software being used.

Bitfield. If the handshake probe succeeds, then a BitTorrent bitfield message is sent. This message

contains a concise representation of all pieces that have been downloaded by the peer. A random

bitfield is generated so that the probe looks like a valid bitfield message. If a peer responds with

a valid bitfield message, then the investigator has obtained evidence that the peer has downloaded

the part of the file that is described by their bitfield. This also indicates whether the peer is a

seeder or a leecher. This provides the strongest form of forensic evidence that the peer is actively

sharing the file without exchanging file data.

Block request. If the bitfield probe succeeds, we finally attempt to request a 16 KiB block of the

file from the peer. First, the peer’s bitfield is examined to find a piece of the file that the peer has

obtained. Next, this probe sends an interested message to indicate that we want to exchange pieces

with this peer. The peer responds with an unchoke message, which implies that we are allowed to

ask for pieces. We finally request a 16 KiB block. If the peer responds with the block requested,

then this probe succeeds. A single block is the smallest amount of data necessary to confirm that

another peer is sharing the file. If the investigator has the remaining blocks of that piece, then they

can verify the hash to ensure that the block is valid.

We argue that each probe type provides increasingly conclusive evidence of a peer’s active

involvement in file sharing. A successful TCP probe indicates that the peer is listening on the correct

port. However, an effective counter-strategy could be to register arbitrary IP addresses with ports

that are opened (such as web servers). The subsequent handshake probe is more conclusive, as it

indicates that the BitTorrent protocol is running on the correct port and also identifies the content

being shared by a SHA1 hash. The bitfield probe provides stronger evidence still, since it describes

all pieces that the peer has downloaded, which implies active sharing. Finally, requesting and

subsequently receiving a block of the file provides the strongest form of concrete evidence for file



141

sharing.

Practical considerations. The active probing framework can monitor peers who are actively

participating in the file sharing. However, if a peer has just joined the torrent when they are

probed, then they may not have any pieces of the file yet. Consequently, according to the BitTorrent

protocol, if a peer has no pieces, then the bitfield probe is optional. Since the peer has not yet

obtained any pieces of the file, the probing does not collect any evidence from this peer. If peers

are probed repeatedly over time, then the likelihood of this case becomes negligible.

Additionally, “super-seeding” mode is enabled when a torrent is first established and there

are few seeders. Super-seeding mode ensures that the original seeder is not overwhelmed by piece

requests from other peers before it transfers data to another peer. When super-seeding is activated,

the seeder may advertise an empty or modified bitfield, even though they possess every piece. Since

we are interested in monitoring mature torrents consisting of at least tens of thousands of peers,

we disregard new torrents in super-seeder mode.

Lastly, it is possible that peers may be able to detect the monitors and blacklist them.

Siganos et al. show that the current passive BitTorrent monitors can be detected by observing that

the frequency with which the monitor’s IP addresses occur across a large number of tracker lists is

statistically higher than that of normal peers [208]. Our active monitoring may also be identifiable

in the same manner. To address this, we recommend that the monitoring be distributed across a

large number or dynamic set of IP addresses.

6.1.3 Experimental Evaluation

In this section, we present experiments to quantify both the effectiveness and the cost of

monitoring large BitTorrent swarms using the active probing technique. In addition, we compare

the accuracy, potential for false positives and false negatives, and the cost with the current strategy

employed widely by anti-piracy investigators.



142

Table 6.1: Summary of data sources

Torrent ID Total Peers Media Type

1 20,354 TV Series
2 16,979 TV Series
3 11,346 TV Series
4 14,691 TV Series
5 23,346 Movie
6 20,777 TV Series
7 24,745 TV Series
8 13,560 TV Series
9 19,694 TV Series
10 20,611 Movie

Total: 186,103

6.1.3.1 Data Sources and Methodology

To evaluate our light-weight probing technique, we selected ten large torrents each containing

between 11,346 and 24,745 unique peers. In total, our experimental evaluation consists of over

186,000 peers. Peers participating in these torrents were sharing new theatrical releases and episodes

of popular television shows (summarized in Table 1). These swarms represent the type of file sharing

that may be monitored by copyright enforcement agencies.

To conduct the active probing, we wrote a tool called BitStalker that can perform the fol-

lowing tasks:

• Establish a TCP connection with another peer

• Exchange handshake messages with the correct SHA1 content hash and receive handshake

responses

• Exchange bitfield messages and receive bitfield responses

• Request and receive a 16 KiB block of file data

In short, BitStalker efficiently probes for participation in the BitTorrent protocol by sending and

receiving a minimal number of small control messages rather than downloading the entire file from

other peers.



143

The experiments were conducted as follows: The tracker server is contacted to obtain a

subset of the peers who are currently believed to be sharing the file. Since the trackers only return

a randomly selected set of 100 peers, it is necessary to query the tracker several times to obtain a

large portion of the hosts registered with the tracker. Once peers are obtained from the tracker,

BitStalker attempts to establish a TCP connection with each peer on its advertised TCP port. If a

connection is established, a handshake message exchange is attempted. If handshake messages are

exchanged, BitStalker attempts to exchange bitfield messages. Finally, if bitfields are exchanged,

the tool attempts to retrieve a single block of the file. This procedure is repeated for each torrent

to be monitored.

We compare our active probing method with the current approach to peer identification

described in Section 6.1.1.2. After obtaining the list of suspected peers from the tracker, our tool

sends precisely five ICMP echo (ping) messages to each IP address in the peer list. If a host

responds to at least one ping, then it is assumed (perhaps erroneously) to be alive and sharing the

file.

6.1.3.2 Experimental Results

We evaluate the proposed peer probing technique with regard to the number of peers that

can be identified, an estimate of the number of peers that are falsely identified as being a file sharer

(false positives), an estimate of the number of peers that this technique fails to identify (false

negatives), and the measured cost of performing this active probing. The probing mechanism is

compared along each of these metrics to the passive identification process using ping messages to

verify the tracker’s peer list.

Fraction of peers that respond. We first consider how many peers can be identified by active

probing. As shown in Table 2, the fraction of peers that can be positively identified by each probe

type increases with additional repetitions. To determine if additional peers can be identified through

multiple probing attempts, the experiments are repeated ten times. Even though the number of



144

Table 6.2: The average fraction of peers identified in one, five, and ten iterations of the monitoring
across all ten torrents

Repetitions Connection Handshake Bitfield Block Request

1 30.8% 18.9% 17.7% 0.29%
5 35.9% 26.3% 25.3% 0.80%
10 36.9% 28.4% 27.6% 1.13%

peers probed remains constant for each repetition, we find that the fraction of peers that respond

to probes increases, since some peers may be busy interacting with other peers when we probe.

The complete results for each torrent are given in Figure 2. Across the ten torrents, we could

establish a TCP connection with between 26.7–44.6% of the peers listed by the tracker. While this

percentage seems low, it is reasonable since many BitTorrent clients impose artificial limits on the

number of open connections allowed, in order to reduce the amount of bandwidth consumed. A

similar fraction of peers that establish connections is reported by Dhungel et al. [93].

The näıve ping method returns roughly the same fraction of peers as the active TCP con-

nection probe. However, as we will show, the ping probes are susceptible to an intolerably high

number of false positives, while active probing significantly reduces the potential for false positives.

Both the handshake and bitfield probes succeed for between 18.6–36.6% of the peers. While

this is lower than the TCP connection probe, it provides significantly stronger evidence for file

sharing. For this fraction of the peers, an investigator can tell that the peer is obeying the BitTorrent

protocol, sharing the correct file identified in the handshake probe by a SHA1 hash, and advertising

the pieces of the file that the peer already possesses as identified in the bitfield probe. We argue

that this small reduction in the fraction of peers that respond to bitfield probes is a small price for

greater confidence in the identification results.

Finally, we observe that block request probes succeed for a very small faction of the peers,

only 0.6–2.4%. This may be partly a result of BitTorrent’s tit-for-tat incentive mechanism [10],

which attempts to mitigate selfish leechers by enforcing reciprocity in the piece request process.



145

��

�
�
�
�

��

��

Connect
Handshake
Bitfield
Block

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�
��
��
��
��

�� �
�
�
�
��
��
��
��

�� �� �
�
�
�
����

  0

  0.2

  0.4

  0.6

  0.8

  1

1 2 3 4 5 6 7 8 9 10

Fr
ac

tio
n 

of
 p

ee
rs

Torrent ID

Figure 6.2: Over ten runs, the cumulative fraction of peers identified with connections, handshakes,
bitfields, and block requests across all ten torrents

This is implemented by uploading to other leechers from whom you download. The leecher with

the highest upload rate receives download priority. Since BitStalker has a zero upload rate, it does

not receive priority for piece requests. However, BitTorrent does offer optimistic unchoking, which

enables a leecher to download regardless of their upload rate. BitStalker only receives pieces from

other peers who have chosen to optimistically unchoke.1 Since only about 1% of the peers respond

to our block requests on average, we argue that the minimal additional evidence obtained through

this probe is not worth the extra time and bandwidth required to collect this evidence.

False positives. The most serious flaw with the past and present investigative tactics based

on tracker list queries and ping probes is the real potential for a high number of false positives.

Furthermore, active peer list pollution further increases the potential for false positives.

To establish a lower bound on false positives obtained by the näıve investigative strategy, we

count the number of peers that respond to pings yet show no indication of running any network

service on their advertised port. More technically, if a peer responds to a TCP SYN request with

a TCP RST (reset) packet, this indicates that the remote machine exists, but it is not running any

1 Additional blocks may be received if BitStalker offered blocks before asking for blocks.



146

service on the advertised TCP port. From our experiments, we observe that 11% of peers exhibit

this behavior on average and are, therefore, definite false positives using this näıve investigative

strategy.

In addition, we count the number of peers that could be false positives with the ping method.

These are the peers that respond to ping probes, but ignore the TCP probe (i.e., no connection

or reset packet). From our experiments, we find that on average an additional 25.7% of the peers

could potentially be false positives, but we cannot say this conclusively. It’s possible that some of

these peers could have reached a connection limit in their BitTorrent client or could be filtering

incoming traffic.

In contrast to the näıve ping method, the active probing strategy offers more reliable peer

identification with few avenues for false positives. For instance, a successful TCP probe indicates

that the peer is listening for connections on its advertised port. However, one could envision a

more intelligent pollution strategy where arbitrary IP addresses with open ports are inserted into

trackers (i.e., real HTTP or FTP servers). The subsequent handshake and bitfield probes would

then eliminate this form of pollution by checking that the host is running the BitTorrent protocol.

However, the active probing approach is not entirely immune from the possibility of false

positive identification. For example, peers using an anonymizing network such as Tor [103] may

produce false positives, since the last Tor router on the client’s path of Tor routers (called a Tor exit

router) would be implicated in the file sharing. In Chapter 3, we found that BitTorrent is among

the most common applications used with Tor, particularly when measured by traffic volume.

To determine how common this type of false positive is in practice, we compare the list

of potential BitTorrent peers obtained through our experiments to the list of all known Tor exit

routers provided by Tor’s public directory servers. On average, we find that only approximately

1.8% of the peers are using Tor to hide their identities.2 However, these are not false positives

using active probing, since a peer using Tor (or another anonymizing network or proxy service)

cannot bind to the advertised port on the exit host to accept incoming connections. Consequently,

2 However, several peers could be using each of these Tor exit nodes.



147

active probing does not provide any evidence for these peers. Furthermore, peers using Tor are

easily identifiable and can be filtered out of the results.

In addition to general-purpose anonymizing networks, solutions have been proposed specif-

ically for anonymizing BitTorrent. For instance, SwarmScreen’s goal is to obscure a peer’s file

sharing habits by participating in a set of random file sharing swarms [78, 79]. Also, BitBlender

attempts to provide plausible deniability for peers listed by the trackers by introducing relay peers

that do not actively share files, but rather act as proxies for other peers actively sharing the file [62].

The active methods we propose would identify peers utilizing SwarmScreen and BitBlender as file

sharers. While these peers are not intently sharing content, an investigator may still be interested in

pursuing these peers since they contribute pieces of the file to other peers who are actively sharing.

False negatives. False negative identification occurs when a peer who is actively sharing a file

cannot be identified as a file sharer. Both the active probing technique and the näıve ping method

suffer from the potential for false negatives. The ping method may miss peers who are behind

a firewall that blocks incoming ICMP traffic. For example, this is the default configuration for

Windows Vista’s firewall settings. The active probing method may also suffer from false negatives

when a peer’s number of allowed connections is at the maximum. In this case, the initial TCP

connection probe will fail to identify that the peer is listening on its advertised port. In general, we

found that repeating the monitoring procedure decreases false negatives. Table 2 shows that the

number of false negatives decreases as the experiment is repeated. Although there are diminishing

returns, as the false negatives do not decrease significantly between 5 and 10 iterations of the

monitoring.

We can, however, provide a lower bound on false negatives obtained with the näıve ping

method. This is achieved by counting the number of peers that do not respond to pings, but do

respond to the TCP connection probe. Our experiments show that the näıve ping method would

fail to identify at least 22.3% of the peers on average.

Cost. In order for an active probing strategy to be a feasible technique to monitor large BitTorrent

swarms in practice, it is necessary for the probing to be as efficient as possible. Table 3 shows that



148

Table 6.3: Size of each probe type (assuming no TCP options)

Probe Type Description Size

TCP connection Three-way handshake 162 Bytes
Handshake Handshake request/reply 244 Bytes
Bitfield Bitfield request/reply Variable
Block Request Block request/reply 16.7 KiBytes
ICMP Ping Ping request/reply 86 Bytes

the size of each probe is small and Figure 3 shows the amount of traffic that was required to

monitor each torrent using the active probing technique. For comparison, the cost for the ping

method is also plotted. While the ping approach requires less bandwidth, we have shown that it is

not sufficiently accurate in identifying active file sharers. Using a modest Linux desktop machine,

it took 304.5 seconds on average to monitor an entire torrent, which required only 14.4–50.8 KiB/s

of bandwidth. The active probing overhead is dependent on the fraction of peers that respond to

active probes. This is an intuitive result, implying a direct relationship between the number of

peers identified and the amount of bandwidth required by the probing.

The active probing method is also highly scalable, particularly when inexpensive cloud com-

puting resources such as Amazon’s Elastic Compute Cloud (EC2) [4] are utilized. Machines from

EC2 are available at a small cost dependent on the execution time and bandwidth usage of the

jobs. From our experiments, on average we probed approximately 61 peers/second, uploaded 288.2

bytes/peer and downloaded 296.6 bytes/peer. Using EC2’s pricing model, we estimate that it is

possible to monitor peers at an expected cost of roughly 13.6 cents/hour (USD). In fact, it’s possible

to scale the active probing to monitor the entire Pirate Bay, which claims to track over 20 million

peers [37]. We estimate that this method can monitor the Pirate Bay for $12.40 (USD).

6.1.4 Summary

We present BitStalker, a low-cost approach to monitoring large BitTorrent file sharing swarms.

BitStalker collects concrete evidence of peers’ participation in file sharing in a way that is robust



149

��

�
�
�
�Active probing

Ping

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

  0

  2,000

  4,000

  6,000

  8,000

  10,000

  12,000

  14,000

  16,000

  18,000

1 2 3 4 5 6 7 8 9 10

K
ilo

by
te

s

Torrent ID

Figure 6.3: Total amount of traffic necessary to monitor each torrent using active probing and pings

to tracker pollution, highly accurate, and efficient. In contrast, the past and present investigative

monitoring strategy consists of tracker server queries and ICMP ping probes. While this method

is simple, it is also prone to a variety of significant errors, especially false positive identification,

since this monitoring technique does not verify participation in the file sharing. We present an

alternative monitoring strategy based on actively probing the list of suspected peers to obtain more

conclusive evidence of participation in the file sharing.

There are several aspects of our approach that warrant additional attention. In particular,

a specific definition of what constitutes “forensic evidence” in the context of file sharing across

various legal systems should be explored. Also, the general legal issues that this type of monitoring

exposes should also be investigated further.

6.2 BitBlender: Light-weight Anonymity for BitTorrent

General purpose, low latency anonymity networks are currently being used to provide private

and anonymous communication services for a variety of applications. For instance, Tor [103] has

become the standard tool for anonymizing TCP traffic. This is largely because of its ability to

provide low latency anonymous transport to facilitate interactive applications such as web browsing



150

and instant messaging. However, in Chapter 3, we offer evidence that Tor’s ability to provide a

low latency anonymous transport service is being potentially threatened by the excessive amount

of peer-to-peer (P2P) file sharing traffic that it transports. Since there is a clear demand for

anonymous file sharing and to alleviate the strain placed upon the Tor network by this P2P traffic,

we present the design and implementation of an anonymity-preserving network protocol specifically

tailored to P2P file sharing, and in particular, the BitTorrent protocol.

BitTorrent ostensibly provides no built-in support for anonymous file sharing. In fact, as

part of the default peer discovery method, the protocol requires that the IP addresses of all peers

sharing the file be published by a well-known and publicly accessible server called a tracker. By

querying the tracker, it is currently trivial to determine who is actively sharing a particular file.

In fact, a study found that information from these trackers is currently being used to identify file

sharers, often with poor accuracy [180]. Hence, it is not surprising that many BitTorrent users

resort to using Tor to remain anonymous.

Traditionally, mix networks have been the fundamental building block for many privacy

enhancing systems. Mix networks construct a chain of intermediate hops between the source and

destination of a message to conceal the message’s true sender and receiver. Batching of messages

and cover traffic are common techniques to further frustrate traffic analysis attempts. Most mix

networks attempt to provide a high degree of anonymity, suitable for protecting cyber-dissidents in

countries where Internet freedoms are not protected. In this case, the strongest practical anonymity

available is required.

In contrast, it is often acceptable to provide a lower degree of anonymity. Reiter and Ru-

bin [189] describe degrees of anonymity as a spectrum that expresses the confidence that an adver-

sary has regarding the identity of the real initiator of a message. Their system, Crowds, achieves

varying degrees of anonymity for web transactions by routing each message through a set of inter-

mediate hops in a probabilistic fashion. When a message is received by an intermediate node, it

is either forwarded to another intermediate hop or delivered to its final destination with a certain

pre-defined probability. From the perspective of the destination server, it is unclear whether the



151

node from which it received the message is the initiator or a proxy for another node. Thus, all

nodes that participate in such a network enjoy a certain degree of plausible deniability with regard

to requesting a file.

Inspired by Crowds, we propose a similar low-overhead anonymity layer for BitTorrent that

offers sufficient anonymity properties to achieve the condition of plausible deniability. To this end,

we present BitBlender, an anonymity layer for the BitTorrent protocol that has low overhead and

provides varying degrees of anonymity. BitBlender achieves plausible deniability by introducing

special “relay peers” that forward data on behalf of the peers that are actively sharing a file. When

peers request pieces of a file, it is difficult to determine whether a piece is delivered by another

peer engaged in the file transfer, or if it is delivered through one or more relay peers. Thus, the

degree of anonymity provided is dependent upon the number of relay peers relative to the number

of normal peers participating in a file transfer; however, the expected performance overhead is also

dependent upon the number of relay peers participating, as the path length between the initiator

and the responder is higher on average as more relay peers participate.

BitBlender is among the first to explore light-weight privacy enhancing system designs with-

out the use of cryptography. Strict data confidentiality within BitTorrent is unnecessary, since files

are typically shared publicly and anyone can participate without requiring any special access or

authorization. In addition, this protocol has the ability to provide a level of anonymity that is

tunable, so it can be adjusted for the sensitivity of the data transferred. Finally, since BitBlender

requires no modifications to the existing BitTorrent protocol, it is easy to deploy within BitTorrent’s

current system architecture.

We provide an analysis of the protocol in terms of its expected path length as the ratio of

normal peers to relay peers varies. In addition, we show that BitBlender has a lower hop count

on average than Tor, even when the ratio of relay peers to normal peers is greater than 1/2. To

analyze the anticipated performance overhead, we implement a prototype and perform experiments

to quantify the expected additional download time that will be experienced by the end users as the

number of participating relay peers varies. We also compare BitBlender’s expected performance to



152

that of BitTorrent tunneled over Tor.

Having presented the basic protocol, we present extensions aimed at strengthening the

anonymity and increasing the performance. A confidentiality and access control mechanism is

detailed that would provide confidential and authenticated file transfers. Also, we address traf-

fic analysis attacks and present simple countermeasures. We lastly explore selective caching as a

mechanism to simultaneously impede certain traffic analysis tactics and decrease the expected path

length.

Finally, we discuss some of the legal questions that BitBlender and other general purpose

anonymity networks present. In particular, the legality of operating an open relay is unclear, and

arguably the continued success of anonymous communication systems relies on policy makers from

around the world providing some form of legal protection for the operators of anonymity networks.

6.3 Degrees of Anonymity

In order to describe our anonymity layer for BitTorrent, it is necessary to define the notion of

anonymity that the protocol provides. Reiter and Rubin describe anonymity as a spectrum, with

degrees ranging from “absolute privacy” to “provably exposed” [189]. Between these extremes,

the level of anonymity varies between states of “probable” and “possible” deniability. Probable

deniability exists when an adversary can determine with a probability 0.5 ≤ p < 1 that a message

in the system originated at a particular user. Possible deniability is the state at which there is a

probability 0.5 > p > 0 that a message originated at a specific user. We define plausible deniability

as the state that encompasses both probable and possible deniability (1 > p > 0). The specific

probability is precisely the ratio of relay peers to total peers (both relay and normal peers). With no

additional information, an adversary has a probability p of correctly guessing whether an individual

peer is a relay or a normal peer. Further details on anonymity metrics can be found in Chapter 2.4.



153

6.4 Design Principles

In order to describe the BitBlender protocol, it is necessary to first explain the design goals

and the envisioned threat model.

6.4.1 Design Goals

BitBlender’s design achieves the following:

• Low overhead: The protocol should be more light-weight in terms of computational re-

sources, and should provide better throughput and lower latency in comparison to general-

purpose anonymity networks. There is no overhead for cryptographic operations and pro-

tocol overhead associated with potentially routing messages through multiple relay peers

is minimal.

• Usability: An important goal is usability, which means that the protocol should be easy

to use, work seamlessly with the existing BitTorrent architecture, and offer performance

that is comparable to – or better than – general-purpose anonymous networking protocols

such as Tor. Performance is considered to be fundamental to the system’s adoption and

usability, since end users will be unlikely to use BitBlender if other systems such as Tor

provide better performance.

• Plausible deniability: The protocol provides plausible deniability for peers that are listed

by the tracker for a particular torrent. This is achieved by introducing relay peers that

do not initiate file downloads or uploads, but simply proxy requests on behalf of other

peers. By introducing relay peers, it is no longer the case that every peer in the tracker

list is actively initiating uploads or downloads. An adversary must now engage in more

sophisticated and potentially error-prone traffic analysis techniques to determine the true

initiators. A detailed discussion of such traffic analysis attacks is provided in Section 6.6.3.



154

• Tunable anonymity: It is well-known that there is always a trade-off between the

anonymity that a system can provide and its performance. BitBlender allows the trade-off

between performance and anonymity to be made by tuning a system parameter, specifically

the number of relay peers participating relative to the number of normal peers. This is an

important feature, since some torrents may be more sensitive than others.

6.4.2 Threat Model

We assume a non-global adversary that can participate in the BitBlender protocol as a

colluding fraction of the total peers (either relay or normal). This implies that the adversary can

see the traffic flowing through the subset of the peers that it controls. In addition, the adversary can

monitor the tracker list to see which other peers are participating in the torrent. This threat model

is the same as that which is assumed in other low-latency anonymity networks [80,103,116,189,190].

We further assume that the adversary cannot passively monitor arbitrary links between peers in

the network.

6.5 The BitBlender Protocol

Building upon the notion of anonymity provided by Crowds, we present BitBlender, an

anonymity layer for BitTorrent. Before giving a high-level overview of the protocol, it is necessary

to define each component. As in traditional BitTorrent, there are peer nodes that wish to share

content. We introduce relay peers as peers that do not initiate downloads or uploads, but simply

proxy traffic on behalf of normal BitTorrent peers. Relay peers and anonymous torrents are or-

ganized by an entity called a blender, which could be a single directory server, a set of directory

server replicas, or a DHT.

The protocol proceeds as follows: In order to attract relay peers, the tracker for an anonymous

torrent contacts the blender and requests that relay peers join the torrent with a certain probability.

Given the degree of anonymity desired, the tracker asks each relay peer to probabilistically join its

torrent.



155

(n,t)

Relay Peer

Normal Peer

Figure 6.4: The BitBlender protocol system architecture. The protocol proceeds as follows: (1) A
relay peer joins the blender; (2) The tracker requests relay peers; and (3) Relay peers probabilisti-
cally join the torrent. A piece request through two relay peers is shown (the path length is three
hops).

Once the relay peers have joined the torrent, they proceed by transparently accepting piece

requests and forwarding them to another member of the torrent. This peer may, in fact, be another

relay peer, or it may be a real peer participating in the file transfer. Replies are also transparently

forwarded in the same manner along the same relay path. Thus, an ad-hoc relay network is

created, where the path lengths are somewhat non-deterministic. The relay peers could appear to

be seeders, or they could advertise only a subset of the pieces for a particular file. The protocol’s

system architecture is described pictorially in Figure 6.4.

6.5.1 Relay Peer Joining

Let N be the set of peers participating in an anonymous torrent and M be the set of relay

peers participating in the anonymous torrent such that M ∩ N = ∅. The set of all relay peers



156

listed by the blender is B, such that M ⊆ B. To establish an anonymous torrent, it is necessary

that the tracker request a subset of the relay peers to join the anonymous torrent. The request

sent by the tracker to the blender consists of the tuple (n, t), where n is the number of relay peers

requested and t is a unique identifier for the tracker (such as a URI). Upon receipt of this message,

the blender must calculate a join probability p, based upon the number of nodes requested and the

size of the relay peer set, where p = n
|B| . This enables the blender to remain agnostic about which

relay peers join the torrent.

Each bi ∈ B chooses a pseudorandom number r ∈ R subject to 0 ≤ r ≤ 1 and joins the

torrent identified by t iff r ≤ p. On average, the requested number of relay peers n will join the

anonymous torrent.

6.5.2 Anonymity Layer

In order to provide an anonymity layer, the normal peers simply make requests as in the

traditional BitTorrent protocol; however, if a relay peer is requested for a piece, the original request

is forwarded to another peer, potentially another relay peer.

An ad-hoc relay network is constructed in this manner, where the path lengths are proba-

bilistically influenced by the concentration of relay peers to real peers in the torrent. As the piece

request reaches a real peer, it fulfills the request by sending the requested piece back through the

chain of relay peers to the original requesting peer. A certain degree of anonymity is achieved since

it is difficult to prove which peers in the torrent are relay peers and which are real peers.

6.5.3 Discussion

BitBlender is a low-overhead, usable and inter-operable anonymity layer for BitTorrent that

provides a dynamically tunable level of plausible deniability. Plausible deniability is achieved by

adding relay peers, since it is no longer trivial to infer the set of peers participating in a particular

torrent simply by inspecting the peer list maintained by the tracker.



157

It is important that relay peers not only appear in the tracker list, but also forward requests

and replies. If an adversary participates in the protocol, it would be relatively easy to determine

which peers are actively participating in the torrent and which do not issue piece requests or replies.

Thus, in order to provide a higher degree of anonymity, it is essential that the relay peers appear

to be actively participating.

By allowing the tracker to explicitly specify the number of relay peers that should join, this

allows individual torrents to have a tunable anonymity parameter. The more relay peers that

join a torrent, the more difficult it would be for an adversary to determine the true set of peers

participating in the transfer of a torrent.

BitBlender is fully inter-operable with the existing BitTorrent protocol. Peers that wish to

obtain a degree of anonymity may participate in BitBlender; however, those peers that do not

desire anonymity may still participate in the torrent. In this case, they would be easily identified as

normal peers, since they do not appear in the blender. Since inter-operability is a design goal, we

do not provide any confidentiality or access control mechanisms. Such a layer would disallow non-

BitBlender peers from participating in the torrent. We do, however, explore data confidentiality

and access control as an extension in Section 6.8.

BitBlender’s ability to provide an anonymity layer without the use of expensive cryptographic

operations is unique when compared to previous mix and onion routing-based anonymity systems.

BitTorrent is a protocol whose content does not typically leak personal information like HTTP or

instant messaging protocols [48,81]. Thus, it is not essential to provide strong data confidentiality,

since the contents of the torrent are easily accessible to anyone.

Finally, there are several considerations that must be weighed when designing the blender.

If the blender is a single centralized directory server, it becomes a single point of failure in the

system and is open to denial of service (DoS) attacks. One solution may be to simply replicate

the blender’s database throughout the network and employ a consensus technique to issue queries.

This is more fault-tolerant, but is susceptible to Byzantine faults [146]. Finally, the blender may

exist as a service accessible via a distributed hash table (DHT). In this case, the blender is fully



158

distributed; however, simple DHT schemes and other gossip protocols can be targeted with Eclipse

attacks [209]. Designing a distributed and secure directory service is a challenging problem. For

the sake of simplicity, we assume a blender based upon a single centralized directory server.

6.6 Protocol Analysis

In this section, we analyze BitBlender in terms of expected path lengths, a comparison to

Tor, and the potential for traffic analysis attacks.

6.6.1 Expected Path Length

Since the protocol forwards requests and replies in a probabilistic fashion dependent upon

the number of relay peers participating, we present an analysis of the expected path length. For

simplicity, we assume that peers are chosen for piece requests uniformly at random from the set of

all participating peers. Formally, let N be the set of peers (both relay and normal) associated with

an anonymous torrent; the probability of choosing an arbitrary peer pi ∈ N is 1/|N |.

Let M ⊆ N be the set of relay peers participating in the torrent and P ⊆ N be the set of

normal peers subject to M ∩ P = ∅ and |M | + |P | = |N |. The path length l for a piece request

from peer pi ∈ P through relay peers Ml ⊆ M to pj ∈ P , the peer satisfying the piece request,

is dependent upon the ratio of relay peers to total peers in a torrent. This ratio is defined as

r = |M |/|N |. Thus, the expected path length E[l] is defined as an infinite geometric series:

E[l] =
∞

∑

i=0

ri = 1 + r + r2 + r3+· · ·+r∞ =
1

1 − r
(6.1)

subject to 0 ≤ r < 1.

The expected path length is plotted as a function of the ratio of relay peers to total peers in

a particular anonymous torrent in Figure 6.5. When the ratio of relay peers to total peers is 0, the

expected path length is 1.0. There is no relay overhead, since the peers are communicating directly

(i.e., Ml = ∅). When the relay peers are 1/4 of the total peers, the expected path length is 1.33,



159

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Ratio of mix peers to total peers (r)

E
xp

ec
te

d 
pa

th
 le

ng
th

 (
l)

Figure 6.5: The expected path length (l) plotted as a function of the ratio of relay peers to total
peers (r)

as the relay peers rise to 1/2 of the torrent, the expected path length is 2.0, and as the relay peers

out number total peers as 3/4 of the torrent, the expected path length is 4.0 hops.

6.6.2 Comparison to Tor

As stated in Section 6.5, BitBlender relies on the formation of ad-hoc paths to relay requests

and replies. On the other hand, Tor establishes source-routed circuits by choosing a set of precisely

three Tor routers (by default) and transporting TCP traffic through these routers using a layered

encrypted scheme before the traffic reaches its final destination. By building source-routed circuits,

the protocol ensures a path length of precisely four hops from the initiating client to the destination

server. This provides relatively strong anonymity properties at the cost of lower throughput and

higher latency on average. BitBlender offers a lower expected path length for anonymous torrents



160

in which relay peers constitute less than 3/4 of the total peers participating in the file transfer.

In addition to the relatively high path length, Tor incurs additional protocol overhead to

establish these circuits. This consists of layered encryption applied to the circuit-building messages

and data packets in a fashion based on onion routing [122]. These circuit building messages must

be sent whenever the client chooses to build a new circuit.

Finally, since all traffic is routed through potentially malicious Tor routers, strong confiden-

tiality must be ensured to protect the traffic from local eavesdroppers. However, strictly speaking,

the final Tor router that forwards the traffic to the destination server removes the final layer of

encryption and can examine a user’s payload.

BitBlender is unique in its ability to provide an anonymity service with minimal protocol

overhead. Since content is publicly available and specific to each torrent, it is not a strict re-

quirement that BitBlender provide confidentiality and access control (although we do provide these

mechanisms as an extension to the protocol in Section 6.8.1).

6.6.3 Security Analysis

Recall that the primary threat model that this protocol should protect against is that of a

non-global adversary that participates in the protocol but cannot monitor arbitrary links. Within

this model, there exist attacks through which an adversary may gain information about users by

recording traffic that it observes during its participation. A näıve attacker may attempt to request

pieces through a peer to determine if they are, in fact, a normal peer. This simple attack would be

unsuccessful, since relay peers and normal peers both appear to issue and fulfill piece requests.

More intelligent strategies could potentially gain information about the set of real peers.

Over time, if an adversary observes that a peer makes a request for the same pieces multiple

times, they may be identified as a potential relay [235]. To mitigate this type of attack, normal

peers can issue the same piece requests multiple times in a non-deterministic fashion to appear

indistinguishable from the relay peers. This technique can be regarded as a form of cover traffic,

which is a well-studied traffic analysis mitigation strategy within the context of mix networks.



161

Additionally, relay peers could cache previously requested pieces, and thereby exhibit more normal

(and less distinguishable) behavior. Additional traffic analysis countermeasures are provided in

Section 6.8.2.

In addition, Reiter and Rubin identify a set of timing attacks in which an intermediate node

(i.e., a relay peer) can determine if the previous node on the path is the initiator of a request

based upon an analysis of the time that elapses until the request is fulfilled [189]. If the time is

sufficiently small, then the intermediate node can conclude with a certain level of confidence that

the preceding node is the initiator. This is an instance of what Wright et al. call the predecessor

attack [236]. BitBlender, like Crowds, is vulnerable to the predecessor attack. To address this

threat, we propose that random delays and selective caching mechanisms be applied to perturb

the timing of piece requests and responses (see Sections 6.8.2 and 6.8.3 for a discussion of these

techniques). BitBlender’s key accomplishment is that an adversary cannot determine which peers

are sharing the file simply by examining the tracker; the adversary must now expend more resources

and conduct traffic analysis.

6.7 Performance Analysis

In this section, we provide an analysis of the expected performance overhead for the Bit-

Blender protocol in terms of download time as the number of relay peers varies. We also provide

a performance comparison to BitTorrent tunneled over the Tor network.

6.7.1 Experimental Setup

In order to quantify the protocol’s performance overhead, we implemented BitBlender’s re-

lay peers using the Enhanced ctorrent BitTorrent client [15]. To ensure that the performance

evaluation is conducted in a realistic environment, we perform experiments using nodes from the

PlanetLab testbed [177]. In these experiments, there are precisely three seeders, one centralized

tracker hosting the torrent metafile for a 1 MiB file, and 20 normal peers actively sharing the file.

The file is distributed in 1 KiB pieces. We emulate resource-constrained peers, such as those behind



162

25
30

35
40

Ratio of relay peers to normal peers

M
ea

n 
do

w
nl

oa
d 

tim
e 

(s
)

0.00 0.25 0.50 0.75 1.00

BitBlender Performance Evaluation

Figure 6.6: Mean download time with 95% confidence intervals as a function of the ratio of relay
peers to normal peers

an asymmetric residential cable modem link. All peers are limited to 1 MiB/s for downloads and

256 KiB/s for uploads. To understand the effect of introducing relay peers into the network, we

conduct experiments by adding 5, 10, 15, and 20 relay peers to the network. Each experiment is

repeated three times to compute statistics.

In order to quantify the performance improvement that BitBlender offers, we provide a per-

formance evaluation of a popular method for sharing files anonymously: BitTorrent run over the

Tor network. In this experiment, there are 20 seeders and a single peer using the Azureus/Vuze

BitTorrent client [8] tunneled over Tor version 0.2.0.30 (from August 2008). The peers share the

same 1 MiB file and are rate-limited as described above. This experiment is repeated ten times.



163

6.7.2 Experimental Results

We first analyze BitBlender’s performance in terms of the expected download time as the

ratio of relay peers to normal peers varies. We next compare BitBlender’s expected download times

to that of BitTorrent over the Tor network.

6.7.2.1 Adding Relay Peers

As shown in Figure 6.6, the mean download time across all 20 peers steadily increases with

the number of relay peers participating in the anonymous torrent. As a baseline, when no relay

peers participate, peers download the file in approximately 27.9 seconds on average. In the worst

case when the ratio of relay peers to normal peers is 1.0, the mean download time is about 36.7

seconds. Note that the download time increases only minimally as more relay peers are added.

Since BitTorrent is by its nature a swarming protocol, the performance degradation introduced

by having more relay peers participate is partially masked by BitTorrent’s tendency to download

and upload pieces from multiple peers simultaneously. Thus, the protocol offers reasonably high

performance even as the ratio of relay peers to normal peer is relatively high.

6.7.2.2 Comparison to Tor

Over the course of the ten experiments using Tor, the mean download time is 215.1 seconds

with a 95% confidence interval of 199.8–230.4 seconds. Not surprisingly, the expected download

time using Tor for anonymity is significantly higher than BitBlender, even when the ratio of relay

peers to normal peers is 1.0.

6.8 Protocol Extensions

Having presented the basic BitBlender protocol and analysis, we now focus on optional ex-

tensions to strengthen the anonymity and increase the performance.



164

6.8.1 Confidentiality and Access Control

While the attack model assumes that an adversary cannot monitor arbitrary links, it might

be the case that an ISP or set of ISPs collude with the adversary. In this case, a confidentiality

and access control mechanism would offer an increased level of privacy and anonymity. To this

end, we present an additional confidentiality and access control layer. In addition to its role as a

directory for relay peers, the blender should also sign public keys for both relay and normal peers

as a trusted authority. This public key infrastructure (PKI) can be used by peers to authenticate

each other and to restrict access to the content in the torrent. Once authenticated, peers can

establish encrypted tunnels using a protocol such as Transport Layer Security (TLS) to protect the

content of the torrent. This link encryption would transform messages as they enter one hop and

are forwarded to the next hop along multiple hop chains such that it is more difficult to link them.

6.8.2 Traffic Analysis Countermeasures

As previously described, an adversary may attempt to gain information about the peers

through traffic analysis techniques. A group of colluding peers could monitor the piece requests

and look for anomalous requests, such as multiple piece requests from the same peer. Also, malicious

relay peers may issue requests for pieces and determine if those pieces are subsequently requested

from another colluding peer. Using a timing correlation attack, it could be possible to identify some

of the relay peers by using information related to the timing of the requests. A possible solution to

this attack would be introduce intentional random delays as piece requests are forwarded. However,

this would have a negative impact upon the system’s performance.

Another defense against traffic analysis is to note that these colluding peers will typically

have a limited number of IP addresses and will exhibit behaviors that deviate from standard peers

and relay peers. If peers could share information in a privacy preserving manner, then they may

be able to detect peers performing traffic analysis attacks and blacklist them from the torrent. We



165

encourage future work aimed at addressing traffic analysis attacks in BitBlender and other privacy

enhancing systems.

6.8.3 Selective Caching

One technique that may mitigate an adversary’s ability to conduct traffic analysis and simul-

taneously improve performance is the use of selective caching. As relay peers proxy requests, they

could cache pieces in main memory as they are forwarded to the requester. As a consequence, the

next time that a request is received for a piece that is cached, the relay peer could directly reply

with the piece, rather than making another redundant request. This will reduce the expected path

lengths for requests of pieces that reside in the relay’s cache. Additionally, traffic analysis attempts

may be frustrated, since the relay peers now behave as if they possess the requested piece. Using

a selective caching policy, the expected path length presented in Section 6.6 becomes an upper

bound. However, introducing a selective caching mechanism within an anonymity network exposes

a variety of legal questions. In the next section, we provide a brief discussion of the potential legal

liabilities that BitBlender (or any currently deployed anonymity network) presents.

6.9 Legal Issues

The success of BitBlender, or of any anonymity network, is dependent on the legality of

operating an open relay. Anonymous networks can be used to enhance online privacy, enable free

speech, and protect human rights; however, they can also be used to hide the identities of people

engaged in illegal activities. Operators of relay nodes in networks such as Tor are sometimes accused

of preforming illegal activities, since they appear to originate at the relay node [158]. Even though

operators of these relay nodes are not directly causing harm, most Western countries have the legal

notion of indirect liability, where one party can be held responsible for the actions of another party.

There are two common categories of indirect liability – vicarious liability and contributory liability.

Vicarious liability arises when a third party has the ability, duty, or right to control the

actions of another party. The main factors for a third party to be held vicariously liable are that



166

they either enable or benefit from these actions. For example, if a bartender serves alcohol to

a minor, the bar owner can be held liable for the actions of the bartender. Another common

example is that parents or legal guardians can be liable for the wrong-doings of minors. However,

phone companies are normally not liable for prank calls placed by their customers. It is unclear

if the protection granted to phone companies also applies to Internet Service Providers (ISPs).

It is equally unclear if operators of relay nodes in anonymizing multi-hop networks can be held

vicariously liable for the actions of other users. However, United States law has a provision that

makes caching and retransmission of unmodified cached files legal [1]. The law was upheld when

Google’s caching policy was challenged [17].

Contributory liability occurs when a third party has induced or has reasonable knowledge of

wrong-doing and fails to act to prevent these actions. An example of when a third party can be found

contributorily liable is if an ISP receives notice that there is copyright infringing material present

on their network and does not remove the infringing material. It is unclear what responsibility

operators of relay nodes have for removing copyright infringing material that is transmitted through

their nodes. It is clear from the United States Supreme Court ruling against Grokster [27] that the

operators of an anonymity network are more likely to be found liable for inducing illegal activity if

they advertise their tools as mechanisms to commit infringement, although many other factors are

also important. This means that it is essential that anonymizing multi-hop networks be advertised

as tools to enhance privacy and enable anonymous speech. Further discussion of the legal and

policy implications of P2P file sharing and anonymiziation can be found in Bauer et al. [54].

6.10 Summary

We present BitBlender, an efficient protocol that aims to offer a usable and inter-operable

anonymity layer for BitTorrent. In contrast to several existing privacy enhancing systems that

provide anonymity for general-purpose traffic, we explore the design of a protocol-specific service

that does not rely upon cryptography to achieve its anonymity properties. We show that such



167

a design offers increased performance and adequate anonymity properties for the purpose of file

transfers.

BitBlender builds an ad-hoc relay network that offers plausible deniability for the initiators

of piece requests. We argue that this degree of anonymity is sufficient to obscure the identities of

peers participating in a file download through BitTorrent. In addition, the protocol has the ability

to dynamically adjust the degree of anonymity provided for the torrent based upon the adjustment

of system parameters, specifically the number of relay peers present in an anonymous torrent.

As future work, we propose studies aimed at exploring the feasibility of confidentiality and

access control mechanisms within this framework. Also, additional work is necessary to adequately

study traffic analysis attacks and provide practical solutions. Finally, performance improvements

through the use of various caching policies should be explored further. Systems that offer a level of

anonymity that is appropriate for the degree of anonymity required are an intriguing concept and

deserve additional research.



Chapter 7

Improving Congestion and Flow Control in Tor

Tor [103] is a distributed circuit-switching overlay network consisting of over two-thousand

volunteer-run Tor routers operating around the world. Tor clients achieve anonymity by source-

routing their traffic through three Tor routers using onion routing [122].

Context. Conventional wisdom dictates that the level of anonymity provided by Tor increases

as its user base grows [102]. Another important, but often overlooked, benefit of a larger user

base is that it reduces suspicion placed on users simply because they use Tor. Today, there are

an estimated 150 to 250 thousand daily Tor users [151]. However, this estimate has not increased

significantly since 2008. One of the most significant road blocks to Tor adoption is its excessively

high and variable delays, which inhibit interactive applications such as web browsing.

Many prior studies have diagnosed a variety of causes of this high latency (see Dingledine

and Murdoch [105] for a concise summary). Most of these studies have noted that the queuing

delays often dominate the network latencies of routing packets through the three routers. These

high queuing delays are, in part, caused by bandwidth bottlenecks that exist along a client’s chosen

circuit. As high-bandwidth routers forward traffic to lower-bandwidth downstream routers, the

high-bandwidth router may be able to read data faster than it can write it. Because Tor currently

has no explicit signaling mechanism to notify senders of this congestion, packets must be queued

along the circuit, introducing potentially long and unnecessary delays for clients. While recent

proposals seek to re-engineer Tor’s transport design, in part, to improve its ability to handle

congestion [142,187,227], these proposals face significant deployment challenges.



169

Improving congestion and flow control. To reduce the delays introduced by uncontrolled

congestion in Tor, we design, implement, and evaluate two classes of congestion and flow control.

First, we leverage Tor’s existing end-to-end window-based flow control framework and evaluate

the performance benefits of using small fixed-size circuit windows, reducing the amount of data in

flight that may contribute to congestion. We also design and implement a dynamic window resizing

algorithm that uses increases in end-to-end circuit round-trip time as an implicit signal of incipient

congestion. Similar solutions are being considered for adoption in Tor to help relieve congestion [98],

and we offer a critical analysis to help inform the discussion. Window-based solutions are appealing,

since they require modifications only to exit routers.

Second, we offer a fresh approach to congestion and flow control inspired by standard tech-

niques from Asynchronous Transfer Mode (ATM) networks. We adapt an ATM-style per-link

credit-based flow control algorithm called N23 [145] to Tor that allows Tor routers to explicitly

bound their queues and signal congestion via back-pressure, reducing unnecessary delays and mem-

ory consumption. While N23 offers these benefits over the window-based approaches, its road to

deployment may be slower, as it may require all routers along a circuit to upgrade.

Evaluation. We conduct a holistic experimental performance evaluation of the proposed algo-

rithms using the ModelNet network emulation platform [226] with realistic traffic models. We show

that the window-based approaches offer up to 65% faster web page response times relative to Tor’s

current design. However, they offer poor flow control, causing bandwidth under-utilization and

ultimately resulting in poor download time. In contrast, our N23 experiments show that delay-

sensitive web clients experience up to 65% faster web page responses and a 32% decrease in web

page load times compared to Tor’s current design.

7.1 Tor’s Approach to Congestion and Flow Control

Since the Tor network consists of volunteer-run routers from across the world, these routers

have varying and often limited amounts of bandwidth available to relay Tor traffic. Consequently,

as clients choose their circuits, some routers have large amounts of bandwidth to offer, while



170

FIFO Circuit Queues

I

I

I

I

TCP

TCP

TCP

TCP

TCP Kernel 

Receive Buffers

Per-Connection

Input Buffers

TCP

TCP

TCP

TCP

TCP Kernel 

Send Buffers

O

O

O

O

Per-Connection

32 KB Output Buffers

Tor Router

I

I

I

I

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

O

O

O

O

I

I

I

I

TCP

TCP

TCP

TCP

TCP

TCP

TCP

TCP

O

O

O

O

Figure 7.1: A Tor router’s queuing architecture

others may be bandwidth bottlenecks. In order for Tor to offer the highest degree of performance

possible, it is necessary to have effective mechanisms in place to ensure steady flow control, while

also detecting and controlling congestion. In this section, we discuss the many features that directly

or indirectly impact congestion and flow control in Tor.

7.1.1 Congestion and Flow Control Mechanisms

Pairwise TCP. All packets sent between Tor routers are guaranteed to be delivered reliably and

in-order by using TCP transport. As a result of using TCP, communications between routers can

be protected with TLS link encryption. However, several circuits may be multiplexed over the same

TCP connections, which could result in an unfair application of TCP’s congestion control [187].

Tiered output buffers. Each Tor router’s internal queuing architecture is illustrated in Fig-

ure 7.1. When a Tor router receives a cell on one of its TCP connections, the cell is first copied from

the connection’s receive kernel buffer into an application-layer input buffer to be decrypted. Next,

the cell is pushed onto a FIFO circuit queue for the cell’s respective circuit. For each outgoing TCP

connection, a FIFO output buffer is maintained. The output buffer has a fixed size of 32 KiB, while



171

the circuit queue has no explicit bound, but the circuit window size restricts how many cells may

be in flight (described below). Since multiple circuits are often multiplexed over the same TCP

connection, when there is space available in the outgoing connection’s respective output buffer, the

router must choose which circuits’ cells to copy onto the output buffer. Initially, cells were chosen

by round-robin selection across circuits. Recently, circuit prioritization has been proposed to give

shorter, burstier circuits that likely correspond to interactive traffic priority over long-lived, bulk

circuits [221].

Circuit and stream windows. Tor uses two layers of end-to-end window-based flow control

between the exit router and the client to ensure steady flow control. First, a circuit window restricts

how many cells may be in flight per circuit. By default, Tor uses a fixed 500 KiB (1000 cell) circuit

window. For every 50 KiB (100 cells) received, an acknowledgment cell called a SENDME is sent,

informing the sender that they may forward another 100 cells to the receiver.1

Within each circuit window is a stream window of 250 KiB (500 cells) to provide flow control

(or fairness) within a circuit. The receiver replies with a stream-level SENDME for every 25 KiB (50

cells) received. On receiving a stream-level SENDME the sender may forward another 50 cells.

Both the stream-level and circuit-level windows are relatively large and static. To illustrate

how this can degrade performance, consider the following scenario. Suppose a client downloads a file

through a circuit consisting of 10 MiB/s entry and exit routers and a 128 KiB/s middle router. Since

the exit router can read data from the destination server faster than it can write it to its outgoing

connection with the middle router, and the reliable TCP semantics preclude routers from dropping

cells to signal congestion, the exit router must buffer up to one full circuit window (500 KiB) worth

of cells. Furthermore, as shown in Figure 7.2, these cells often sit idly for several seconds while the

buffer is slowly emptied as SENDME cells are received. Since cells may travel down a circuit in large

groups of up to 500 KiB followed by periods of silence while the exit router waits for SENDME replies,

Tor’s window-based flow control does not always keep a steady flow of cells in flight.

1 Due to a bug, clients running Tor 0.0.0–0.2.1.19 erroneously reply with circuit-level SENDME cells after receiving
101 cells (rather than 100 cells).



172

0 100 300 500

0.
0

1.
0

2.
0

3.
0

Cell number

T
im

e 
in

 c
irc

ui
t q

ue
ue

 (
s)

Figure 7.2: The exit router’s circuit queue delays for a 300 KiB download

Token bucket rate limiting. In order to allow routers to set limits on the amount of bandwidth

they wish to devote to transiting Tor traffic, Tor offers token bucket rate limiting. Briefly, a router

starts with a fixed amount of tokens, and decrements their token count as cells are sent or received.

When the router’s token count reaches zero, the router must wait to send or receive until the tokens

are refilled. To reduce Tor’s CPU utilization, tokens are refilled only once per second. It has been

previously observed that refilling the tokens so infrequently contributes in part to Tor’s overall

delays [92].

7.1.2 Alternate Proposals to Reduce Congestion

There have been several recent proposals aimed specifically at reducing Tor’s congestion.

First, Tor has incorporated adaptive circuit-building timeouts that measure the time it takes to

build a circuit, and eliminate circuits that take an excessively long time to construct [77]. The

intuition is that circuits that build slowly are highly congested, and would in turn offer the user



173

poor performance. While this approach likely improves the users’ quality of service in some cases,

it does not help to relieve congestion that may occur at one or more of the routers on a circuit after

the circuit has been constructed.

In addition, user-level rate limiting has been proposed to throttle over-active or bulk down-

loading users. Here, the idea is to reduce the overall bandwidth consumption by bulk downloaders

by using per-connection token bucket rate limiting at the entry guard. Early experiments indi-

cate faster downloads for small file downloaders (the majority of Tor users), while harming bulk

downloaders [99].

7.2 Improving Tor’s Congestion and Flow Control

Our primary goal is to improve Tor’s performance, specifically by better understanding and

improving Tor’s congestion and flow control. We consider two broad classes of solutions. First,

we wish to understand how much improvement is possible simply by adjusting Tor’s existing end-

to-end window-based flow control mechanisms to reduce the amount of data in flight, and thereby

mitigate congestion. We also evaluate an end-to-end congestion control technique that enables exit

Tor routers to infer incipient congestion by regarding increases in end-to-end round-trip time as

a congestion signal. Second, we consider a fresh approach to congestion and flow control in Tor,

eliminating Tor’s end-to-end window-based flow control entirely, and replacing it with ATM-style,

per-link flow control that caps routers’ queue lengths and applies back-pressure to upstream routers

to signal congestion.

7.2.1 Improving Tor’s Existing End-to-end Flow Control

We first consider whether adjusting Tor’s current window-based flow control can offer sig-

nificant performance improvements. Keeping Tor’s window-based mechanisms is appealing, as

solutions based on Tor’s existing flow control framework may be deployed immediately, requiring

modifications only to the exit routers, not clients or non-exit routers.



174

Small fixed-size circuit windows. The smallest circuit window size possible without requiring

both senders and receivers to upgrade is 50 KiB (100 cells, or one circuit-level SENDME interval). We

evaluate how fixed 50 KiB circuit windows impact clients’ performance.2

Dynamic circuit windows. We next consider an algorithm that initially starts with a small,

fixed circuit-window and dynamically increases the window size (e.g., amount of unacknowledged

data allowed to be in flight) in response to positive end-to-end latency feedback. Inspired by

latency-informed congestion control techniques for IP networks [69, 229], we propose an algorithm

that uses increases in perceived end-to-end circuit round-trip time (RTT) as a signal of incipient

congestion.

The algorithm works as follows. Initially, each circuit’s window size starts at 100 cells. First,

the sender calculates the circuit’s end-to-end RTT using the circuit-level SENDME cells, maintaining

the minimum RTT (rttmin) and maximum RTT (rttmax) observed for each circuit. We note that

rttmin is an approximation of the base RTT, where there is little or no congestion on the circuit.

Next, since RTT feedback is available for every 100 cells,3 the circuit window size is adjusted quickly

using an additive increase, multiplicative decrease (AIMD) window scaling mechanism based on

whether the current RTT measurement (rtt) is less than the threshold T , defined in Equation 7.1.

This threshold defines the circuit’s tolerance to perceived congestion.

T = (1 − α) × rttmin + α × rttmax (7.1)

Choosing a small α value ensures that the threshold is close to the base RTT, and any increases

beyond the threshold implies the presence of congestion along the circuit.4 For each RTT mea-

surement, e.g., each received circuit-level SENDME , the circuit window size (in cells) is adjusted

according to Equation 7.2.

2 Due to the aforementioned bug, in practice, the window size should be 101 cells.
3 Similar to the 50KiB windows, SENDME cells may be available after 101 cells.
4 For our experiments, we use α = 0.25.



175

new window(rtt) =



















old window + 100 if rtt ≤ T

⌊old window/2⌋ otherwise

(7.2)

Finally, we explicitly cap the minimum and maximum circuit window sizes at 100 and 1000 cells,

respectively.5

7.2.2 ATM-style Congestion and Flow Control for Tor

Since Tor’s flow control works at the circuit’s edges–the client and the exit router–it may

require up to one full circuit round-trip time to react to perceived congestion along the circuit. In

addition, window-based solutions may not offer optimal flow control, as cells are often forwarded in

groups of up to one full circuit-window in size, following by periods of silence on the circuit while

acknowledgments are in flight. To address these problems, we apply an Asynchronous Transfer

Mode (ATM)-style per-link flow control to ensure a steady flow of cells while reducing congestion

at the intermediate switches. ATM is a circuit-switching data link layer that is widely used by the

telecommunications industry to relay real-time voice traffic [178].

While Tor and ATM certainly have different purposes and goals, they have many similarities.

First, both Tor and ATM are connection-oriented, in the sense that before higher-level applications

can send or receive data, virtual circuits must be constructed across multiple routers or switches

through a signaling mechanism. Second, both Tor and ATM encode data in fixed-sized cells, rather

than variable length packets as in IP networks. While ATM networks drop cells in the event of a

buffer overflow at an intermediate switch, due to Tor’s use of TCP between routers, Tor cannot drop

cells because there is no re-transmission mechanism. Similarly, ATM networks do not typically re-

transmit cells end-to-end; to do so, would incur an end-to-end latency that would have detrimental

effects on the real-time voice traffic being carried. To eliminate the possibility of cell loss, credit-

based flow control approaches explicitly bound the number of cells that can be received at each

5 Note that a selfish Tor client could attempt to increase their circuit window by pre-emptively acknowledging
data segments before they are actually received. Prior work in mitigating similar behavior in selfish TCP receivers
may be applied here [194,203].



176

Downstream Router Upstream Router

Circuit Queue 

(N2+N3 cells)

Circuit Queue

(N2+N3 cells)

Cell counter
     Update 

credit balance

If divisible 

   by N2

Flow control

      cell

Data cellData cell

+1 -1

Figure 7.3: N23 credit-based flow control in Tor

switch by the size of the switch’s buffer [132]. A similar per-link approach that explicitly caps

Tor’s circuit queue sizes could enable better congestion control. Thus, given the many similarities

between Tor and ATM, we propose to adapt a standard per-link ATM-style flow control algorithm

to Tor.

N23 flow control for Tor. Figure 7.3 depicts the N23 scheme that we integrated into Tor, and

it works as follows. First, when a circuit is built, each router along the circuit is assigned an initial

credit balance of N2+N3 cells, where N2 and N3 are system parameters. N2 cells is the available

steady state buffering per circuit, N3 cells is the allowed excess buffering, and the circuit’s queue

length is strictly bounded by N2 + N3 cells. In general, N2 is fixed at the system’s configuration

time, but N3 may change over a circuit’s lifetime.

When a router forwards a cell, it decrements its credit balance by one for that cell’s circuit.

Each router stops forwarding cells if its credit balance reaches zero. Thus, routers’ circuit queues

are bounded by N2 + N3 cells, and congestion is indicated to upstream routers through this back-

pressure. Next, for every N2 cells forwarded, the downstream router sends a flow control cell to

the upstream router that contains credit information reflecting its available circuit queue space.



177

On receiving a flow control cell, the upstream router updates the circuit’s credit balance and may

forward cells only if the credit balance is greater than zero.

Adaptive buffer sizes and congestion control. The algorithm as described assumes a static

N3. We also developed an adaptive algorithm that adjusts the N3 value when there is downstream

congestion, which is detected by monitoring the delay that cells experience in the connection’s

output buffer. When the congestion subsides, N3 can increase again. The value of N3 is updated

periodically and is bounded by a minimum and a maximum value (100 and 500 cells, respectively).

Advantages. The N23 algorithm has two important advantages over Tor’s current flow control.

First, the size of the circuit queue is explicitly capped, and guaranteed to be no more than N2+N3

cells. This also ensures steady flow control, as routers typically have cells available to forward. Tor’s

current flow control algorithm allows the circuit queue of a circuit’s intermediate routers to grow

up to one circuit window in size, which not only wastes memory, but also results in unnecessary

delays due to congestion. In contrast, for typical parameter values (N3 = 500 and N2 = 10), N23

ensures a strict circuit queue bound of 510 cells, while these queues currently can grow up to 1000

cells in length.

The second advantage is that adaptive N3 reacts to congestion within a single link RTT.

When congestion occurs at a router, the preceding router in the circuit will run out of credit and

must stop forwarding until it gets a flow control cell.

7.3 Experiments and Results

To empirically demonstrate the efficacy of our proposed improvements, we offer a whole-

network evaluation of our congestion and flow control algorithms using the ModelNet network

emulation platform [226]. Briefly, ModelNet enables the experimenter to specify realistic network

topologies annotated with bandwidth, delay and other link properties, and run real code on the

emulated network.

Our evaluation focuses on performance metrics that are particularly important to the end-

user’s quality of service. First, we measure time-to-first-byte, which is how long the user must wait



178

OP

OP

OR Web server

10 MiB/s 10 MiB/s

80 ms 80 ms 80 ms
80 ms

128 KiB/s 128 KiB/s

OR OR

Figure 7.4: A simple topology with a middle router bandwidth bottleneck and 80 ms link RTTs

from the time they issue a request for data until they receive the first byte. The time-to-first-byte

is two end-to-end circuit RTTs: one RTT to connect to the destination web server, and a second

RTT to issue a request for data (e.g., HTTP GET) and receive the first byte of data in response.6

Second, we measure overall download time (including time-to-first-byte). For all experiments, we

use the latest development branch of the Tor source code (version 0.2.3.0-alpha-dev).7

7.3.1 Small-scale Experiments

Setup. We emulate the topology depicted in Figure 7.4 on ModelNet where two Tor clients

compete for service on the same set of routers with a bandwidth bottleneck at the middle router.8

The objective of this experiment is to analyze our congestion and flow control proposals in the

presence of congestion. One client downloads 300 KiB files, which roughly correspond to the size

of an average web page [186]. The second client, a bulk downloader, fetches 5 MiB files. To

avoid synchronization, both clients pause for a random amount of time between one and three

seconds, and repeat their downloads. Each experiment concludes after the web client completes

200 downloads. Each client uses the wget web browser and the destination runs the lighthttpd

web server.

6 Note that there is a proposal being considered to eliminate one of these RTTs [120].
7 In our evaluation, we refer to unmodified Tor version 0.2.3.0-alpha-dev as stock Tor, 50 KiB (100 cell) fixed

windows as 50KiB window, the dynamic window scaling algorithm as dynamic window, and the N23 algorithm as
N23.

8 Note that a 128 KiB/s router corresponds to the 65th percentile of routers ranked by observed bandwidth, as
reported by the directory authorities. Thus, it is likely to be chosen fairly often by clients. We additionally used the
iPlane query interface [21] to estimate the pairwise latencies between all Tor routers marked as active and valid.
We estimate that an RTT of 80ms is at the 25%-percentile of all pairwise links between Tor routers. Thus, this is a
fast topology in terms of network latency.



179

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
No Windows

(a) Web client’s time-to-first-byte

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
No Windows

(b) Web client’s download time

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
No Windows

(c) Bulk client’s time-to-first-byte

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n
Stock Tor
No Windows

(d) Bulk client’s download time

Figure 7.5: Bottleneck topology performance comparisons between stock Tor and Tor without any
congestion and flow control

No congestion and flow control. Before we present the performance results for our proposed

congestion and flow control algorithms, we first seek to motivate the need for a layer of congestion

and flow control beyond that which is provided by Tor’s use of pairwise TCP between routers. In

this experiment, we eliminate Tor’s stream and circuit windows and configure the Tor exit router

to ignore all SENDME cells received. This allows the Tor exit router to read from the destination as

quickly as possible, as regulated by the exit router’s TCP connection with the destination. The

exit router subsequently forwards these cells as quickly as possible down the circuit.



180

0 2000 4000 6000 8000 10000 12000

0
10

00
30

00

Cell number

C
irc

ui
t Q

ue
ue

 L
en

gt
h 

(c
el

ls
)

Figure 7.6: Bulk circuit’s circuit queue length at the exit router observed over the course of a
download with no congestion and flow control in a bottleneck topology

We consider clients that disable Tor’s end-to-end window-based congestion and flow control in

the bottleneck topology illustrated in Figure 7.4. Figure 7.5(a) shows that the web client’s web page

response time (or time-to-first-byte) is significantly worse without any congestion and flow control

compared to stock Tor’s window-based mechanisms. At the median, stock Tor has 4.5 seconds of

delay, while Tor without congestion and flow control requires roughly 13 seconds of delay. As even

stock Tor’s delay is unacceptable for delay-sensitive web clients, removing Tor’s windows increases

this delay by nearly three times. Similarly, as shown in Figure 7.5(b), removing Tor’s congestion

and flow control increases total web page load time from a median of 10 seconds with stock Tor

to 19 seconds without windows. To improve fairness when bulk downloaders compete for router

bandwidth with web clients, these results highlight the need for an additional layer of congestion

and flow control beyond that which is provided by Tor’s use of pairwise TCP between routers.

Interestingly, the bulk client’s performance improves when windows are eliminated. The bulk

client’s time-to-first byte is slightly worse without windows (see Figure 7.5(c)), but, as shown in

Figure 7.5(d), the overall download time is improved from roughly 80 seconds at the median as

offered by stock Tor’s to under 60 seconds at the median. However, while bulk clients may benefit

from improved throughput without Tor’s end-to-end windows, in the absence of a mechanism to



181

restrict the amount of data in flight, routers must buffer arbitrarily large amounts of data. For

example, Figure 7.6 shows that a sample circuit’s queue lengths steadily grow over 3 000 cells in

length, which is over 1.4 MiB that must be stored in memory. Clearly, this is an excessive amount

of memory to allocate to a single circuit, and worse, if many such circuits exist, the router may

ultimately exhaust its physical memory.

These results indicate that eliminating Tor’s end-to-end window-based mechanisms improves

throughput, at the cost of high router memory usage (due to unbounded buffering requirements).

Perhaps more importantly, the devastating cost to delay-sensitive web clients in the form of sig-

nificantly increased web page response time and longer web page load time is far too high a price

to pay for better throughput. Furthermore, Tor is targeted at delay-sensitive web users, who use

Tor to browse the web anonymously and/or to resist censorship. Indeed, the majority of real Tor

traffic is interactive web browsing, as we show in Chapter 3. Thus, it is unfair and unwise to harm

their performance while improving performance for bulk downloaders.

End-to-end window-based solutions. We next present the performance results for the window-

based flow control solutions. Figure 7.7(a) shows that the time-to-first-byte for a typical web

client using stock Tor is 4.5 seconds at the median, which is unacceptably high for delay-sensitive,

interactive web users who must incur this delay for each web request. In addition, stock Tor’s

circuit queues fluctuate in length, growing up to 250 cells long, and remaining long for many

seconds, indicating queuing delays, as shown in Figure 7.8(a). Reducing the circuit window size to

50 KiB (e.g., one circuit SENDME interval) offers a median time-to-first-byte of less than 1.5 seconds,

and dynamic windows offer a median time-to-first-byte of two seconds. In Figure 7.7(b), we see

that the web client’s download time is influenced by the high time-to-first-byte, and is roughly 40%

faster with 50 KiB and dynamic windows relative to stock Tor. Also, the circuit queues are smaller

with the 50 KiB and dynamic windows (see Figures 7.8(b) and 7.8(c)).

The bulk client experiences significantly less time-to-first-byte delays (in Figure 7.7(c)) than

the web client using stock Tor. This highlights an inherent unfairness during congestion: web

clients’ traffic is queued behind the bulk traffic and, consequently, delay-sensitive clients must wait



182

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Windows
Dynamic Window

(a) Web client’s time-to-first byte

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Windows
Dynamic Window

(b) Web client’s download time

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Windows
Dynamic Window

(c) Bulk client’s time-to-first-byte

0 20 40 60 80 100 120 140

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n
Stock Tor
50 KiB Windows
Dynamic Window

(d) Bulk client’s download time

Figure 7.7: Performance comparisons for window approaches in a bottleneck topology

0 20 40 60

0
50

10
0

15
0

20
0

25
0

Time (seconds)

C
irc

ui
t Q

ue
ue

 L
en

gt
h

(a) Stock Tor

0 20 40 60 80 100

0
50

10
0

15
0

20
0

25
0

Time (seconds)

C
irc

ui
t Q

ue
ue

 L
en

gt
h

(b) 50 KiB window

0 10 20 30 40 50 60

0
50

10
0

15
0

20
0

25
0

Time (seconds)

C
irc

ui
t Q

ue
ue

 L
en

gt
h

(c) Dynamic window

Figure 7.8: Bulk client’s circuit queues at the exit router over the course of a download



183

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Windows
Dynamic Window

(a) Web client’s download time

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Windows
Dynamic Window

(b) Bulk client’s download time

Figure 7.9: Performance comparisons for window approaches in a non-bottleneck topology

longer than delay-insensitive bulk downloaders to receive their first byte of data. Using a small or

dynamic window reduces this unfairness, since the bound on the number of unacknowledged cells

allowed to be in flight is lower.

However, Figure 7.7(d) indicates that the bulk client’s download actually takes significantly

longer to complete with 50 KiB windows relative to stock Tor. Thus, 50 KiB windows enhance

performance for web clients at the cost of slower downloads for bulk clients. The bulk clients

experience slower downloads because they keep less data in flight and, consequently, must incur

additional round-trip time delays to complete the download. Dynamic windows offer a middle-

ground solution, as they ameliorate this limitation by offering an improvement in download time

for web clients while penalizing bulk clients less than small windows, but bulk clients are still

penalized relative to stock Tor’s performance.

We next consider the same topology shown in Figure 7.4, except we replace the bottleneck

middle router with a 10 MiB/s router. In such a topology, congestion is minimal, as evidenced by

a median time-to-first-byte of 0.75 s for both the web and bulk clients (regardless of the window

size). However, because the 50 KiB and dynamic windows generally keep less data in flight, these

solutions offer slower downloads relative to stock Tor, as shown in Figures 7.9(a) and 7.9(b).



184

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Window
Dynamic Window

(a) Web client’s time-to-first byte

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Window
Dynamic Window

(b) Web client’s download time

0 2 4 6 8 10

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Window
Dynamic Window

(c) Bulk client’s time-to-first-byte

0 20 40 60 80 100 120 140

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n
Stock Tor
50 KiB Window
Dynamic Window

(d) Bulk client’s download time

Figure 7.10: Performance comparisons for window-based congestion and flow control in combination
with circuit scheduling prioritization

To mitigate the unfairness that may exist when bursty web circuits compete with bulk transfer

circuits for router bandwidth, circuit-level prioritization has been proposed [221] to enable routers

to process bursty circuits ahead of bulk circuits. Here, we combine small and dynamic circuit

window with circuit scheduling prioritization and evaluate performance in the bottleneck topology

from Figure 7.4.10 For the web client using stock Tor, the time-to-first-byte is reduced from

4.5 seconds (see Figure 7.7(a)) to 3 seconds, and the time-to-first-byte for 50 KiB and dynamic

10 For this experiment, we set CircuitPriorityHalflifeMsec to 30 seconds, the current value used on the live Tor
network.



185

windows are roughly the same. However, as shown in Figure 7.10(a), roughly 25% of requests

experience no significant improvement when using small or dynamic circuit windows. For these

same requests, stock Tor’s large window allows more data in flight without acknowledgment and,

as shown in Figure 7.10(b), induces faster downloads (compared to Figure 7.7(b)). However, for the

remaining 75%, small and dynamic windows offer faster downloads. The bulk client’s time-to-first-

byte and overall download times are not significantly altered by the circuit prioritization, as shown

in Figures 7.10(c) and 7.10(d), relative to non-prioritized circuit scheduling (see Figures 7.7(c)

and 7.7(d)). This is consistent with the claims made by Tang and Goldberg [221] that priority-

based circuit scheduling does not significantly effect bulk clients’ performance.

Despite the improvements in time-to-first-byte in the presence of bandwidth bottlenecks, we

find that smaller circuit windows tend to under-utilize the available bandwidth and the dynamic

window scaling algorithm is unable to adjust the window size fast enough, as it receives congestion

feedback infrequently (only every 100 cells). Also, even in the non-bottleneck topology, the 50 KiB

window web client’s time-to-first-byte is higher than the optimal delay from two circuit RTTs,

which is 0.64 s. Lastly, 50 KiB windows offer worse flow control than Tor’s current design, since

only 50 KiB can be in flight, and the exit router must wait for a full circuit RTT until more data

can be read and sent down the circuit.

Based on these drawbacks, we conclude that in order to achieve an improvement in both

time-to-first-byte and download speed, it is necessary to re-design Tor’s fundamental congestion

and flow control mechanisms. We next offer an evaluation of per-link congestion and flow control

for Tor.

Per-link congestion and flow control. We first present experiments where we configure N23

with fixed values for both N2 and N3 (static N23 ). Next, we experiment with a dynamic N3 value

that react to network feedback (adaptive N3 ). For these experiments, we disable Tor’s window-

based flow control entirely, so that exit routers simply discard SENDME cells that they receive from

clients. In this section, we present the results of N23 for both the bottleneck and non-bottleneck

topologies.



186

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
N3 = 100, N2 = 10
N3 = 100, N2 = 20
N3 = 70, N2 = 20
Adaptive N3, N2 = 20

(a) Web client’s time-to-first-byte

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
N3 = 100, N2 = 10
N3 = 100, N2 = 20
N3 = 70, N2 = 20
Adaptive N3, N2 = 20

(b) Web client’s download time

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
N3 = 100, N2 = 10
N3 = 100, N2 = 20
N3 = 70, N2 = 20
Adaptive N3, N2 = 20

(c) Bulk client’s time-to-first-byte

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n
Stock Tor
N3 = 100, N2 = 10
N3 = 100, N2 = 20
N3 = 70, N2 = 20
Adaptive N3, N2 = 20

(d) Bulk client’s download time

Figure 7.11: Performance comparisons for Tor and N23 in a bottleneck topology

For bottleneck scenarios, Figures 7.11(a) and 7.11(b) show that smaller values of N3 improve

both the download time and time-to-first-byte for the bursty web traffic. For example, the web

browsing client experiences a 20% decrease in download time for 80% of the requests when N23 is

used. Also, the web client’s time-to-first-byte is only two seconds for 90% of the requests, whereas

for the stock Tor client, 80% of web requests take more than four seconds to receive the first byte.

Figure 7.13 shows that the circuit queue length is upper bounded by N2 + N3 = 90 cells.

In the non-bottleneck topology, we see in Figure 7.12(b) that N23 provides a substantial

improvement in download time for the 5 MiB downloads compared to stock Tor only for higher



187

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
N3 = 500, N2 = 20
N3 = 100, N2 = 20
Adaptive N3, N2 = 20

(a) Web client’s download time

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
N3 = 500, N2 = 20
N3 = 100, N2 = 20
Adaptive N3, N2 = 20

(b) Bulk client’s download time

Figure 7.12: Download time comparison for Tor and N23 in a non-bottleneck network

values of N3 — 500 cells, comparable to stock Tor’s stream window size. The graph shows that

there is a 25% decrease in delay for 50% of the bulk downloads when N23 is used. Since the

maximum throughput is bounded by W/RTT , where W is the link’s TCP window size and RTT

is the link’s round-trip time, and since N23’s per-link RTT is significantly smaller than a stock

Tor’s complete circuit RTT, throughput is increased when N23 is used. This improvement suggests

that in non-bottleneck scenarios, bulk traffic data cells are unnecessarily slowed down by Tor’s flow

control at the edges of the circuit. For bursty web traffic, both Tor’s current flow control and N23

have similar performance for fixed and adaptive N3, as shown in Figure 7.12(a). Also, the median

time-to-first-byte is the same for the web and bulk clients at 0.75 s.

To understand how N23 performs with different N2 values, we repeated the bottleneck ex-

periments while varying that parameter. Although a higher value for N2 has the undesirable effect

of enlarging the circuit buffer, it can be seen in Figures 7.11(a) and 7.11(b) that when N3 is fixed

at 100 cells, increasing N2 to 20 cells slightly improves both download time and time-to-first-byte.

It can be observed from Figure 7.11(a) that time-to-first-byte is significantly improved by keeping

a smaller N3 = 70 and a larger N2 = 20. Decreasing N3 to 70 cells makes up for the increase

in the N2 zone of the buffer, which means we gain the benefits of less flow control overhead, and



188

0 50 100 150 200 250

0
50

10
0

15
0

20
0

25
0

Time (seconds)

C
irc

ui
t Q

ue
ue

 L
en

gt
h

Figure 7.13: Circuit queue length with bottleneck: N3 = 70, N2 = 20

the benefits of a small buffer of N2 + N3 = 90 cells. While performance is improved for the web

client, the bulk client’s time-to-first-byte is not affected greatly, as seen in Figure 7.11(c), but its

downloads generally take longer to complete, as we see in Figure 7.11(d). In addition, adaptive N3

offers improved time-to-first-byte and download times for the web client, while slowing downloads

for the bulk client. By N23 restricting the amount of data in flight, the bandwidth consumed

by bulk clients is reduced, improving time-to-first-byte and download time for delay-sensitive web

clients.

Finally, the bandwidth cost associated with the N23 scheme is relatively low. For instance,

with N2 = 10, a flow control cell must be sent by each router on the circuit for every 10 data cells

forwarded, which requires a 10% bandwidth overhead per router. For N2 = 20, a flow control cell

is sent for every 20 data cells, which is only a 5% overhead per router. While this cost is higher

than Tor’s window-based flow control (e.g., one stream-level SENDME for every 50 data cells is only

a 2% overhead per steram and one circuit-level SENDME for every 100 data cells is only 1% overhead



189

per circuit), the cost of N23 is nonetheless modest.

7.3.2 Larger-scale Experiments

Setup. We next evaluate the window-based solutions and N23 with adaptive N3 in a larger network

topology.9 We deploy 20 Tor routers on a random ModelNet topology whose bandwidths are

assigned by sampling from the live Tor network. Each link’s round-trip time is set to 80 ms. Next,

to generate a traffic workload, we run 200 Tor clients. Of these, ten clients are bulk downloaders

who fetch files between 1–5 MiB, pausing for up to two seconds between fetches. The remaining 190

clients are web clients, who download files between 100–500 KiB (typical web page sizes), pausing

for up to 30 seconds between fetches. This proportion of bulk-to-non-bulk clients approximates

the proportion observed on the live Tor network [158]. To isolate the improvements due to our

proposals, circuit-level prioritization is disabled for this experiment.

Results. For web clients, Figure 7.14(a) shows that both the 50 KiB fixed and dynamic windows

still offer improved time-to-first-byte. However, both algorithms perform worse than stock Tor

in terms of overall download time, as shown in Figure 7.14(b). Because smaller windows provide

less throughput than larger windows when there is no bottleneck, non-bottlenecked circuits are

under-utilized.

N23 with the adaptive N3 algorithm, in contrast, has the ability to react to congestion quickly

by reducing routers’ queue lengths, causing back pressure to build up. Consequently, our results

indicate that N23 offers an improvement in both time-to-first-byte and overall download time. This

experiment again highlights the potential negative impact of 50 KiB and small dynamic windows,

since even in a larger network with a realistic traffic load, smaller windows offer worse performance

for typical delay-sensitive web requests relative to Tor’s current window size. Thus, to achieve

maximal improvements, we suggest that Tor adopt N23 congestion and flow control.

9 In this experiment, we only consider N23 with adaptive N3 because in practice, N23 should discover the right
buffer size for the given network conditions.



190

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Window
Dynamic Window
Adaptive N3, N2 = 20

(a) Web client’s time-to-first-byte

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

Stock Tor
50 KiB Window
Dynamic Window
Adaptive N3, N2 = 20

(b) Web client’s download time

Figure 7.14: Performance results for large-scale experiments

7.4 Discussion

Having empirically evaluated our proposed congestion and flow control approaches, we next

discuss a variety of open issues.

7.4.1 Optimality and Comparison to an Alternative Transport Design

Given the results of our performance analysis showing an improvement in web page response

time and web page load time enabled by re-engineering Tor’s congestion and flow control mechanics,

it is reasonable to ask: Are these results optimal? and Can we do better?. To begin to answer these

questions, we offer a performance comparison between our congestion and flow control proposals

within Tor’s current transport architecture and a proposed transport re-design.

TCP-over-IPsec. We compare our results to a proposed anonymous overlay based on a layer three

approach called IPpriv that leverages end-to-end TCP (e.g., between the client and destination) over

an IPsec [139] layer three path of anonymizing IPsec routers [142,143]. In short, this system offers

source-destination unlinkability similar to Tor, but it uses IPsec link security with layered onion

routing-style encryption using IPsec’s Encapsulating Security Payload (ESP) [140] and a telescoping

key establishment protocol based on an extension to IKEv2 [70]. This system architecture uses the



191

end-systems’ TCP congestion and flow control algorithms end-to-end; thus, there is no need for

any additional higher layer of congestion and flow control.

Setup. This experiment’s setup is similar to the experiments presented in Chapter 7.3.1, except

we assume an IPsec anonymizing network instead of Tor. We construct an IPsec path between

two end-hosts with a 128 KiB/s bottleneck IPsec router in the middle. This topology is similar to

the small bottleneck topology from Figure 7.4, with the same end-to-end round-trip time of 320 ms

(80 ms per link with 4 links). Next, two clients compete for bandwidth over this IPsec path. One

client, a web user, downloads 300 KiB and the second client, a bulk downloader, fetches 5 MiB.

The experiment completes after the web client finishes 200 downloads. For simplicity, we abstract

way the computational and performance overhead associated with the IPsec cryptography, since

any cryptography overhead will be dominated by the high propagation delays and the bandwidth

bottleneck. Thus, we consider our results an upper bound on attainable performance.

Results. Figure 7.15(a) shows that the web client’s time-to-first-byte is about 2.25 s at the median,

which is less than stock Tor’s time-to-first-byte from Figure 7.7(a). However, this delay in web page

response is over two times the delay offered by small windows, dynamic windows, and N23 with

N3 = 100 cells (see Figure 7.11(a)). Similar to Tor, TCP-over-IPsec still suffers from queuing delays

at intermediate routers where bulk clients’ traffic fills the queues and bursty web traffic must incur

significant delays while the bulk traffic is slowly forwarded. In addition, Figure 7.15(b) shows that

the web client’s page load time is roughly 10 s at the median with TCP-over-IPsec transport. While

this is an improvement over stock Tor, N23 with N3 = 100 offers web page load times that are less

than 8 s at the median (see Figure 7.11(b)).

For bulk clients, Figure 7.15(c) shows that they have a significantly faster time-to-first-byte

than the web client, as they only compete for router queue space with the 300 KiB web client,

which doesn’t require large amount of queuing. The same trend was observed in stock Tor (see

Figures 7.7(c) and 7.11(c)). Also, the bulk client experiences better download time – with a

median of about 50 s – with TCP-over-IPsec than with stock Tor or any of our congestion and flow

control proposals (see Figures 7.7(c) and 7.11(d)). This improvement in download time for bulk



192

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

TCP−over−IPsec

(a) Web client’s time-to-first-byte

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

TCP−over−IPsec

(b) Web client’s download time

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n

TCP−over−IPsec

(c) Bulk client’s time-to-first-byte

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time (seconds)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n
TCP−over−IPsec

(d) Bulk client’s download time

Figure 7.15: Small-scale bottleneck performance results for TCP-over-IPsec

downloaders is the result of using TCP’s native congestion and flow control algorithms, rather than

artificially restricting the amount of data in flight, as in stock Tor’s layer seven congestion and flow

control. Kiraly et al. also observed that TCP-over-IPsec offers improved throughput relative to

Tor [142], however, they do not consider the effects of bandwidth bottlenecks and router queuing

on the performance of small flows (e.g., web clients) when there is contention with large flows

(e.g., bulk downloaders).

Discussion. In summary, our proposed congestion and flow control mechanisms offer better time-

to-first-byte and overall page load time for web clients compared to TCP-over-IPsec because they



193

effectively restrict the amount of data that the bulk client can add to the network, while freeing

scarce bandwidth and router queue space for smaller flows that likely correspond to interactive,

delay-sensitive web traffic. While is not clear that our approach offers the optimal performance,

this experiment indicates that it does offer improved performance for web users compared to one

alternative transport design. The TCP-over-IPsec design does, however, offer improved throughput

for bulk downloaders. To improve web client’s performance, it may be possible to adopt a queu-

ing strategy at the intermediate routers that prioritizes bursty, web traffic over bulk downloads.

Such a queuing policy has been demonstrated be effective in low bandwidth access links to gener-

ally mitigate the harmful performance effects that result from bursty traffic competing with bulk

flows [216].

According to our experiments, TCP-over-IPsec transport offers the best throughput, how-

ever, exposing the client’s raw TCP/IP packets to the destination may enable a new side channel

for information leakage that is not currently possible in Tor’s design. A malicious destination

server could learn information about the client’s networking stack and/or operating system type

and/or version using standard open-source fingerprinting tools such as p0f [173], PRADS [32], and

Nmap [28]. These tools leverage such features that tend to vary between operating system and

TCP/IP implementations including the initial packet size, initial time-to-live (TTL), window size,

maximum segment size, and others. Identifying characteristic differences in these features may

enable an adversary to learn information about the client, but they typically cannot identify the

client uniquely. However, if TCP timestamps are enabled, then remote device fingerprinting tech-

niques that analyze variations in clock skew can be used to uniquely identify the client’s specific

hardware [144] (and de-anonymize the client). Given that these attacks have been proved successful

in the wild and that there exist free, open-source tools to implement them, the client’s TCP/IP

packets should not be exposed to any party other than the entry point into the anonymizing net-

work (e.g., the entry guard, in Tor’s case). Thus, the decrease in throughput offered by Tor relative

to TCP-over-IPsec is the inherent cost of protection from these attacks.



194

7.4.2 Incremental Deployment

In order for our proposed congestion and flow control mechanisms to be practical and easily

deployable on the live Tor network, it is important that any modifications to Tor’s router infras-

tructure be incrementally deployable. Any solutions based on Tor’s existing window-based flow

control require upgrades only to the exit routers; thus they can be slowly deployed as router oper-

ators upgrade. N23 may also be deployed incrementally, however, clients may not see substantial

performance benefits until a large fraction of the routers have upgraded.

7.4.3 Anonymity Implications

A key question to answer is whether improving Tor’s performance and reducing congestion

enables any attack that was not previously possible. It is well known that Tor is vulnerable to

congestion attacks wherein an attacker constructs circuits through a number of different routers,

floods them with traffic, and observes if there is an increase in latency on a target circuit, which

would indicate a shared router on both paths [166]. More recent work has suggested a solution that

would mitigate bandwidth amplification variants of this attack, but not the shared router inference

part of the attack [113]. We believe that by reducing congestion (and specifically, by bounding queue

lengths), our proposed techniques may increase the difficulty of mounting congestion attacks.

However, if only a fraction of the routers upgrade to our proposals and if clients only choose

routers that support the new flow control, then an adversary may be able to narrow down the set

of potential routers that a client is using. Thus, it is important to deploy any new flow control

technique after a large fraction of the network has upgraded. Such an incremental deployment can

be controlled by setting a flag in the authoritative directory servers’ consensus document, indicating

that it is safe for clients to use the new flow control.

Another well-studied class of attack is end-to-end traffic correlation. Such attacks endeavor to

link a client with its destination when the entry and exit points are compromised, and these attacks



195

have been shown to be highly accurate [61,168,172,197,206]. Reducing latency might improve this

attack; however, Tor is already highly vulnerable, so there is little possibility for additional risk.

Finally, previous work has shown that network latency can be used as a side channel to

infer a possible set of client locations [127]. By reducing the variability in circuits’ latencies, we

might expose more accurate latency measurements, thus improving the effectiveness of this attack.

However, reducing congestion does not enable a new attack, but rather may potentially increase the

effectiveness of a known attack. To put this attack in perspective, Tor’s design has already made

many performance/anonymity trade-offs, and thus, we believe that our performance improvements

outweigh any potential decrease in anonymity brought about by reducing the variance in latency.

7.4.4 Performance over Asymmetric Links

Given the performance degradation that we empirically demonstrate in Chapter 7.3.1 due

to the presence of bandwidth bottlenecks and congestion, another question to answer is whether

asymmetric links contribute additional dynamics during congestion. Ensuring high Tor performance

over asymmetric links is important, as emerging residential broadband access network technologies

such as DOCSIS 3.0 [12] offer significantly more bandwidth than has been previously available to

residential Internet users. For example, the DOCSIS 3.0 standard supports downstream bandwidth

up to 160 Mb/s and upstream bandwidth up to 120 Mb/s [40]. The prevalence of high bandwidth

Internet connectivity in both the downstream and upstream directions could be an untapped source

for valuable relay bandwidth for anonymizing networks such as Tor. Thus, it is necessary to ensure

that systems like Tor still offer acceptable performance in asymmetric bandwidth environments.

To understand how asymmetric links can cause performance problems when there are bi-

directional TCP flows, consider the following scenario. Suppose that an asymmetric link has

50 Mb/s downstream bandwidth and 25 Mb/s upstream bandwidth (these are reasonable values

given DOCSIS 3.0). Further suppose that there are two flows utilizing the link, where one is a

10 MiB download and the other a 10 MiB upload. In such a scenario, it has been shown that the

download’s throughput may decrease because its TCP acknowledgments are queued behind the



196

upload’s data packets in the access network’s intermediate router’s queues [136]. Furthermore,

sharing a common buffer for TCP data segments and acknowledgments in end-systems results in

ACK compression, in which acknowledgments arrive in groups leading to loss of throughput, and

the negative performance effects of ACK compression have been shown to be more severe with

asymmetric links [238].

While bi-directional TCP performance degradation over an asymmetric link is not a new

problem specific to systems like Tor, but rather an inherent problem in TCP, it is nonetheless

important to reduce such performance loss in order to enable residential broadband subscribers to

make significant bandwidth contributions to Tor. To reduce the harmful effects of ACK compression

and queuing delay, ACK prioritization and back-pressure have been proposed [53,136]. The former

approach schedules acknowledgments ahead of data packets, to reduce their delays in IP router

queues. The later approach restricts the IP routers’ queue lengths by applying back-pressure to

the TCP layer. Note that ACK prioritization is not possible if the acknowledgments are piggy-

backed on top of data packets (which is typically the case for bi-directional traffic). To address

this limitation, it has been suggested that overlay networks that use a single TCP connection for

bi-directional traffic should separate each direction of traffic into two distinct TCP connections,

and subsequently prioritize ACKs [156].

7.5 Summary

We seek to improve Tor’s performance by reducing unnecessary delays due to poor flow control

and excessive queuing at intermediate routers. By improving performance – more specifically, by

improving expected web page response time and web page load time – we enhance Tor’s usability,

making it more appealing to a wider audience, and ultimately, improving Tor’s anonymity properties

by growing its user base. In this chapter, we proposed two broad classes of congestion and flow

control. First, we tune Tor’s existing circuit windows to effectively reduce the amount of data in

flight. However, our experiments indicate that while window-based solutions do reduce queuing



197

delays, they tend to suffer from poor flow control, under-utilizing the available bandwidth, and

consequently, smaller windows provide slower downloads than unmodified Tor.

To solve this problem, we offer a fresh approach to congestion and flow control in Tor by

adapting, implementing, and experimentally evaluating a per-link congestion and flow control algo-

rithm from ATM networks. Our experiments indicate that this approach offers reduced web page

response times and faster overall web page downloads.



Chapter 8

Conclusions and Future Work

This thesis seeks to improve the security and performance offered by Tor, the most widely

used privacy enhancing technology for achieving online anonymity and resisting censorship. To

that end, we offer a detailed analysis of attacks on Tor’s anonymity and an in depth study aimed

at diagnosing and improving Tor’s performance problems. At the beginning of this dissertation, we

asserted the following thesis statement:

Low latency anonymity networks can offer greater anonymity and better perfor-
mance than provided by existing systems.

We next explain how we addressed this statement by summarizing this dissertation’s fundamental

contributions.

8.1 Fundamental Contributions

This dissertation’s contributions can be summarized as follows.

8.1.1 First Characterization of a Live Anonymity Network

In order to understand how a popular low latency anonymity network is used in practice,

we provided the first characterization of the live Tor network. In particular, we showed that

Tor transports a large amount of non-TLS protected exit traffic, which enables a Tor exit router

operator, a destination server, or an eavesdropper along the network path between the Tor exit

router and the destination to learn information about clients, even including uniquely identifiable



199

user names or login credentials. To reduce the risk of inadvertently exposing identifying information

within application-layer traffic, we proposed that Tor provide a mechanism to explicitly block the

TCP ports that are commonly used by insecure protocols such POP3, IMAP, and telnet [59]. We

also showed that the majority of Tor exit traffic is interactive HTTP by connection and volume,

but file sharing traffic consumes a disproportionate amount of Tor’s scarce bandwidth. We also

found Tor users tend to originate in over 126 countries around the world, but router bandwidth

is concentrated primarily in Germany and the United States. Lastly, we identified a variety of

malicious behaviors both in Tor clients and routers.

8.1.2 Low-resource Traffic Confirmation Attacks and Defenses

Since low latency anonymity networks generally do not employ padding or perturb the traffic’s

temporal properties, these systems are vulnerable to end-to-end traffic confirmation attacks. We

show that Tor’s use of bandwidth-weighted router selection allows an adversary who controls several

high-bandwidth routers to attract a large amount of clients’ traffic and compromise the circuits’

end-points with high probability. However, we show that because Tor routers self-advertise their

own bandwidth capacities, it is possible for an adversary with a few low bandwidth routers to falsely

inflate their bandwidth claims to draw traffic and thereby compromise circuits. We also develop a

novel circuit linking algorithm that uses only circuit construction traffic to correlate clients with

their respective destinations before any data is sent. In combination with selective disruption

tactics, our Planetlab experiments show that an adversary who controls only six low bandwidth

Tor routers who advertise high bandwidths in a network with 66 total routers can compromise up

to 46% of all circuits constructed. In addition, we improve Tor’s entry guard design by placing

restrictions on their believable resource claims. We offer a variety of mitigation strategies to increase

the difficulty of launching these attacks, but ultimately, without secure bandwidth verification, these

attacks still remain possible.



200

8.1.3 Security and Performance Evaluation of Path Length

Systems for low latency anonymous communications generally employ a multi-hop architec-

ture to limit the amount of information that the anonymizing routers can learn about communi-

cating parties. In Tor’s design, precisely three routers are used for clients’ circuits. We challenge

the assumption that three routers is the optimal path length. In particular, we show that two-hop

paths offer improved performance in terms of bandwidth savings and an overall reduction in clients’

delays. Also, we show that two-hop paths are more resilient to end-to-end traffic correlation attacks

where the adversary employs selective disruption tactics. However, two-hop paths trivially reveal

the client’s chosen entry guards to the exit router, which may enable profiling. To reduce this risk,

we introduce the notion of path length blending, where the client attempts to conceal the length

of their circuit by generating dummy traffic that looks like three-hop path construction traffic. Ul-

timately, we argue that two-hop paths offer significant performance benefits and are more resilient

to realistic attacks.

8.1.4 Improving Performance by Offering an Alternative for BitTorrent

Given our observation that BitTorrent consumes a disproportionate amount of Tor’s scarce

bandwidth, we design, implement, and empirically evaluate a Crowds-style anonymizing solution

tailored specifically for the BitTorrent file sharing protocol. We first offer a case study the many

avenues of information leakage in BitTorrent and then we present BitBlender, which is a dynamic

relay network that provides a degree of plausible deniability for peers listed by the BitTorrent tracker

servers. Our performance results indicate that BitBlender offers significantly faster downloads and

uploads relative to Tor, while simultaneously improving Tor’s performance for delay-sensitive web

users by potentially eliminating a significant source of congestion.

8.1.5 Improving Tor’s Congestion and Flow Control

To further improve Tor’s performance, we diagnose a source of performance degradation

caused by Tor’s use of an end-to-end window-based congestion and flow control mechanism with



201

large and static windows. We first evaluate the performance benefits of using small fixed-size

windows and a dynamic window scaling algorithm that re-sizes the window in response to end-to-

end circuit latency-based congestion signals. We find that while web page response time is improved,

overall throughput suffers because less data is allowed to be in flight. To solve this problem, we

propose a per-link congestion and flow control algorithm inspired by standard techniques from

ATM networks. We find that this approach offers an improvement in both web page response time

and web page load time.

8.2 Future Work

We next enumerate a variety of avenues for future work to extend the fundamental contribu-

tions of this thesis.

8.2.1 Additional Performance Improvements

To build on the work presented in this thesis, we plan to continue diagnosing Tor’s perfor-

mance problems and offering improvements. In particular, there are a variety of open questions

from our performance analysis in Chapter 7. First, we wish to explore how the proposed congestion

and flow control mechanisms perform in practice on the live Tor network. In addition, Tor’s current

design provides a layer of flow control within the circuit-level, ostensibly to ensure some notion of

fairness among multiple streams within the same circuit. Our analysis does not consider fairness

within a circuit, but rather, we focus on fairness among multiple competing circuits. Future work

should investigate whether Tor needs an additional mechanism to ensure fairness among streams.

Lastly, we plan to work toward devising and migrating to a next-generation Tor-like anonymity

network with an improved transport design.

8.2.2 Improving Router Selection with Link-based Metrics

To improve both security and performance, link-based router selection has been proposed

as an alternative to so-called node-based (e.g., bandwidth) router selection [200, 202]. In short,



202

link-based router selection allows the client to select a circuit with desired end-to-end properties

satisfying any combination of latency, jitter, AS-traversal, country-traversal, or other constraints.

In the case of latency-based router selection, virtual coordinate systems can be applied to scalably

estimate pairwise latencies between routers [84].

One important question is how link-based router selection will scale in practice when users

begin to request paths with certain specific constraints. For example, if a fraction of users desire

paths with low end-to-end latencies, can these paths still offer such low latency when they begin to

experience higher congestion due to increased selection? Also, another interesting avenue to explore

is whether link-based router selection is compatible with bandwidth-weighted selection. Finally,

in addition to virtual coordinate systems, it may be possible to leverage additional information

sources such as IDMaps [115] or iPlane [21,154,155] to make routing decisions based on additional

link properties beyond latency.

8.2.3 Secure Bandwidth Verification

To reduce the risk of the low resource attacks we present in Chapter 4, Tor has adopted a

bandwidth-weighted router selection scheme that uses active bandwidth verification from a set of

trusted bandwidth measurement authorities [176]. In addition, other secure bandwidth verification

methods have been proposed [212]. We plan to investigate the security and overhead of these

approaches and others to finally secure Tor’s router selection process.

8.3 Final Remarks

To conclude, we have presented a variety of results that collectively aim to improve the

security, anonymity, and performance of low latency anonymity networks. By enhancing Tor’s

performance and security, more users will participate in Tor (both as clients and as router operators)

and, thereby, Tor’s user base will grow, strengthening all users’ anonymity. Our hope is that this

work helps to enable more people to achieve online anonymity, enhance the privacy of their online

activities, and resist censorship.



Bibliography

[1] 17 United States Code Section 512. http://www4.law.cornell.edu/uscode/17/512.html.

[2] 2nd Workshop on Ethics in Computer Security Research (WECSR 2011). http://www.cs.

stevens.edu/∼spock/wecsr2011.

[3] African network information centre. http://www.afrinic.net.

[4] Amazon elastic compute cloud (Amazon EC2). http://aws.amazon.com/ec2.

[5] American registry for Internet numbers. http://www.arin.net/index.shtml.

[6] The anonymizer. http://www.anonymizer.com.

[7] Asia pacific network information centre. http://www.apnic.net.

[8] Azureus BitTorrent client. http://azureus.sourceforge.net.

[9] BayTSP. http://www.baytsp.com.

[10] BitTorrent protocol specification. http://wiki.theory.org/BitTorrentSpecification.

[11] BTGuard - BitTorrent Anonymously. http://btguard.com.

[12] DOCSIS 3.0. http://www.bci.eu.com/wp-content/uploads/2009/12/docsis-30-11.pdf.

[13] Echoping performance measurement. http://echoping.sourceforge.net.

[14] EFF: AOL’s data valdez. http://w2.eff.org/Privacy/AOL.

[15] Enhanced CTorrent. http://www.rahul.net/dholmes/ctorrent.

[16] Ethereal. http://www.ethereal.com.

[17] Field v. Google, Inc., 412 F. Supp 2d. 1106 (D. Nev. 2006).

[18] First Workshop on Ethics in Computer Security Research (WECSR 2010). http://www.cs.
stevens.edu/∼spock/wecsr2010.

[19] The GNU privacy guard. http://www.gnupg.org.

[20] I2P Anonymous Network. http://www.i2p2.de.



204

[21] iPlane: An information plane for distributed services. http://iplane.cs.washington.edu.

[22] Ipredator. http://ipredator.se.

[23] JonDonym - The Anonymisation service. http://anonymous-proxy-servers.net.

[24] Latin american & caribbean Internet addresses registry. http://lacnic.net/en.

[25] Mandatory Data Retention. http://www.eff.org/issues/mandatory-data-retention.

[26] Media defender – P2P anti-piracy and P2P marketing solutions. http://www.

mediadefender.com.

[27] MGM Studios Inc. v. Grokster, ltd., 545 U.S. 913 (Supreme Court 2005).

[28] Nmap. http://nmap.org.

[29] NSA Spying. http://www.eff.org/issues/nsa-spying.

[30] Panopticlick. https://panopticlick.eff.org.

[31] Polipo. http://www.pps.jussieu.fr/∼jch/software/polipo/.

[32] PRADS. http://gamelinux.github.com/prads.

[33] Privoxy. http://www.privoxy.org.

[34] Response template for Tor node maintainer to ISP. http://www.torproject.org/eff/

tor-dmca-response.html.

[35] Ripe network coordination centre. http://www.ripe.net.

[36] Safenet Inc: The foundation for information security. http://www.safenet-inc.com.

[37] The Pirate Bay. http://thepiratebay.org.

[38] The Wall Street Journal: What They Know. http://blogs.wsj.com/wtk.

[39] Transparent SOCKS Proxying Library. http://tsocks.sourceforge.net.

[40] CableLabs Issues DOCSIS 3.0 Specifications Enabling 160 Mbps. CableLabs Press Release.
http://www.cablelabs.com/news/pr/2006/06 pr docsis30 080706.html, August 2006.

[41] A face is exposed for AOL search no. 4417749. http://www.nytimes.com/2006/08/09/

technology/09aol.html, August 2006.

[42] Tor researcher who exposed embassy e-mail passwords gets raided by Swedish FBI and CIA.
http://blog.wired.com/27bstroke6/2007/11/swedish-researc.html, November 2007.

[43] Pirate bay tricks anti-pirates with fake peers. http://torrentfreak.com/

the-pirate-bay-tricks-anti-pirates-with-fake-peers-081020, October 2008.

[44] Measuring Tor and Iran. https://blog.torproject.org/blog/measuring-tor-and-iran,
June 2009.



205

[45] China blocking Tor: Round Two. https://blog.torproject.org/blog/

china-blocking-tor-round-two, March 2010.

[46] Recent Events in Egypt. https://blog.torproject.org/blog/recent-events-egypt,
January 2011.

[47] T.G. Abbott, K.J. Lai, M.R. Lieberman, and E.C. Price. Browser-based attacks on Tor. In
Privacy Enhancing Technologies, volume 4776 of Lecture Notes in Computer Science, page
184. Springer, 2007.

[48] Alessandro Acquisti and Ralph Gross. Imagined communities: Awareness, information shar-
ing, and privacy on the facebook. In Privacy Enhancing Technologies, pages 36–58, 2006.

[49] Mashael AlSabah, Kevin Bauer, Ian Goldberg, Dirk Grunwald, Damon McCoy, Stefan Savage,
and Geoffrey Voelker. DefenestraTor: Throwing out Windows in Tor. University of Waterloo
Centre For Applied Cryptographic Research Technical Report CACR 2011-06. http://www.
cacr.math.uwaterloo.ca/techreports/2011/cacr2011-06.pdf, March 2011.

[50] Elli Androulaki, Mariana Raykova, Shreyas Srivatsan, Angelos Stavrou, and Steven M.
Bellovin. PAR: Payment for Anonymous Routing. In Nikita Borisov and Ian Goldberg, edi-
tors, Proceedings of the Eighth International Symposium on Privacy Enhancing Technologies
(PETS 2008), pages 219–236, Leuven, Belgium, July 2008. Springer.

[51] Adam Back, Ian Goldberg, and Adam Shostack. Freedom systems 2.1 security issues and
analysis. White paper, Zero Knowledge Systems, Inc., May 2001.

[52] Adam Back, Ulf Möller, and Anton Stiglic. Traffic analysis attacks and trade-offs in anonymity
providing systems. In Ira S. Moskowitz, editor, Proceedings of Information Hiding Workshop
(IH 2001), pages 245–257. Springer-Verlag, LNCS 2137, April 2001.

[53] H. Balakrishnan, V. N. Padmanabhan, G. Fairhurst, and M. Sooriyabandara. RFC 3449:
TCP Performance Implications of Network Path Asymmetry. http://tools.ietf.org/

html/rfc3449, December 2002.

[54] Kevin Bauer, Dirk Grunwald, and Douglas Sicker. The arms race in P2P. In Proceedings of the
37th Research Conference on Communication, Information and Internet Policy, September
2009.

[55] Kevin Bauer, Dirk Grunwald, and Douglas Sicker. Predicting Tor path compromise by exit
port. In Proceedings of the 2nd IEEE International Workshop on Information and Data
Assurance, 2009.

[56] Kevin Bauer, Joshua Juen, Nikita Borisov, Dirk Grunwald, Douglas Sicker, and Damon Mc-
Coy. On the optimal path length for Tor. In HotPets in conjunction with Tenth International
Symposium on Privacy Enhancing Technologies (PETS 2010), Berlin, Germany, July 2010.

[57] Kevin Bauer and Damon McCoy. Tor specification proposal 109: No more than one
server per IP address. https://gitweb.torproject.org/torspec.git/blob plain/HEAD:

/proposals/109-no-sharing-ips.txt, March 2007.



206

[58] Kevin Bauer and Damon McCoy. Uptime Sanity Checking. https://gitweb.torproject.

org/torspec.git/blob plain/HEAD:/proposals/107-uptime-sanity-checking.txt,
March 2007.

[59] Kevin Bauer and Damon McCoy. Block insecure protocols by default.
https://gitweb.torproject.org/torspec.git/blob plain/HEAD:/proposals/

129-reject-plaintext-ports.txt, January 2008.

[60] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker. Low-
resource routing attacks against anonymous systems. Computer Science Technical Report
CU-CS-1025-07, University of Colorado, February 2007.

[61] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and
Douglas Sicker. Low-resource routing attacks against Tor. In
Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2007), Wash-
ington, DC, USA, October 2007.

[62] Kevin Bauer, Damon McCoy, Dirk Grunwald, and Douglas Sicker. BitBlender: Light-weight
anonymity for BitTorrent. In Proceedings of the Workshop on Applications of Private and
Anonymous Communications, Istanbul, Turkey, September 2008.

[63] Kevin Bauer, Damon McCoy, Dirk Grunwald, and Douglas Sicker. BitStalker: Accurately
and efficiently monitoring BitTorrent traffic. In First IEEE International Workshop on
Information Forensics and Security, London, United Kingdom, December 2009.

[64] Oliver Berthold and Heinrich Langos. Dummy traffic against long term intersection attacks. In
Roger Dingledine and Paul Syverson, editors, Proceedings of Privacy Enhancing Technologies
workshop (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

[65] John Bethencourt, Jason Franklin, and Mary Vernon. Mapping Internet sensors with probe
response attacks. In Proceedings of the 14th conference on USENIX Security Symposium,
Baltimore, MD, July 2005. USENIX Association.

[66] Stevens Le Blond, Arnaud Legout, Fabrice Lefessant, Walid Dabbous, and Mohamed Ali
Kaafar. Spying the world from your laptop: Identifying and profiling content providers and
big downloaders in BitTorrent. In Proceedings of 3rd USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET ’10), April 2010.

[67] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial of service or denial
of security? How attacks on reliability can compromise anonymity. In Proceedings of CCS
2007, October 2007.

[68] Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom systems 2.0 architecture.
White paper, Zero Knowledge Systems, Inc., December 2000.

[69] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: New techniques
for congestion detection and avoidance. In Proceedings of the conference on Communications
architectures, protocols and applications, SIGCOMM ’94, pages 24–35, New York, NY, USA,
1994. ACM.

[70] Ed. C. Kaufman. RFC 4306: Internet key exchange (IKEv2) protocol, December 2005.



207

[71] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. RFC 4880: OpenPGP
message format. http://www.ietf.org/rfc/rfc4880.txt, 2007.

[72] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S. Wallach.
Secure routing for structured peer-to-peer overlay networks. In OSDI 2002.

[73] Paul Cesarini. Caught in the Network. In The Chronicle of Higher Education, volume 53.
Washington, D.C., February 2007.

[74] A. Chaabane, P. Manils, and M.A. Kaafar. Digging into Anonymous Traffic: A deep Analysis
of the Tor Anonymizing Network. In 4th International Conference on Network and System
Security (NSS 2010), Melbourne, Australia, September 2010.

[75] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 4(2), February 1981.

[76] David Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1988.

[77] Fallon Chen and Mike Perry. Improving Tor path selection. https://gitweb.torproject.
org/torspec.git/blob plain/HEAD:/proposals/151-path-selection-improvements.

txt, July 2008.

[78] David Choffnes, Jordi Duch, Dean Malmgren, Roger Guimerà, Fabián Bustamante, and
Lúıs A. Nunes Amaral. Strange bedfellows: Community identification in BitTorrent. In
Proceedings of the 9th international conference on Peer-to-peer systems, IPTPS’10, pages
13–13, Berkeley, CA, USA, 2010. USENIX Association.

[79] David R. Choffnes, Jordi Duch, Dean Malmgren, Roger Guierma, Fabian E. Bustamante,
and Luis Amaral. SwarmScreen: Privacy through plausible deniability for P2P systems.
Northwestern EECS Technical Report, March 2009.

[80] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. In Proceedings of Designing Privacy
Enhancing Technologies: Workshop on Design Issues in Anonymity and Unobservability,
pages 46–66, July 2000.

[81] Richard Clayton, George Danezis, and Markus G. Kuhn. Real world patterns of failure in
anonymity systems. In Ira S. Moskowitz, editor, Proceedings of Information Hiding Workshop
(IH 2001), pages 230–244. Springer-Verlag, LNCS 2137, April 2001.

[82] Henry Corrigan-Gibbs and Bryan Ford. Dissent: Accountable anonymous group messag-
ing. In Angelos D. Keromytis and Vitaly Shmatikov, editors, Proceedings of the 2010 ACM
Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA,
October 4-8, 2010. ACM, 2010.

[83] Cypherpunks Remailer. http://www.cypherpunks.to.

[84] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decentralized
network coordinate system. In Proceedings of the ACM SIGCOMM ’04 Conference, Portland,
Oregon, August 2004.



208

[85] George Danezis. Statistical disclosure attacks: Traffic confirmation in open environments. In
Gritzalis, Vimercati, Samarati, and Katsikas, editors, Proceedings of Security and Privacy in
the Age of Uncertainty, (SEC2003), pages 421–426, Athens, May 2003. IFIP TC11, Kluwer.

[86] George Danezis, Claudia Diaz, and Paul Syverson. Systems for anonymous communication.
In CRC Handbook of Financial Cryptography and Security, 2009.

[87] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a Type III
Anonymous Remailer Protocol. In Proceedings of the 2003 IEEE Symposium on Security
and Privacy, May 2003.

[88] George Danezis and Ben Laurie. Minx: A simple and efficient anonymous packet format.
In WPES ’04: Proceedings of the 2004 ACM workshop on Privacy in the electronic society,
pages 59–65. ACM, 2004.

[89] George Danezis and Len Sassaman. Heartbeat traffic to counter (n-1) attacks: Red-green-
black mixes. In WPES ’03: Proceedings of the 2003 ACM workshop on privacy in the
electronic society, pages 89–93. ACM, 2003.

[90] George Danezis and Andrei Serjantov. Statistical disclosure or intersection attacks on
anonymity systems. In Proceedings of 6th Information Hiding Workshop (IH 2004), LNCS,
Toronto, May 2004.

[91] Norman Danner, Danny Krizanc, and Marc Liberatore. Detecting denial of service attacks in
Tor. In Financial Cryptography and Data Security, pages 273–284, Berlin, Heidelberg, 2009.
Springer-Verlag.

[92] Prithula Dhungel, Moritz Steiner, Ivinko Rimac, Volker Hilt, and Keith W. Ross. Waiting
for anonymity: Understanding delays in the Tor overlay. In Peer-to-Peer Computing, pages
1–4. IEEE, 2010.

[93] Prithula Dhungel, Di Wu, Brad Schonhorst, and Keith W. Ross. A measurement study of
attacks on BitTorrent leechers. In International Workshop on Peer-to-Peer Systems (IPTPS),
February 2008.

[94] Claudia Dı́az, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards measuring
anonymity. In Roger Dingledine and Paul Syverson, editors, Proceedings of Privacy
Enhancing Technologies Workshop (PET 2002). Springer-Verlag, LNCS 2482, April 2002.

[95] T. Dierks. RFC 4346: The Transport Layer Security (TLS) Protocol Version 1.1, April 2006.

[96] Roger Dingledine. EFF is looking for Tor DMCA test case volunteers. http://archives.

seul.org/or/talk/Oct-2005/msg00208.html.

[97] Roger Dingledine. Personal communication.

[98] Roger Dingledine. Prop 168: Reduce default circuit window. https://gitweb.torproject.
org/torspec.git/blob plain/HEAD:/proposals/168-reduce-circwindow.txt, August
2009.



209

[99] Roger Dingledine. Research problem: adaptive throttling of Tor
clients by entry guards. https://blog.torproject.org/blog/

research-problem-adaptive-throttling-tor-clients-entry-guards, September
2010.

[100] Roger Dingledine and Nick Mathewson. Tor directory protocol, version 3. https://www.

torproject.org/svn/trunk/doc/spec/dir-spec.txt.

[101] Roger Dingledine and Nick Mathewson. Tor path specification. http://tor.eff.org/cvs/

doc/path-spec.txt.

[102] Roger Dingledine and Nick Mathewson. Anonymity loves company: Usability and the network
effect. In Workshop on the Economics of Information Security, June 2006.

[103] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th USENIX Security Symposium, August 2004.

[104] Roger Dingledine, Nick Mathewson, and Paul Syverson. Challenges in deploying low-latency
anonymity. NRL CHACS Report 5540-625, 2005.

[105] Roger Dingledine and Steven Murdoch. Performance improvements on Tor or, why Tor is
slow and what we’re going to do about it. http://www.torproject.org/press/presskit/
2009-03-11-performance.pdf, March 2009.

[106] Roger Dingledine and Paul Syverson. Reliable MIX Cascade Networks through Reputation.
In Matt Blaze, editor, Proceedings of Financial Cryptography (FC ’02). Springer-Verlag,
LNCS 2357, March 2002.

[107] David Dittrich, Michael Bailey, and Sven Dietrich. Towards community standards for eth-
ical behavior in computer security research. Technical Report 2009-01, Stevens Institute of
Technology, Hoboken, NJ, USA, April 2009.

[108] John Douceur. The Sybil Attack. In Proceedings of the 1st International Peer To Peer
Systems Workshop (IPTPS 2002), March 2002.

[109] Peter Eckersley. How Unique Is Your Browser? In Proceedings of the Privacy Enhancing
Technologies Symposium, July 2010.

[110] Matthew Edman, Fikret Sivrikaya, and Bülent Yener. A combinatorial approach to measuring
anonymity. In Proceedings of the 2007 IEEE International Conference on Intelligence and
Security Informatics (ISI ’07), pages 356–363, 2007.

[111] Matthew Edman and Paul F. Syverson. AS-awareness in Tor path selection. In Proceedings
of the 2009 ACM Conference on Computer and Communications Security (CCS), pages 380–
389, 2009.

[112] Matthew Edman and Bülent Yener. On anonymity in an electronic society: A survey of
anonymous communication systems. ACM Computing Surveys, 42(1), 2010.

[113] Nathan Evans, Roger Dingledine, and Christian Grothoff. A practical congestion attack on
Tor using long paths. In Proceedings of the 18th USENIX Security Symposium, August 2009.



210

[114] Nick Feamster and Roger Dingledine. Location diversity in anonymity networks. In
Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2004), Washing-
ton, DC, USA, October 2004.

[115] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia
Zhang. IDMaps: A global Internet host distance estimation service. IEEE/ACM Trans.
Netw., 9:525–540, October 2001.

[116] Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer anonymizing network layer.
In Proceedings of the 9th ACM Conference on Computer and Communications Security,
Washington, DC, November 2002.

[117] Simson L. Garfinkel and Lorrie Faith Cranor. Institutional review boards and your research.
Commun. ACM, 53:38–40, June 2009.

[118] Thomer M. Gil, Frans Kaashoek, Jinyang Li, Robert Morris, and Jeremy Stribling. King
data set. http://pdos.csail.mit.edu/p2psim/kingdata.

[119] Corrado Gini. Measurement of inequality and incomes. The Economic Journal, 1921.

[120] Ian Goldberg. Prop 174: Optimistic data for Tor: Server side. https://trac.torproject.
org/projects/tor/ticket/1795.

[121] Ian Goldberg. On the security of the Tor authentication protocol. In Proceedings of the
Sixth Workshop on Privacy Enhancing Technologies (PET 2006), Cambridge, UK, June 2006.
Springer.

[122] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding routing information.
In Proceedings of Information Hiding: First International Workshop. Springer-Verlag, LNCS
1174, May 1996.

[123] Ryan Henry, Kevin Henry, and Ian Goldberg. Making a Nymbler Nymble using VERBS. In
Privacy Enhancing Technologies Symposium, July 2010.

[124] Dominik Herrmann and Rolf Wendolsky. Effectivity of Various Data Retention Schemes for
Single-Hop Proxy Servers. In Proceedings of PET-CON, Regensburg, Germany, October
2009.

[125] Thomas Heydt-Benjamin, Andrei Serjantov, and Benessa Defend. Nonesuch: A mix network
with sender unobservability. In WPES ’06: Proceedings of the 5th ACM workshop on privacy
in the electronic society, pages 1–8. ACM, 2006.

[126] Andrew Hintz. Fingerprinting websites using traffic analysis. In Roger Dingledine and Paul
Syverson, editors, Proceedings of Privacy Enhancing Technologies workshop (PET 2002).
Springer-Verlag, LNCS 2482, April 2002.

[127] Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-Tin. How much anonymity does
network latency leak? In Proceedings of CCS 2007, October 2007.

[128] Internet World Stats. http://www.internetworldstats.com.

[129] Iperf – The TCP/UDP bandwidth measurement tool. http://dast.nlanr.net/Projects/

Iperf.



211

[130] Tomas Isdal, Michael Piatek, Arvind Krishnamurthy, and Thomas Anderson. Privacy-
preserving P2P data sharing with OneSwarm. In Proceedings of the ACM SIGCOMM 2010
conference on SIGCOMM, SIGCOMM ’10, pages 111–122, New York, NY, USA, 2010. ACM.

[131] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. John Wiley & Sons, 1991.

[132] Raj Jain. Congestion control and traffic management in ATM networks: Recent advances
and a survey. Computer Networks and ISDN Systems, 28:1723–1738, 1995.

[133] Rob Jansen, Nicholas Hopper, and Yongdae Kim. Recruiting new Tor relays with BRAIDS.
In Angelos D. Keromytis and Vitaly Shmatikov, editors, Proceedings of the 2010 ACM
Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA,
October 4-8, 2010. ACM, 2010.

[134] JAP-Anonymity and Privacy. http://anon.inf.tu-dresden.de.

[135] Peter C. Johnson, Apu Kapadia, Patrick P. Tsang, and Sean W. Smith. Nymble: Anonymous
IP-address blocking. In Nikita Borisov and Philippe Golle, editors, Proceedings of the Seventh
Workshop on Privacy Enhancing Technologies (PET 2007), Ottawa, Canada, June 2007.
Springer.

[136] Lampros Kalampoukas, Anujan Varma, and K. K. Ramakrishnan. Improving tcp throughput
over two-way asymmetric links: analysis and solutions. In Proceedings of the 1998 ACM
SIGMETRICS joint international conference on Measurement and modeling of computer
systems, SIGMETRICS ’98/PERFORMANCE ’98, pages 78–89, New York, NY, USA, 1998.
ACM.

[137] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The eigentrust al-
gorithm for reputation management in P2P networks. In In Proceedings of the Twelfth
International World Wide Web Conference, pages 640–651. ACM, 2003.

[138] Sachin Katti, Jeffery Cohen, and Dina Katabi. Information slicing: Anonymity using unre-
liable overlays. In Proceedings of the 4th USENIX Symposium on Network Systems Design
and Implementation (NSDI), April 2007.

[139] S. Kent. RFC 2401: Security architecture for the Internet protocol, November 1998.

[140] S. Kent. RFC 2406: IP encapsulating security payload (ESP), November 1998.

[141] Dogan Kesdogan, Dakshi Agrawal, and Stefan Penz. Limits of anonymity in open environ-
ments. In Fabien Petitcolas, editor, Proceedings of Information Hiding Workshop (IH 2002).
Springer-Verlag, LNCS 2578, October 2002.

[142] C. Kiraly, G. Bianchi, and R. Lo Cigno. Solving performance issues in anonymiziation overlays
with a L3 approach. University of Trento Information Engineering and Computer Science
Department Technical Report DISI-08-041, Ver. 1.1, September 2008.

[143] Csaba Kiraly and Renato Lo Cigno. IPsec-based anonymous networking: A working imple-
mentation. In Proceedings of the 2009 IEEE International Conference on Communications,
pages 2146–2150, Piscataway, NJ, USA, 2009. IEEE Press.



212

[144] Tadayoshi Kohno, Andre Broido, and K. C. Claffy. Remote physical device fingerprinting. In
SP ’05: Proceedings of the 2005 IEEE Symposium on Security and Privacy, pages 211–225,
Washington, DC, USA, 2005. IEEE Computer Society.

[145] H. T. Kung, Trevor Blackwell, and Alan Chapman. Credit-based flow control for ATM
networks: credit update protocol, adaptive credit allocation and statistical multiplexing.
SIGCOMM Comput. Commun. Rev., 24:101–114, October 1994.

[146] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine generals problem.
ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[147] Jörg Lenhard, Karsten Loesing, and Guido Wirtz. Performance Measurements of Tor Hid-
den Services in Low-Bandwidth Access Networks. In Proceedings of the 7th International
Conference on Applied Cryptography and Network Security, June 2009.

[148] Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright. Timing attacks in
low-latency mix-based systems. In Ari Juels, editor, Proceedings of Financial Cryptography
(FC ’04). Springer-Verlag, LNCS 3110, February 2004.

[149] Marc Liberatore and Brian Neil Levine. Inferring the Source of Encrypted HTTP Connec-
tions. In Proceedings of the 13th ACM conference on Computer and Communications Security
(CCS 2006), pages 255–263, October 2006.

[150] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Dong Xuan, and Weijia Jia. A new cell counter
based attack against Tor. In Proceedings of the CCS 2009. ACM.

[151] Karsten Loesing. Measuring the Tor network: Evaluation of client requests to the directories.
Tor Project Technical Report, June 2009.

[152] Karsten Loesing, Steven Murdoch, and Roger Dingledine. A case study on measuring sta-
tistical data in the Tor anonymity network. In Workshop on Ethics in Computer Security
Research, January 2010.

[153] Karsten Loesing, Werner Sandmann, Christian Wilms, and Guido Wirtz. Performance Mea-
surements and Statistics of Tor Hidden Services. In Proceedings of the 2008 International
Symposium on Applications and the Internet (SAINT). IEEE CS Press, July 2008.

[154] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas E. Anderson,
Arvind Krishnamurthy, and Arun Venkataramani. iPlane: An Information Plane for Dis-
tributed Services. In OSDI, pages 367–380. USENIX Association, 2006.

[155] Harsha V. Madhyastha, Ethan Katz-Bassett, Thomas E. Anderson, Arvind Krishnamurthy,
and Arun Venkataramani. iPlane Nano: Path Prediction for Peer-to-Peer Applications. In
Jennifer Rexford and Emin Gün Sirer, editors, NSDI, pages 137–152. USENIX Association,
2009.

[156] Daniel Marks, Florian Tschorsch, and Bjorn Scheuermann. Unleashing Tor, BitTorrent &
Co.: How to Relieve TCP Deficiencies in Overlays (Extended Version). Technical Report
TR-2010-001. Computer Science Department, Heinrich Heine University. http://www.cn.
uni-duesseldorf.de/publications/library/Marks2010b.pdf, August 2010.



213

[157] Nick Matthewson. Base “stable” flag on mean time between failures.
http://git.torproject.org/checkout/tor/master/doc/spec/proposals/

108-mtbf-based-stability.txt.

[158] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker. Shining
light in dark places: Understanding the Tor network. In Proceedings of the 8th Privacy
Enhancing Technologies Symposium, July 2008.

[159] Damon McCoy, Kevin Bauer, Dirk Grunwald, Parisa Tabriz, and Douglas Sicker. Shining
light in dark places: A study of anonymous network usage. University of Colorado Technical
Report CU-CS-1032-07, August 2007.

[160] Aleecia M. McDonald and Lorrie Faith Cranor. Americans’ attitudes about Internet behav-
ioral advertising practices. In Proceedings of the 9th annual ACM workshop on Privacy in
the Electronic Society, pages 63–72, New York, NY, USA, 2010. ACM.

[161] Jon McLachlan and Nicholas Hopper. On the risks of serving whenever you surf: Vulnerabil-
ities in Tor’s blocking resistance design. In Proceedings of the Workshop on Privacy in the
Electronic Society (WPES 2009). ACM, November 2009.

[162] Alan Mislove, Gaurav Oberoi, Ansley Post, Charles Reis, Peter Druschel, and Dan S. Wallach.
AP3: cooperative, decentralized anonymous communication. In EW11: Proceedings of the
11th workshop on ACM SIGOPS European workshop, page 30, New York, NY, USA, 2004.
ACM.

[163] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster Protocol —
Version 2. IETF Internet Draft, July 2003.

[164] Steven J. Murdoch. Hot or not: Revealing hidden services by their clock skew.
In 13th ACM Conference on Computer and Communications Security (CCS 2006), Alexan-
dria, VA, November 2006.

[165] Steven J. Murdoch and Ross Anderson. Tools and Technology of Internet Filtering. In Access
Denied: The Practice and Policy of Global Internet Filtering. MIT Press, 2008.

[166] Steven J. Murdoch and George Danezis. Low-cost traffic analysis of Tor. In Proceedings of
the 2005 IEEE Symposium on Security and Privacy. IEEE CS, May 2005.

[167] Steven J. Murdoch and Robert N. M. Watson. Metrics for security and performance in
low-latency anonymity systems. In Proceedings of the Eighth International Symposium on
Privacy Enhancing Technologies (PETS 2008), Leuven, Belgium, July 2008.

[168] Steven J. Murdoch and Piotr Zieliński. Sampled traffic analysis by Internet-exchange-level
adversaries. In Proceedings of Privacy Enhancing Technologies Workshop (PET 2007), June
2007.

[169] Arjun Nambiar and Matthew Wright. Salsa: A structured approach to large-scale anonymity.
In Proceedings of CCS 2006, October 2006.

[170] Tsuen-Wan “Johnny” Ngan, Roger Dingledine, and Dan S. Wallach. Building Incentives into
Tor. In Radu Sion, editor, Proceedings of Financial Cryptography (FC ’10), January 2010.



214

[171] OpenDNS. http://www.opendns.com.

[172] Lasse Øverlier and Paul Syverson. Locating hidden servers. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy. IEEE CS, May 2006.

[173] p0f. http://lcamtuf.coredump.cx/p0f.shtml.

[174] Mike Perry. Securing the Tor network. Defcon 2007. http://fscked.org/transient/

SecuringTheTorNetwork.pdf.

[175] Mike Perry. Exit Scanning. https://gitweb.torproject.org/torspec.git/blob plain/

HEAD:/proposals/159-exit-scanning.txt, February 2009.

[176] Mike Perry. TorFlow: Tor Network Analysis. In HotPets, August 2009.

[177] Larry Peterson, Steve Muir, Timothy Roscoe, and Aaron Klingaman. PlanetLab Architecture:
An Overview. (PDN–06–031), May 2006.

[178] Larry L. Peterson and Bruce S. Davie. Computer Networks: A Systems Approach. Morgan
Kaufmann, San Francisco, 2003.

[179] Andreas Pfitzmann and Marit Hansen. Anonymity, unlinkability, undetectability, unobserv-
ability, pseudonymity, and identity management – a consolidated proposal for terminology.
http://dud.inf.tu-dresden.de/Anon Terminology.shtml, February 2008.

[180] Michael Piatek, Tadayoshi Kohno, and Arvind Krishnamurthy. Challenges and directions for
monitoring P2P file sharing networks – or – Why my printer received a DMCA takedown
notice. In 3rd USENIX Workshop on Hot Topics in Security (HotSec), July 2008.

[181] Bogdan C. Popescu, Bruno Crispo, and Andrew S. Tanenbaum. Safe and Private Data
Sharing with Turtle: Friends Team-Up and Beat the System. In Proceedings of the 12th
Cambridge Intl. Workshop on Security Protocols, 2004.

[182] Rahul Potharaju, Jeff Seibert, Sonia Fahmy, and Cristina Nita-Rotaru. Omnify: Investigating
the Visibility and Effectiveness of Copyright Monitors. In Passive and Active Measurement
Conference, 2011.

[183] Ryan Pries, Wei Yu, Xinwen Fu, and Wei Zhao. A new replay attack against anonymous
communication networks. In ICC, pages 1578–1582. IEEE, 2008.

[184] Ryan Pries, Wei Yu, Steve Graham, and Xinwen Fu. On performance bottleneck of anonymous
communication networks. In Parallel and Distributed Processing (IPDPS), 2008.

[185] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In CRYPTO ’91: Proceedings of the 11th Annual International
Cryptology Conference on Advances in Cryptology, pages 433–444, London, UK, 1992.
Springer-Verlag.

[186] Sreeram Ramachandran. Web metrics: Size and number of resources. https://code.google.
com/speed/articles/web-metrics.html.

[187] Joel Reardon. Improving Tor using a TCP-over-DTLS tunnel. Unversity of Waterloo Master’s
Thesis, October 2008.



215

[188] Joel Reardon and Ian Goldberg. Improving Tor using a TCP-over-DTLS tunnel. In
Proceedings of the 18th USENIX Security Symposium, August 2009.

[189] Michael Reiter and Aviel Rubin. Crowds: Anonymity for web transactions. ACM
Transactions on Information and System Security, 1(1), June 1998.

[190] Marc Rennhard and Bernhard Plattner. Introducing MorphMix: Peer-
to-Peer based Anonymous Internet Usage with Collusion Detection. In
Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2002), Wash-
ington, DC, USA, November 2002.

[191] Ron Rivest, Adi Shamir, and Len Adleman. A method for obtaining digital signatures and
public key cryptosystems. Communications of the ACM, 21(2):120–126, February 1978.

[192] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), pages 329–350, November 2001.

[193] T. Scott Saponas, Jonathan Lester, Carl Hartung, Sameer Agarwal, and Tadayoshi Kohno.
Devices that tell on you: Privacy trends in consumer ubiquitous computing. In Proc. 16th
USENIX Security Symposium, 2007.

[194] Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson. TCP congestion control
with a misbehaving receiver. SIGCOMM Comput. Commun. Rev., 29:71–78, 1999.

[195] Andrei Serjantov and George Danezis. Towards an information theoretic metric for anonymity.
In Proceedings of Privacy Enhancing Technologies Workshop (PET 2002). Springer-Verlag,
LNCS 2482, April 2002.

[196] Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trickle to a flood: Active
attacks on several mix types. In Proceedings of Information Hiding Workshop, 2002.

[197] Andrei Serjantov and Peter Sewell. Passive attack analysis for connection-based anonymity
systems. In Proceedings of ESORICS 2003, October 2003.

[198] Claude Shannon. A Mathematical Theory of Communication. In Bell System Technical
Journal, volume 27, pages 379–656, 1948.

[199] Micah Sherr. Coordinate-based routing for high performance anonymity. University of Penn-
sylvania Doctoral Dissertation, 2009.

[200] Micah Sherr, Matt Blaze, and Boon Thau Loo. Scalable link-based relay selection for anony-
mous routing. In PETS ’09: Proceedings of the 9th International Symposium on Privacy
Enhancing Technologies, pages 73–93, Berlin, Heidelberg, 2009. Springer-Verlag.

[201] Micah Sherr, Boon Thau Loo, and Matt Blaze. Towards application-aware anonymous rout-
ing. In Proceedings of the Second Workshop on Hot Topics in Security (HotSec). USENIX,
August 2007.

[202] Micah Sherr, Andrew Mao, William R. Marczak, Wenchao Zhou, Boon Thau Loo, and Matt
Blaze. A3: An Extensible Platform for Application-Aware Anonymity. In 17th Annual
Network and Distributed System Security Symposium, February 2010.



216

[203] Rob Sherwood, Bobby Bhattacharjee, and Ryan Braud. Misbehaving TCP receivers can cause
Internet-wide congestion collapse. In Proceedings of the 12th ACM conference on Computer
and communications security, CCS ’05, pages 383–392, New York, NY, USA, 2005. ACM.

[204] Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan. p5: A protocol for scalable
anonymous communication. In Proceedings of the 2002 IEEE Symposium on Security and
Privacy, May 2002.

[205] Yoichi Shinoda, Ko Ikai, and Motomu Itoh. Vulnerabilities of passive Internet threat monitors.
In Proceedings of the 14th conference on USENIX Security Symposium, Baltimore, MD, July
2005. USENIX Association.

[206] Vitaly Shmatikov and Ming-Hsui Wang. Timing analysis in low-latency mix networks: At-
tacks and defenses. In Proceedings of ESORICS 2006, September 2006.

[207] Douglas C. Sicker, Paul Ohm, and Dirk Grunwald. Legal issues surrounding monitoring
during network research. In Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement, October 2007.

[208] Georgos Siganos, Josep M. Pujol, and Pablo Rodriguez. Monitoring the BitTorrent monitors:
A bird’s eye view. In PAM, pages 175–184, 2009.

[209] Atul Singh, Peter Druschel, and Dan S. Wallach. Eclipse attacks on overlay networks: Threats
and defenses. In IEEE INFOCOM, 2006.

[210] Emin Gün Sirer, Sharad Goel, Mark Robson, and Doǧan Engin. Eluding carnivores: File
sharing with strong anonymity. In Proceedings of the 11th ACM SIGOPS European workshop.
ACM, 2004.

[211] Robin Snader and Nikita Borisov. A tune-up for Tor: Improving security and performance
in the Tor network. In Proceedings of the Network and Distributed Security Symposium
(NDSS), February 2008.

[212] Robin Snader and Nikita Borisov. Eigenspeed: Secure peer-to-peer bandwidth evaluation. In
Proceedings of the 8th International Workshop on Peer-to-Peer Systems (IPTPS), 2009.

[213] Robin Snader and Nikita Borisov. Improving Security and Performance in the Tor Network
through Tunable Path Selection. IEEE Transactions on Dependable and Secure Computing,
2010.

[214] Daniel J. Solove. ‘I’ve Got Nothing to Hide’ and Other Misunderstandings of Privacy. In San
Diego Law Review, volume 44, 2007.

[215] Dawn Xiaodong Song, David Wagner, and Xuqing Tian. Timing analysis of keystrokes and
timing attacks on SSH. In 10th USENIX Security Symposium, 2001.

[216] Neil T. Spring, Maureen Chesire, Mark Berryman, Vivek Sahasranaman, Thomas E. Ander-
son, and Brian N. Bershad. Receiver based management of low bandwidth access links. In
INFOCOM, pages 245–254, 2000.

[217] Qixiang Sun, Daniel R. Simon, Yi-Min Wang, Wilf Russell, Venkata N. Padmanabhan, and
Lili Qiu. Statistical identification of encrypted web browsing traffic. In IEEE Symposium on
Security and Privacy, 2002.



217

[218] L. Sweeney. k-Anonymity: A model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–570, 2002.

[219] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. Towards an Analysis of
Onion Routing Security. In H. Federrath, editor, Proceedings of Designing Privacy Enhancing
Technologies: Workshop on Design Issues in Anonymity and Unobservability, pages 96–114.
Springer-Verlag, LNCS 2009, July 2000.

[220] Paul F. Syverson, Stuart G. Stubblebine, and David M. Goldschlag. Unlinkable serial trans-
actions. In Proceedings of the First International Conference on Financial Cryptography, FC
’97, pages 39–56, London, UK, 1997. Springer-Verlag.

[221] C. Tang and I. Goldberg. An improved algorithm for Tor circuit scheduling. In Proceedings
of ACM Conference on Computer and Communications Security, October 2010.

[222] Tor metrics portal: Data. http://metrics.torproject.org/data.html#stats.

[223] A. Tran, N. Hopper, and Y. Kim. Hashing it out in public: Common failure modes of
DHT-based anonymity schemes. In ACM Workshop on Privacy in Electronic Society, 2009.

[224] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. PEREA: Towards prac-
tical TTP-free revocation in anonymous authentication. In Proceedings of the 15th ACM
conference on Computer and communications security, CCS ’08, pages 333–344, New York,
NY, USA, 2008. ACM.

[225] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. BLAC: Revoking repeatedly
misbehaving anonymous users without relying on TTPs. ACM Trans. Inf. Syst. Secur.,
13:39:1–39:33, December 2010.

[226] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostić, Jeff Chase, and
David Becker. Scalability and accuracy in a large-scale network emulator. SIGOPS Oper.
Syst. Rev., 36:271–284, December 2002.

[227] Camilo Viecco. UDP-OR: A fair onion transport. Technical report presented at the First
HotPETS, July 2008.

[228] Xinyuan Wang, Shiping Chen, and Sushil Jajodia. Tracking anonymous peer-to-peer
VoIP calls on the Internet. In Proceedings of the ACM Conference on Computer and
Communications Security, pages 81–91, November 2005.

[229] Zheng Wang and Jon Crowcroft. Eliminating periodic packet losses in the 4.3-Tahoe BSD
TCP congestion control algorithm. SIGCOMM Comput. Commun. Rev., 22:9–16, April 1992.

[230] Rolf Wendolsky, Dominik Herrmann, and Hannes Federrath. Performance comparison of
low-latency anonymisation services from a user perspective. In Nikita Borisov and Philippe
Golle, editors, Proceedings of the Seventh Workshop on Privacy Enhancing Technologies
(PET 2007), Ottawa, Canada, June 2007. Springer.

[231] Alan Westin. Privacy and Freedom. Atheneum, New York, 1967.

[232] Charles Wright, Lucas Ballard, Fabian Monrose, and Gerald Masson. Language identification
of encrypted VoIP traffic: Alejandra y Roberto or Alice and Bob? In Proceedings of the
16th USENIX Security Symposium, 2007.



218

[233] Charles V. Wright, Lucas Ballard, Scott E. Coull, Fabian Monrose, and Gerald M. Mas-
son. Spot me if you can: Uncovering spoken phrases in encrypted VoIP conversations. In
Proceedings of the IEEE Symposium on Security and Privacy, 2008.

[234] C.V. Wright, F. Monrose, and G.M. Masson. On inferring application protocol behaviors in
encrypted network traffic. Journal of Machine Learning Research, 2006.

[235] Matthew Wright, Micah Adler, Brian Neil Levine, and Clay Shields. An analysis of the
degradation of anonymous protocols. In Proceedings of the Network and Distributed Security
Symposium - NDSS ’02. IEEE, February 2002.

[236] Matthew K. Wright, Micah Adler, Brian Neil Levine, and Clay Shields. The predecessor
attack: An analysis of a threat to anonymous communications systems. ACM Trans. Inf.
Syst. Secur., 7(4):489–522, 2004.

[237] Sebastian Zander and Steven J. Murdoch. An improved clock-skew measurement technique
for revealing hidden services. In Proceedings of the 17th USENIX Security Symposium, San
Jose, CA, US, July 2008.

[238] Lixia Zhang, Scott Shenker, and David D. Clark. Observations on the dynamics of a conges-
tion control algorithm: The effects of two-way traffic. In Proceedings of the conference on
Communications architecture & protocols, SIGCOMM ’91, pages 133–147, New York, NY,
USA, 1991. ACM.

[239] Li Zhuang, Feng Zhou, Ben Y. Zhao, and Antony Rowstron. Cashmere: Resilient anonymous
routing. In Proc. of NSDI, Boston, MA, May 2005. ACM/USENIX.



Appendix A

Extended Circuit Compromise Results from Simulations

The full path compromise results discussed in Chapter 4.4 are presented here. Due to space

constraints, the results begin on the next page.



220

T
ab

le
A

.1
:

P
at

h
co

m
p
ro

m
is

e
ra

te
fo

r
ea

ch
p
ro

to
co

l’
s

d
ef

au
lt

p
or

t
as

th
e

n
u
m

b
er

of
p
as

si
v
e

m
al

ic
io

u
s

ro
u
te

rs
in

cr
ea

se
s

M
a
li
c
io

u
s

R
o
u
te

rs
A

p
p
li
c
a
ti
o
n
-l
a
y
e
r

P
ro

to
c
o
l

T
o
ta

l
(B

W
)

F
T

P
S
S
H

T
el

n
et

S
M

T
P

†
H

T
T

P
P
O

P
3

H
T

T
P
S

K
a
za

a
†

B
it
T
o
rr

en
t†

G
n
u
t
el

la
†

eD
o
n
ke

y
†

6
(6

0
M

iB
/s

)
9.

6%
9.

5%
8.

0%
21

.8
%

7.
0%

7.
0%

6.
3%

21
.7

%
18

.5
%

20
.7

%
21

.3
%

16
(1

60
M

iB
/s

)
30

.4
%

29
.7

%
28

.0
%

42
.8

%
24

.2
%

25
.3

%
24

.1
%

43
.3

%
40

.7
%

41
.7

%
43

.2
%

26
(2

60
M

iB
/s

)
44

.2
%

42
.7

%
41

.3
%

54
.2

%
37

.7
%

39
.1

%
38

.0
%

54
.4

%
53

.5
%

54
.8

%
54

.5
%

36
(3

60
M

iB
/s

)
54

.4
%

52
.5

%
49

.7
%

63
.2

%
47

.2
%

48
.8

%
46

.9
%

62
.8

%
62

.1
%

62
.8

%
62

.7
%

46
(4

60
M

iB
/s

)
59

.7
%

58
.6

%
57

.4
%

69
.2

%
54

.4
%

55
.2

%
54

.2
%

67
.9

%
67

.9
%

67
.8

%
68

.6
%

56
(5

60
M

iB
/s

)
66

.0
%

64
.1

%
61

.9
%

72
.6

%
60

.0
%

61
.2

%
59

.4
%

72
.2

%
71

.1
%

72
.8

%
73

.2
%

66
(6

60
M

iB
/s

)
69

.4
%

69
.1

%
67

.1
%

75
.8

%
64

.4
%

64
.5

%
63

.9
%

76
.1

%
74

.7
%

75
.5

%
75

.1
%

76
(7

60
M

iB
/s

)
72

.5
%

71
.9

%
69

.8
%

77
.7

%
68

.4
%

69
.2

%
68

.0
%

77
.9

%
77

.3
%

77
.7

%
77

.8
%

86
(8

60
M

iB
/s

)
75

.8
%

74
.5

%
73

.1
%

80
.7

%
71

.0
%

71
.8

%
70

.0
%

80
.6

%
79

.5
%

80
.3

%
80

.0
%

96
(9

60
M

iB
/s

)
77

.7
%

76
.3

%
74

.4
%

81
.1

%
73

.1
%

73
.7

%
72

.4
%

81
.7

%
81

.2
%

82
.3

%
82

.0
%

10
6

(1
06

0
M

iB
/s

)
78

.5
%

78
.5

%
76

.6
%

83
.4

%
75

.5
%

76
.0

%
74

.9
%

83
.4

%
82

.4
%

82
.7

%
83

.2
%



221

T
ab

le
A

.2
:

T
or

’s
d
is

tr
ib

u
ti

on
of

ex
it

b
an

d
w

id
th

b
y

ea
ch

p
ro

to
co

l’
s

d
ef

au
lt

p
or

t

F
T

P
S
S
H

T
el

n
et

S
M

T
P

H
T

T
P

P
O

P
3

H
T

T
P
S

K
a
za

a
B
it
T
o
rr

en
t

G
n
u
te

ll
a

eD
o
n
ke

y

N
u
m

b
e
r

o
f
ro

u
te

rs
18

4
19

7
50

0
13

62
5

55
2

62
9

19
23

20
19

T
o
ta

l
b
a
n
d
w

id
th

(i
n

M
iB

/
s)

65
.4

73
.7

90
.1

1.
4

11
6.

9
10

7.
9

12
2.

7
2.

8
9.

1
3.

4
2.

8


