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Abstract. “Censorship resistant” systems attempt to prevent censors from im-
posing a particular distribution of content across a system. In this paper, we intro-
duce a variation of censorship resistance (CR) that is resistant to selective filtering
even by a censor who is able to inspect (but not alter) the internal contents and
computations of each data server, excluding only the server’s private signature
key. This models a service provided by operators who do not hide their identities
from censors. Even with such a strong adversarial model, our definition states that
CR is only achieved if the censor must disable the entire system to filter selected
content. We show that existing censorship resistant systems fail to meet this defi-
nition; that Private Information Retrieval (PIR) is necessary, though not sufficient,
to achieve our definition of CR; and that CR is achieved through a modification
of PIR for which known implementations exist.

1 Introduction

Digital censorship resistance, as defined by Danezis and Anderson [11], is the ability
to prevent a third-party from imposing a particular distribution of documents across
a system. Following the original work of Eternity service [2], a number of proposals
have appeared in the literature to implement censorship resistant information services,
including Tangler [27], Freenet [9], and Freehaven [12]. However, the term “censorship
resistance” has never been formally defined. The most common definition is a variation
of “Our system should make it extremely difficult for a third party to make changes
to or force the deletion of published materials” [28]. What is meant by “extremely
difficult” is subject to interpretation. As a result, it is challenging to precisely evaluate
and compare the effectiveness of the various proposals.

In this paper, we present one possible formal definition of censorship susceptibil-
ity, the dual of censorship resistance. Informally, we define censorship susceptibility as
the likelihood a third-party can restrict a targeted document while allowing at least one
other document to be retrieved. Both our definition, and the threat model that it permits,
refine various prior discussions of censorship resistance. First, while some prior works
have included availability of the service as a necessary condition for censorship resis-
tance (e.g., [2]), our definition decouples these notions (as does, e.g., Dagster [24]).
As defined here, censorship susceptibility measures the extent to which an adversary
can prevent selected content from being distributed. A service with low censorship sus-
ceptibility thus leaves the adversary only the option of completely shutting down the
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service. While high availability, in a technical sense, is one approach to preventing this,
it is not the only one; others include defeating efforts to shut down the service in court1

and extreme social opposition2. As such, we find it useful to decouple the notions of
censorship resistance and high availability.

A second distinction of our work is that the threat model we adopt grants the ad-
versary more capabilities than prior works, and in this sense is conservative. First, we
permit the adversary to identify the server(s); unlike many prior works in censorship
resistance, we do not employ anonymization mechanisms, or, if they are employed, we
presume that the adversary can break them (e.g., [17,25,29]) and discover the servers.
Second, we permit the adversary to inspect every request to and response from the
server, and even a transcript of the server’s processing steps on the request, in order
to reach a decision as to whether to filter (drop) the response. The only secret that the
server is permitted to keep from the adversary is a digital signing key, which we argue is
a necessity to keep the adversary from simply impersonating and effectively replacing
the service to all clients. The only other limitation is that the adversary is not permitted
to modify the server’s contents. We are primarily interested in censorship resistance for
documents which are legal to possess (and so it is not lawful for the adversary to remove
them), but the distribution of which may be restricted; Church of Scientology scriptures
and other lawfully purchased but copyrighted works are but two examples.

In this context, we conduct a foundational study of censorship susceptibility in an
effort to relate it to known cryptographic primitives. Our primary results are as follows:

– Censorship Resistance (CR) implies Private Information Retrieval (PIR) [10,8,6].
That is, in order to implement CR (or more specifically, low censorship suscepti-
bility), it is necessary to implement PIR.

– PIR does not imply CR. That is, not any implementation of PIR satisfies our defi-
nition of CR.

– CR can be achieved through a simple modification of PIR using digital signatures.

PIR is a cryptographic primitive that allows a user to query a database without
revealing the index of the queried item. Our study shows that censorship resistance,
as defined here, cannot be achieved with primitives weaker than PIR. Additionally,
we show that PIR achieves a set of properties that are not sufficient to implement CR
services, but that are sufficient when combined with digital signatures.

The rest of the paper is structured as follows: in Section 2, we discuss related work,
in Section 3 we describe the system model and give a formal definition of censorship
susceptibility. We analyze existing CR approaches using the definition in Section 4.
We show a reduction from general CR to PIR in Section 5 and prove that PIR is not
sufficient for CR in Section 6. In Section 7 we describe a system that implements CR.
We conclude in Section 8.

1 An example is the April 2003 U.S. federal court decision that file-sharing services Grokster
and StreamCast networks were not culpable for illegal file trading over their networks, citing
substantial uses in addition to copyright-infringing ones.

2 The Chinese media control department, in 2001, reversed its prior decision to censor a Tai-
wanese TV series due to extreme popular demand.
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2 Related Work

Our model of censorship resistance is similar to the all-or-nothing integrity (AONI)
model proposed by Aspnes et al [3]. AONI is the notion of document dependency where
the corruption of one document leads to the corruption of other documentsin the system.
Their definition leads to an analysis of classes of adversaries in which AONI is not
possible. Ours is a different formulation that more readily allows a reduction of CR to
other cryptographic primitives (e.g., PIR). This allows us to make precise statements
about the hardness of the problem and delineate the necessary cryptographic primitives
to build a system that is indeed CR.

Danezis and Anderson proposed an economic model to evaluate censorship resis-
tance of peer-to-peer systems [11]. They analyzed the effect of resource distribution
schemes (random vs. discretionary) on the system’s ability to resist censorship. Their
model focuses on the economic values of censoring and anti-censoring. While the find-
ings in [11] are interesting and can help shape future designs of censorship resistant
systems, the goal of our study is somewhat different. We strive to understand the fun-
damental relationships between censorship resistance (as per the assumptions of our
model) and other known cryptographic primitives as to permit the derivation of a for-
mal security argument.

There exist numerous implementations of censorship resistant services
[2,4,5,9,12,26,24,28,27]. We defer our discussion of those schemes to Section 4.

3 System Model and Definitions

In this section, we describe a formal definition of censorship susceptibility. We begin
by describing the model of an information system to frame our discussion.

3.1 System Components and Interface

An information system, sys, includes the following components:

1. Server: A server is an entity that stores and responds to requests for (perhaps in
conjunction with other servers) data. The server uses a signing oracle that encapsu-
lates it private signature key.

2. Document store: A document store ds is a collection of servers that jointly pro-
vides information services. ds has a public key pkds such that pkds is the union of
all servers’ public keys.

3. Client: A client c is a process that queries the document store for documents.

Note that the private signature key is used solely for authentication. We discuss the
ramifications of the private signature key in Section 3.2.

We now describe the system interface for information retrieval. We assume that
there is a finite and static set of documents, DOC , in the system and that each docu-
ment, doc ∈ DOC , is associated with some descriptive name that uniquely identifies
doc. The format of name and the mapping between name and doc is left intentionally
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undefined. We further assume a client, c executes an information retrieval function get
such that

doc← getds(pkds ,name)

to retrieve the document doc identified by name from ds . We assume that ds signs all
responses to queries, and as part of the get function, get(·) verifies the response from
ds with public key pkds .

3.2 Adversarial Model

A censorship resistance adversary ACR wishes to remove a targeted document. ACR is
composed of two algorithms:

1. Generator: A generator G is an algorithm that outputs the name of a targeted
document and some state s to send to the filter.

2. Filter: A filter f(·) is an algorithm imposed upon a document store ds . f(·) takes
in state s from G as input. f(·) may intercept, modify, or drop queries for and
responses from ds . f(·) is allowed to examine the internal transcripts of the servers
in the document store, but it cannot modify the state of the servers or the client side
algorithm.

Note that f(·) models our adversary of interest. We assume that f(·) runs on each
information server and the servers readily subject themselves to the filter’s inspection.
We assume that filters have full access to the server’s communication and work logs.
Modeling the server and the adversary in such a manner allows the conceptual formula-
tion of a law-compliant server that willingly turns over all internal states to a third party
censor (a filter). The only exception is the server’s private signing key; the signing op-
eration is modeled by a signature oracle whose internal state is hidden from outside
view. We note that allowing the server to keep its signature key private is a reason-
able assumption as it is used solely as an authentication mechanism. Furthermore, the
disclosure of the signature key would allow the adversary to impersonate the server to
clients using the service, thus defeating any other mechanisms to resist censorship.

We now discuss the changes in the get(·) protocol when an adversarial filter f(·)
is placed upon a document store ds. We define ds ′ as ds installed with the filter, f(·).
More specifically, ds ′ = f(·)ds where f(·) uses ds as an oracle to answer queries. The
get(·) function between client c and ds ′ is modified as follows:

1. getds
′
(pkds ,name) constructs a query, q(name) and sends the query to ds ′.

2. ds ′ receives the query from c. If the query is passed onto ds , ds performs some
computations in response to the query (e.g, searching for the document, signing the
response using its oracle, etc.), all of which are logged and viewable by f(·). ds ′

may or may not respond to get(·).
3. If get(·) receives an answer, it authenticates the response using pkds and performs

the necessary client-side computation before outputting the document to c.
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3.3 Definition

Informally, we define censorship susceptibility as the probability that an adversary can
block a targeted document while allowing at least one other document to be retrieved. A
system has low censorship susceptibility if the maximum advantage of any censorship
resistance (CR) adversary is small. More formally:

Definition 1. Let ACR = 〈G, f(·)〉 be a CR adversary. Let Name be the set of de-
scriptive names that retrieve documents in ds , and ⊥ be defined as an undefined or
incorrect result. Name and pkds are public knowledge. ACR’s advantage is:

AdvCR
sys(ACR) = Pr[⊥ ← getds

′
(pkds ,name) | (name, s)← Gds ; ds′ ← f(s)ds ] −

min
name′∈Name

[Pr[⊥ ← getds
′
(pkds ,name ′) | (name, s)← Gds ; ds′ ← f(s)ds ]]

The censorship susceptibility of a system is thus defined as:

AdvCR
sys(t, q)

def= max
ACR
{AdvCR

sys(ACR)}

where the maximum is taken over all adversaries that run in time t and make at most q
queries to its oracle, ds .

This definition states that for a system to be CR, there cannot exist an adversary who
can block a certain document while allowing another to be retrieved. More specifically,
generator G outputs the name of the doc it wishes to censor and passes s to f(·).
Given a system sys with its document store installed with filter f(s), sys’s censorship
susceptibility is based on the probability that the filter successfully blocks name while
not blocking some name ′. If sys has low censorship susceptibility, then the adversary’s
only viable option is to institute a complete shut down of the service.

For the remainder of this paper, we omit specifications of t and q, as these values
will be clear from context.

4 Analysis of Current CR Schemes

In this section we analyze current implementations of CR schemes based on the model
described in Section 3. We briefly describe each mechanism first and then analyze its
capability to resist censorship. Some of the interface descriptions are abbreviated as we
only describe the parts that are integral to the discussion. In the discussions that follow,
we loosely categorize the different CR proposals into four categories: data replication,
anonymous communication, server deniability, and data entanglement.

4.1 Data Replication

Eternity Service: Eternity Service [2] provides censorship resistance through anony-
mous communication and data replication across multiple jurisdictions. The underlying
premise is that a universal injunction across all jurisdictions is unlikely.

Freenet: Freenet [9] consists of volunteer servers that provide a document store. A
document in Freenet is encrypted with a descriptive name as its key and requested using



Censorship Resistance Revisited 67

Freenet’s get(name) interface where name is its content key. Queries are forwarded to
servers hosting names which offer the closest match to name . If the document is found,
the server reverse-routes doc back to the client, and each server on the return route
caches a copy of the document.

Gnutella: Gnutella [26] also uses data replication to resist censorship. Data replication
in Gnutella is achieved primarily in a discretionary manner—data is replicated to users
who request the data.

These schemes rely on replicating data either arbitrarily across the system or in
some structured way (as in Freenet) to thwart a censor authority in its effort to locate
and destroy all copies. While data replication will likely increase the cost of censorship
[11], it is insufficient against the attacker model we described in Section 3.

Recall that we permit an adversarial filter to observe and inspect communications
and internal processings of each information server. In effect, one can view the filters as
the result of a universal injunction; thus, systems that rely solely on replication are not
sufficient. In the case of Freenet, documents are referenced by a publicly known name.
The filter can simply block any query with a particular name, thereby achieving cen-
sorship. We can calculate the censorship susceptibility of Freenet using the definition
in Section 3.3; as each name is uniquely mapped to a single document, the censorship
susceptibility of Freenet by our definition is equal to 1. The censorship susceptibility of
Gnutella and Eternity Service is similar.

In addition, censorship against both Freenet and Gnutella can be achieved without
significant effort on the part of the censor. In Freenet, documents are only replicated
along the retrieval route; if a document is not particularly popular, then its number of
replicas will be limited. In peer-to-peer systems such as Gnutella that rely solely on
discretionary replication, it has been shown that the system degenerates into a client-
server model where most documents are replicated only on a subset of the peers [1]. As
such, the cost of censorship can be significantly less than what is required to procure a
universal injunction.

4.2 Anonymous Communication Systems

Many CR implementations rely on anonymous communication channels [7,13,20,21].
We discuss two such systems here.

Free Haven: Free Haven [12] is a peer-to-peer network that provides anonymity and
document persistence. In Free Haven, each stored document is divided into shares that
are signed with the document’s private key. The shares are stored on a server along with
the hash of the corresponding public key. Clients retrieve documents with a get(name)
interface where name is the hash of the document’s public key. A request is broadcast
to the entire network; servers holding the matching key hash respond with the stored
shares. The client recreates the file upon receiving a sufficient number of shares.

Anonymizing Censorship Resistant Systems: Serjantov [22] describes a peer-to-peer
system that provides censorship resistance using Onion Routing [14]. Each peer in the
system can act as a server, forwarder, or decrypter. Each stored document is divided
into encrypted blocks and placed on multiple servers. A forwarder acts as an intermedi-
ary between the servers and a client; only a forwarder knows the mapping between the
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data blocks and the servers that store them. A decrypter is responsible for decrypting
data blocks but does not have knowledge of the data-server mapping. In this system,
name in the get(name) function encodes the set of forwarders and the labels of the en-
crypted blocks. All communications in this system are carried out on top of anonymous
channels.

Both Free Haven and Serjantov’s system rely on anonymous communication chan-
nels (e.g, [14], [18]) to resist censorship. Free Haven additionally migrates document
shares periodically among servers to offer another level of protection [12]. Serjantov’s
system also uses data encryption to protect servers; the intuition is that if servers cannot
decrypt the blocks they store, they cannot be prosecuted for storing certain data.

Unfortunately, in Free Haven one can easily identify the target document in a query
using well known public keys. In Serjantov’s system, the identities of the forwarders
are in the public name of the document. A third party filter can easily deny queries
associated with a particular key or in the latter case, simply deny queries to the par-
ticular forwarders found in name, thus achieving selective filtering. Similar to prior
discussions, the censorship susceptibility of both systems is thus equal to 1.

We note that attacks against anonymous communication channels have been demon-
strated (e.g., [17,19,25,29]). It is feasible that a censor authority could possess the re-
sources to undermine current anonymous communication technology and discover the
locations of the servers in the system.

4.3 Server Deniability

Publius: Publius [28] consists of a static set of servers hosting encrypted documents.
The encrypted documents are stored onto multiple servers, each with a share of the
document key. Because servers do not store the entire key for a particular document, and
documents are stored encrypted, Publius suggests that it achieves server deniability, the
ability for a server to deny knowledge of the hosted documents’ contents. To retrieve
doc, a Publius client use the get(name) function, where name is the Publius URL that
encodes the hosting servers and the target document. A subset of those servers respond
with the encrypted document and their key shares, the latter of which the client uses to
reconstruct the key to decrypt the document.

Publius claims to be censorship resistant because servers cannot determine the con-
tent of its storage. However, since the Publius name (e.g., the URL) for a document
is well known, a censor authority can easily locate the servers and filter the requests
associated with a particular name.

4.4 Data Entanglement

Tangler: Tangler [27] is a network of servers that provide data storage. Censorship re-
sistance is provided by “entangling” documents such that the removal of one document
will result in the removal of other documents. In Tangler, each document is divided into
blocks, each of which is entangled (using Shamir secret sharing [23]) with two arbitrary
blocks in the system. Each entanglement creates two new blocks in addition to the two
existing ones. A threshold number of entangled blocks reconstruct the original block.
To retrieve a document, a client uses the get(name) function where name identifies the
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necessary blocks to reconstruct the document. Tangler servers periodically move blocks
from server to server using consistent hashing [15].

Dagster: Dagster [24] is a single-server system with a similar goal to Tangler: prevent
censorship resistance by “entangling” different documents. In Dagster, data is entangled
in such a manner that the removal of a document results in the unavailability of the
documents entangled with it.

Both Tangler and Dagster use data entanglement to offer protection against censor-
ship. However, because only a limited number of blocks are used in a particular entan-
glement, an adversary can institute the removal of a document without visibly affecting
the overall availability of the remaining documents. Per our definition in Section 3.3,
the system censorship susceptibility is equal to 1.

4.5 Discussion

We note that our threat model grants the adversary more capabilities than prior work
in that we allow the adversary power to impose universal policies across the system
and capability to inspect internal server states. In situations where these assumptions do
not hold, that is, servers do not voluntarily cooperate or jurisdiction boundaries prevent
universal censor policies, the mechanisms analyzed in this section would offer certain
protection against censorship. In those cases, the economic model [11] can be used to
reason about their abilities to resist censorship.

5 CR Implies PIR

In this section, we show that CR implies Private Information Retrieval (PIR). This im-
plication states that CR systems cannot be constructed with primitives weaker than PIR.
We first introduce the PIR primitive. We then prove that CR implies PIR.

5.1 Preliminaries

Private Information Retrieval: A private information retrieval (PIR) scheme
[6,8,10,16] is an interactive protocol between two entities: a database, DB , and a user,
U . The goal of a PIR protocol is to allow U to query DB without revealing to DB the
index of the queried item. DB holds a n-bit string x ∈ {1, 0}n which is indexed by
i ∈ {1, ..., n}. U construct queries, q(i), to retrieve the i-th bit, xi, from DB . At the
end of the protocol, two properties must hold:

1. Correctness: U has the correct value for xi, and
2. User Privacy: DB has no knowledge of the retrieved index, i.

The user privacy of a PIR may be modeled as the advantage a PIR adversary has against
the scheme. More formally, the advantage of a PIR adversary is defined as:

Definition 2. The advantage an adversary, APIR has against a PIR protocol, P, is de-
fined as:

AdvPIR
P (APIR) = max

i,j
[Pr[APIR(q(i)) = 1]− Pr[APIR(q(j)) = 1]]
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where i, j ∈ {1 . . . n} are indices into the database. The advantage of the PIR protocol
is thus defined as:

AdvPIR
P (t) def= max

APIR
[AdvPIR

P (APIR)]

where the maximum is taken over all adversaries that run in time t.

In the remainder of this paper, we omit the specifications of t, as its value will be
clear from context.

Informally, the user privacy of a PIR protocol is modeled as the probability that an
adversary can distinguish between queries for two different indices.

In the discussion below, we assume a PIR protocol similar to those in [8,10]. These
protocols retrieve a block of bits per query, which permits us to draw a parallel between
a document from a CR system and a block of bits from a PIR database.

5.2 CR Implies PIR

In this section, we construct a PIR protocol from a generic CR system. We define a
PIR protocol built on top of a secure CR system, sys, as PIR-sys. We show that if there
exists a PIR adversary against PIR-sys with significant advantage, then there exists a CR
adversary against sys with significant advantage. More formally:

Theorem 1. ∀APIR, ∃ ACR : AdvCR
sys(ACR) ≥ AdvPIR

PIR-sys(APIR).

Proof. We prove the above theorem by constructing the PIR protocol, PIR-sys, from a
generic CR system, sys.

A PIR protocol has two parties: a user U , and a database DB . To create the PIR
protocol, we map the CR document store (ds) to DB , and allow U access to all of
the functions available to the CR client. The set of retrievable documents in a CR sys-
tem can be indexed from 1 to n, where n = |DOC|. We view this enumerated set of
documents as the PIR data-string held by DB .

Recall from Section 3.1 that documents in the CR system are retrieved using de-
scriptive names. Because a descriptive name uniquely identifies a document, we can
map the set of descriptive names associated with a document to an index in the PIR
database. A PIR query for index i, q(i), simply becomes a combination of a lookup
function to find a descriptive name that corresponds to the document at i and a call
to the CR query function with the given descriptive name. The protocol for the PIR
protocol is as follows:

1. U wishes to retrieve the document indexed at i from DB . He calls the mapping
function, map(i), to get a descriptive name, name, corresponding to the document.

2. U uses name to outputs a query, q(name), using the query function of the CR
system. Specifically, U performs getds(pkds, name).

3. Upon receiving the query, ds performs its normal computations to return a response
to U .

4. U performs the CR computations to reconstruct the document from the response.
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We denote the described protocol as PIR-sys. We now prove that the two properties
of PIR, correctness and user privacy, indeed hold for the resulting PIR protocol.

Correctness: Follows directly from the CR system. The PIR query is essentially a
CR query.

User Privacy: To prove that our PIR scheme satisfies the property of user privacy,
we show that the existence of a PIR adversary, APIR, implies the existence of a CR
adversary, ACR with at least the same advantage. Let us assume that there indeed exists
an APIR that distinguishes between two indices with advantage, AdvPIR

PIR-sys(APIR).
From APIR, we can build a CR adversary ACR, whose advantage AdvCR

sys(ACR) is at
least that of APIR. Recall that ACR = 〈G, f(·)〉. The CR adversary works as follows:

1. APIR has two indices, i and j, where the PIR advantage is maximized. Namely,

AdvPIR
PIR-sys(APIR) = Pr[APIR(q(i)) = 1]− Pr[APIR(q(j)) = 1] (1)

2. G designates i to be the target document doc and uses map(i) to find name such
that doc← getds(pkds,name).

3. G creates some state s to pass to f(·). For every query, f(s) will function as fol-
lows:
(a) f(s) sends the received query q to APIR.
(b) If APIR returns 1, f(s) denies the query. Otherwise, f(s) passes the query to

ds .
4. G outputs (name, s).

Recall from Section 3 that the goal of the CR adversary is to block a targeted doc-
ument while allowing at least one other document to be retrieved. The CR adversary’s
advantage is calculated as:

AdvCR
sys(ACR) = Pr[⊥ ← getds

′
(pkds ,name) | (name, s)← Gds ; ds′ ← f(s)ds ] −

min
name′∈Name

[Pr[⊥ ← getds
′
(pkds ,name ′) | (name, s)← Gds ; ds′ ← f(s)ds ]]

We label the two events in this advantage calculation as “ACR block targeted” and
“ACR block not targeted” respectively. From our construction of PIR from CR, we see
that

Pr[ACR block targeted] = Pr [APIR(q(i)) = 1] (2)

min
name′∈Name

[Pr[ACR block not targeted]] ≤ Pr [APIR(q(j)) = 1] (3)

Thus, we have the following reduction:

AdvCR
sys(ACR) = Pr[ACR block targeted]− min

name′∈Name
[Pr[ACR block not targeted]]

≥ Pr [APIR(q(i)) = 1]− Pr [APIR(q(j)) = 1]

≥ AdvPIR
PIR-sys(APIR) (4)
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This proof shows that CR implies PIR. Since the CR system sys is secure, and the
PIR adversary’s advantage is bound from above by the advantage of the CR advantage
against sys, the PIR protocol, PIR-sys is secure. Thus, this theorem states that CR im-
plies PIR. Consequently, CR systems cannot be built with primitives weaker than PIR.

6 PIR Does Not Implement CR

In this section, we sketch a proof of why PIR does not implement CR. In this proof,
we use a specific implementation of computational PIR based on the Quadratic Resid-
uosity Assumption [16]. We first describe the PIR implementation; we then show that
using this PIR implementation trivially as the CR mechanism results in high censorship
susceptibility.

6.1 PIR Scheme

The parties in the PIR protocol from [16] are identical to the generic PIR protocol
described in Section 5.1. However, in this implementation, we view the database as
a s × t matrix of bits (denoted by M ). The target document is thus M(a,b), where a
and b are the row and column indices, respectively. The following notation is used in
describing the protocol:

– N is a natural number.
– Z

∗
N ≡ {x | 1 ≤ x ≤ N, gcd(x, N) = 1}

– Hk ≡ {N |N = p1 · p2 where p1, p2 are k/2-bit primes}
– QN (y) denotes the quadratic residuosity predicate such that QN (y) = 0 if ∃w ∈

Z
∗
N : w2 = y mod N and QN (y) = 1 otherwise.

– y is a QNR ifQN (y) = 1, otherwise y is a QR.
– JN (y) denotes the Jacobi symbol of y mod N . Note that if JN (y) = −1, then y is

QNR, and if JN (y) = 1, then y can be QNR or QR.
– Z

1
N ≡ {y ∈ Z

∗
N |JN (y) = 1}

The PIR protocol for U interested in M(a,b) is as follows:

1. U begins by picking a random k-bit number N ∈ Hk.
2. U selects t random values y1, ...yt ∈ Z

1
N such that yb is a QNR and yj is a QR for

j �= b. U sends (y1, ..., yt, N) to DB and keeps N ’s factorization secret.
3. DB computes, for every row r, a number zr ∈ Z

∗
N , as follows: It first computes

wr,j such that wr,j = y2
j if Mr,j = 0, and wr,j = yj otherwise. It then computes

zr =
t∏

j=1

wr,j .

4. DB sends z1, ..., zs to U .
5. U only considers za. Because QN (xy) = QN (x)⊕QN (y), za is QR iff M(a,b) = 0.

Since U knows the factorization of N , she can check whether za is a QR and thus
retrieve bit M(a,b).

This protocol has been shown to be a secure PIR protocol under the Quadratic
Residuosity Assumption[16]. In the discussion below, we denote this PIR protocol as
QRA.
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6.2 PIR Does Not Implement CR

We now show how the PIR scheme, QRA, does not implement CR. Consider a system
that is a straightforward implementation of the PIR protocol, QRA. Namely, interpret-
ing the PIR protocol as the CR system: the CR document store consists of one-bit docu-
ments, the “descriptive names” of the documents are the indices into the data string, and
the CR get(·) function is the PIR query function. Let n be the size of the PIR database.
We have the following theorem:

Theorem 2. ∃DB : AdvCR
QRA(ACR) = 1

Proof. Assume that the CR adversary wishes to censor the document, M(a,b). As de-
scribed in Section 3, the filter, f(·), may modify the query, but it may not change the
retrieval algorithm of the server. We show an implementation of f(·) that modifies client
queries to censor M(a,b). The filter works as follows:

1. f(·) receives query (y1, ..., yt, N). f(·) creates a y′ = z2 where z ←R Z
∗
N .

2. f(·) replaces yb (where b is the column that holds the bit the filter wishes to censor)
with y′.

3. f(·) forwards the modified query, (y1, ...y
′, ..., yt, N) to DB .

We now calculate the censorship susceptibility of the system. Let us assume that the
PIR database holds the value 0 for all indices other than (a, b). For the bit M(a,b), the
value is 1. Recall that an adversary’s censorship susceptibility advantage is calculated
as follows:

AdvCR
sys(ACR) = Pr[ACR block targeted]− min

name′∈Name
Pr[ACR block not targeted].

where sys = QRA. From the filter we created, the probability of “ACR block targeted”
is calculated as:

Pr[ACR block targeted] = Pr[M(a,b) = 1] (5)

The filter algorithm replaces yb with y′ for every query that it sees. Because y′ is
guaranteed to be a QR, regardless of the value stored on the database, the modified
query result always returns a QR, effectively returning a 0. Since our database is such
that M(a,b) = 1, this modification guarantees that the client is unable to retrieve the
correct bit. Therefore, the probability that the filter blocks the targeted bit is equal to 1.

Using a similar argument, we can calculate Pr[ACRblock not targeted]. Let M(a′,b′)
be the bit the client wishes to retrieve. If b′ = b, then the filter’s modification of yb to
y′ results in M(a′,b′) being returned as a 0. Since the database values have been chosen
such that only M(a,b) equals 1, a modification of yb to y′ does not affect results for
M(a′,b) since Mx,y = 0 ∀x �= a, y �= b . In this case, Pr[ACR block not targeted] is
equal to 0.

From our calculations, the censorship susceptibility of this CR protocol is 1. Thus,
PIR does not trivially implement CR.

Combining the result of this theorem with Theorem 5.2, we have shown that PIR is
necessary but not sufficient to implement CR.



74 G. Perng, M.K. Reiter, and C. Wang

7 A CR Implementation

In this section, we show a CR implementation by modifying any generic PIR protocol.
In Section 6, we showed that PIR does not implement CR. A filter can simply mod-

ify client queries to censor a targeted document. We show a modification of the PIR
protocol such that client queries cannot be altered without detection.

A client, c, can detect if her request has been altered if ds simply includes c’s request
in its reply to c. ds can digitally sign each message with its response and c’s request.
Thus, c’s get(·) verifies that the request it generated is unaltered and that the response
comes from ds. If the query has been altered, then get(·) fails to retrieve the document.
We denote this new CR system as sys+S.

For the following theorem, we implement the CR system, sys, using a generic PIR
protocol, P. Our modification leads us to the following theorem:

Theorem 3. ∀ACR, ∃ APIR : AdvPIR
P (APIR) ≥ AdvCR

P+S(ACR).

Proof. Recall the document retrieval protocol from Section 3. f(·) may modify the
query before it invokes ds for a response, and f(·) may drop the query after ds fin-
ishes computing its answer for the query. However, because ds includes c’s query in
its digitally signed response, f(·) is unable to modify the query without c detecting the
modification. Thus, f(·)’s only viable option is to drop queries. Given that the CR sys-
tem, P+S, uses a generic PIR protocol, P, as its underlying retrieval protocol, we prove
that if ACR has some advantage, AdvCR

P+S(ACR), then there exists a PIR adversary with
advantage, AdvPIR

P (APIR) against P.
Similar to Section 6, we assume that documents in the CR system are one-bit doc-

uments, and the “descriptive names” of the documents are the indices for a PIR data-
string. The PIR adversary works as follows:

1. Given (name, s)← G, APIR finds the corresponding index, i, that maps to name.
2. For any query q, APIR passes q to f(s). If f(s) drops the request or response, APIR

outputs 1. Otherwise, APIR outputs 0.

Recall from Section 5 that the CR adversary’s advantage is calculated as:
AdvCR

P+S(ACR) = Pr[ACR block targeted]− min
name′∈Name

[Pr[ACR block not targeted]] .

Recall that the PIR adversary’s advantage is defined as:

AdvPIR
P (APIR) = max

i,j
[Pr[APIR(q(i)) = 1]− Pr[APIR(q(j)) = 1]] .

We can see from our construction of the PIR adversary that:

Pr[APIR(q(i)) = 1] = Pr[ACR block targeted]
∃j : Pr[APIR(q(j)) = 1] = min

name′∈Name
Pr[ACR block not targeted]

Thus, we have the following reduction:

AdvPIR
P (APIR) = max

i,j
[Pr[APIR(q(i)) = 1]− Pr[APIR(q(j)) = 1]]

= Pr[ACR block targeted]− min
name′∈Name

Pr[ACR block not targeted]

= AdvCR
P+S(ACR) (6)
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8 Conclusion

In this paper, we introduced a formal definition for censorship susceptibility. Intuitively
a system with low censorship susceptibility is censorship resistant. Our definition pro-
vides a framework with which to evaluate different designs of censorship resistant in-
formation services. In this work, we adopt an aggressive threat model, allowing the
possibility of a universal injunction and voluntary cooperation of servers with external
censor authorities. We show that many current implementations of CR services do not
satisfy censorship resistance under this threat model.

Our model allows us to prove intrinsic relationships between the property of censor-
ship resistance and the cryptographic primitive of Private Information Retrieval (PIR).
We show that PIR is necessary for censorship resistance, but does not trivially imple-
ment CR. We then show an implementation using PIR that does meet our definition of
censorship resistance.
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