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Abstract

This paper studies countermeasures to traffic analysis
attacks. A common strategy for such countermeasures is
link padding. We consider systems where payload traffic is
padded so that packets have either constant inter-arrival
times or variable inter-arrival times. The adversary ap-
plies statistical recognition techniques to detect the payload
traffic rates by using statistical measures like sample mean,
sample variance, or sample entropy. We evaluate quantita-
tively the ability of the adversary to make a correct detec-
tion and derive closed-form formulas for the detection rate
based on analytical models. Extensive experiments were
carried out to validate the system performance predicted by
the analytical method. Based on the systematic evaluations,
we develop design guidelines for the proper configuration
of a system in order to minimize the detection rate.

1 Introduction

A significant portion of the Internet traffic today is en-
crypted, and there are strong indications that this portion
will increase at a high rate. However, encryption alone
may not be sufficient for secured communications. A num-
ber of non-cryptographic attacks ([5, 10, 15, 18, 19]) have
illustrated how the observations of traffic behavior allow
an adversary to infer significant information about partic-
ipants and their communications. For example, [18] shows
that timing analysis of SSH traffic can greatly simplify the
breaking of passwords. This paper deals with timing based
traffic analysis attacks and their countermeasures.

Link padding is one effective approach in countering
traffic analysis attacks. The idea is based on Shannon’s
perfect secrecy theory: if one can map any payload traf-
fic to a predefined pattern (a sufficient condition used by
most researchers), then the adversary cannot obtain any in-
formation by analyzing the padded traffic. While in theory
this technique sounds extremely simple, in reality, a per-
fect mapping cannot be achieved due to uncontrollable dis-

turbances (or QoS requirement) in a system. The question
is: Do these disturbances result in information leaking, thus
preventing a perfect secrecy system? If the answer is posi-
tive, metrics must be defined to assess the effectiveness of a
particular implementation. In this paper, we propose using
detection rate – defined as the probability that an adversary
can make a correct identification of payload traffic rates –
as the security metric.

Differing from the previous studies, we establish a for-
mal theoretical framework for link padding systems and de-
rive closed-form formulae for estimation of detection rates.
Our formulae correctly describe the relationship between
detection rate and system parameters such as the padded
traffic type, sample size, and location in the network where
the adversary can collect traffic samples. We report results
from extensive experiments in various situations including
local area network in a laboratory, campus networks, and
wide area networks. Our data consistently demonstrates the
usefulness of our formal model and correctness of perfor-
mance predicted by the closed-form formulae. Based on
the observations, we develop design guidelines that allow
a manager to properly configure a system in order to mini-
mize the detection rate.

The rest of this paper is organized as follows. Section 2
briefly reviews the related work and summarizes that Shan-
non’s perfect secrecy theorem is the theoretical foundation
in developing countermeasures to traffic analysis attacks.
We present the network model, padding mechanism, and
adversary strategy in Section 3. In Section 4 we develop a
theoretical model and derive closed-form formulae for de-
tection rates. Section 5 validates our theory by experiments.
Section 6 summarizes this paper and discusses possible ex-
tensions.

2 Related Work

Shannon in [16] describes his perfect secrecy theory
that is the foundation for the ideal countermeasure system
against traffic analysis attacks.

The study of traffic analysis and its countermeasures for



computer networks is not new. Baran [2] proposed the use
of heavy unclassified traffic to interfere with the adversary’s
tampering on the links of a security network system for clas-
sified communication, and suggested adding dummy, i.e.
fraudulent, traffic between fictitious users of the system to
conceal traffic loads.

To protect the anonymity of email transmission, Chaum
[3] proposed the use of a Mix, a computer proxy. One tech-
nique used by a Mix is that it collects a predefined num-
ber K of fixed-size message packets from different users,
shuffles the order of those packets, and then send them out.
The reality is that a mix cannot always get K packets ef-
ficiently from users. So it is suggested that users send
dummy messages of random and meaningless content to
maintain a Mix’s security and efficiency. Most researchers
have suggested constant rate padding between the user and
the proxy, e.g., [20]. Constant rate padding is also used here
for preventing packet counting attacks [15].

A survey of countermeasures for traffic analysis is given
in [25]. To mask the frequency, length, and origin-
destination patterns of end-to-end communication, the use
of dummy messages is suggested to make the traffic adhere
to a predefined pattern. From the discussion of Shannon’s
perfect secrecy theory, it is evident that a predefined pattern
is sufficient but not necessary.

The authors in ([12, 13, 24]) give a mathematical frame-
work to optimize the bandwidth usage while preventing
traffic analysis of the end-to-end traffic rates. Timmerman
[23] proposes an adaptive traffic masking (hiding) model to
reduce the overhead caused by link padding. But, when the
rate of real traffic is low, the link padding rate is reduced as
well, in order to conserve link bandwidth. Perfect secrecy is
violated in this case, as large-scale variations in traffic rates
become observable.

Raymond in [15] gives an informal survey of many ad
hoc traffic analysis attacks on systems providing anony-
mous service. One conclusion is that dummy messages
must be used to achieve high information assurance for the
system. It is even claimed [1] that we have to use padding to
each link of an anonymity network (although more research
is needed to clear this claim).

In our previous work, NetCamo [9], we describe how
to provide end-to-end prevention of traffic analysis while at
the same time guaranteeing QoS (worst-case delay of mes-
sage flows). It turns out that the delay experienced by pack-
ets of a protected flow is tightly coupled to the bandwidth
required to send both payload and dummy packets. We pro-
pose methods such as QoS routing to tackle the QoS prob-
lem for systems using link padding strategies.

3 The System Model

In this section, we present the model of the network in
our study and then discuss link padding mechanisms that are
used as a countermeasure for traffic analysis attacks. Finally
we formally define the model of the adversary, who uses
statistical pattern recognition strategies for traffic analysis

attacks.

3.1 Network Model

In this work, we assume that the network consists of
protected subnets, which are interconnected by unprotected
networks. Traffic within protected subnets is assumed to
be shielded from observers. Unprotected network can be
public networks (e.g., the Internet), or networks that are de-
ployed over an easily accessible broadcast medium. These
networks are accessible to observation by third-parties, and
are therefore open to traffic analysis. This model captures
a variety of situations, ranging from battleship convoys
(where the large-scale shipboard networks are protected and
the inter-ship communication is wireless) to communicat-
ing PDAs (where the protected networks consist of single
nodes).
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Figure 1. System Model

Figure 1 illustrates the setup of the network in this study.
Two security gateways GW1 and GW2 are placed at the two
boundaries of the unprotected network and provide the link
padding necessary to prevent traffic analysis of the payload
traffic exchanged between the protected subnets A and B.

Note that the gateways can be realized either as stand-
alone boxes, modules on routers or switches, software ad-
ditions to network stacks, or device drivers at the end hosts.
In this paper, we assume that they are stand-alone boxes.
Nevertheless, the analysis in this paper is also effective for
other implementations. To simplify the discussion, the com-
munication is one-way from Subnet A to Subnet B. Conse-
quently, GW1 and GW2 are also called sender gateway and
receiver gateway respectively.

3.2 Link Padding Mechanism

The goal of the adversary is to perform traffic analy-
sis and infer critical characteristics of the payload traffic
exchanged between protected subnets over the unprotected
network. We limit the interest of the adversary to the pay-
load traffic rate, that is, the rate at which payload traffic is
exchanged between protected networks. The traffic rate is
a piece of important information in many mission-critical
communication applications [15]. Specifically, we assume
that there is a set of discrete payload traffic rates {ω1, · · ·,
ωm}. The rate of payload traffic from the sender may be
one of those m rates at a given time. Consequently, the ob-
jective of the adversary is to identify at which of the m rates
the payload is being sent.

One way to counter the traffic analysis attacks is to “pad”
the payload traffic, that is, to properly insert “dummy” pack-



ets in the payload traffic stream so that the real payload sta-
tus is camouflaged. There are many possible implemen-
tations of link padding algorithms on the two gateways in
Figure 1. The most common method uses a timer to control
packet sending, and works as follows: (a) On GW1, incom-
ing payload packets from the sender are placed in a queue.
(b) An interrupt-driven timer is set up on GW1. When the
timer times out, the interrupt processing routine checks if
there is a payload packet in the queue: (1) If there are pay-
load packets, one is removed from the queue and transmit-
ted to GW2; (2) Otherwise, a dummy packet is transmitted
to GW2.

We need to make a few remarks before we proceed fur-
ther.
(1) In this paper, we assume that packet contents are per-
fectly encrypted (e.g., by IPSec with appropriate options)
and are thus non-observable. In particular, the adversary
cannot distinguish between payload packets and “dummy”
packets used for padding.
(2) It is obvious from the implementation described above,
the only tunable parameter is the time interval between
timer interrupts. The choice of this parameter discrimi-
nates different padding approaches. A system is said to
have a constant interval timer (CIT) if the timer is a peri-
odic one, i.e., the interval between two consecutive timer
interrupts is constant. This is the most common method
used for padding. On the other hand, a system is said to
have a variable interval timer (VIT) whenever the interval
between two consecutive timer interrupts is a random vari-
able and satisfies some distribution.

As we will see in the later part of this paper, CIT and VIT
systems may perform significantly differently in preventing
traffic analysis attacks.
(3) We assume that all packets have a constant size. Thus,
observing the packet size will not provide any useful infor-
mation to the adversary. The only information available for
the adversary to observe and analyze is the timing of pack-
ets. This assumption should simplify the discussion without
loss of the generality. See [7] for a discussion on how to ex-
tend our results in this paper to the case where packets may
have variable sizes.

3.3 Adversary Strategies

Recall that we assume that the objective of the adversary
is to identify at which of the m possible rates the payload
is being sent, and the adversary limits himself to passive
attacks, i.e., observations of the traffic. In addition, the ad-
versary’s access to the system is limited to the unprotected
networks. The protected subnets and hosts within are not
accessible. Neither is the link padding infrastructure. This
means that, in Figure 1, the adversary can only tap some-
where between gateways GW1 and GW2.

We also assume that the adversary has complete knowl-
edge about the gateway machines and the countermeasure
algorithms used for preventing traffic analysis. For exam-
ple, the adversary can simulate the whole system, including
the gateway machines, to obtain a priori knowledge about

traffic behavior. In many studies on information security, it
is a convention that we make worst-case assumptions like
this.

Based on these assumptions, the adversary can deploy
a strategy based on Bayes decision theory [4]. The entire
attack strategy consists of two parts: Off-line training and
run-time classification. We now describe them below.
Off-line training The off-line training part can be decom-
posed into the following steps:
(1) The adversary selects a statistical feature of the Packet
Inter-Arrival Time (PIAT) that will be used for traffic rate
classification. Possible features we study in this paper are
sample mean, sample variance, and sample entropy.
(2) The adversary reconstructs the entire link padding sys-
tem and collects timing inforamtion at different payload
traffic rates. From this information, the adversary derives
the Probability Density Functions (PDF) of the selected sta-
tistical feature. As histograms are usually too coarse for the
distribution estimation, we assume that the adversary uses
the Gaussian kernel estimator of PDF [17], which is effec-
tive in our problem domain.
(3) Based on the PDFs of statistical features for different
payload traffic rates, Bayes decision rules are derived. Re-
call that there are m possible payload traffic rates ω1, · · ·,
ωm. The Bayes decision rule can be stated as follows:
The sample represented by feature s corresponds to payload
rate ωi if

P (ωi|s) ≥ P (ωj |s) (1)

That is,

f(s|ωi)P (ωi) ≥ f(s|ωj)P (ωj) (2)

for all j = 1, · · ·, m.
Here P (ωi) is the a priori probability that the payload traf-
fic is sent at rate ωi, and P (ωi|s) is the post priori prob-
ability that the payload traffic is sent at rate ωi when the
collected sample has the measured feature s.
Run-time Classifcation Once the adversary completes its
training phase, he can start the classification at run time. We
assume the adversary uses some means to tap the network
between gateways GW1 and GW2. In particular, when he
wants to determine the current payload rate, the adversary
collects a sample of packet inter-arrival times. He calcu-
lates the value of the statistical feature from the collected
sample, and then uses the Bayes decision rules derived in
the training phase to match the collected sample to one of
the previously defined payload traffic rates.

4 Derivation of Detection Rate
4.1 Overview

4.1.1 Definition of Detection Rate

Given the models described in the previous section, we
would like to evaluate the system security in terms of de-
tection rate. Detection rate is defined as the probability that



the adversary can correctly identify the payload traffic rate.
In this section, we derive the closed-form formulae for de-
tection rates when the adversary uses sample mean, sample
variance, or sample entropy, as the statistical feature, re-
spectively. Our formulae will be approximate ones due to
the complexity of the problem. Nevertheless, these formu-
lae do correctly reflect the impact of various system param-
eters, including the type of padded traffic, sample size, and
statistical feature used. These relationships are extremely
useful in design of a link padding system so that the over-
all detection rate can be minimized. In the next section, we
will see that experimental data well matchs the performance
predicated by our approximation formulae.

We will focus our discussion on systems with only two
payload traffic rates, namely ωl as the low traffic rate and
ωh as the high traffic rate, and assume that both traffic rates
occur with equal probability. Extensions on this will be dis-
cussed in Section 6.
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Figure 2. Bayes Decision Making for the Case
of Two Payload Traffic Rates

Figure 2 shows the PDFs of the statistical features condi-
tioned on two alternative payload traffic rates. Let d be the
solution of the equation

f(ωl|s) = f(ωh|s) (3)

and assume that there is a unique solution to the equation.
Consequently, the Bayes decision rule now becomes

If s ≤ d, the payload traffic rate is ωl;
Otherwise, the rate is ωh. (4)

The error rate for the Bayes decision rule can be calcu-
lated as follows:

ε = P (ωh)

d∫
−∞

f(s|ωh)ds + P (ωl)

+∞∫
d

f(s|ωl)ds(5)

The detection rate is then given by

v = 1 − ε (6)

= P (ωl)

d∫
−∞

f(s|ωl)ds + P (ωh)

+∞∫
d

f(s|ωh)ds(7)

While numerical methods can be applied to calculate the
detection rates, for example with the use of (??), our goal
here is to derive close-form formulae that can reveal the re-
lationship between the detection rate and other system pa-
rameters.

4.1.2 Decomposition of Packet Inter-Arrival Time

Recall that the adversary collects a sample of packet inter-
arrival time at run time in order to perform the classifica-
tion. Thus, to derive the detection rate, we need to formally
model the packet inter-arrival time. For a given system, let
random variable X be the packet inter-arrival time. X can
be considered as the sum of three other random variables:

X = T + δgw + δnet (8)

where T is the designed interval of two consecutive timer
interrupts for the timer, and δgw and δnet reflect the noise
added by disturbance in the gateway system and by conges-
tion in the internetwork, respectively.

Note that T is defined by the link padding policy. T is
constant for CIT link padding but follows a specific distri-
bution for VIT link padding.

δgw is caused by a number of factors, which may impact
the accuracy of the timer’s interrupt: (1) First, the context
switching from other running process to the timer’s inter-
rupt routine may take a random time. (2) Furthermore, a
timer interrupt may be temporally blocked due to other ac-
tivities. For example, if an payload packet from the sender
is arriving at the network interface card of the gateway, the
network interface card would generate an interrupt request,
which can block all the processes including the (scheduled)
timer interrupt 1. Thus, the timer’s interrupts may be subtly
but randomly delayed by incoming payload packets. This
implies that the padded traffic’s PIAT may be correlated
with the payload traffic.

δnet captures the disturbance on the padded traffic’s
PIAT caused by crossover traffic at routers and switches.
Clearly, δnet depends on the position at which the adver-
sary collects its sample. If the collection is done right at
the output of the sender gateway, this noise may be ignored.
However, if the adversary collects its sample far away from
the sender gateway, the noise level can be high as crossover
traffic may significantly interfere with the padded traffic.

In this paper, we assume that both T , δgw and δnet are
normally distributed. These assumptions simplify analysis
without loss of generality and will be validated by our ex-
periments in Section 5. Specifically,

T ∼ N(τ, σ2
T ) (9)

where σ2
T = 0 in the case of CIT link padding. And

δnet ∼ N(0, σ2
net) (10)

where σ2
net = 0 when the adversary observes the padded

traffic at a position next to the sender’s gateway GW1. Sim-
ilarly

δgw ∼ N(0, σ2
gw) (11)

1For TimeSys Linux [22] used in our experiments, this request pro-
ceeds before the incoming packet reaches the IP layer [8]. From that in-
stant on, the network subsystem in the kernel becomes preemptive. Other
high priority tasks such as the timer interrupt routine can then proceed as
scheduled.



As δgw may be correlated to the payload traffic, we denote
σ2

gw,l and σ2
gw,h as the variances of δgw when the payload

traffic rate is low and high, respectively. Consequently, we
denote Xl and Xh are random variable X when the payload
traffic rate is low and high, respectively. Thus,

Xl ∼ N(µ, σ2
l ) (12)

where µ = τ and

σ2
l = σ2

T + σ2
net + σ2

gw,l (13)

Similarly,

Xh ∼ N(µ, σ2
h) (14)

where µ = τ and

σ2
h = σ2

T + σ2
net + σ2

gw,h (15)

Here we assume that Xl and Xh have the same mean. This
assumption will be validated by our experiments later.

For the convenience of the discussion in the rest of this
paper, we need to introduce the ratio

r =
σ2

h

σ2
l

=
σ2

T + σ2
net + σ2

gw,h

σ2
T + σ2

net + σ2
gw,l

(16)

where σ2
T , σ2

net, σ2
gw,l and σ2

gw,h are defined in (9), (10),
(13), and (15), respectively. The use of r will become clear
when we derive the formulae for detection rates for three
different statistical features, namely, sample mean, sample
variance, and sample entropy.

4.2 The Case of Sample Mean

Let {X1, X2, · · ·, Xn} be a random sample of packet
inter-arrival times. The sample mean is the average of the
elements in the sample:

X̄ =

n∑
i=1

Xi

n
(17)

Note that sample mean X̄ is a random variable, and an un-
biased estimation of X’s mean µ.

The following theorem provides a closed-form formula
for estimation of detection rate when the adversary uses
sample mean as the feature statistic.

Theorem 1. The detection rate by sample mean can be es-
timated as follows

vX̄ ≈ 1 − 1√
2(1/

√
r +

√
r)

(18)

where r is defined in (16).

The proof of Theorem 1 can be found in the first part of
Appendix A in [6]. From Theorem 1 the following obser-
vations can be made:
(1) The detection rate in (18) is independent on sample size
n. That is, when sample mean is used as feature statistic,
changing the sample size has no impact on detection rates.
(2) As shown in the second part of Appendix A in [6],
the detection rate vX̄ is an increasing function of r, where
r ≥ 1. That is, the smaller r, the lower the corresponding
detection rate. When r = 1, the detection rate reaches 50%
– its absolute lower bound. In reality, r = 1 may occur
when σ2

T is sufficiently large. This corresponds to the case
when the VIT padding is used.

4.3 The Case of Sample Variance

Let {X1, X2, · · ·, Xn} be a random sample of size n
from the distribution of X . The sample variance Y is de-
fined as follows

Y =

n∑
i=1

(Xi − X̄)2

n − 1
(19)

Note that sample variance Y is a random variable, and an
unbiased estimation of X’s variance.

Recall that σ2
h is the variance of padded traffic’s PIAT

conditioned on the high payload traffic rate and σ2
l the vari-

ance of padded traffic’s PIAT conditioned on the low pay-
load traffic rate. σ2

h is slightly larger than σ2
l , which is val-

idated by our experiments in Section 5. Based on these ob-
servations, the following theorem provides a closed-form
formula for estimation of detection rate when the adversary
uses sample variance as the feature statistic.

Theorem 2. Using sample variance with sample size n as
the classification feature gives rise to an estimated detection
rate vY

vY ≈ max(1 − CY

n − 1
, 0.5) (20)

where C is calculated in (21).

CY =
1

2(1 − 1
r−1 log r)2

+
1

2( r
r−1 log r − 1)2

(21)

and r = σ2
h

σ2
l

as defined in (16).

The proof of Theorem 2 can be found in the first part of
Appendix B in [6]. From Theorem 2 the following observa-
tions can be made:
(1) The detection rate vY is an increasing function in terms
of sample size n. When n → ∞, the detection rate is 100%.
This means that the payload traffic lasts for a long time at
one rate, either low or high, the adversary gets such a sam-
ple and may detect the payload traffic rate by sample vari-
ance of padded traffic’s PIAT.



(2) As shown in the second part of Appendix B in [6], the
detection rate vY is an increasing function of r in (16),
where r ≥ 1. That is, the smaller r, the lower the corre-
sponding detection rate. When r = 1, the detection rate is
50%. This corresponds to the case when VIT padding with
sufficiently large σ2

T . This suggests that although the adver-
sary may use a big size of sample to detect the payload rate
by sample variance, using a VIT padding with a large inter-
val variance can make such an attack impossible, since no
payload traffic can last very long at a fixed rate in practice
and the adversary cannot get a sample big enough.

4.4 The Case of Sample Entropy

While there are many empirical entropy estimators avail-
able, it’s generally very difficult to get those estimators’
PDFs. In this work, we take advantage of the relation be-
tween entropy and variance of a normal distribution in or-
der to describe sample entropy’s effectiveness as the feature
statistic. We will then use an empirical robust histogram-
based entropy estimator for our experiments.

The following theorem provides a closed-form formula
for estimation of detection rate when the adversary uses
sample entropy as the feature statistic.

Theorem 3. Sample entropy with sample size n has an es-
timated detection rate vH̃

vH̃ ≈ max(1 − CH

n
, 0.5) (22)

where CH̃ is calculated in (23)

CH̃ =
1

2(log ( r
r−1 log r))2

+
1

2(log ( r−1
log r ))2

(23)

and r = σ2
h

σ2
l

as defined in (16).

The proof of Theorem 3 can be found in the first part of
Appendix C in [6]. From Theorem 3 we can make a similar
set of observations to that of the case of sample variance.
(1) Detection rate vH̃ is an increasing function in terms of
sample size n.
(2) As shown in the second part of Appendix C in [6], the
detection rate vH̃ is an increasing function of r in (16),
where r ≥ 1. When r = 1, the detection rate reaches 50%.
In reality, r = 1 may occur when σ2

T is sufficiently large.
This corresponds to the case when VIT padding with suffi-
ciently large σ2

T is used.
From statistical knowledge, we know sample variance is

very sensitive to outliers2. In order for empirical estimation
of sample entropy to be robust against outliers, we use the
method developed in [11]: First, we create a histogram of
the PIAT sample for a given bin size (say, ∆h). Then, ac-
cording to [11], the differential entropy estimator of a ran-
dom variable X’s continuous distribution is

H̃ ≈ −
∑

i

ki

n
log

ki

n
+ log ∆h (24)

2An outlier is an observation that lies an abnormal distance from other
values in the sample of the padded traffic PIAT.

where n is the sample size, ki is the number of sample
points in the ith bin, and ∆h is the histogram’s bin size.
If a constant bin size is used throughout the experiment, the
term log ∆h in (24) is a constant and hence does not influ-
ence the recognition result. It can therefore be discarded,
and the entropy estimation formula simplifies to

H̃ ≈ −
∑

i

ki

n
log

ki

n
(25)

This entropy estimator is robust in the sense that it is
based on probability weighted sum. Generally, outliers have
a small probability to occur. So the probability weight re-
duces the noise’s impact on the entropy estimation. More-
over, from the discussion in [11] and our experiments, we
found that this histogram-based entropy estimator matches
Theorem 3.

5 Evaluations

In this section, we report results on evaluating system
security in terms of detection rate. The evaluations will be
based on both theoretical analysis (from the previous sec-
tion) and experiments.

In the experiments, we assume that the adversary uses
a high-performance network analyzer, such as Agilent’s
J6841A [21], to dump the padded traffic for traffic analy-
sis. A series of experiments were carried out: In terms of
padded traffic type, we measure both systems with CIT and
VIT padding, In terms of experimental environments, we
consider the following cases: a) a laboratory environment,
b) a campus network, and c) a wide area network.

GW1 and GW2 in Figure 1 are installed with TimeSys
Linux/Real-Time [22]. Both CIT and VIT paddings use
a timer with interrupt interval mean equal to 10ms, i.e.,
E(T ) = 10ms with T in (8). The payload has two rate
states: 10 packet per second (pps) and 40pps. We as-
sume both rates occur in equal probability, that is, P (ωl) =
P (ωh) = 50% in (7). Note that for such a system with two
possible payload traffic rates, the detection rate for the ad-
versary is lower-bounded at 50% corresponding to random
guessing.

5.1 Experiments in a Laboratory Environment
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Figure 3. Experiment setup in laboratory

The advantage of performing the experiments in a lab-
oratory environment is that we can control the cross traffic



over the network. The disadvantage is that the generated
cross traffic may not have the same characteristics as that in
a real network. Nevertheless, our experiment setup is shown
in Figure 3.

The two gateways are connected by a Marconi ESR-
5000 enterprise switching router [14]. Subnet C is con-
nected to the router as the cross traffic (noise) generator
while the cross traffic receiver is located in Subnet D. Note
that the cross traffic shares the outgoing link of the router,
creating a case that the cross traffic makes an impact over
the padded traffic.

5.1.1 The Case of Zero Cross Traffic
For the case of no cross traffic, the workstation in subnet C
does not transmit, and the router only deals with the padded
traffic from GW1. That is, σnet in (16) is 0. Hence, the
variance ratio r becomes

r =
σ2

T + σ2
gw,h

σ2
T + σ2

gw,l

(26)

This situation is a best case for the adversary as he can ob-
serve traffic with minimum disturbance. Hence this is the
worst-case for us who wants to prevent traffic analysis at-
tacks.
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Figure 4. CIT Padding without cross traffic

First, we analyze systems that use CIT link padding.
That is, σ2

T in (16) is zero. Hence, (26) is further simpli-
fied as

r =
σ2

gw,h

σ2
gw,l

(27)

From the theorems in Section 4, we see that the detection
rate is a functions of sample size n and the ratio r.

Figure 4 (a) shows the distributions of padded traffic’s
PIAT under low-rate (10pps) and high-rate (40pps) payload
traffic. We have the following observations:
(1) The two distributions are almost bell-shaped. This
partially validates our assumption that the padded traffic’s
PIAT has a normal distribution.
(2) The means of padded traffic’s PIAT under different rates
of payload traffic are the same. This is also consistent with
the assumption made in Section 4.2.
(3) The two distributions are slightly different. The vari-
ance of padded traffic’s PIAT conditioned on the high-rate
payload traffic, σ2

gw,h in (15) is slightly larger than the vari-
ance of padded traffic’s PIAT conditioned on the low-rate
payload traffic, σ2

gw,l in (13). This implies

r =
σ2

gw,h

σ2
gw,l

> 1. (28)

Figure 4 (b) shows both empirical and theoretical curves
of detection rate for different feature statistics. We have the
following observations:
(1) The empirical detection rate curves coincide well with
their theoretical curves. This validates our theories. The
empirical detection rate curve of sample variance is a little
lower than its theoretical curve because sample variance is
very sensitive to outliers in the data.
(2) The detection rate of sample mean is almost 50%. Sam-
ple mean is not an effective feature for the adversary.
(3) On the other hand, as the sample size increases, detec-
tion rates for both sample variance and sample entropy in-
crease as predicted by our theorems 1 and 3. At sample
size of 1,000, both features achieve almost 100% detection
rate. This means that CIT padding fails if the adversary uses
sample variance or sample entropy as feature statistic. Gen-
erally speaking, sample entropy performs empirically better
than sample variance in terms of detection rate.
VIT Link Padding

Recall from (26) how the variance ratio r in (16) is given
by

r =
σ2

T + σ2
gw,h

σ2
T + σ2

gw,l

where σ2
T ≥ 0 since we are using VIT padding.

Theorems in Section 4 show that when r approaches 1,
the detection rates approach 50% for all the three feature
statistics. We note that for CIT padding, the value of r de-
creases with increasing values of σ2

T . Figure 5 (a) displays
the empirical curves of detection rate in terms of σT for
a fixed sample size of 2,000. We can see that when σT

increases, the detection rate quickly drops and approaches
50%, as expected. Clearly, a system with VIT padding per-
forms better (i.e., with lower detection rate) than one with
CIT padding.
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Figure 5. VIT padding - detection rate vs. sam-
ple size

In any case, as shown in (18) and (22), when the size of
sample increases, the detection rate increases as well. An
interesting question is: How large a sample has to be in or-
der for the adversary to have sufficient high probability in
making a correct detection? Let n(p) be the sample size that
can achieve a detection rate of p percent. Figure 5 (b) pro-
vides the theoretical curve of n(99%) vs. σT . We can see
that with a reasonable value of σT , the sample size needs
to be extremely large in order to achieve a 99% detection
rate. For example, when the timer interval standard devia-
tion σT = 1ms, to achieve 99% detection rate, the sample
size has to be greater than 1011. It is virtually impossible
for an attacker to retrieve such a large sample. This clearly
shows the effectiveness of VIT padding.

5.2 The Case of Non-Zero Cross Traffic
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Figure 6. Empirical detection rate with cross
traffic in laboratory

Recall that the case of zero cross traffic is the best case
for the adversary. As VIT has shown to be effective in the
case of zero cross traffic, we will no longer have to consider
systems with VIT padding here since VIT has been shown
to be effective even for the adversary’s best-case scenario
(zero cross-traffic with a line tap very near the sender gate-
way). We thus concentrate on the system with CIT padding.
In a system with cross traffic, σ2

net in (16) may no longer be

zero. As for CIT padding, where σ2
T = 0, the variance ratio

r in (16) now becomes

r =
σ2

net + σ2
gw,h

σ2
net + σ2

gw,l

(29)

We observe that r decreases with increasing σ2
net, resulting

in a low detection rate for all feature statistics. Thus, the
bigger σ2

net, the smaller the detection rate.
In the experiments described here, cross traffic generated

from in subnet C causes the router’s congestion, which in
turn affects the obervation by the adversary. Figure 6 shows
how the detection rate is impacted by the amount of cross
traffic. We can make the following observations:
(1) Note that the PIAT for the padded traffic is 10ms. Hence,
the amount of cross traffic is directly proportional to the
utilization of the link shared between Subnet B and Sub-
net D. The data shows that as the link utilization increases,
the detection rate by sample entropy and sample variance
decrease. Intuitively, this is because the crossover traffic
between Subnet C and Subnet D interferes with the padded
traffic between GW1 and GW2, and σ2

net increases with the
shared link’s utilization. The sample mean’s detection rate
remains low, as expected.
(2) We observe that sample entropy results in a better de-
tection rate than sample variance does. It can be perceived
that, with the increase of shared link’s utilization, outliers
have more chance of occurring. Sample variance is much
more sensitive to outliers and, hence, it has a low detection
rate.
(3) Even with the link utilization of 40%, sample entropy
still can have about a detection rate of 70%, implying that
CIT padding may still not be effective in this kind of situa-
tion.

5.3 Experiments over Campus and Wide Area
Networks
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Figure 7. Experiment setup over campus and
wide area networks (WAN)



Figure 7 shows the setup for the experiments discussed
in this subsections. Figure 7 (a) is a setup for experiments
over the Texas A&M Campus Network. That is, the padded
traffic goes through Texas A&M campus network before it
reaches the receiver’s gateway. Figure 7 (b) is a setup for ex-
periments over the Internet between Ohio State University
and Texas A&M University. Here, the sender workstation
and the sender gateway are located at Ohio State University.
The padded traffic goes through the Internet and arrives at
Texas A&M University, where the receiver gateway and the
receiver’s workstation are located. In both cases, the obser-
vation point of the adversary is located right in front of the
receiver gateway and thus maximally far from the sender.
We note that in this case, the path from the sender’s work-
station to the receiver’s workstation spans over 15 routers.
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Figure 8. Empirical detection rates for ex-
periments over campus and WAN (sample
size=1000)

In each case, we collect data continuously for a complete
day (24 hours). The data for the case of Texas A&M campus
network was collected on March 24, 2003 while the data for
the wide are network case was collected on March 26, 2003.

Figures 8 (a) and (b) display the detection rate through-
out the observation period. We make the following obser-
vations:
(1) When the padded traffic traverses just the Texas A&M
campus network, the detection rates of sample entropy and
sample variance are high almost all the time period in the
day we collected data. This means that over a medium-
size enterprise network like the Texas A&M campus, the
crossover traffic has limited influence on the padded traf-
fic’s PIAT. Consequently, we would not recommend CIT

padding to be used in such an environment.
(2) When the padded traffic traverses more network ele-
ments, such as the span of the Internet between Ohio State
University and Texas A&M University, the detection rates
are lower. This is because the padded traffic experiences
congestion at a large number of routers and switches, and
its PIAT is seriously distorted with a relatively large σ2

net.
(1) In the case of wide area networks, sample entropy and
sample variance can still get over 65% detection rates dur-
ing periods of relatively low network activity (such as at
2:00AM). This means that CIT padding may still not be suf-
ficiently safe even if the adversary is very remote.

6 Conclusions and Final Remarks

While researchers have proposed link padding as effec-
tive ways to prevent traffic analysis, before this study there
has been no systematic method to analyze the information
assurance of a security system under the attack of traffic
analysis. This paper gives an effective analysis model for
the evaluation of different padding strategies aimed at cam-
ouflaging the payload traffic rates under the attack of traffic
analysis. We define as our security metric detection rate,
which is the probability that the payload traffic is recog-
nized. We believe that our analysis methods can be widely
used to analyze other security systems for different objec-
tives under traffic analysis attacks.

By statistical analysis of different feature statistics (sam-
ple mean, sample variance and sample entropy) of the
padded traffic’s packet interarrival times and a lot of exper-
iments, we found that sample variance and sample entropy
can exploit the correlation between payload traffic rate and
packet interarrival times of padded traffic when the padded
traffic is dumped and explored next to the sender gateway or
at a remote site across one or more congested routers. The
reason for CIT padding’s failure is that user traffic causes
small disturbances to the timer’s interval, which is used to
control packet sending. Moreover, the higher the user traffic
rate, the larger the disturbance of the padded traffic’s PIAT.

After a careful analysis, we propose VIT link padding as
an alternative to the most common CIT link padding. Both
theoretical analysis and empirical results validate the effec-
tiveness of VIT padding strategy. The importance of VIT
padding technique is validated by extensive experiments
showing that CIT link padding may be compromised even
at a remote site behind noisy routers.

In this paper we discuss the simple case where two
classes of traffic rates should be distinguished. Our tech-
nique can be easily extended to multiple ones by permorm-
ing more off-line training.
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