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Abstract

By introducing novel methods for robust protocol design,
to substitute for costly zero-knowledge schemes, we are able
to produce a mixing scheme with significantly lower costs
of operation than all previously known such schemes. The
scheme takes a list of ElGamal encrypted messages, and
produces as output a permuted list of encryptions of the
same plaintext messages, such that corresponding items of
the input and output cannot be correlated. For reasonably
large inputs, the cost per participating server and element to
be mixed is less than 200 modular multiplications, which is
almost two orders of magnitude faster than the most efficient
previously known method. The scheme has the novel feature
of not requiring the knowledge of a secret key corresponding
to the public key used to encrypt the messages constituting
the input to the mix-network.

1 Introduction

The mix-network, a primitive for privacy, was introduced
by Chaum [6] in 1981, and has recently been given a con-
siderable amount of attention, both in terms of proposals
for implementations, and as components of other schemes.
Whereas the traditional use of mix-networks was limited to
anonymizers [22] and election schemes [6, 11, 18, 20], it has
recently also been used in payment schemes [14], in schemes
detecting the corruption of secret signing keys [15], in tele-
phony applications [10], and in protocols for efficient general
multi-party computation [13]. In all of these schemes, its
purpose is to provide communication privacy, i.e., to disas-
sociate messages from their origin.

A mix network is a multi-party protocol constituting of
a set of so-called mix servers, who take a list of ciphertexts
and collectively produce and output a permuted list of items.
Here, the output items are either the plaintexts that corre-
spond to the input ciphertexts, or (as in this paper) cipher-
texts that correspond to the same plaintexts as the input
ciphertexts. The important functionality of a mix-network
is that as long as at least one of the mix servers is honest,
the privacy of the output is guaranteed. This means that it

is infeasible for cheaters to match items of the output list
to items of the input list with a probability non-negligibly
exceeding that of guessing uniformly at random.

Each user that contributes ciphertexts to the input list
needs to know only the encryption algorithm and the pub-
lic key(s) associated with the mix-network. In this paper,
we use standard ElGamal encryption, and participants con-
tributing to the input list simply encrypt their messages
using an ElGamal type public key associated with the mix-
network. The input list is broadcast to all participating mix
servers, who then together compute the output. All pre-
viously published mix-networks require the servers of the
mix-network to know some secret keys relating to the pub-
lic key used for encryption. In our current mix-scheme, it
is sufficient that the mix servers know this public key (and
that they all run the correct protocol.)

Early mix-networks (e.g., [6, 19, 22]) were not robust,
i.e., it was possible for one or more of the participating
servers to corrupt the computation without this being no-
ticed, thereby causing an incorrect result to be produced
and output. Clearly, this may, in turn, have repercussions
for privacy for some schemes if it opens up to attacks in
which related messages can be injected and identified us-
ing counting methods. Recently, several mix-networks (e.g.,
[1, 12, 17]) have implemented robustness, but at a high com-
putational price. In general, in order for an end user to be
able to trust the correctness of the output of a mix, it is
necessary that all the participating servers provide a trans-
ferable proof that the output was correctly computed from
the input, or that they establish this among themselves and
then validate (using authentication methods) the generated
list. For efficiency considerations, we take the latter ap-
proach in this paper, thereby requiring the end user of the
mixed list to trust that at least one of the participating mix
servers is honest.

The hitherto most efficient mix-network was proposed by
Jakobsson [12], who observed that the high cost of other al-
ternatives was largely due to the common use of costly zero-
knowledge proofs to ensure correct computation. He posed
it as an interesting research problem to reduce or eliminate
the use of zero-knowledge protocols, in order to improve the
efficiency of protocols. He therefore proposed an alternative
paradigm for robustness, repetition robustness.

The mix-network suggested by Jakobsson [12] has two
shortcomings, though. A first weakness is that it is possible
to detect if two or more participants feed encryptions of the
same plaintext to the mix-network, which in some instances
(such as a yes/no vote) may be serious. Although this can
be avoided by random padding of messages, it is still an



unpleasant property of a mix-network. A second drawback,
although not a flaw per se, is the reliance on computationally
heavy primitives such as exponentiation, and the (although
limited) use of zero-knowledge protocols, keeping the costs
of the scheme up.

For a reasonably-sized input (such as 2%° list items, and
up), and for a negligible failure probability (chosen as 278),
Jakobsson’s mix-network has a cost per input element and
active server of approximately 80 exponentiations, each one
of which costs about 200 multiplications for an exponent
size of 160 bits, using standard window-based exponentia-
tion techniques. This is low in comparison to the corre-
sponding overhead of thousands of exponentiations incurred
by cut-and-choose based protocols, such as [1, 17], but still
expensive in comparison to the much lower overhead of the
protocol we propose. For the same input size and secu-
rity parameters, the computational cost of our protocol is
approximately 185 multiplications per element and server,
giving us an approximate speedup of a factor of 80 compared
to the fastest known previous method. Our protocol does
not have the weakness that encryptions of related plaintexts
can be detected.

The lowering of the computational costs in the scheme
we propose are made possible by the combination of new
methods: (1) We shift from exponentiation to multiplica-
tion by the use of pre-processed re-encryption factors. These
are generated using methods for addition chains. (2) We
demonstrate a method to produce a relative sorting of sev-
eral differently and randomly permuted lists, without dis-
closing the absolute permutation of any of these. This is
a non-trivial task for lists that are permuted several times,
given the non-commutative properties of permutation. (3)
We demonstrate an inexpensive method for item-wise com-
parison of such relatively sorted lists, where all the items
are probabilistically and independently encrypted. (4) We
introduce the use of dummies in the list of ciphertexts to be
mixed, in order to later allow the participants to trace these
and verify that these were correctly manipulated. Given
that these, as the other list items, previous to their tracing
have been randomly re-encrypted and permuted, their cor-
rectness vouches (albeit probabilistically) for the correctness
of the other list items.

In section 2, we start by introducing denotation, followed
in section 3 by an informal presention of the system require-
ments. In section 4, we present the principles of our scheme.
This is followed by an informal overview of the solution in
section 5, immediately trailed by a more specific decription
in section 6. After analysing the efficiency of our proposed
scheme in section 7, we briefly state theorems governing the
properties of our scheme in section 8. These are proven in
the Appendix.

2 Preliminaries

Denotation. Onwards, all computation is performed mod-
ulo p, unless otherwise specified, where p = kg + 1, k is an
integer, and both p and ¢ are large primes. We let g be a
generator of G.

Assumption. We make the assumption that the Decision
Diffie-Hellman problem is hard. This means that if a string
is selected uniformly at random with equal probability ei-
ther as (g%, g%, g°°) or (¢, ¢°, g") for a,b,r €, Z,, then there
does not exist a distinguishing adversary that given one of
the above triples can determine from which one of the two

distributions the triple is drawn, with a non-negligible ad-
vantage over a guess uniformly at random.

Encryption and re-encryption. An ElGamal encryption (a, b)
of a message m w.r.t. a public key y = g” and a generator g
is generated as (a,b) = (my®, g*), for a random value a €,
Z4. Given access to the secret key z, it can be decrypted by
computing a/b". Such a pair (a,b) can be re-encrypted by
computing and outputting (aY,b@), where we call Y = 3%
and G = ¢° the re-encryption factors, and g €, Z, the
re-encryption exponent. Such a re-encrypted pair is homo-
morphic to the input ciphertext, i.e., the two ciphertexts
correspond to the same plaintext. If (a1,b1) and (a2,b2)
are both re-encryptions of (a,b), with re-encryption expo-
nents J1 resp. (2, then we denote the value 81 — B2 mod q
the relative re-encryption erponent, and the corresponding
values y?1772 and ¢”1 7% the relative re-encryption factors.
(Where in the above the first of the two new encryptions,
that associated with 1, is called the reference.) Finally,
given two ciphertexts (a1, b1) and (a2, b2) we call the cipher-
text (aiaz,b1b2) the product of the two former ciphertexts.
The plaintext of this new ciphertext equals the product of
the two plaintexts corresponding to the two input cipher-
texts.

A tagging function. We let the function f be a keyed func-
tion that can be modelled by a random oracle. For simplic-
ity, we assume that the range and the domain of f are equal
but for a negligible fraction of values. We refer to [3, 2] for
a treatment of random oracles and the use of keyed hash
functions as random oracles.

3 Properties of our Mix

Participants. There are two types of participants, namely
mix servers and decryption servers. This paper concentrates
on the first type, which perform the mixing computation.
The mix servers are assumed to be connected by a broadcast
channel. Any set of the mix servers may perform the mixing,
as this action does not require the knowledge of any secret
key. However, for the result to be useful, it requires the
decryption servers to approve and agree to use the result of
the mix — which is correct if at least one mix participant is
honest. Therefore, at least one mix server must be trusted
by each decryption server.

Functionality. The input to the algorithm is a vector of
ciphertexts (E1,... En), where the vector item E; = (a;, b;)
is an ElGamal encryption of a message m; w.r.t. the public
key y. The output is a permutation of a vector (Ej,... EYy),
where E; and F; are homomorphic, i.e., independent en-
cryptions of the same plaintext. The elements of the output
vector can later be straightforwardly decrypted, yielding a
permutation of the plaintexts corresponding to the input
ciphertexts.

Privacy. As long as one of the participating mix servers is
honest, it will not be possible for any set of corrupt parties
to correlate an item of the output string to its corresponding
input item, with a probability non-negligibly better than a
guess uniformly at random from all choices. This continues
to hold if the plaintexts corresponding to the output cipher-
texts are computed and published, or manipulated in any
other manner, with the limitation of the possible choices to



all input ciphertexts whose plaintexts are not already known
by any of the corrupt participants.

Robustness. As long as at least one mix server is honest,
the output of the mix-network will be correct with an over-
whelming probability.

4  Principles Employed

The largest portion of the computational cost of many multi-
party public-key protocols is due to exponentiation, much of
which is performed as part of zero-knowledge proofs. In this
paper, we limit the costs of the mix scheme by limiting the
use of zero-knowledge protocols, and of exponentiation in
general.

In order to limit the use of costly zero-knowledge proofs,
our solution derives its robustness from the principle of rep-
etition robustness [12], the underlying idea of which is to re-
peat a chain of differently blinded/encrypted and permuted
computations two or more times, after which the results are
compared. If the results are equal, and only then, then the
operation continues. Successful attacks must involve the
modification of some chosen list items, and the same ones
for each copy of the input list. Since the list items are inde-
pendendly and randomly re-encrypted in the different lists,
and the lists are independently and randomly permuted, the
probability of a successful attack can be made negligible in
a setting with enough list elements and enough list copies.
For reasonably-sized input lists, this method proves to be
much less expensive than all known alternative methods.

In order to reduce costs we shift towards the use of multi-
plication instead of exponentiation. We avoid blinding of list
items (as employed in [12]), and instead use re-encryption,
whose computation costs are limited by the use of addition
chains, e.g., [4, 5], or related methods.

Also to avoid the use of costly exponentiation, we intro-
duce methods for comparing differently permuted and re-
encrypted lists of data. These work by permuting a list of
tags using the same permutations as previously used in the
re-encryption phases, for each step applying a keyed one-way
function to the tag elements. The tags will therefore be rela-
tive placeholders that do not reveal the actual permutations
used, but only the relative permutations. Given these rel-
ative placeholders, lists of relative re-encryption exponents
are compiled, where the result of the entire operation is a
permuted list of relative exponents that describe how the
different items, which are the outputs from the second re-
encryption phase, were relatively re-encrypted. Here, too,
the actual re-encryption exponents are not revealed. After
re-encrypting the output lists of the second re-encryption
phase using these relative re-encryption exponents, the re-
sulting lists are sorted and compared. If the lists are ho-
momorphic, but only then, then the output is valid with an
overwhelming probability.

We also introduce a method for verifying consistency of
computation in the mix-network. For this purpose we intro-
duce two dummies in the list to be mixed. The two dummies
are two (potentially identical) ciphertexts for which no true
subset of servers know the plaintexts, nor the relationship
to any input item. After the second re-encryption phase has
ended, the servers reveal how the dummies were permuted.
They also reveal the sum of all the re-encryption exponents
corresponding to the input items and the first dummy (to
verify that the product of these items does not change.)
Finally, they reveal the re-encryption factor of the second
dummy, whose purpose it is to decrease the probability of

an attack in which the position of the first dummy is guessed,
all the other elements altered by a multiplicative factor, and
the first dummy altered to keep the product constant. With
two dummies, two positions have to be correctly guessed —
for each list copy — in order for the attack to succeed.

5 OQverview and explanation of solution

Our protocol consists of the following steps:

1. Generation and insertion of dummies. Two dummies
are generated and inserted in the list. The ciphertexts
can either be constructed collectively, by contribution
by each server of one portion of the ciphertext, or by
setting the ciphertext to a pair of random elements of
G)p that no subset of servers controls.

2. Duplication. T > 2 copies of the list are created, where

__1_ _logse . . . .
T=1 Sloge for a security parameter € indicating the

maximum failure probability. Here, N is the number
of elements of the input list.

3. Generation of re-encryption factors. Each mix server
generates secret and random re-encryption factors. All
exponentiation is performed using addition chains, in
order to limit the cost of computation. (We note that
this step may be performed during a pre-processing
phase if desired.)

4. First re-encryption. In a serial action, each mix server
individually re-encrypts each element of each of the
lists given to him, and forwards random permutations
of the resulting lists to the next server. This is per-
formed to randomize the relative order of the list items
for the second re-encryption phase, to prevent a set of
servers at the beginning of the second re-encryption
from mounting an attack made possible by them know-
ing these relative positions. Since at least one of the
servers is assumed to be honest, the output lists have
been randomly permuted and re-encrypted.

5. Second re-encryption. A similar re-encryption as above
is performed, but with independent random values for
re-encryption and permutation. This second step is
employed to guarantee privacy of the result.

6. Verifying first re-encryption. The mix servers reveal
the secret values used in the first re-encryption, and
the computation is checked by the mix servers. This
is done to prevent any server from manipulating the
lists in the first re-encryption phase.

7. Relative sorting and comparison of permuted lists. The
mix servers determine a relative sorting of all the per-
muted output lists (using methods soon to be detailed)
and compare the resulting relatively sorted lists. This
is done by determining a relative offset of the re-encryp-
tion factors used (as the same time as the relative sort-
ing is determined) and re-encrypting each relatively
sorted list using these offsets. If the results are identi-
cal, then the mix servers continue. This prevents with
an overwhelming probability a set of attackers from
successfully altering a portion of the lists, as they must
for each copy guess what elements correspond to this
portion and correctly make the same modification for
each list.



8. Verification of dummy values. The positions of the
first and the second dummy are determined by a se-
lective trace-through of the mix. For each step of the
second re-encryption phase, the server who performed
the permutation and re-encryption publishes the sum
(modulo q) of all re-encryption exponents used for all
the elements ezcept for the second dummy. Each server
also publishes the re-encryption exponent used for the
second dummy alone, and a description of how the
two dummies were permuted. Then, he proves' that
he knows the re-encryption factors employed for the
first dummy (thereby substantiating that it was per-
muted as claimed.) All servers verify that the prod-
uct of all input elements — except the second dummy
— correspond to the product of the same output list.
This is done by verifying the ciphertext correspond-
ing to the product of all the input items except for
the second dummy, re-encrypted using the published
sum, results in a ciphertext that is the product of all
the output elements — except for the second dummy
again. (Note that it does not reveal this product, since
the plaintexts of the dummies are unknown and uni-
formly distributed.) Finally, the re-encryption of the
second dummy is verified. If no cheater was found,
then the dummies are removed from the re-encrypted
and permuted first list copy, and the resulting list out-
put.

If cheating is detected during any step of the protocol, all
the honest servers halt, and a cheater detection phase com-
mences (in this phase, all secret random values are revealed,
and the cheater(s), including those who will not cooperate,
are pinpointed and replaced). We note that the plaintexts
remain unrevealed. Afterwards, the protocol is restarted.

In the above description, we did not detail how the rela-
tive sorting and comparison is performed. An outline of the
idea is as follows:

(a) Two types of lists are created, the so-called tag list and
the so-called offset list (whose elements are denoted
tags resp. offsets).

(i) The first type of list, the tag list, contains N + 2
unique elements in the domain of f. 7 instances of
this list are created, each one permuted according
to the aggregate? permutation of the correspond-
ingly numbered re-encryption list during the first
re-encryption phase.

(ii) The second type of list, the offset list, of which
there are 7 — 1 copies (numbered 2...7), con-
tain the N + 2 aggregate relative® re-encryption
exponents used per element during the first re-
encryption phase, permuted in the same manner
as the tag list. (Thus, re-encrypting the output
lists, numbered 2.. . . 7, from the first re-encryption
phase using these aggregate relative re-encryption
exponents would render all the output lists of the
first phase equal, but for their order. This is,
however, not done.)

I This proof is performed using the scheme’s only zero-knowledge
proof, for which the verification proof for undeniable signatures [7, 8]
may be used.

2With aggregate permutation, we mean the permutation with the
same effect as the sequence of all the permutations performed.

3Each such relative re-encryption exponent is computed using the
corresponding element of the first list as its reference.

(b)

Each mix server, in the same order as they performed
the action during the second re-encryption phase, per-
form the following: First, he verifies that all the in-
put tags of each list are different from each other (a
multitude of methods spanning the spectrum of time
vs. space trade-offs exist, we refer to [16] for a sur-
vey). Then, he applies the function f, keyed with a
secret and random key only this server knows, to all
the elements of all the tag lists. Next, he updates the
elements of the offset lists by adding in the relative
re-encryption exponents, where the difference is taken
between items with identical tags, from the current
list and the first list. Finally, he applies the same per-
mutation to the updated lists as was applied by him
during the second re-encryption phase, and passes the
updated and permuted lists on to the next mix server.

The two types of lists that are produced are a tag-
ging indicating the relative order of the lists produced
during the second re-encryption phase, resp. the rel-
ative re-encryption exponents of the list items, using
the first list as their reference. The tag list is dis-
carded (as it was only used to generate the correct
offset-list by establishing the correct relative permuta-
tions). All the elements of the lists that constitute the
output of the second re-encryption phase, but for those
of the first list, are re-encrypted using the relative
re-encryption exponents contained in the offset lists.
(Again, the re-encryption factors are generated from
the re-encryption exponents using addition chains.)
Then, the lists are sorted and compared. If they are
not identical then somebody must have cheated.

6 Solution Details

Our solution consists of the following steps:

1.

Generation and insertion of dummies. Two dummies,
(an+1,bn+1) and (an42,bn42), and are created in a
way so that no subset of the servers know what plain-
texts they correspond to, even if all the plaintexts cor-
responding to the input list were to be revealed.

. Duplication. T copies, Ly, 1 <t < 7, of the appended

input list L are created. Here, the index 0 denotes that
no re-encryption has yet been performed.

Generation of re-encryption factors. Mix server j pro-
duces triples (Oljti, Yt gt ) and (/Gjti: yﬂj” ) gﬁj“ )7
for 1 <t <7,1<1i< N+ 2 and secret and ran-
dom numbers a;j;, 3jti € Zg. The computation is per-
formed locally by each individual server, using meth-
ods for addition chains. (Werefer to [4, 5] for a detailed
description of these methods.)

First re-encryption. Mix server j takes as input the
lists Lyj_1), for 1 < ¢ < 7. He produces output
lists Lyj, 1 < t < 7, where L;; is a random and se-
cret permutation II;; of the N + 2 elements in the
re-encrypted version of the list L;;_1y. Here, the re-
encryption is performed element-wise, by computing
the re-encrypted element (aji,bj:i). The result of the
re-encryption is (a¢;—1),y” 7", bj—1),:9”7'"), using the
precomputed re-encryption factors, (y®iti, g®it¢). The
output is given to the next mix server in the chain. The
result of this step is denoted L}q = L, for 1 <t < 7.



5. Second re-encryption. This is performed as above,
but for the input lists Ly, 1 < ¢t < 7, and using
new random and secret permutations ®¢;, and the re-
encryption factors (y%i+, g%ti). The result of this step
is denoted L}y = L}, for 1 <t < 7.

6. Verifying first re-encryption. Each mix server j reveals®

the permutations II;;, and re-encryption factors oy,
1<t<7,1<i< N+2. Each server computes the
aggregate permutations II; = II;; o ... o II;x. Then,
each server computes the aggregate re-encryption fac-
tors ai;, which is the sum, modulo ¢, of the indi-
vidial server-specific re-encryption factors on the path
of the permutation. The servers compute® the pairs
(yoti,g*i), for 1 <t < 7,1 < i< N+2. They then
each verify that L}, is the permutation II; of the list
Ly, using re-encryption pair (y“t, g*t) for the ith el-
ement of L. This is done plainly by performing said
re-encryption and checking for equality.

7. Relative sorting and comparison of permuted lists. Us-
ing the previously detailed method, the lists are rela-
tively sorted, and re-encrypted using the relative en-
cryption exponents. The resulting lists are sorted and
compared; if not all are identical, then somebody must
have cheated.

8. Verification of dummy values. The position of and cor-
rectness of the two dummies are determined, as previ-
ously outlined, after which they are removed from the
list, and the resulting first list output. The output is
signed by all the cooperating mix servers to certify the
correctness of the output.

7 Efficiency Analysis

We let C(IN) denote the cost of performing the computation
of N exponentiations modulo p, with random exponents in
Z, and a common generator. Using the methods analyzed
by Bleichenbacher [4] for addition chains, the upper bound of
this cost (measured in the number of multiplications modulo
p, for exponents in Z;) for the N elements is shown to be

(N —1)ing

<
C(N) < logaq + In(N —1) —Inin(N — 1)

Considering the cost in terms of the number of multipli-
cations (which is the dominant cost) for the different proto-
col steps, we get the following numbers® per server: step 1. 0
+ step 2: 0 + Step 3: 20(2NT)+ Step 4: 2INT + Step 5: 2INT =+ Step
6and 7: 2C(2NT) +4NT+ steps: N =4C(2N1)+ (87 +1)N.

Given that (N;Jr2 N;JA)T71 < %2071) < e for a maximum

failure probability of € (this formula will be substantiated in

the proof section), we have that 7 —1 > — 252‘;2;\,. Plugging

4If the random values to be revealed are generated as the output
of a PRFG with a seed that is not used for any other random bit
generation, this seed can be published in lieu of all the random values,
in order to curb communication costs.

5This is done using addition chains. For maximum efficiency, this
computation, along with the following verification, is postponed to
be performed at the same time as the addition chain computation of
the next step, in which lists are relatively sorted and compared. In
the efficiency analysis, this performance enhancement is employed.

SFor simplicity of denotation, we say that there were only N ele-
ments per list copy, thereby overlooking the two dummies. We also
exclude the cost of the one zero-knowledge proof performed and veri-
fied per server, as this is a simple proof of valid exponentiation, whose
cost is negligible for reasonably large inputs.

in the values ¢ = 2780, N = 2?0 we get 7 = 3 as the
smallest possible value for the number of iterations. This in
turn gives a total cost for the protocol, in the common case
where no server cheats, of 4C(6 x 22%) 4+ 25 x 2%°.

Plugging in values in the above formula, we get C(6 x
229) & 5.4 x 107, giving is an upper bound for the total cost
of approximately 2.4 x 10% multiplications, or approximately
231 multiplications per element. Experimental results [4]
give average costs of 80% or less of this upper bound, giving
us an average cost of approximately 185 multiplications per
server and input item.

8 Claims

The scheme is correct, i.e., if all the servers are honest then
the correct output will be produced with an overwhelming
probability. This follows trivially from the fact that the
input elements will merely be permuted and re-encrypted
as a result of the scheme.

As will be proven in Theorem 1, the scheme is robust,
i.e., if a dishonest set of servers cause the wrong result to
be computed, this will be detected with an overwhelming
probability by the honest servers. Moreover, the latter will
be able to determine what servers were corrupting the com-
putation, and restart the same after having replaced the
cheaters.

As will be proven in Theorem 2, the scheme satisfies
privacy, i.e., as long as at least one server is honest, and
the plaintexts of at least two input ciphertexts are unknown
to the adversary, then the adversary has a non-negligible
advantage compared to a uniform guess at random to deter-
mine the permutation performed on these unknown items
from input to output, even if the plaintexts corresponding
to the output items are revealed.
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A Proofs

Before stating and proving the two theorems, we outline and
prove some lemmae that will be used for the theorems:

Lemma 1a: If the adversary can, with a non-negligible
advantage € over a guess uniformly at random, match any
input to its corresponding output for the first or second re-
encryption steps right after the completion of the respective
step, then this adversarial strategy can be used as a black
box to break the Decision Diffie-Hellman assumption with a
probability poly(e).

Proof of Lemma 1a: (Sketch)

It is well-known that the hardness of the Decision Diffie-
Hellman problem is equivalent to the semantic security of
ElGamal encryption. We assume that there is an adversar-
ial strategy A that given the input vector to a mix step is
able to match one input item to its corresponding output
item (i.e., to an output item that corresponds to the same
plaintext as the said input item) with a non-negligible an-
davntage € over a guess uniformly at random. We then show
how A can be used as a black box to determine with a prob-
ability poly(e) whether a given ElGamal ciphertext (a,b) is
an encryption of a given message m, which would mean that
ElGamal encryption is not semantically secure, and there-
fore imply that the Decision Diffie-Hellman assumption does
not hold. We will prove this by a standard diagonalization
argument.

Our new adversary re-encrypts the input ciphertext (a,b) to
randomize the query, and constructs IN+1 other ciphertexts,
whose plaintexts are different from m but chosen from the
same distribution. He hands a permutation of these to the
honest mix server. The output of the honest server is given
to the black box A, who, as assumed, matches one of the
inputs to one of the outputs with a non-negligible advantage
€. This corresponds to the Oth test. Then, in the ith test,
the adversary replaces the ith original output item (given
some arbitrary ordering of these) by an encryption of a ran-
dom and new message from the same distribution as m was
chosen from. He then randomly re-encrypts and permutes
all the resulting items, and runs A on the resulting vector.
Clearly, A must with an overwhelming probability fail after
the N + 2nd test, as by then, all the output items have been
replaced and there is no correlation between input and out-
put plaintexts. We assume, without loss of generality, that
A loses his assumed non-negligible matching advantage after
the kth test. By replacing the output item in this step by
a random encryption of m, we can determine whether (a,b)
corresponds to m or not. Namely, if A picks the “inter-
esting” input item and fails in matching, then the replaced
ciphertext was not an encryption of m. Similarly, if A picks
the intersting input item with a probability non-negligibly
different from ﬁ, this will be detected, and must mean
that the the input and output vectors do not match. Oth-
erwise, if he picks this intersting input item and succeeds in
performing the match, this must be because the plaintext
was not substituted by the replacement of the ciphertexts,
i.e., (a,b) corresponds to m. Therefore, we will be able to
distinguish the distributions with a non-negligible probabil-
ity that is polynomially related to the adversary’s advantage
€, which concludes the proof. O

Lemma 1b: If the adversary obtains a non-negligible ad-
vantage in matching any input to its corresponding output
for the second re-encryption steps due to the execution of
the step in which lists are relatively sorted, then this adver-
sarial strategy can be used as a black box to distinguish the



output of the approximation of the random oracle f from a
truly random oracle.

Proof of Lemma 1b: (Sketch)

In a similar argument as in Lemma la, we replace tag after
tag by random numbers until the assumed adversarial strat-
egy fails to match an input to an output item. At that point,
we have — with a polynomial probability — distinguished the
output of the f from a truly random number. O

Lemma 1lc: An adverary cannot obtain a non-negligible
advantage in matching any input to its corresponding output
for the second re-encryption steps due to the execution of
the step in which the dummies are verified.

Proof of Lemma 1c: (Sketch)

Herein, we modify the argument of Lemma la, so that in-
stead of replacing an output item by a random ciphertext,
we alter two of the output ciphertexts (but never the known
second dummy) in a manner so that the product of all
the elements, except for the second dummy, correspond to
the same product of plaintexts (including that of the first
dummy). By the same token, there can be no successful
matching adversary in this setting. Now, we focus on what
information is leaked by tracing the dummies. The posi-
tion of the first dummy is proven using a zero-knowledge
proof to show knowledge of the corresponding re-encryption
exponent — this clearly can not leak any information given
the fact that it can be simulated. Second, the product of
all the ciphertexts except the second dummy cannot help,
since this is constant, and does not give any information
about either dummy value, or about the products of all the
non-dummy items. Finally, the sum of the re-encryption ex-
ponents for all the elements to be multiplied together, and
the re-encryption exponent of the second dummy, give no
information about the permutation either, as they do not
depend on the permutation (other than revealing the posi-
tions of the dummies, which is intended.) O

We are now ready to state and prove the theorems:

Theorem 1: The scheme is robust: If a dishonest set of
servers cause the wrong result to be computed, this will
be detected with probability 1 — ¢ by the honest servers.
Moreover, the latter will be able to determine what servers
were corrupting the computation, and restart the same after
having replaced the cheaters.

Proof of Theorem 1: (Sketch)

In lemma la, we determined that the adversary cannot guess
the relative order of the items of the different list copies out-
put from the first re-encryption step. This includes the po-
sitions of the dummies. Lemma 1la also determines that the
adversary cannot guess the permutations performed during
the second re-encryption phase. In the step in which the
dummies are traced, each server has to prove to each other
server how the dummies were permuted, and show (by ex-
hibiting re-encryption exponents vs. sums of these) that the
plaintext value of the second dummy was not altered, and
that the product of the plaintext values of all the other ele-
ments were not altered. In order to successfully alter some
elements in the final output, the adversary has to change
elements included in this product so that the product is
constant. Therefore, at least two elements have to be al-
tered, none of which are the second dummy. In order for
this not to be noticed in the step where lists are relatively
sorted and compared, the adversary has to select the same
two elements from each list copy. The probability of doing so

s (N+1 N yN+1 N 1 1371 Lo
is (75 %1 (Vs T meT ) o Where the first portion is

the probability of not selecting the second dummy element
in the first copy, and the second portion is to select the same
two elements for the remaining 7 — 1 copies. This probabil-
ity is smaller than —7=, and by setting 7 = 1 — Qizgzj\,,
as required, we see that the probability is smaller than the
accepted failure probability e. If any cheating is detected,
all secret values relevant to the protocol are published. A
cheater will therefore easily be detected by the honest servers
re-performing his computation. Any server who does not re-
veal his secret values is branded a cheater. O

Theorem 2: The scheme satisfies privacy as long as at
least one server is honest. If a polynomial-time adversary,
to whom the plaintexts of at least two input ciphertexts
are unknown, has a non-negligible advantage compared to
a uniform guess at random to determine the permutation
performed on these unknown items from input to output,
then this adversarial strategy can be to break one of our
two computational assumptions.

Proof of Theorem 2: (Sketch)

This follows automatically from our lemmae, which state
that the adversary can only have a negligible advantage in
matching inputs to outputs in any of the steps covered by
these lemmae. In the case where no cheating is detected,
which is the only case when a final output will be generated,
the secret values used in the second re-encryption step will
not be disclosed. Therefore, the theorem is found to hold.
O



