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Abstract. In this paper, we introduce a new Denial-of-Service attack against Tor

Onion Routers and we study its feasibility and implications. In particular, we ex-

ploit a design flaw in the way Tor software builds virtual circuits and demonstrate

that an attacker needs only a fraction of the resources required by a network

DoS attack for achieving similar damage. We evaluate the effects of our attack

on real Tor routers and we propose an estimation methodology for assessing the

resources needed to attack any publicly accessible Tor node. Finally, we present

the design and implementation of an effective solution to the problem that relies

on cryptographic client puzzles, and we present results from its performance and

effectiveness evaluation.
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1 Introduction

To date, the Tor network [5], one of the most widely used anonymizing systems, con-

sists of more than 3000 Onion Routers that serve daily over 400000 users [25]. Tor

helps people all around the world circumvent censorships imposed by oppressive gov-

ernments, anonymously report abuses of civil rights, and support the freedom of speech

and information [28]. It is therefore easy to understand why its security and anonymity

properties have attracted a lot of attention over the past years. On the one hand, the

community of people and volunteers grown around the Tor network are interested in

keeping it secure and operational for its users. On the other hand, however, oppressive

governments and organizations may be interested in finding ways to identify people

who use it or hinder others from utilizing its services [26].

Being a distributed system operated by volunteers, the anonymity of Tor users is

vulnerable to attacks where a set of malicious routers, controlled by an adversary, join

the network with the aim of gaining control of user circuits. The Tor network is specif-

ically designed and continuously updated to address these types of threats, but another

option available to the adversary would be that of putting a network DoS attack into

place with the aim of making it impossible, or very hard, for users to communicate

with Tor routers and Tor routers with each other [2]. Such an attack could be used to

either significantly degrade the users’ perceived quality of service, which would dis-

courage them from using Tor, or to affect the topology of the Tor network in a way that
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favours traffic flowing through malicious routers, thus increasing the power of the adver-

sary. A network DoS would not require a deep knowledge of the Tor network internals

and could be performed by using well known, pre-existing, off-the-shelf methods [29].

Clearly, since such an attack is orthogonal to those that the Tor network was designed

to address, we cannot expect Tor to be resilient to it.

Nevertheless, the protocols used by clients to setup circuits through the Tor network

are vulnerable to a simple attack that would allow an adversary to achieve an effect

similar to that of a network DoS, but with just a fraction of its bandwidth resources.

In this paper, we present this attack, named CellFlood, and provide an experimental

evaluation of it both in a controlled environment and on the real Tor network. Our

results, and our estimations based on measurements from a real Tor router, show that

CellFlood is not only effective, but also cheap enough to make a feasible alternative

to more sophisticated attacks to the Tor network that have been presented in the past.

As a way to mitigate the effect of this attack, we propose to use a client puzzle-based

technique that would allow Tor routers under attack to keep their ability to provide

service to honest clients. The main contributions of our work are the following.

– We study CellFlood, a new DoS attack against Onion Routers that significantly im-

pacts their ability to serve circuit creation requests. As opposed to a straightforward

network DoS attack, which produces a very large number of lightweight service re-

quests, our attack uses few “heavy” circuit creation requests that can be quickly

generated by the attacker on the cheap, but require long processing from the vic-

tim. For instance, to halve the processing capability of our least powerful routers,

this attack requires only 178 Kb/s, which is the 0.2% of the resources needed for

a network DoS attack that matches the maximum Tor data rate supported by the

router. For our newest routers, depending on the amount of resources (i.e., CPU

cores) they dedicate to serve Tor requests, the attack can require between 2.5 Mb/s

(1 core) and 40 Mb/s (16 cores), which is between 1.0% and the 16.0% of the

resources needed for an equivalent network DoS.

– We conducted an extensive evaluation regarding the feasibility of the attack both in

a controlled environment as well as on the real Tor network. Our findings demon-

strate that the attack is effective under different configuration parameters.

– We introduce a lightweight estimation technique for the resilience of a remote,

non-cooperative Onion Router to the attack. Our estimates show that, to halve the

processing capability of 62% of the most used Onion Routers of the Tor network,

CellFlood would require between 2.6 and 9.76 Mb/s per router.

– We discuss the design, implementation, and effectiveness of a mitigation scheme

based on client puzzles. Our improved version of the protocol allows routers under

attack to easily impose a cap on the attacking host(s), thus preserving their ability to

process honest client requests. At the same time, our tests confirm that our protocol

has a small impact on the quality of the service perceived by Tor users, even in

extreme scenarios.
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2 Background

Tor is a distributed overlay network of Onion Routers (ORs), or just routers for brevity,

which allows users to get anonymous access to websites and other network services

(e.g., SSH, IRC, SMTP, DNS, VNC). Tor decouples clients from the endpoints they

aim at connecting to by means of multi-hop paths named circuits. Each circuit typically

consists of three routers that forward user data from source to destination (and vice

versa) in an encrypted way. Data flow through Tor in 512-byte packets, called cells,

which are routed using “Onion Routing” [11]. When sending data, a Tor client fills the

payload of a RELAY DATA cell, and encrypts it iteratively with a different symmetric

key (session key) for each hop on the circuit. Upon receiving a cell, an OR removes

(“peels off”) one layer of encryption, with the session key previously negotiated with

the client, and forwards the result to the next hop on the circuit (or the final destination).

The negotiation of a session key with each router in a circuit is performed in steps.

At each step, the client sends a RELAY EXTEND cell to the latest router ORi that the

circuit has been extended to. The cell wraps an onionskin, indicated as E(gx), where gx

is the first half of a Diffie-Hellman exchange, and E denotes encryption with the onion

key of the next router ORi+1 in the circuit. The onion key is a public 1024-bit RSA key

the client previously downloaded from a set of trusted Tor authorities. Upon receiving

the RELAY EXTEND cell, ORi extracts the onionskin and sends it to ORi+1 in the

payload of a CREATE cell. ORi+1 uses its private onion key to decrypt gx, computes

the second half gy of the handshake, a hash of gxy, and sends everything back to ORi in

the payload of a CREATED cell. Finally, ORi forwards the CREATED cell to the client

by encapsulating it into a RELAY EXTENDED cell.

The procedure to negotiate a session key with the router at the first hop of a circuit

is slightly different. Firstly, since there is no other OR between the client and the entry

router, the client must put the onionskin directly in the payload of a CREATE cell (in-

stead of using a RELAY EXTEND cell). Secondly, most of the times a more lightweight

procedure is used that does not involve a Diffie-Hellman exchange, nor public key cryp-

tography. This is because, by default, a Tor client keeps an authenticated and secure TLS

connection with a set of three guard nodes from which all the circuits are initiated [31].

When using a guard node as the first hop of a circuit, the client and the router exchange

the random data used to setup the session key in the payload of a CREATE FAST and

CREATED FAST cell, without any further encryption (TLS is sufficient).

3 The CellFlood Attack

Whenever a Tor client extends a circuit, it generates an onionskin using the public onion

key of the target router. Likewise, the target router processes it using its private onion

key. This operational model makes the processing of onionskins from routers a more

expensive than that of generating them. For instance, as we experimentally verified, do-

ing 1024-bit private key operations on a modern high-end server is ∼ 20 times slower

than doing 1024-bit public key operations [22], which translates into the time to process

a CREATE cell being 4 times bigger than that of generating it. This imbalance can be

exploited by malicious clients to consume, with relatively small effort, all the computa-

tional resources of an OR by means of a continuous stream of CREATE cells. To make



4 M. V. Barbera, V. P. Kemerlis, V. Pappas, A. D. Keromytis

matters worse, an attacker does not even have to create a different onionskin for each

CREATE cell, as all the cells may contain the same onionskin.

Due to the architecture of Tor software, flooding a Tor router with an excessive

number of CREATE requests does not necessarily disrupt the router’s ability to forward

RELAY DATA cells. Indeed, Tor delegates the processing of onionskins to a pool of one

or more threads (processes), called CPU Workers; this allows the main thread (process)

to keep up with the more critical work on the RELAY DATA cells, while the CPU work-

ers perform the expensive and delay-tolerant tasks in the background. Nonetheless, a

router that receives CREATE cells at a rate higher from what its CPU workers can pro-

cess collectively will eventually start discarding them by replying with DESTROY cells.

As a consequence, an OR that is under attack is going to discard onionskins produced

by honest clients too, which in turn will eventually stop selecting that OR for their cir-

cuits. Thus, if CellFlood is performed strategically, on a selected set of important ORs,

it may result in overloading the surviving part of Tor (e.g., by overwhelming the unaf-

fected routers with an excessive number or circuits), as well as favouring circuits pass-

ing through certain routers, which may well be compromised or controlled by attack-

ers [2] (i.e., similar to the link-cutting attack described by Bellovin and Gansner [1]),

thus degrading the anonymity of the Tor network as a whole.

According to our experiments, even routers running on recent hardware can only

process a limited amount of CREATE cells per second (i.e., a few Mbit/s), which makes

them potentially vulnerable to CellFlood. On the other hand, Tor routers can process

data to be relayed at a much higher speed, in the order of tens of hundreds of Mbit/s.

Hence, an attacker that is interested in excluding a router or a set of routers from the

Tor network will be better off using a stream of CREATE cells, rather than a simpler,

but more expensive (in terms of computational resources), DoS attack at the network

level.

3.1 Feasibility Study

Controlled Experiments To study the effect of CellFlood on an OR, we first performed

experiments on a controlled environment. In particular, we investigated the capacity of

a router, under different attack loads, to process benign CREATE cells that carry onion-

skins produced by honest clients. Specifically, given the rate Rt cells/s at which legit-

imate CREATE cells reach the victim router, and rate Ra cells/s at which the attacker

sends its bogus CREATE cells, we estimate the final rate Rx ≤ Rt of benign cells that

can be processed by the router. To launch an attack, we built a custom Tor client that

can establish a TLS connection to any victim router in the Tor network and start sending

through it a continuous stream of CREATE requests at a specified rate, keeping count of

the percentage of requests that get processed. An important aspect of CellFlood is that

generating the malicious stream of CREATE cells does not involve any cryptographi-

cally heavy operation; all cells have exactly the same onionskin in their payload and

differ only on the cell header field storing the id of the circuit to be created.

Our testbed consisted of four hosts connected together through an isolated 100 Mbit/s

network. A Victim host (armed with a 2.66GHz Core 2 Duo CPU) played the role of the

victim OR in a private Tor network. According to our benchmarks, when idle, a single

core of Victim has a processing capacity (C) of ∼ 550 CREATE cells/s ( ∼ 2.1 Mbit/s).
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Fig. 1. The effect of CellFlood on a Tor Onion Router. Rt denotes the rate of benign cells, Ra is

the rate of bogus cells, and Rx shows the cells/s actually processed.

On the other hand, Victim can sustain a stream of data cells up to ∼ 250 Mbit/s, which

shows the magnitude of the advantage an attacker may have in flooding an OR router

with CREATE cells. The Attacker and Client0 hosts, running on exactly the same hard-

ware (featuring a 3GHz Pentium 4 CPU), are used to generate two concurrent cell

streams: one with bogus CREATE cells and another with benign. Finally, Client1 (also

armed with a 2.66GHz Core 2 Duo CPU), was used to generate a flow of random data

to be forwarded by the victim router. For our experiments, we used Tor v0.2.2.35 with

all options set to their default setting; the size of the pending CREATE cells queue

(MaxOnionsPending) and the maximum number of CPU workers (NumCPUs) had

their default values, 100 and 1, respectively.

Figure 1(a) shows the results obtained when Victim processes streams of CREATE

cells, one from Attacker, the other from Client0, in absence of any concurrent data

stream. Each line in the plot shows how the final rate Rx of accepted client requests

varies according to Rt, given a fixed rate of Ra. We varied Ra between C (i.e., 550

cells/sec), 2C, and 3C, which corresponds to 2.1, 4.2, and 6.3 Mbit/s of cell traffic. As

the figure shows, when there is no attack (topmost line in the plot) all benign onion-

skins get processed. When the attacker rate Ra matches the capacity C, the number

of requests successfully processed drops by approximately a factor of 2, whereas with

Ra = 2C and Ra = 3C, the drop factor is ∼ 4 and ∼ 8, respectively.

Next, we evaluated CellFlood under a more realistic scenario, where the victim

router processed a stream of RELAY DATA cells coming from Client1 at the maximum

speed allowed by the network, along with the stream of CREATE cells. We also config-

ured the victim router to limit its relay bandwidth to 5 MB/s (i.e., 40 Mbit/s), by setting

the BandwidthRate and BandwidthBusrst options, accordingly—this setting is

commonly used by Tor routers running on high speed networks for keeping the Tor

bandwidth capped. As Fig 1(b) shows, in absence of an attack (topmost line of the plot)

the capacity C of the relay dropped to ∼ 250 cells/s (∼ 0.9 Mbit/s), as opposed to the

550 cells/s that was the original capacity. This is because the stream of CREATE cells

now competes with the stream of RELAY DATA cells. Nevertheless, the other lines of

the plot confirm that CellFlood remains highly successful and has similar effects.



6 M. V. Barbera, V. P. Kemerlis, V. Pappas, A. D. Keromytis

 0

 5

 10

 15

 20

 25

00 02 04 06 08 10 12 14 16 18 20 22 00

A
v
e
ra

g
e
 c

e
lls

/s

Hour of the day

piyaz
piyaz3

Fig. 2. Daily average of CREATE cells/s received

by Onion Routers Piyaz and Piyaz3.

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

C 2C 3C

A
v
e
ra

g
e
 [
a
c
tu

a
l 
- 

e
x
p
e
c
te

d
] 
p
ro

c
e
s
s
e
d
 c

e
lls

/s

Ra

piyaz
piyaz3

Fig. 3. The accuracy of CellFlood when attack-

ing Tor Onion Routers in the wild.

Experiments in the Wild To assess the effectiveness of CellFlood on public Tor nodes,

which are subject to delay, packet loss, etc., we used two ORs under our control that

were actively participating to the Tor network. The first, nicknamed Piyaz was running

on a Xen virtual machine with two virtual 3.06GHz cores, each with a capacity C of

78 cells/s (∼ 0.30 Mbit/s). The other router, nicknamed Piyaz3, was a Xeon server

with 2.67GHz cores, each with a capacity of 658 cells/s (∼ 2.5 Mbit/s). At the time

of the experiments, both Piyaz and Piyaz3 had the fast, stable, and guard flags

on, which are given by the Tor authorities to relays with bandwidth and uptime above

a certain threshold, so as to provide Tor clients with a hint regarding which routers are

the most reliable ones. During our experiments, both ORs were processing an amount

of data traffic that varied between 16 and 32 MB/s. Figure 2 shows how the rate of

CREATE cells/s received by the two routers varies, on average, throughout the day.

Both ORs show a similar trend; they receive a higher rate of CREATE cells/s at night.

To diversify our tests, we decided to run the CellFlood attack on our routers once

every hour, for 2 minutes at a time. Each day, for 3 days, we used a different rate of cells

for our attack (i.e., C, 2C, and 3C), so as to check whether our results was consistent

with those we got from the controlled experiment. The concurrent data traffic that the

routers were handling during our tests was always lower than the maximum they were

able to process, so we expected our results to be consistent to those shown in Fig. 1(b).

Specifically, we expected Rx to be close to 1

2
Rt for Ra = C, 1

4
Rt for Ra = 2C, and

1

8
Rt for Ra = 3C. Our findings are shown in Fig. 3. Each bar represents the average

difference between the value of Rx measured during the attack and the value of Rx that

we were expecting. The difference was always negligible: when Piyaz used as a victim,

the difference was ≤ 2 cells/s on average, whereas when Piyaz3 was the victim, the

difference was even smaller, always ≤ 0.2 cells/s on average.

4 Global-scale CellFlood

The experiments presented in Sect. 3.1 indicate that an attacker can disrupt the ability

of an OR to respond to circuit creation requests, with only a fraction of the bandwidth

needed to perform a network DoS of comparable impact. The next step of our study is
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to quantify to which extent this is true for core Tor routers. Because of lack of publicly

available data regarding the hardware resources of Tor ORs, we remotely measured the

capacity of real nodes by means of a custom estimation tool. In the remainder of this

section, we will describe the tool and present the results of our estimations.

4.1 Remote Estimation Procedure

We are interested in studying the maximum rate of CREATE cells a remote Tor router,

not under our control, can process (denoted as C in Sect. 3). This problem is somewhat

related to that of estimating the bandwidth capacity of a non-cooperative remote host,

for which a number of packet-pair techniques have been proposed in the past [21].

However, these techniques do not fit our purpose. The CREATE cells are processed

in parallel by multiple CPU workers, and therefore, we have no guarantee that their

replies will be received in order. Hence, we opted for a simpler technique that involves

flooding the remote router for a short period of time (e.g., one minute) with a train of

valid CREATE cells, sent at the maximum speed allowed by the network, and counting

the percentage F of requests the router was able to process. A value of F less than 1

implies that the router was able to process cells at a smaller rate R′ = R×F < R (recall

that R is the rate at which the client sends the CREATE cells train), which is a lower

bound of the capacity C we try to estimate—this is because during a measurement the

OR may receive CREATE cells from other clients as well. Thus, by knowing R and

F , we can compute R′ and use it as an approximation of C. The percentage F can be

easily obtained by counting the number of requests replied with a CREATED cell over

the total number of cells sent, as the number of cells the remote router was not able to

process are replied with a DESTROY cell3. The rate R is simply the number of cells per

second at which our client was flooding the target router.

To validate the accuracy of our remote estimation procedure we performed a pre-

liminary test on a small set of 12 ORs that were participating to the Tor network at the

time. Thanks to active support from their administrators, we were able to get very accu-

rate estimations regarding the actual capacity C of these routers, which could then use

as the ground truth for the results obtained through remote estimations. The capacity C
was estimated based on: (i) the number S of 1024-bit private key operations reported by

the OpenSSL speed utility, (ii) the maximum number of concurrent CPU workers the

router is allowed to spawn, and (iii) the number of CPU cores available. Specifically,

by assuming a linear relation between S and the number N of CREATE cells a CPU

worker can process per second, it is possible to compute the value NA of a machine

A as NA = SANB

SB
, by just knowing two reference values, SB and NB, computed on

any other machine B. If the number of CPU cores is at least equal to the maximum

number of CPU workers Tor is allowed to spawn, the capacity C of a router A can be

then computed as NA multiplied by the number of CPU workers. Tests performed on

a heterogeneous set of machines in our laboratory confirmed that this local estimation

technique works within a level of accuracy that is sufficient for our purposes: in all

cases, the absolute error in our local estimations was less than 20 cells/s (i.e., ∼ 80
Kbit/s), while, on average, the error was about 10 cells/s (i.e., ∼ 40 Kbit/s).

3 Error code: END CIRC REASON INTERNAL.
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With the results of our local estimation at hand, we remotely estimated the capacity

of the routers in the test set during a timespan of 11 days. The estimation of the capac-

ity of a router is the result of 126 measurements (one every 2 hours) each lasting 60

seconds. Each measurement produces a pair of values (R,F ), where R is the speed at

which the cells were reaching the router and the product R× F is the estimated capac-

ity. Figure 4 shows the measurements relative to a router in the test set. Each point in

the plot represents a measurement, and the line f(x) = x is where the points relative to

the measurement that did not hit the capacity of the router would lie. The figure shows

a clear trend: as the the rate R increases, the value R × F starts following roughly the

f(x) = 7 line, meaning that the measurements hit the capacity of the router and forced

it to discard some cells.

For each router our measurements yielded two values: the maximum estimated ca-

pacity, and a confidence metric for the accuracy of the estimation. The former is given

by the point maxi (Ri, Fi)—i.e., the measurement that maximizes the estimated capac-

ity Ri×Fi. The latter is the value 1.0−Fi, that is, the percentage of cells the router was

not able to process during the measurement that produced the highest estimated capac-

ity. The intuition behind this choice is that, the higher the percentage 1.0 − Fi of cells

the router was forced to discard, the more certain we can be about the rate Ri having

exceeded the capacity of the router—i.e., the value Ri × Fi is a good approximation

of the capacity. Although the confidence metric gets values in the interval [0, 1], values

close are 1 are not common. For instance, a confidence of 0.9 would mean that the rate

R was ten times bigger than the capacity of the router, which can presumably happen

only when the capacity of the router is very low. We thus deem confidence values of

at least 0.5 as high, since they are produced by measurements where the rate R was at

least twice as the capacity.

Figure 5 shows the aggregate results of the estimations that we performed on the

12 ORs. Each bar represents the difference between the remotely and locally estimated

capacity of a given router. The shade of the columns represents the confidence metric

described above. The lighter the shade, the higher the confidence. As the picture shows,
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in almost all the cases our remote estimation technique gives a lower bound of the

actual capacity of the routers (i.e., the columns have negative values). This is normal,

since the routers were probably receiving a concurrent flow of CREATE cells during

our measurements. The only case were we overestimated the capacity was for router

number 9. However, this is acceptable for the type of study we are doing (i.e., the router

is computationally “weaker” from what we think).

4.2 Estimating the Effects of CellFlood on Tor

We ran our remote estimation tool on a set of 78 routers selected according to both the

amount of time they had been part of the network (at least 2 months) and the amount of

data they were relaying, as it was reported in [27]. This allowed us to get a snapshot of

the routers that were part of the “core” of Tor, that is, the set of ORs on which the net-

work was depending on in order to provide a good and reliable service to its users. At

the time of the experiment (May 2012), these routers were responsible for the ∼ 50%
of the total traffic flowing through the Tor network. As with the tests of Sect. 4.1, we ran

our remote estimation tool every 2 hours for 11 days, with each measurement lasting

60 seconds. Results are shown in Fig. 6. The height of each bar in the plot represents

the estimated capacity C of a router, whereas the shade represents the confidence of

the measurement (i.e., the lighter the bar, the higher the confidence). For some of the

routers, especially those in the range 14–59, we measured low C values (around 2 and

4 Mbit/s) with high confidence (above 0.5). On the other hand, the measurements of

the capacity of the topmost 8 routers yielded higher values (4 to 10 Mbit/s), but for

two of them the confidence was rather low (less than 0.4). The measurements of the

5 routers in the range 9–13 yielded very low capacity (less than 1 Mbit/s) but a confi-

dence level very close to 0, meaning that there was never enough bandwidth between

them and our measuring machines to give an accurate estimation. The router number

60 was the one with highest capacity (close to 16 Mbit/s), plus, the confidence of the

measurement was close to 0.1, so we can expect the actual capacity of that router to

be even higher. In general, our confidence values were high (i.e., at least 0.5) for the

62% of the routers, which were relaying for 22% (i.e., 2.8 Gbit/s) of the total amount of
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data flowing through the Tor network at that time. Considering our findings in Sect. 3.1,

these values are low enough to open the possibility for an attacker to cause a signifi-

cant disruption to specific routers or to the Tor network as a whole with relatively small

bandwidth resources. For instance, the total bandwidth needed in order to flood those

62% of the routers whose capacity was measured with high confidence would just be

around 116 Mbit/s. Even in the pessimistic case where our estimation gave only the

50% of the actual values (which, given our high confidence values, is unlikely) the total

bandwidth needed by an adversary to clog them would just be 232 Mbit/s.

5 Client Puzzles to the Rescue

As a countermeasure to the CellFlood attack we propose a solution based on client

puzzles. With client puzzles, a server under attack commits the resources needed to

satisfy a given request (i.e., processing an onionskin) only after the client has performed

some computationally intensive work, usually in the form of solving a cryptographic

problem. This adds a computational constraint to the attacking host(s), thus reducing the

power of the adversary. Client puzzles are a good fit for Tor for several reasons. First,

each router can defend itself against a CellFlood attack without cooperating with other

ORs. This is consistent with the trust model of Tor, where any router can turn out to be

malicious. Second, client puzzles are not affected from how the attack is orchestrated.

That is, whether coming directly from a router or a client, or indirectly, through another

router by encapsulating onionskins into RELAY EXTEND cells (instead of CREATE

cells). Third, the topology of the network will be preserved, as routers under attack will

not be forced to close any active connections in the hope of stopping the attack. Finally,

the difficulty of client puzzles can be adjusted according to the strength of the attack,

thus making the solution effective even in the case of a global-scale CellFlood.

Figure 7 shows how the client puzzle protocol works when establishing a session

key with the first two hops of a circuit. The procedure for the 3rd (4th, 5th, etc.) hop is

similar and omitted for brevity. If a CREATE FAST cell is used for the first hop of the

circuit, puzzles will never be issued, as no intensive cryptographic operation is required

(see Sect. 2). In the remainder of this section, we will discuss in great detail the design

and implementation of our mitigation scheme for CellFlood attacks that is based on

client puzzles.

5.1 Building and Solving Puzzles

Our client puzzles are built upon SHA256-based message authentication codes (HMAC).

To build a puzzle, the router generates s (a random 64-bit key) and computes the value

X = HMAC(s, P |H), where P |H is a message resulting from the concatenation of

the onionskin P contained in the payload of the CREATE cell and the hash H of the

router’s public identity key, which is a long-term public key that establishes the router’s

identity. Finally, a key s′ is generated by setting the least k-bits of s to 0. The puzzle is

the triplet (s′, k,X) and does not include the HMAC message P |H , since P and H are

both known to the client. To solve the puzzle, the client has to guess the k unknown bits
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Client OR1 (identity: H1) OR2 (identity: H2)

H1 = select_relay( )
P1 = new_onionskin( ) CREATE (circuit_id1, P1 = E(g^x1) )

RELAY (PUZZLE, s1', k1, X1 = HMAC(s, P1|H1))

RELAY (PUZZLE_SOLUTION, s1, P1)

CREATED (circuit_id1, g^y1)

RELAY { (EXTEND, H2, P2 = E(g^x2)) }

H2 = select_relay( )
P2 = new_onionskin( )

s1 = solve(s1', k1, X1)

CREATE (circuit_id2, P2)

RELAY (PUZZLE, s2', k2, X2 = HMAC(s, P2|H2))

RELAY { (PUZZLE, s2', k2, X2) }

s2 = solve(s2', k2, X2)

RELAY { (PUZZLE_SOLUTION, s2, P2) }
RELAY (PUZZLE_SOLUTION, s2, P2)

RELAY{ (EXTENDED, g^y2) }

s1, s1', k1, X1 = new_puzzle(P1)
store_solution(circuit_id1, s1)

check_solution(s1)

g^y1 = process_skin(P1)
delete_solution(s1)

s2, s2', k2, X2 = new_puzzle(P2)
store_solution(circuit_id2, s2)

check_solution(s2)

g^y2 = process_skin(P2)
delete_solution(s2)

CREATED (circuit_id2, g^y2)

Fig. 7. Client puzzle protocol for mitigating CellFlood attacks (assuming that CREATE FAST

cells are not used and puzzles are send at each hop). ‘{}’ denotes encryption with the session key.

of s starting from s′, by computing, for each tentative s′′, HMAC(s′′, P |H) and com-

paring it against X to check whether s′′ = s. Since finding a pre-image for SHA256 is

computationally infeasible, a puzzle with k unknown bits requires an average of 2k−1

tentatives, which grows exponentially with k. This allows the puzzle complexity to be

adjusted at will from few milliseconds up to several hours.

5.2 Sending Puzzles and Solutions

As Fig. 7 shows, puzzles and puzzle solutions travel in the payload of RELAY cells

with command code PUZZLE and PUZZLE SOLUTION, respectively. These cells are

subsequently encrypted (resp. decrypted) with the session key previously negotiated

with any router in the portion of the circuit built thus far. The only router that can read

both the puzzle and its solution is the last one, which stands between the client and

the router that issued the puzzle. That is, OR1 in Fig. 7, when the client is extending

the circuit to OR2. What prevents OR1 to maliciously interfere with the protocol is the

fact that the client expects the HMAC message used to generate the puzzle to be P2|H2.

This ensures that the client will refuse to solve any puzzle produced with another pair of

P2 and H2, and that no other router but OR2 (with identity H2) will accept the solution.

Another important detail is that the use of RELAY cells (to send puzzles and puzzle

solutions) makes our protocol backwards compatible with the ORs that implement the

original Tor protocol, which does not support puzzle messages. These routers will be

able to encrypt/decryptPUZZLE and PUZZLE SOLUTION cells, similarly to any other

RELAY cell. Also, a non puzzle-compatible client that receives a PUZZLE cell will

ignore it and try a different OR. This allows for the incremental adoption of our solution,

since it does not require all routers and clients to upgrade their software at once.
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5.3 Verifying Solutions

To check whether a puzzle solution is correct, a router compares the received solution s
to the one stored when the puzzle was generated (check solution in Fig. 7). In our

implementation, storing a puzzle solution requires 18 bytes of memory (8 for the puzzle

solution + 8 for the connection id + 2 for the circuit ID), and it stays in memory until the

router receives a reply from the client or a timeout ∆p expires (delete solution).

The role of the timeout is to prevent an attacker from consuming all the memory of a

router, by leaving puzzles unsolved.

Choosing a good value for ∆p is not hard; even with a ∆p as big as 2 minutes, an

attack of 189 Mbit/s will consume 100 MB of memory. Considering that our measure-

ments have shown that the most important routers of the Tor network can support a

stream of CREATE cells of a few Mbit/s (see Sect. 4.1), an attacker that dedicates 189

Mbit/s of bandwidth for clogging each router is much more powerful than the model of

the adversary we are considering. Also, according to our tests, a timeout of 2 minutes

is way more than enough even for slow clients to be able to solve the puzzle on time.

Nevertheless, the ∆p parameter can be adjusted to greater or smaller values depending

on the situation. An alternative strategy could be to not store the solution, and give each

puzzle an expire time to avoid an adversary reusing the same solution multiple times.

Setting the expire time, however, is a complicated task that requires carefully estimat-

ing the capacity of the attacker (in terms of bandwidth) and the speed at which honest

clients can solve puzzles. A big value will give too much power to the attacker, whereas

a small value will discriminate slow honest clients. We believe that our solution strikes

a balance between security and performance, as it comes with moderate cost.

5.4 Choosing the Puzzle Difficulty

Two possible approaches can be used here: (i) always send puzzles to clients, or (ii) send

puzzles only when an attack is in place. The first approach is simpler, but most of the

time it imposes an unnecessary load on Tor clients. The second one is lightweight, but it
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involves inferring whether a DoS attack is in place or not. For the latter case, a custom

and lightweight approach could be used where each ∆x seconds the router counts the

total number Px of CREATE cells that it was able to process and the number Dx of

those that it had to discard because all the CPU workers were busy. An exponential

moving average (EWMA) µ ∈ [0, inf) of the fraction Dx/Px could used to detect

when the average percentage of dropped cells reaches a threshold value β. The first

time µ becomes bigger than a threshold β, the router starts sending puzzles with a

initial difficulty parameter k (e.g., k = 16) for ∆x seconds. At the end of the interval,

the router increases or decreases the difficulty k of the puzzle by one bit depending on

whether the updated value of µ has become smaller than β or not. This would allow the

router to continuously adjust the difficulty parameter k, as shown in Fig. 8. To avoid

imposing a too heavy load on an honest client, the maximum puzzle difficulty could

be set up to be around 20. The parameter β should be set to very low values (even

0), depending on how likely the router administrator believes his CPU workers will be

discarding cells during the normal operation time. Finally, the value of ∆x is not very

critical, but it should be short enough to allow quickly finding the right puzzle difficulty.

5.5 Testing and Evaluation

Puzzle Solution Performance We studied the time it takes to solve client puzzles on

a wide range of machines, which vary from slow, outdated hardware, to brand-new,

high-end workstations. Figure 9 shows the speed at which our machines were able to

solve puzzles for k ∈ [14 − 18]. As the figure shows, even for a value as small as 17,

our fastest host (armed with an Intel Core i7 3.5GHz CPU) can solve just around 6

puzzles per second. It is interesting to notice that for a fixed k, there is no big differ-

ence between the performance of different hardware. For instance, our slowest machine

(the 3GHz Pentium 4) is slower by a factor of ∼ 3.2 with respect to our fastest one.

Thus, a router can easily estimate, within a reasonable level of accuracy, what would

be the impact of sending a puzzle of a difficulty k to honest clients and attackers alike.

According to this data, using a puzzle of difficulty k = 18 should be good enough for

slowing down an attack performed with today’s off-the-shelf hardware. For instance, if

the capacity C of a victim router is 300 cells/s, which is lower than that of Piyaz3, an

attacker should use the equivalent of around ∼ 100 cores of our fastest Core i7 3.5GHz

machine, to successfully clog the router. On the other hand, the slowest clients should

only experience a delay of around 1 second.

Puzzle Generation Performance To evaluate the load imposed by the client puzzle

protocol on ORs, we studied the time it takes for our test machines to read a CREATE

cell and generate a puzzle, and the time it takes to read a PUZZLE SOLUTION cell

and verify the solution. The tests machines used were Victim and Client1, plus the two

routers Piyaz and Piyaz3 (see Sect. 3.1). Figure 10 compares the capacity of these ma-

chines to process RELAY cells containing data to be forwarded (RELAY DATA column),

to read a CREATE cell and generate the relative puzzle (RELAY PUZZLE column), and

to check the solution (RELAY PUZZLE SOLUTION column). For clarity, the capacity

is shown in Mbit/s instead of cells/s, knowing that a cell size is 512 bytes. As the figure
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shows, even our slowest machines, namely Client1 and Piyaz, when idle, can process

CREATE cells and generate the relative puzzles at around 90 Mbit/s. For Victim and

Piyaz3, the value is at least 200 Mbit/s. On the other hand, checking whether the puz-

zle solution is correct is much faster, even faster than processing a RELAY DATA cell,

since it just requires comparing the received solution with the one the router stored in

memory. From the security point of view, the values we got for the puzzle generation

on Victim and Piyaz3 do not represent an issue. An adversary that floods a router with

200 Mbit/s of data represents a threat anyway. For what concerns the slower machines

Client1 and Piyaz, performances can be improved using a SHA1-based HMAC (instead

of the SHA256-based HMAC). According to our experiments, this would increase their

capacity to generate puzzles up to 230 Mbit/s. To compensate for the higher speed at

which clients would be able to solve SHA1 HMAC puzzles, the routers should slightly

increase the difficulty k of their puzzles by one or two bits. Obviously, using a different

parameter k does not affect the puzzle generation speed in a noticeable way.

Quality of Service Finally, we considered how the user-perceived quality of service

would change in case our puzzle protocol was actually used in the Tor network. To eval-

uate it, we set up an automatic test where a modified version of the Tor client introduced

fake delays in the generation of circuits. This allowed us to simulate both the time delay

caused by the transmission of puzzles and puzzle solutions, and the time spent by the

client to solve the puzzles. The first type of delay is computed starting from the ∆1,

∆2, and ∆3 intervals of time needed for the RELAY EXTEND and RELAY EXTENDED

(or CREATE and CREATED) cells to be exchanged between the client and the routers

at the first, second, and third hops of the circuits respectively. By adding ∆i to the cir-

cuit creation time, we simulate the exchange of the PUZZLE and PUZZLE SOLUTION

cells between the client and the i-th hop of the circuit. Note that if the client uses a

CREATE FAST cell for the first hop of the circuit, puzzles will not be used and the

extra delay ∆1 will be ignored. The simulation of the time needed to solve each puzzle

was based on a parameter telling the difficulty k of the puzzles. Again, this delay is
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Difficulty k Avg. Sol. Time CPU Idle time % Avg. CPU usage %

(seconds) (when not idle)

0 0 90 3

17 0.5 90 23

18 1.0 87 37

19 2.0 85 52

21 8.0 66 75

Table 1. CPU usage when simulating a Tor client solving client puzzles.

added to each hop of the circuit except for the first one, unless the client decided to use

a CREATE cell instead of a CREATE FAST cell.

To automate the test, we implemented a simple HTTP client consecutively fetching

500 random web pages through our Tor client. The client randomly pauses between

each request and the next, so as to simulate the time between user’s clicks. The length

of the pause is drawn from the UNC think-time distribution [12]. This distribution is

also used by Jansen and Hopper [13] when simulating Tor users activity in their Shadow

simulator. In our evaluation, we focused only on the time it takes for the HTTP client

to connect to the web server hosting the page, as our client puzzle protocol affects

solely the creation of the circuits. Results are shown on Fig. 11 and Table 1. In these

experiments we assumed both the best-case scenario when no router asks the client to

solve puzzles (i.e., ∆i is not used), and the worst-case scenario where all the routers

send puzzle cells in reply to the client’s CREATE cells (i.e., both ∆2 and ∆3 are always

used, whereas ∆1 is not used in case of a CREATE FAST cell). In the latter case, the

puzzle difficulty parameter k was set to 17, 18, 19 and 21. The results are computed by

running 5 independent tests for each value k. The Tor client was running on Client1,

which is also the oldest machine we had available in our lab.

6 Related Work

Most of the research on Tor has focused on techniques aimed at degrading user’s

anonymity by means of congestion attacks (Evans et al. [7], Murdoch and Danezis [19]),

web page fingerprints (Shi and Matsura [23]), observations of the throughput of Tor

streams (Mittal et al. [16]), or by means of colluding nodes (Fu et al. [9], Levine et

al. [14]). Other attacks study the potential threat of a (semi) global adversary (Mur-

doch and Zieliński [17], Edman and Syverson [6], Chakravarty et al. [3]), although this

does not fit into Tor’s original adversary model. Specific attacks to Tor bridges and Hid-

den Services have been studied by McLachlan and Hopper [15], and by Murdoch [18],

respectively. Borisov et al. [2] study a selective DoS attack where Tor routers controlled

by an adversary relay only messages of circuits they can fully deanonymize, by control-

ling the first and the last hop, while disrupting everything else. They show that this type

of adversary has a significant advantage over a passive adversary like the one presented

by Syverson et al. [24]. Danner et al. [4] give a countermeasure to this attack that works

by probing the network for misbehaving routers. The proposed technique is able to de-

tect all the adversary-controlled routers with O(n) probes, where n is the total number

of routers of the Tor network. A DoS-like packet spinning technique is presented by
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Pappas et al. [20]. By increasing the circuit creation latency of the honest routers, they

allow an adversary to increase the probability of malicious routers to be selected. As

the method presented by Evans et al. [7], this attack works by building arbitrary long

circuits, which has become harder since Tor v0.2.1.3.

To the best of our knowledge, the only work in literature that is close to ours is the

one presented by Fraser et al. [8]. Their attack, however, exploits the well known DoS

attack against the TLS handshakes, whereas we focus on the circuit creation protocol,

which is specific to Tor only. Their solution is based on stateless client puzzles, but they

do not evaluate the impact of the time-window parameter telling how long a puzzle

solution is valid, which, on the other hand, we believe is critical (more about this in

Sect. 5.3). Also, as opposite to us, they do not give an estimation of the vulnerability of

the routers currently being part of the Tor network. Finally, their solution might actually

make it easier for censoring devices to spot Tor bridges by means of fingerprint attacks

(interested readers are referred to the recent study by Winter and Lindskog [30]).

7 Conclusions

In this paper, CellFlood, a DoS attack that exploits a security weakness in the circuit

creation protocol of the Onion Routers has been evaluated for the first time. Our results,

based on tests in a controlled environment and on an estimation performed on a set of

crucial Tor nodes, have confirmed that this attack could be not only possible but also

effective, and easier to perform, than a standard network DoS. We have proposed, fully

implemented, and evaluated a backward-compatible solution based on a client puzzle

protocol that would allow Tor nodes to increase at will the computational resources

needed to perform this attack. Our results show that the load imposed to honest clients

by our improved protocol would be moderate even in a worst-case scenario.
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A User-perceived Quality of Service

In Table 1, the difficulty parameter k of the puzzles is compared to the average time

needed to solve a puzzle (second column), to the percentage of time that the CPU was

idle during the tests (third column), and to the average CPU usage level when the CPU

was not idle (last column). From the table it can be observed that, as the difficulty of

the puzzle increases, the average CPU idle time decreases and the average CPU usage

percentage increases. It is interesting to see that although the time it takes to solve a

puzzle is as high as 8 seconds, the average CPU load is only 75%. Figure 11 represents

the distribution of the time-to-connect for varying client puzzle difficulty. As the figure

shows, there is never a relevant difference in the time it takes for the connection to be

established. In other words, the user’s perceived quality of service is not affected in

a noticeable way, not even in the case of k = 21 and all routers requiring the client

to solve puzzles before building a circuit. There reason is that the Tor client software

maintains a small pool of pre-built circuits that can readily serve new user request. Plus,

”dirty” circuits are reused for a certain amount of time before being closed definitively.

This design choice has been done in order to deal with any network delay there might

be in the creation of circuits. As our experiments have shown, this mechanism is good

enough to absorb the extra-delay imposed by client puzzles too.

One last important detail is that of our custom implementation of Tor delegates the

solution of the received puzzles to a pull of CPU workers, so as to avoid introducing

a delay in the processing of data to/from the Tor network. Using a single CPU worker

was sufficient even on the slow machine we used for these tests.

B ntor handshake

Starting with v0.2.4.8-alpha (released in January 2013), Tor supports a new circuit ex-

tension handshake protocol, ntor, designed by Goldberg et al. [10]. ntor improves

upon the original protocol we described in Sect. 2, both in terms of security and speed,

by using Dan Bernstein’s “curve25519” elliptic-curve Diffie-Hellman function. As of

June 2013, only about 7% of the Tor routers support this new handshake protocol, al-

though this percentage is destined to grow over time. Preliminary tests performed in our

laboratory testbed confirm that, depending on the machine, ntor provides a speed up

factor (in processing create circuit requests) of up to 4x. Nevertheless, as with the origi-

nal circuit extension handshake protocol, ntor maintains the imbalance in the amount

of resources needed for clients and routers to extend a circuit, and as such, it remains

vulnerable to CellFlood.
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