Generalising Mixes

Claudia Diaz! and Andrei Serjantov?

' K.U.Leuven ESAT-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
claudia.diaz@esat.kuleuven.ac.be
http://www.esat.kuleuven.ac.be/cosic/
&
2 University of Cambridge Computer Laboratory
Cambridge CB3 0FD, United Kingdom

Andrei.Serjantov@cl.cam.ac.uk http://www.cl.cam.ac.uk/ aas23/

Abstract. In this paper we present a generalised framework for express-
ing batching strategies of a mix. First, we note that existing mixes can
be represented as functions from the number of messages in the mix to
the fraction of messages to be flushed.

We then show how to express existing mixes in the framework, and then
suggest other mixes which arise out of that framework. We note that
these cannot be expressed as pool mixes. In particular, we call binomial
miz a timed pool mix that tosses coins and uses a probability function
that depends on the number of messages inside the mix at the time of
flushing. We discuss the properties of this mix.

1 Introduction

Many modern anonymity systems use the notion of a mix as introduced in
[Cha81]. Chaum’s original system used a very simple threshold mix, but over
the last few years many different mixes have been proposed in the literature
[Cot94,Jer00,KEB9S].

One of the most important parameters of a mix is its batching strategy. Intu-
itively, the batching strategy of a mix is the algorithm for collecting the messages
to be mixed together and forwarding them to the next hop. Naturally, this in-
fluences both the anonymity and message delay properties of the mix.

In the past the batching strategies of mixes were often described by giving the
algorithm which determines when to flush the mix and how many (and which)
messages to forward during the flush. In this paper, we present an simple formal-
ism for describing mixes, which also enables a quick (qualitative) comparison. In
the next section we show how existing mixes are described. In Section 4, we show
that there are functions which express other mixes with interesting properties.
We then focus on this mix, extend it and examine its properties.

2 Comparing Batching Strategies of Mixes

Let us examine existing mixes. There are several which we are familiar with from
the literature (see survey in [SDS02]): threshold mix, timed mix, timed pool mix

and the timed dynamic pool (Cottrell) mix !. We now seek to express mixes,
just as an implementer would, as functions P : N — [0,1] from the number
of messages inside the mix to the fraction of messages to be flushed. We now
note that just this function is not enough to express the batching strategy of a
mix. We also need to specify how often we would execute this function and flush
messages. Note that in timed mixes, this is just amount to the period between
mix flushes. The variable n represents the number of messages contained in the
mix at the time of flushing.
Figure 1 presents:

— Timed mix (a): This mix flushes all the messages it contains at the time
of flushing. Therefore, the percentage of sent messages is always 100%, i.e.,
P(n)=1.

— Timed pool mix (b): This mix keeps a constant number of messages, Np,
in the pool (N, = 20 in this example), and flushes periodically . If the mix
contains no more than IV, messages at the time of flushing, it will not output
any message. When it contains more, it outputs n— N, messages, that means
that the percentage of sent messages can be expressed as: P(n) = 1— N, /n.

— Timed dynamic pool mix (Cottrell mix) (c): This mix outputs messages at
the timeout only when the number of messages is greater than a threshold
N,. The number of output messages is a fraction, f, of the difference between
the number of messages inside the mix and the value of the threshold of the
pool, f(n — N,) (f = 0.7 and N, = 20 in the example). In the figure, the
function that represents the percentage of sent messages is P(n) = f(1 —
Np/n).

— Threshold pool mix (d): We have noted above that each mix is a function,
together with a time period (7T") which specifies how often we flush the mix.
If we set T' = 0 and let the function P(n) = 0 everywhere apart from the
threshold, we can express threshold mixes as well as timed mixes. Thus,
such a mix mixes are represented by a single dot in the figure (at (N, 1) for
a threshold mix, or (IV,1 — N,/N) for a pool mix with pool of N,) as it is
shown in Figure 1 (d). The mix shown in the figure is a threshold pool mix
with threshold N = 100 and pool size N, = 50.

Note that the reason we have been able to express all the above mixes in this
framework is that they are stateless, i.e. the fraction (and therefore the number)
of messages to be flushed depends only on the number of messages in the mix,
but not, say, on the number of messages flushed during the previous round.

Before proceeding to examine new P(N) functions, we need to understand
the effect they have on the anonymity of a mix.

! The current implementation of Mixmaster uses a slightly different algorithm: it
flushes a fixed fraction of the total number of messages in the mix, given that the
number of messages that stay in the pool is larger than a minimum; otherwise, it
does not send any message.

Timed mix

L L
50 100 150 200 250 300
n

(a) Timed Mix

Timed dinamic pool mix

50 100 150 200 250

n

(¢) Timed dynamic pool mix

Fig. 1. Representing mixes as functions from the

to the fraction of messages to be flushed

300

Timed pool mix

50 100 150 200 250

n

(b) Timed pool mix

Threshold pool mix

300

0.8

07k

03

0.2

0.1

L L
50 100 150 200 250

(d) Threshold pool mix

number of messages inside the mix

300

3 Anonymity set size

We know from [SD02,DSCP02] that the anonymity set size can be computed
using the entropy of the probability distribution that relates incoming and out-
going messages. This metric depends on two parameters: the number of messages
mixed and the value of the distribution of probabilities of an outgoing message
matching an input. In the absence of a priori or contextual information about
the inputs, this distribution is given by the probability of a message leaving in
each round. Therefore, the more messages we mix, the more anonymity; and
the more evenly distributed the probability of a message leaving in round r, the
more anonymity (i.e., we gain anonymity when it is more difficult to predict the
number of rounds that a message stays in the pool).

Let us focus on timed pool mixes. The function represented in the Figure
1(b) gives us the probability of a message leaving in the current round as a
function of the number of messages contained in the mix. Let n,. be the number of
messages contained in the mix at round r, and P(n,.) (the represented function)
the probability of a message leaving the mix at round r.

The probability of a message that arrived at round i leaving at round r is
given by:

r—1

prob(i) = P(n,) [[(1 = P(ny)) .

j=i

That is, the fact that the message did not leave the mix in the roundsi..(r—1)
and it leaves in round r. Note that when P(n;) grows, the prob(i) values are
less evenly distributed, and the entropy (and, consequently, the anonymity set
size) decreases?. This is not a problem if the number of messages mixed at each
round is large, but when n is close to the pool size, the anonymity may be too
small. We propose a solution to this problem in Section 5.

4 Generalising Mixes

The natural way to proceed is to say that a mix is an arbitrary function from the
number of messages inside the mix to the percentage of messages to be flushed.
What does this gain us?

Throughout the mix literature, a tradeoff between message delay and anonymity
can clearly be seen. Indeed, as Serjantov and Danezis showed in [SD02], the pool
mix gains more anonymity from higher average delay as compared to the thresh-
old mix. Expressing the mix batching strategy as a function allows us to define
an arbitrary tradeoff between anonymity and message delay. We now go on to
examine a particular mix function.

% Note that this is entirely consistent with our intuition: the higher the fraction of
messages we flush each round, the smaller the anonymity. Or equivalently, the more
messages we delay during each round, the higher the anonymity.

5 Proposed design

Suppose that we woudl like to develop a mix which has the properties in low
and high traffic conditions® as a particular timed dynamic pool mix, but which
gains more anonymity for a longer delay in low traffic conditions. This is easily
possible — all one needs to do is to invent a suitable function.

Note that the numbers are given on order to illustrate qualitative examples.
The values of the functions should be optimised for the requirements of a par-
ticular system, depending on the traffic load, number of users, tolerated delay,
minimum required anonymity, etc.

In Figure 2 we show a comparison between the timed dynamic pool mix
and our new mix, which is defined by a suitable function (normal cumulative
distribution function).

Comparison Cortrell-Cumulative distribution function
1 T T T

0.9 B

0.8 h

07F — = — — T T T T T T T T T T T T T T T ——

0.6 4

05 h

P(n)

04 B

0.3 B

0.1 h

0 50 100 150 200 250 300

Fig. 2. Timed dynamic pool mix vs a mix based on the normal cumulative distribution
function

The normal cumulative distribution function has desirable properties. It
grows smoothly at low n, providing a larger anonymity when the mix contains
few messages. This is achieved at the cost of increasing the delay in low traffic

% Or, more pragmatically, the same size of the pool and the same fraction of messages
to be sent out when there is lots of traffic

conditions. On the other hand, when the number of mixed messages is large
enough, the cumulative function improves the delay over the Cottrell function.

6 Randomising Mixes: The Binomial Mix

In this section we add randomness to a mix. This has the effect of hiding the
number of messages which are in the mix at the time it flushes.

Suppose we treat the result of the function P(n) not as a fraction, but as
a probability. We can then use it as the bias of a coin, which we toss for each
message inside the mix. A head indicates that this message should be sent out
during this round, a tail — that it should remain in the mix.

Let s be the variable that represents the number of messages sent by the mix
when it flushes. On average, s = nP(n); but s follows a binomial distribution,
which has a variance equal to np(l — p), where p is the result of the function
P(n). The property of the mix is that by observing s the attacker does not
obtain much information about the value of n. The effort required to estimate
n is analysed in Section 6.1.

Due to this property, we call this proposed mix binomial miz.

6.1 Guessing the number of messages contained in the mix

We analyse the information obtained by a passive attacker that observes the
input and output of the binomial mix. Then we explain how the attacker can
combine the information obtained in multiple observations and give an estimate
of the number of rounds needed to accurately guess n.

Observation of one output. When the attacker is allowed to observe only
one output, the only available information he has is s. We have constructed a
simulator that calculates the probabilities of every value of n after observing
that the mix outputs s messages.
Given n, we can calculate the probability of sending s messages with the
following formula, according to the binomial distribution [Fel50]:
n!

)TL—S

p(s|n) =)!ps(l —p : (1)

sl(n—s
where p is the result of the function P(n).
But the attacker does not know n, he has to estimate n from the observa-
tion of s. Bayes’ rule can be applied to reverse the formula and compute the
probability of each n?.

p(s|n)
p(nls) = —x————— - (2)
> i pliln)
4 Given that the attacker does not have any a priori information he must assume,
initially, that any possible value of n between s and Np., (maximum capacity of
the mix) is equally probable.

The attack is implemented as follows: the attacker observes s and assumes
that the n that generated this output is at least s and at most Ny,q,. In order
to compute the probability of n taking a particular value, say 100, we apply
equation 1 using this value for n, and then substitute the result in equation 2.
We also need to calculate the result of equation 1 for this n and every possible
value of s.

Using this formula the attacker can obtain the probability of each value of
n given than the mix has sent s messages. The practical results show that the
attacker cannot guess the value of n with probability greater than 15%. We have
also calculated the 95% confidence interval and found that, typically, it contains
between 12 and 30 different values of n. This is due to the large value of the
variance of a binomial distribution.

Number of rounds needed to estimate n with 95% confidence. We have
implemented a passive attack in the simulator in order to have an estimate on
the number of rounds required by the attacker to guess with probability 95%
the correct value of n.

Given that every round is independent from the others, we can multiply the
results of every round, taking care of shifting the terms we are multiplying as
many positions as the difference between the n of the first round of attack, ng,
and the current n,.. This difference is known to the attacker because he can count
the incoming and outgoing messages. The details of this algorithm can be found
in Appendix A.

The attacker, according to the results of the simulations, needs typically close
to 200 rounds of observation. This number could be improved by choosing a more
appropriate P(n)-function. In terms of time, he will have to wait the number of
rounds times T (timeout of the mix).

6.2 The blending attack on the binomial mix

As we have seen in the previous section, a passive attacker needs a substantial
number of rounds of observation in order to accurately guess the current n.
Therefore, it does not seem to be practical to deploy a blending attack using the
same strategy as with classical pool mixes.

In this section we describe first the attack model, then the steps needed in
order to deploy a blending attack and, finally, we analyse the results.

Attack model. The attacker we are considering controls all communication
lines (global attacker). He can not only observe all incoming and outgoing mes-
sages, but also delay the messages of the users and insert messages (active at-
tacker). The attacker does not have access to the contents of the mix, i.e., the
mix is a black box for the attacker (external attacker). In order to test the
effectiveness of the design, we consider a setup with only one mix. which

The flooding strategy. The goal of the attacker is to trace a particular message
(the target message) that is sent by a user to the mix. The actions of the attacker
can be divided into two phases: the emptying phase and the flushing phase.

The emptying phase. During this stage of the attack, the goal of the attacker
is to remove all unknown messages contained in the pool, while preventing new
unknown messages from going into the mix. In order to force the mix to send
out as many unknown messages as possible in each round, the attacker sends
to the mix Np messages, where N is the minimum number of messages that
guarantees that the P(n) function takes its maximum value, pp,q. - If the attacker
wants to empty the mix with probability 1 — €, then he will have to flood the
mix for r rounds.

The formula that can be used to estimate the number of rounds needed to
flush all unknown messages with probability 1 — € is:

(1—(1—=pmaz))" >1—€ . (3)

Where n is the number of messages contained in the pool. If the attacker
does not have any information about n he will have to assume n = Ny, (Worst
case scenario for the attacker).

Cost of emptying the miz. We compute the cost, Cg, of this phase of the attack
taking into account the following:

— Number of messages the attacker has to send to the mix.
— Time needed to complete the operation.
— Number of messages the attacker has to delay.

Number of messages the attacker has to send to the miz. In the first round the
attacker has to send Ny messages, to ensure that the function P(n) takes its
maximum value, pp,qz, and therefore the probability of each message leaving is
maximum. In the following rounds, it is enough to send as many messages as
the mix outputs. Note that if n + Np is bigger than N,,,;, then some messages
will be dropped and the mix will contain N,,,, messages.

Thus, for the first round the attacker sends Np messages, and the follow-
ing rounds he sends (N7 4 n)pma, messages on average. The total number of
messages sent during this process is:

Number of messages sent = N7 + (r — 1)(N7 + n)pmas - (4)

Time needed to complete the operation. This is a timed mix, so the attacker has
to wait T units of time for each round. Therefore, the total time needed is rT
time units.

Number of messages the attacker has to delay. Assuming that the users generate
messages following a Poisson distribution with parameter A, the attacker has to
delay, in average, A\rT messages.

The flushing phase. Once the mix has been emptied of unknown messages, the
attacker sends the target message to the mix. Now, he has to keep on delaying
other incoming unknown messages and also send messages to make the mix flush
the target.

The number of rounds needed to flush the message is, on average, r =
The cost of this phase is computed according to the previous parameters.

1

Pmaax

Number of messages the attacker has to send to the miz. Assuming that the
attacker carries out this phase of the attack immediately after the emptying
phase, the number of messages needed in the first round is (N7 +n — 1)pmaz,
and in the following ones (Ny + n)pmaz- The total number of messages is:

Pmaz(Nr +n —14 (r — 1)(Np +n)) (5)

The other two parameters are computed in the same way as in the emptying
phase, taking into account the new value of r.

Guessing the number of messages within the mix with an active attack
The attacker can use the flooding strategy (emptying phase only) in order to
determine the number of messages contained in the pool of the mix. This attack
is much faster than the one described in Section 6.1, although it requires more
effort from the attacker.

Probabilistic success. Note that, due to the probabilistic nature of the bi-
nomial mix, the attacker only succeeds with probability 1 — e. Therefore, with
probability e there is at least one unknown message in the mix. In this partic-
ular case, the attacker can detect his failure if during the flushing phase more
than one unknown message leaves the mix in the same round (and there is no
dummy traffic policy), which happens with probability pZ,,, for the case of one
unknown message staying during the emptying phase (the most probable case).
With probability pmaz(1 — Pmas) the target message leaves the mix alone, and
the attack is successful. Also with probability piaz (1 —Dmaz), the other unknown
message leaves the mix first, and the attacker follows a message that is not the
target without noticing. Finally, with probability (1 — pmae)?, both messages
stay in the pool and the situation is repeated in the next round.

6.3 Average delay of a message.

Assuming that the population of users generate messages following a Poisson
distribution with mean)\ messages per time unit, and given that the mix flushes
messages every 1" time units, the average number of messages going into the
mix per round is AT. Assuming that the mix outputs as many messages as it
gets (that is, the P(n) function and N,,,, are designed in such a way that the
probability of dropping messages because of a lack of space in the mix is very
small), the average number of messages sent per round is s = AT. We know that

s = nP(n), therefore, we have to find n such that nP(n) = AT. This number
can be found recursively.
Given that the average number of rounds that a message spends in the mix

is %, where n has to be computed as stated above, the average delay of a

message going through the binomial mix is % time units.

6.4 Additional measure: Timestamps.

Additional measures, like timestamps, can be used in order to prevent the blend-
ing attack. This idea has already been proposed by Kesdogan et al. in [KEB9S]
for the Stop-and-Go (SG) mixes.

SG mixes work in a different way than pool mixes: users, after choosing
the path of mixes, generate a timestamp for each mix in the path that follows
an exponential distribution. The message is encrypted several times, each time
with the key of one of the mixes. Once an SG mix has received and decrypted a
message, it keeps it in the memory a period of time equal to the delay indicated
by the user. Then, it forwards the message to the next mix.

Link Timestamps. In our design, the user cannot generate timestamps for
every mix in the path, because he does not know how long the message is going
to be delayed in each mix. Therefore, we propose the use of link timestamps: the
user generates a timestamp for the first mix and, in each of the following hops,
the mix puts the timestamp on the message once the message has been taken
from the pool and is going to be sent.

When a mix receives a timestamp that is too old, it drops the message. With
this policy, the attacker has limited time to delay messages: if he delays the
target message too long it will be dropped, and the attacker will not have any
means to disclose the recipient of the message.

Using this measure prevents the attacker from delaying the target message
at his will, and the attacker does not have means to deploy a blending attack
(unless he knows that the message is going to be sent by the user in advance, and
can empty the mix before). Therefore, in this scenario the binomial mix provides
protection against the blending attack. Furthermore, the anonymity provided by
the binomial mix will not be threatened by a change in the traffic load while this
change, if large enough, can affect the anonymity provided by a SG mix (since
SG mixes only delay messages).

Drawbacks. The use of timestamps presents practical problems, and this is
the reason why we have not included them in the basic design. The most serious
problem is the synchronisation of clocks. If the different computers (both users
and mixes) have a deviation in their clocks, many valid messages are dropped.
All entities could be synchronised using a time server, but then the security of
this time server becomes an issue.

Also, timestamps are not so effective if we are dealing with corrupted mixes:
a corrupted mix can put a fake timestamp on a message and give the attacker
extra time to empty the following mix in the path.

7 Conclusions

We have proposed a framework with which we can generalize classical pool mixes.
This model seems to be a powerful tool that gives us a new understanding
of the batching strategies implemented by existing mixes. Also, new strategies
that improve existing designs arise from the framework. We have proposed a
cumulative distribution function in order to have a tailored anonymity/delay
tradeoff that adapts to the fluctuations in the traffic load.

We have suggested a simple and intuitive way to deal with the anonymity set
size provided by a mix, in which the distribution of probabilities of the number
of rounds that a message stays in the pool is a function of P(n).

We have added randomness to the flushing algorithm, in order to hide the
number of messages contained in the mix. We have analyzed the effort required
by the attacker in order to deploy passive and active attacks. The success of
these attacks becomes probabilistic in contrast with classical pool mix designs.

We suggest a timestamp strategy as countermeasure to limit the power of
an active attacker. If such an strategy can be securely implemented, the n — 1
attack becomes no longer possible.

8 Future work

Some of the topics we can identify as deserving further research are:

— The analysis of the possibilities of the framework. We have proposed the
cumulative distribution function as an alternative to existing mix algorithms.
Other functions with interesting properties may arise from the study of the
framework.

— Thorough analysis of the properties of the proposed binomial mix. We have
pointed out qualitative properties of this mix. A more in-depth analysis and
tests are needed in order to have a full understanding of the design and
its possibilities. A method for analysing timed mixes is proposed in [SN03],
which needs to be generalised to account for the binomial mix. We would
also like to study the implications of the fact that mixes hide the number of
messages that are inside the pool.

— Study the properties of the proposed mix when dummy traffic policies are
implemented.

Acknowledgements

Claudia Diaz is funded by a research grant of the K.U.Leuven. This work was
also partially supported by the IWT STWW project on Anonymity and Privacy

in Electronic Services (APES), and by the Concerted Research Action (GOA)
Mefisto-2000/06 of the Flemish Government. Andrei Serjantov acknowledges the
support of EPSRC grant GRN24872 Wide Area Programming and EC grant
PEPITO.

A Algorithm used to combine the results of different
observations of the output.

The results of two observations are independent, given that the result of the
Bernoulli trials do not depend on previous rounds.
Notation:

— n; is the number of messages contained in the mix at the j-th round of
attack (being no -the number of messages contained in the mix when the
attack starts- the number the attacker is trying to guess).

— s; is the number of messages sent by the mis in the j-th round of attack.
This number is a function of n;.

— f; is the number of messages that arrive to the mix during the j-th round.
We take into account f; starting from j = 1.

— shift is the difference between n; and ng (shift = nj — ng). The attacker
knows this number because he observes the number of incoming and outgoing
messages at each round; e.g., at round 1 shift = ny — ng = fi — so- This
number can be either positive or negative.

— P is an array that contains the result of the algorithm in the present round,
taking into account all the previous rounds. The array has N, q,+1 elements.
PJi] contains the probability of ng = i.

— Ais an array that contains the probabilities of the values of n for this round.
The array has Nyq, + 1 elements. A[i] contains the probability of n; = i,
where j is the number of the round.

The algorithm at the j-th round is as follows:

shift > 0 In this case we know that n; > ng. In order to be able to multiply the
result of this round to the previous ones (which have the maximum value close
to ng), we have to shift the values of A shift positions to the left. This way, the
estimation of n; can be used to improve our knowledge of ng (ng = n; — shift).

The values we lose at the left of the array are not important, because this
corresponds to impossible values of n;: given that ng > 0, this implies that
n; > shift. On the other hand, at the right side of the array, we have to introduce
numbers. The solution is to propagate the value of N,,,,. This makes sense
because in case ng > Npqx —shift then nj = Npaa, given that once the capacity
of the mix (Ny,4.) has been exceeded messages are dropped.

After shifting the values of the A array, we have to rescale them in order to
have a distribution of probabilities (the sum of all values must be 1).

The code in Java is as follows:

if (shift > 0) {
for (int i=0; i<=N_MAX-shift; i++)
A[i] = A[i+shift];
for (int i=N_MAX+1-shift; i<=N_MAX; i++)
A[i] = A[N_MAX];

// rescaling A

double sum = 0.0;

for (int i=0; i<=N_MAX; i++) sum = sum + A[i];
for (int i=0; i<=N_MAX; i++) A[i] = A[i]/sum;

shift < 0 This is the case in which in the present round n; < ng. We have
to shift the values of the A array to the right by shift positions. We lose the
last shift values, which are, again, impossible values of n;, because ng < Nyea
implies nj < Ny,a0 —|shift]|. At the left of the array we have to introduce values
from the positions 0 to |shift| — 1. In this case the value we introduce is 0: we
know that n; > 0, therefore ng > |shift| (note that ng = n; + |shift|). This
implies that any value of ng smaller than |shift| is impossible.

Again, as in the previous case, we must rescale the values of A in order to
obtain the new distribution.

The code in Java is as follows:

if (shift < 0) {
for (int i=N_MAX; i>=-shift; i--)
A[i] = Ali+shift];
for (int i=0; i<-shift; i++)
A[i] = 0.0;
// rescaling A
double sum = 0.0;
for (int i=0; i<=N_MAX; i++) sum = sum + A[i];
for (int i=0; i<=N_MAX; i++) A[i] = A[i]/sum;

shift = 0 In this case ng = n;, and we can multiply both arrays (P and A)
without changing A.

Multiply P and A. After shifting and rescaling the elements of the array A, we
can multiply both arrays element by element. After this multiplication we have
to rescale the result and we obtain the distribution of probabilities of the value
of ng including the j-th round.

The code in Java is:

// multiply probabilities
double sum = 0.0;

for (int i=0; i<=N_MAX; i++) {
P[i] = P[i]*A[i];
sum = sum + P[i];
}
// rescaling
for (int i=0; i<=N_MAX; i++) P[i] = P[i]/sum;

At this point, the array P contains the current distribution of probabilities,
being PJ[i] the probability of ng = i, and taking into account the information
obtained during all the rounds of attack.

References

[Cha81]

[Cot94]

David Chaum. Untraceable electronic mail, return addresses and digital
pseudonyms. Communications of the ACM, 24(2):84-88, 1981.

L. Cottrell. Mixmaster and remailer attacks, 1994.
http://www.obscura.com/ loki/remailer /remailer-essay.html.

[DSCP02] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Preneel. Towards

[Fel50]

[Jer00]

[KEB9S]

[SD02]

[SDS02]

[SNO3]

measuring anonymity. In Paul Syverson and Roger Dingledine, editors, Pri-
vacy Enhancing Technologies, volume 2482 of LNCS, pages 54-68, San Fran-
cisco, CA, April 2002.

http://petworkshop.org/2002/program.html.

William Feller. An introduction to probability theory and its applications.
Wiley, 1950.

Anja Jerichow. Generalisation and Security Improvement of Miz-mediated
Anonymous Communication. PhD thesis, Technischen Universitat Dresden,
2000.

D. Kesdogan, J. Egner, and R. Buschkes. Stop-and-go-MIXes providing
probabilistic anonymity in an open system. In Proceedings of the Interna-
tional Information Hiding Workshop, April 1998.

Andrei Serjantov and George Danezis. Towards an information theoretic
metric for anonymity. In Paul Syverson and Roger Dingledine, editors, Pri-
vacy Enhancing Technologies, volume 2482 of LNCS, pages 41-53, San Fran-
cisco, CA, April 2002.

http://petworkshop.org/2002/program.html.

Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trickle to a
flood: Active attacks on several mix types. In 5th Workshop on Information
Hiding, volume 2578 of LNCS, October 2002.

Andrei Serjantov and Richard E. Newman. On the anonymity of timed
pool mixes. In Workshop on Privacy and Anonymity in Networked and Dis-
tributed Systems (18th IFIP International Information Security Conference),
Athens, Greece, May 2003.

