Preserving Privacy in a Network of Mobile Computers

TR 95-1490*

David A. Cooper

Kenneth P. Birman'

Dept. of Computer Science
Cornell University
Ithaca, NY 14853-7501

Abstract

Even as wireless networks create the potential for
access to information from mobile platforms, they pose
a problem for privacy. In order to retrieve messages,
users must periodically poll the network. The infor-
mation that the user must give to the network could
potentially be used to track that user. However, the
movements of the user can also be used to hide the
user’s location if the protocols for sending and retriev-
ing messages are carefully designed.

We have developed a replicated memory service
which allows users to read from memory without re-
vealing which memory locations they are reading. Un-
like previous protocols, our protocol is efficient in its
use of computation and bandwidth. In this paper, we
will show how this protocol can be used in conjuncition
with existing privacy preserving protocols to allow a
user of a mobile computer to maintain privacy despite
active attacks.

1 Introduction

In some cases, the sole purpose for carrying a mo-
bile computer is to allow others to quickly locate the
carrier (e.g. an active badge location system). In most
cases, however, people carry mobile computers in or-
der to send and receive information. While this may
include messages from other users who are trying to
contact them, it is not necessary, in general, to locate
someone in order to contact that person. Moreover,
it is common for users of communications networks to

*To appear in Proceedings of the 1995 IEEE Sympostum on
Security and Privacy, May 1995

tThe work reported was supported by ARPA/ONR grant
N00014-92-J-1866 and a grant by Siemens Corp. The views
expressed herein are those of the authors and do not represent
the opinions of ARPA/ONR or Siemens Corp. E-mail addresses
for the authors: dcooper@cs.cornell.edu and ken@cs.cornell.edu.

desire privacy. The focus of our work is on providing
mechanisms for preserving privacy while permitting
mobile communication.

In designing a system which preserves privacy for
mobile users, we found it useful to partition privacy
into three semi-independent components. The first
is content privacy which is preserved if an attacker!
is unable to extract the plain-text of the data sent
from one computer to another. Content privacy can
be maintained through the proper use of message en-
cryption and signatures.

Even if the data portion of a message is encrypted,
an attacker may be able to obtain useful informa-
tion. By observing the addressing information at-
tached to messages, the attacker may be able to de-
termine who is communicating with whom. Since the
network needs to have some means of getting mes-
sages to their intended recipients, addressing infor-
mation can not simply be encrypted along with the
message data. One way to solve this problem is to
send messages through intermediary computers which
secretly pass messages from one computer to another
(an example of this is a MIX-network [6, 15] which will
be discussed later in this paper). However, in a mobile
network, it is possible to take advantage of the com-
puters’ mobility to design a more efficient protocol to
hide this information from an attacker than is possible
in a static network. In section 5, we will present such
a protocol.

The third type of privacy is location privacy. Just
as with cellular telephones, many people will soon be-
gin to carry mobile computers with them wherever
they go. While the users of these computers will wish
to be able to receive messages from others at any time,

1Throughout this paper, when we refer to an attacker, we
mean any entity which attempts to acquire information that
it is not intended to receive. In all cases, an attacker will be
assumed to be limited to polynomial time computations.

Insecure Send

—

Insecure Read

i

Message Create
Mix Servers Service % Requests
S%/\ﬁ/ﬁ/\ Secure Read
v& Combine
Replies [

Figure 1: The Message Service

they will not want others to be able to locate them.
In addition to determining who is communicating with
whom, an attacker may attempt to use traffic analysis
to electronically “stalk” users. As we will show later,
a MIX-network can be used by a computer that wishes
to send a message while hiding its location.

While a MIX-network can also be used to allow
a computer to receive a message while hiding its lo-
cation, it is not very efficient. In section 7, we will
present a technique, developed by the authors, which
will allow a computer to read from a shared memory
in such a way that an attacker will be unable to deter-
mine which piece of information is being read and in
section 8 we will show how this protocol can be used
to create a message service which will allow mobile
computers to read messages without revealing their
location. The message service and the protocols for
interacting with it are depicted in figure 1.

2 Related work

Message encryption and signatures are essential to
all security and privacy schemes. There are two basic
types of encryption schemes, symmetric and asymmet-
ric. In a symmetric (secret key) scheme, the same key
is used for both encryption and decryption. In most
cases, the secret key is known to a pair (or group)
of communicating parties and kept hidden from all
outsiders. While there are many different secret key
encryption schemes, the most well known is DES [10].
In an asymmetric (public key) scheme, the encryption
and decryption keys are distinct. In addition, it is in-
feasible for someone who only knows the encryption
key to determine the value of the decryption key. In
most cases, the encryption (public) key is made widely
available while the decryption (private) key is known
only to a single user (its owner). An example of a
public key scheme is RSA [18]. As with most public

key encryption schemes, RSA can also be used to sign
messages. Messages are signed using the decryption
key and verified using the encryption key. The details
of message encryption and signatures are beyond the
scope of this paper (see [20] for an overview of the
subject).

There are several papers which describe protocols
for maintaining the unlinkability of message senders
and recipients. The concept of a MIX-network was
introduced by David Chaum in [6]. A MIX-network
takes in a batch of messages and scrambles them
so that an attacker can not match incoming mes-
sages with outgoing messages. There are several other
papers describing variations of the original scheme
[11, 12, 13, 16]. The protocols in [6, 11] have secu-
rity problems which were corrected in [14, 15].

In [7], David Chaum presents an information the-
oretically secure technique for preserving the unlinka-
bility of the sender and recipient of a message. This
paper describes a protocol for creating a virtual net-
work in which computers can send messages anony-
mously. Every computer can read every message (al-
though they may be encrypted), but no computer is
able to determine the sender of the message. Since
messages are broadcast to every computer, recipient
anonymity is also guaranteed. While this technique is
secure, it requires that every computer send and re-
ceive a large volume of data as well as share a large
amount of secret data. This technique is also not well
suited for mobile computers which may frequently dis-
connect from the network.

In [4], Brassard, Crepeau, and Robert present a
technique which allows a computer to read from a
database without revealing which piece of information
it is reading. In addition, it guarantees that the read-
ing computer will only be able to read one piece of in-
formation. In the protocol, the entire contents of the
database is transferred to the reader in an encrypted

form. The reader and the database then engage in a
zero-knowledge protocol to enable the reader to de-
crypt one of the database entries. Since our protocol
does not limit the amount of information that a reader
can acquire, our memory service could be implemented
by simply sending the entire contents of memory un-
encrypted. In section 7, we will present a protocol
which satisfies our more limited requirements which
has a small bandwidth overhead.

There has been some work in the area of privacy for
mobile computers. In [2, 3, 5], protocols are presented
which encrypt messages that are sent along wireless
links thus preventing an attacker from using the con-
tents of these messages to locate users. The main goal
of these papers is to limit the computational over-
head of the mobile computers. While the protocols in
these papers will maintain the unlinkability of message
senders and recipients as well as the location privacy
of mobile computers, they assume that the static net-
work is secure. In this paper, we will present protocols
which are resilient to attacks on the static network.

3 System model
3.1 Mobile computers

The system consists of a set of mobile computers
which are assumed to be anonymous by default. By
this we mean that if every mobile computer were to
send and receive the same sequence of signals, then no
attacker could determine the identity of any computer.
In other words, the only information an attacker can
use to determine the identity of a mobile computer is
any information that it can infer from the sequence of
messages that the mobile computer sends and receives.
Using this assumption, we will be able to demonstrate
that our system preserves privacy by showing that a
mobile computer does not send or receive any mes-
sages that might provide an attacker with information
about the computer’s identity.

3.2 Base stations

Mobile computers communicate by sending mes-
sages to, and receiving messages from, base stations?.
A mobile computer is said to be in the area of a base
station if it is able to communicate with that base
station®. A mobile computer sends a message in the
same way as a static computer. It attaches a header

2In a wireless network, a base station is a network router
that has a wireless connection.

3In the future, when we refer to the location of a mobile
computer, we will mean the area of the base station with which
it is connected.

to the message with the destination address and then
forwards the message to the nearest base station which
will route the message towards its destination.

When a mobile computer wishes to send a query for
which it expects a response?, it must use an RPC. The
request will be sent to the appropriate server and the
server will respond by sending its reply message to the
base station from which the query originated. If the
mobile computer moves to another base station before
the reply arrives then it must re-send its request®.

3.3 The network

The network consists of a set of static computers
and a set of communications links. The static comput-
ers are the base stations, the routers, and any servers
that will be discussed later in the paper. We assume
that the communications links and the routers can be
read by an attacker, but the attacker is unable to mod-
ify or delete any of the messages. We also assume that
timestamps and nonces are used as appropriate to pre-
vent message replay attacks. Servers, on the other
hand, are considered to be secure unless specified as
being corrupt. An attacker can read messages that go
into or come out of a correct server but does not have
access to the contents of the server’s memory.

Throughout this paper, we assume that servers,
both correct and corrupt, do not crash or behave ma-
liciously. While techniques have been developed for
implementing services which can handle crash failures
or a limited number of malicious failures, fault toler-
ance is beyond the scope of this paper. Techniques for
creating fault tolerant services can be found in [17].

3.4 The message service

The message service is used to send messages to mo-
bile computers. Sending a message to a mobile com-
puter involves two steps. First, the sender attaches
a label’ to the message and sends it to the message
service. Next, the intended recipient, upon discover-
ing that the message is available, requests the mes-
sage from the message service. The reason for this
approach is twofold. First, it provides a means for
computers to anonymously receive messages. Second,

4As will be shown later, this includes retrieving messages
sent to it by other computers.

51f mobile computers move from base station to base station
quickly relative to the round-trip time of an RPC, the server can
send its reply to all of the base stations whose areas are neigh-
bors of the area from which the request originated in addition
to the originating base station.

8 A label in our system is equivalent to a visible implicit ad-

dress in [13].

it allows one computer to send a message to another
computer even if the second computer is not currently
connected to the network. As will be shown later,
most of the labels will be chosen randomly. Therefore,
labels should be large enough so that the probability
of two messages having the same label is acceptably
small”.

All messages must be of the same length. Messages
longer than the standard length must be fragmented
and then re-assembled by the recipient. The specific
means of choosing labels for messages as well as the
protocols for sending messages to, and retrieving mes-
sages from, the message service are vital to providing
privacy and will be discussed in detail later.

4 Content privacy

A conversation between two computers, p and g,
begins with one of the computers, say p, sending an
initiation message to the other computer. Since secret
key encryption is, in general, much more efficient than
public key encryption, messages sent between p and ¢
should be encrypted using a secret key. However, since
p and ¢ do not share any secret information before the
initiation message is sent, some form of key exchange
must be used to generate the secret key. A simple
solution is to have the initiator, p, generate a secret
key, K, and encrypt K, with ¢’s public key, K,. The
initiation message can then be K4(Kj), K (m) where
m is any information that p wishes to send to g.

The initiator, p, can look up ¢’s public key in a
trusted authentication service®. Aslong as p trusts the
authentication service, it will know that ¢, and only
q, will be able to read the initiation message. As writ-
ten above, however, the initiation message provides ¢
with no way of verifying that the initiation message
came from p. In some cases, the initiating computer’s
user may wish to remain anonymous and the receiving
computer’s user may not be interested in authenticat-
ing the initiator. For example, one may wish to call an
airline to find out about available flights. In this case,
the airline may not be interested in authenticating the
caller unless the caller tries to book a reservation.

In many cases, someone receiving an initiation
message may not want to send any messages to
the initiator unless the identity of the initiator has
been authenticated. To accomplish this, the ini-

7If two messages, intended for different recipients, use the
same label, then both recipients will read in and attempt to
decrypt both messages. While this will not affect security or
privacy, it will affect performance.

8The authentication service only needs to be trusted to pro-
vide correct information. It does not need to maintain any
secret information.

tiator may receive a certificate from the authenti-
cation service. The certificate will be a signature,
by the authentication service, of p’s public key (i.e.
{idy, Kp}1°). The initiator, p, can then send
Ky(Ks), Ks({idp, Kp} o1, {idp, idg,m} 1) t0 g thus
allowing ¢ to authenticate p.

5 Unlinkability of sender and recipient

Since mobile computers are anonymous by default,
the relationship between senders and recipients can be
hidden by carefully choosing message labels. Labels
can be divided into two basic categories. Label [is
public if it is known to every user (i.e. available in a
public directory) and private if it is known only to the
sender and the intended recipient of the message.

As in the previous section, a conversation between
two mobile computers, p and ¢, begins when one of the
computers, say p, sends an initiation message to the
other computer. Since p and g do not share any secret
information before p sends the initiation message, the
only (feasible) way for p to send a message to ¢ is to
use a public label for ¢ (which can be found in an au-
thentication service along with ¢’s public key). So, an
initiation message (either the authenticated or unau-
thenticated version from the previous section) should
be sent to ¢ by attaching ¢’s public label to the mes-
sage and then sending the message to the message ser-
vice.

Since the initiation message contains ¢’s public la-
bel in plain-text, an attacker will be able to determine
that an initiation message was sent to ¢. However, the
initiation message does not contain any (unencrypted)
information that would allow an attacker to determine
that p sent the message. Since p’s identity remains se-
cret (to all except possibly ¢), an attacker will not
be able to determine that p and ¢ are communicating
with each other.

In order to maintain this privacy, p’s identity must
remain secret for the remainder of the conversation.
In order to accomplish this, p can generate a random
return “address” label, rp, and send this label to ¢ in
the initiation message. If 7, is encrypted, then only
p and ¢ will know its value thus making 7, a private
label. This label can then be used by ¢ to send a mes-
sage to p without an attacker being able to determine
that p is the intended recipient of the message.

In order to further reduce the amount of informa-
tion that an attacker might be able to infer from mes-
sages sent between p and ¢ (such as the number of

9The notation {m} -1 signifies the signature of m using a’s

private key which is m, K;l(h(m)) where h is a one-way hash
function.

messages that ¢ exchanged with its secret communi-
cating party), each subsequent message (from both p
and ¢) should contain a new randomly generated re-
turn “address” label.

6 Location privacy while sending a
message

In the previous two sections, we assumed that both
parties wished to maintain privacy. We made this
assumption since it is impossible to prevent an at-
tacker from obtaining the identities of the participants
or the contents of the messages in a conversation if
the attacker is in collusion with one of the conversa-
tion’s participants (if the conversation initiator does
not identify itself to the other participant, then the
attacker can only acquire participant information by
colluding with the initiator). On the other hand, p
should be able to prevent ¢ from determining its loca-
tion even if p and ¢ are engaged in a conversation.

If p trusts ¢ (i.e. believes that ¢ will not attempt
to locate it or does not mind being located by ¢), then
it is easy for p to maintain location privacy. Since, as
described in the previous section, p does not include
any (unencrypted) information about its identity in
the messages that it sends to ¢, only g would be able
to identify p as the message sender. Thus, an outsider
will be able to determine that a message was sent from
a certain location, but only ¢ will know that p sent the
message.

If p wishes to hide its location from ¢, then p must
work to hide the location from which it sends its mes-
sages. One possible solution to this problem is to use a
MIX-network [6, 15] which takes batches of messages
and scrambles them so that it is impossible to deter-
mine which message came from where (see figure 2).

The static network contains a set of w MIXes each
having its own public key pair. We assume that at
most t < w of the MIXes will be corrupted!®. In
order to send a message, a mobile computer chooses
t + 1 of the MIXes (call them My, Mo, ..., M;4+1) and
encrypts the message as follows:

KMl(KMz(---KMH.l(l,m,S) ...,Mg),MQ)

In the above equation, [is the message label, m

is the encrypted message, K, , ..., Kar,,, are public

10 A server is corrupted if an attacker is able to read the con-
tents of the server’s memory or knows the server’s private key.
As was mentioned earlier, we are assuming in this paper that
servers do not fail. However, all of the services described in this
paper could be designed to handle a limited number of crash or
malicious failures.

Mix, @ batches
1 o discards repeats
@ changes order
@ changes encoding

Mix,, @ batches
® discards repeats
® changes order
® changes encoding

O Uo

Figure 2: Mix Network (from [13])

keys of My,...,M;11, and S is the address of a server
(the final destination of the message). (As is explained
in [6, 15], the above message must be peppered with
random data after each encryption step in order to
prevent active attacks on the MIX-network).

Each MIX reads in a block of messages, decrypts
them, removes the random data, reorders the messages
in some random fashion, and then sends each message
to the next MIX in the chain or to a server. It is
assumed that an attacker, due to the decryption and
reordering steps, will be unable to match the incoming
messages of a MIX with the outgoing messages unless
it has corrupted the MIX. Since an attacker is unable
to follow the path of a message that goes through an
uncorrupted MIX and at least one of the ¢ + 1 MIXes
is uncorrupted, the attacker will be unable to follow
the path of the message from the base station to the
server.

7 A memory service with a blinded
read operation

Just as the protocol of section 5 does not hide the
location of the sender of a message from the message’s
intended recipient, the protocol also does not protect
the recipient from the sender. Mobile computers must
also be able to receive initiation messages which use
public labels. One way to solve this problem is to
use the MIX-network. A mobile computer wishing

Client

Server « o «| Server,

+1

V... such that

o Vg

1. Choose V[, V,,

VOV D - DVa=1, §\S I
2.rl=@M[i] r2=@M[i] o v . rt+1=@M[i]

3. answer = rl@rz@- - Pr =

t+1 =

// | —
1

lif =1 AR
o ®

Figure 3: Bit-Vector Protocol

to receive a message would send a request message,
through the MIX-network, to a message repository.
The request message would include an anonymous re-
turn address [6, 12, 15] which could be used by the
message repository to send the response (via the MIX-
network).

The problem with the above technique is that the
mobile computer must inform the message repository
of the label in which it is interested. If the label is
public or if the message repository is in collusion with
the message sender (and the sender knows the iden-
tity of the intended recipient) then the message reposi-
tory will know the identity of the requesting computer.
Since the mobile computer may reveal its identity by
sending the request message, it must hide the location
from which it sends the message. While this method
will guarantee location privacy for the recipient, it is
very expensive.

An alternative is for the mobile computer to send
request messages that do not contain any information
which would allow the message repository to identify
the requester (thus eliminating the need for the mo-
bile computer to hide the location from which it sent
the message). In designing a protocol to achieve this
goal, our main objectives were to minimize the compu-
tational and bandwidth overhead involved (especially
for the mobile computers).

In this section, we will describe a protocol for a
replicated shared memory which will allow a computer
(whether mobile or not) to perform a blinded read op-
eration (one in which an attacker is unable to deter-
mine which position in memory is being read). In the
next section, we will modify this protocol for use as a
message repository for mobile computers.

A memory service consists of a set of n memory

servers each of which has an array of m cells labeled
MI0], M[1],...,M[m —1]. Asin the previous section,

vector bit position
01 2 3 4 5 m—1
Vi [O]T]1]0]T1]0][---] 0 |
Va [T[TJO[I[TIJO0][-] T |
& [T[T][IJ1JO0JO]-- T |
VieVadVa [OJ1T]JOJOJOJO] -~ 0]

Figure 4: Sample Bit-Vectors for t =2,p=1

we will assume that at most ¢ < n of the servers will
be corrupted.

7.1 Reading from memory

The technique for reading from memory is similar
in nature to secret sharing. The requesting computer
generates a set of £+ 1 questions and sends each ques-
tion to a different server. Just as in secret sharing, an
attacker that is able to obtain at most ¢ of the ques-
tions/answers will be unable to determine the secret.
However, since the nature of the secret information is
different in our scheme, secret sharing techniques are
not appropriate for this problem.

For this section, we will assume that only read op-
erations are performed and that the contents of the
servers’ memories are the same. A computer wish-
ing to read from memory should create ¢t random bit-
vectors of length m. Next, it should create a ¢t + 1°¢
bit-vector by exclusive-oring the ¢ random bit-vectors
and then flipping the pt" bit (in order to read cell p).
This will create a set of £+ 1 bit-vectors that, when
exclusive-ored together, will yield the bit-vector Ip:

. 0 ifj#p
IP[J]:{ 1 ifj=p

An example of such a set is shown in figure 4. Using
these bit-vectors, the contents of cell M[p] can be ob-
tained using the protocol in figure 3. While it is not
shown in the figure, the bit-vectors Vi, Va,...,Viy1
and the responses r1,79,...,7:+1 must be encrypted
so that only the client and server; can read the values
of V; and r;.

7.1.1 Security of blinded read

Lemma 1 If each of the bits in the t random bit-
vectors are set to 1 with probability % then an attacker
which has access to at most t of the requests/responses
associated with the bit-vectors will gain no information
about which cell the client is reading.

Proof: Since the first ¢ bit-vectors are chosen inde-
pendently of the cell being read, an attacker will gain
no information unless it has access to the £ + 1°¢ bit-
vector. We will, therefore, assume that the attacker
has the ¢t + 1°¢ bit-vector along with ¢ — 1 of the ¢
random bit-vectors. Let’s call the bit-vectors that the
attacker knows VY, V..., V/ and the bit-vector that
it doesn’t know V.
Say that the client is reading the value of cell p.

ecasel: 1 =p
Since this is the cell being read, we know that
VilleVslpl®... e V/[pl® V"[p] = 1. Since V"[i]
is equally likely to be 0 or 1 and V{[z] & VJ[i] ®
@V ==V, Vi @ Vil @ ... @ Vi]d] is
also equally likely to be 0 or 1.

e case2: 1 #£p
Since this is not the cell being read, we know that
Vi@ Vili| @ ... @ V{[i]® V"[i] = 0. Since V"[1]
is equally likely to be 0 or 1 and V{[i]] ® VJ[:] ®
OV = VEL Ve Vai] @ ... @ V{[d] is also
equally likely to be 0 or 1.

Since, for each position, the value of V{[i] ® VJ[i] &
... ® V/[i] is equally likely to be 0 or 1 whether it is
the position being read or not, the attacker gains no
information about which cell is being read.

7.1.2 Sparse bit-vectors

As was shown in the previous section, if the bits in
the random bit-vectors are truly chosen at random
(i.e. each bit is equally likely to be either a 0 or a 1),
then an attacker that sees at most ¢ of the vectors will
gain no information about the position being queried.
However, using such a bit-vector can be computation-
ally expensive for the memory servers if the memories

have a large number of cells or if the cells are large (in
the next section, each cell will contain a message).

One way to reduce the amount of work necessary
to compute a response is to create random bit-vectors
with fewer 1’s. Instead of setting each bit to 1 with
probability %, each bit could be set to 1 with a proba-
bility ¢ < % This will decrease the computation time
but will increase the amount of information that an
attacker can infer. The value for ¢ must, therefore, be
chosen carefully.

In order to determine a good value for ¢, we should
look at the set of bit-vectors from an attacker’s point of
view to determine how much information the attacker
can infer. We will assume the worst case scenario in
which the attacker has acquired ¢ of the ¢ + 1 bit-
vectors, one of which is the ¢ + 15¢ vector. Let’s call
the vectors that the attacker knows V{, V3, ..., V/ and
the bit-vector that it doesn’t know V”. Say that the
client is reading the value in cell p.

In order to compute the information that an at-
tacker can infer, we will need the following values:

C=VieVio...0V/
So={i| C[s] =0}

Sy ={i|C[t] =1}

So = {1 | V"[i] =0}
Si={i| V"] =1}

Due to the way that bit-vectors are created, we
know that V" = C' @ I,. Therefore, we can compute
the a posteriori probability that : = p as:

a priori probability that V" = C & I;
m—1
" a priori probability that V"' = C' & I;
=0

The a priori probability that V' = C' & I;, for each 1,
can be computed as follows:

e case 1: 1 € 5
In this case, |S§| = |[So| — 1 and |S}| = |S1] + 1.
From this we can conclude that the a priori prob-
ability that V" = C @ I; is o511 (1 —)ISel-1,

e case 2: 1 € 51
In this case, |Sy| = |So| + 1 and |S| = |S1] — 1.
From this we can conclude that the a priori prob-
ability that V" = C @ I; is ¢!51171(1 —)ISol+1,

Using the above formulas, the a posteriori proba-
bility for position i is:

So S
| P |50] P | |5
0 0 1023 1 1
g || o [1012.78 | 295 111.22
5 | %o | 9208 | 528 | 103.2
+ %2] 8186 | So01 | 2054
i || Soe | 7164 [327 [307.6
e
2 1024 1024

Figure 5: Probabilities for m = 1024

2

N
Sl Tisa—p? 1€ S
P; =
2
(1) ifieS

[Sole?+]S11(1-¢)*

Since P; depends on |Sp| and |Si|, in order to be
able to choose a good value for ¢, we must estimate
the values of |Sp| and |S1|. If a position, 7, is not the
one being read (i.e. 7 # p), then C[i] = V"[i]. Since
V"[i] = 1 with probability ¢, C[i] = 1 with probability
. Since there are m — 1 positions, ¢, for which i # p,
we can expect (1—¢)(m —1) to be in Sy and p(m —1)
to bein Sy. Since C[p] = =V"[p], we have p € Sy with
probability ¢ and p € S; with probability (1 — ¢).
Therefore, we can estimate |So| = ¢ + (1 — ¢)(m — 1)
and |S1] = (1 - ¢) + p(m —1).

In figure 5 we show the values for P; and |S;| for
different values of ¢ for a memory with 1024 cells (the
values for P; and |S;| were computed using the formu-
las above to estimate [S;]). In the case of ¢ = 75,
there is a 99% chance that p € S; and we can expect
that |S1| = 11.22. While there is a chance that p is
among the approximately 1012.78 positions in Sp, it
is very unlikely. So, while seeing ¢ of the ¢ + 1 vec-
tors does not allow the attacker to rule out any of the
positions entirely (for 0 < ¢ < 1), if ¢ is relatively
small (or large), the attacker will be able to extract a
relatively small group of positions such that the cell
being read is highly likely to be in that group.

7.2 Writing to memory

The protocol in figure 3 assumes that the contents
of each server’s memory will be the same. If the re-
sponses to the bit-vectors are computed using cell val-
ues that differ from server to server, the computed
value for the desired cell will be incorrect. As an exam-
ple, consider the bit-vectors in figure 4. The responses
from the 3 servers will be

r = Ml[l] o My [2] D M1[4]
ro = M2[0] (&%) Mg[]_] (&%) Mz[?)] (&%) M2[4] D Mg[m — 1]
Ty = Mg[O]@Mg[l]@Mg[Q]@Mg[?)]@Mg[m— 1]

and the computed answer will be

M,[0] ® M3[0]®
Mi[1] & Ms[1] & Ms[1]&
M;[2] & M;s[2]®
M>[3] @ M;[3]
M [4] ® M[4]®
M2[m - 1] D Mg[m - 1]

answer =

If My, = My = M3 then the above equation will reduce
to answer = M|[1]. However, if M»[3] # M3[3] for some
reason (perhaps a write operation is in progress), then
answer = M([1] & M,[3] & M3[3] # M[1].

There are two possible ways that the above situa-
tion could occur. The first is if a read operation is
performed concurrently with a write operation. The
second is if a client performing a write operation sends
different values to different servers or fails to inform
some servers of the write operation. In order to pre-
vent the first problem, all operations should be sent
to the memory servers using a totally ordered multi-
cast. For read operations, the £+ 1 bit-vectors should
be bundled together and sent as one message (since
each bit-vector will be encrypted using a different se-
cret key, each server will only be able to read the bit-
vector intended for it even though it will receive all of
the bit-vectors).

If it is necessary to guard against a malicious client
(or perhaps a malicious server), then the totally or-
dered multicast must be tolerant to such behavior.
The multicast protocol in [17] ensures that every cor-
rect server will receive the same set of messages in the
same order thus preventing a malicious process from
corrupting memory in this fashion®!.

8 Retrieving a message

The message service acts as intermediate storage
for messages intended for mobile computers (as shown
in figure 1). Messages are sent to the service either
directly or through a series of MIX servers and are
eventually retrieved by the intended recipient. In this
section, we will show how to use the memory service
of the previous section to implement a message service
which will enable blinded read operations.

11Since the memory, as described, does not contain any access
controls, an attacker may still cause problems by writing bad
values.

Messages are sent to the servers using a totally or-
dered multicast (as was described in section 7.2). At
each server, arriving messages are placed in a list in the
order in which they are delivered. This list is stored
in a series of tables each of which holds m messages
(i.e. the 5*" message delivered is stored in table (i — 1)
div m in cell (¢ —1) mod m). There is a tradeoff that
must be considered when choosing a table size. First,
the amount of effort needed to read a cell from a table
increases as m increases (the client must create and
encrypt bit-vectors of length m and the servers must
decrypt the bit-vectors and exclusive-or together pm
messages). In addition, mobile computers must wait
until a table has filled before reading the messages in
that table. Therefore, as m increases, the time be-
tween when a message arrives at the message service
and when it can be read from the service increases.
On the other hand, as will be described later, as m in-
creases, the amount of privacy increases for computers
that read from the table.

Once a table has been filled, mobile computers may
read the messages from that table. In order to en-
able message reading, a digest of the table’s contents
is created and sent to all of the mobile computers.
The digest of a table is h(ly), h(l1),. .., h(Ilm—1) where
lo,l1...,lm—1 are the labels attached to the messages
in each position of the table and A is a hash function.

Since every mobile computer will need to see the
digest for every table, table digests are broadcast to
mobile computers. Once a table is filled and its digest
computed, the digest is sent to all of the base stations
(using a multicast protocol for the static network).
Upon receipt, each base station broadcasts the digest
over its wireless link. Some of the mobile computers
will not receive the broadcast (for example, those that
are disconnected from the network). Therefore, the
base stations will also maintain a local copy of the
digest and resend it as necessary to ensure that every
mobile computer receives the digest (see [1, 8] for more
information on multicasting in mobile networks).

8.1 Reading from a table

Each mobile computer will have a list of message
labels in which it is interested (g,,...,1};). When it
receives a digest, it will look for A(lg), h(1)),- .., h(I%)
in the list 2(lo), h(l1),. .., ~A(lm—1). If the mobile com-
puter finds some ¢ and j for which A(l}) = h(l;) then
it will read the message from cell j of the table.

Mobile computers can read messages from the mes-
sage service in one of two ways. If the label that it
wishes to read is private and the computer trusts the

message sender (or the message sender does not know
the identity of the recipient), then it can send a re-
quest to one of the servers containing the pair (z,7)
where 7 is the number of the table to be read and j
is the number of the cell within that table which con-
tains the message. If the label to be read is public
or if the mobile computer does not trust the message
sender, then it must use the blinded read operation
from section 7. The mobile computer will create ¢ + 1
bit-vectors of length m and send each bit-vector, along
with the number of the table to read, to a different
message server. Since mobile computers can not read
from tables until after they are filled (i.e. after the last
write operation has completed), the request messages
do not need to be bundled and the totally ordered
multicast protocol is not needed.

8.2 Choosing a hash function

If the hash function, h, used in creating message
digests is the identity function then there will never
be a case where h(l;) = h(l;) but I} # ;. This means
that only mobile computers which have messages in-
tended for them in a table will read from that ta-
ble. Since an attacker can determine the location from
which the mobile computers read from the table, an
attacker may gain useful information about comput-
ers’ locations if m is small. If m can not be made large
enough to sufficiently confuse an attacker, then a hash
function must be chosen which will force some mobile
computers to read messages from the table that were
not intended for them.

Suppose, for example, that the total number of mes-
sage labels in which every mobile computer is inter-
ested is 64,000. If we choose a hash function, A, which
maps message labels to values between 0 and 31,999,
then there will be, on average, two message labels
which hash to each value. If m = 1024, then there
will be approximately 2048 requests made to the mes-
sage service. Of these, 1024 will be from the intended
recipients of the messagesin the table and 1024 will be
from randomly chosen mobile computers. Thus, an at-
tacker seeing a mobile computer read a message from
the table will know that there is only a 50% chance
that the computer is the intended recipient of one of
the messages in the table.

8.3 Garbage collection

In an infinite run of the system, an infinite number
of messages will be sent to the message service. It
is, therefore, essential to have some mechanism for
removing old messages from the system. Ideally, a

message should be deleted after it has been read by
its intended recipient. However, since computers may
retrieve messages anonymously, the message service
may not know when this has happened.

An approximate solution is to delete messages after
some period of time A has passed. In our system, a
table is left intact until its newest message has been in
the system for time A at which point the entire table
is deleted. If A is chosen properly, then every com-
puter will have sufficient time to retrieve all messages
intended for it while the number of tables stored in
the system at any one time is manageable.

In some cases, a computer will be disconnected from
the network for a long period of time. This can happen
if the computer moves outside of the range of all of the
base stations or if the computer is turned off to con-
serve battery power. If the computer is disconnected
for too long then it may miss some of the messages
that were sent to it. In order to avoid this, we have
developed a vacation service.

A computer which is concerned about losing mes-
sages while it is disconnected from the network regis-
ters with the vacation service by sending it a list of
message labels in which it is interested. If the vaca-
tion service does not receive a message from a regis-
tered computer within some specified period of time
v < A, then the vacation service will begin to check
the message service for messages with any of the speci-
fied labels and will store a local copy of those messages.
When the mobile computer next contacts the vacation
service, the vacation service will send any messages
that it stored for the mobile computer to the message
service and will then stop looking for any new mes-
sages for that computer. The mobile computer can
then read the messages from the message service as
usual.

In order to prevent the vacation service from using
the registration messages to locate the user, the mo-
bile computer should use the techniques which were
described in section 6 to hide the locations from which
it sends the messages.

9 Ending a conversation

Until this point, we have treated a conversation as
a sequence of messages with a beginning but with no
end. In practice, most conversations will only last for
a short period of time. Many other conversations will
be sporadic in nature, with periods of high message
traffic followed by long periods with no traffic. Since
a mobile computer, for each conversation, must store
label and key information and check every table digest

10

for a message, it is inefficient to have a large number
of conversations when most of them are inactive.

One technique for solving this problem is for com-
puters to explicitly end conversations by including an
“end of conversation” marker in a message instead of
a return “address” label. After sending this message,
the sender can erase from its memory any information
about the conversation and the recipient can do the
same upon receipt of the message.

An alternative is to use return “address” labels with
expiration times. If the recipient does not send a mes-
sage using the label before the label expires, then the
sender will consider the conversation to have ended. If
the recipient wishes to send a message after the expira-
tion time, it can begin a new conversation by sending
an initiation message. In order to have labels with
expiration times, it is necessary to have synchronized
clocks. This can be accomplished through the use of
a time service. The details of clock synchronization
and its use are beyond the scope of this paper. An
overview of the subject can be found in [21].

10 Performance

In this section, we will discuss the overhead that is
associated with the operations of sending and retriev-
ing messages in a secure manner. The primary costs
associated with this privacy scheme are the crypto-
graphic operations. In computing our cost estimates
we will primarily use the performance figures from [9].
This paper describes the implementation of RSA [18]
and DES [10] using a Motorola DSP56000 along with
a Western Digital WD20C03 DES chip.

10.1 Mobile computers

There are a few basic cryptographic operations that
are needed by the mobile computers. The computer
needs to create random numbers for use as bit-vectors,
DES keys, and as padding in RSA encryption. The
most secure technique for creating random data is to
use a noise circuit, however, using a pseudo-random
number generator can be less costly. Using a noise
circuit, random data can be created at the rate of 81.9
ms/KByte. In addition, mobile computers need to en-
crypt and decrypt messages using RSA and DES. Es-
timates for the costs of these operations can be found
in figure 7.

When sending a message, the message must first be
encrypted using the DES session key for the conver-
sation (2.2 ms/KByte). Then, if the message is to be
sent through the MIX-network, the message must be
encrypted for ¢ + 1 MIXes. For each MIX, 512 bits of

Operation t
1 2 3

Sending 12.2 ms + 6.6 ms/KByte | 18.3 ms + 8.8 ms/KByte | 24.4 ms + 11.0 ms/KByte
(non-init) (12.2 ms) (18.3 ms) (24.4 ms)

Sending 18.3 ms + 6.6 ms/KByte | 24.4 ms + 8.8 ms/KByte | 30.5 ms + 11.0 ms/KByte
(init, no auth) (18.3 ms) (24.4 ms) (30.5 ms)

Sending 62.3 ms + 8.8 ms/KByte | 68.4 ms + 11.0 ms/KByte | 74.5 ms + 13.2 ms/KByte
(init, w/auth) (18.3 ms) (24.4 ms) (30.5 ms)
Receiving 23.1 ms + 6.6 ms/KByte | 39.8 ms + 8.8 ms/KByte | 56.5 ms + 11.0 ms/KByte
(non-init) (22.8 ms) (39.5 ms) (56.2 ms)
Receiving 67.1 ms + 6.6 ms/KByte | 83.8 ms + 8.8 ms/KByte | 100.5 ms + 11.0 ms/KByte
(init, no auth) (22.8 ms) (39.5 ms) (56.2 ms)
Receiving 69.1 ms + 8.8 ms/KByte | 85.8 ms + 11.0 ms/KByte | 102.5 ms + 13.2 ms/KByte
(init, w/ auth) (22.8 ms) (39.5 ms) (56.2 ms)

Figure 6: Cost Estimates for Mobile Computers

operation estimate
creating random 81.9 ms/KByte
data

RSA encryption 1 ms

RSA decryption 44 ms

DES encryption
and decryption

2.2 ms/KByte

Figure 7: Cost Estimates for Basic Operations

random data must be created (a DES key along with
some padding for the RSA encryption), the message
must be encrypted with the DES key, and the DES key
must be encrypted with the public key of the MIX.
Using the estimates from figure 7, this will take 6.1
ms + 2.2 ms/KByte. If the message is an initiation
message then a DES session key must be created for
the conversation and encrypted with the public key of
the intended recipient (along with random padding).
This will cost 6.1 ms. If the initiation message includes
authentication information then a signature must be
created which will cost 44 ms + 2.2ms/KByte (using
DES to create a message digest).

In order to read a message using the blinded read
operation, ¢ random bit-vectors must be created.
Then ¢ + 1 bit-vectors must be encrypted and sent
to message servers. The responses from the message
servers must then be decrypted. For a table with 1024
entries, 1536¢ + 512 bits of random data must be cre-
ated (1024t for the random bit-vectors and 512(¢+ 1)
for the DES keys and random padding). This will
take (15.4¢ +5.1) ms. Encrypting the bit-vectors will
take 0.3(¢t + 1) ms and encrypting the DES keys will
take 1.0(t+1) ms. Decrypting the responses from the

11

message servers will take 2.2(¢ + 1) ms/KByte. Once
the responses from the message servers have been com-
bined, the computed message must be decrypted. This
will take 2.2 ms/KByte. If the received message is an
initiation message then the session key must be ex-
tracted which will take 44 ms. If the initiation mes-
sage also includes authentication information, then 2
ms + 2.2 ms/KByte are needed to verify the sender’s
public key certificate and to verify the signature.
Since many of the computations listed above do not
depend on the message being sent or received, time
may be saved by precomputing data. For both send-
ing and receiving messages, the random data can be
precomputed as well as the DES keys for the message
servers and MIXes. In addition, since ¢ of the £ + 1
bit-vectors used to read from the message service are
random, they can be encrypted in advance. Figure 6
shows the estimated costs for a few values of ¢. In each
box, the top line represents to total amount of com-
putation that needs to be performed and the bottom
line represents the amount that can be precomputed.

10.2 Servers

When a server (either a MIX or a message server)
receives a message, it must decrypt the message. This
involves using RSA decryption to extract the DES key
and then using the DES key to extract the message.
Since the servers will specialize in handling message
requests, it is reasonable to assume that they will have
special purpose hardware for RSA decryption as well
as DES encryption and decryption. In [19], Shand and
Vuillemin describe an RSA chip which can perform
512-bit decryption in under 1 ms. Using this chip
along with the DES chip used in [9], messages can be

decrypted in 1 ms + 2.2 ms/KByte. In the case of
the message servers, the responses must be encrypted
adding 2.2 ms/KByte.

11 Conclusions

We have presented a set of protocols which work
together to preserve privacy for users of mobile com-
puters. A major concern in designing such protocols
is the limited computing power of the mobile comput-
ers. In our approach, the computing costs of each of
the protocols can be dynamically tuned by each of the
mobile computers based on the amount of computing
power available and the degree of any perceived threat
to privacy. In addition, the protocols were designed to
place most of the computational burden on the servers
which can use specialized hardware in order to perform
the necessary operations quickly.

We are in the process of extending the Horus ar-
chitecture [22] to support secure and private mobile
communication. In the future, we will use this system
to experiment with the techniques presented in this
paper and hope to report on our experiences in future
papers.

Acknowledgements

We would to thank Birgit Pfitzmann, Martin
Abadi, Anindya Basu, and the anonymous referees
who provided many valuable comments on drafts of
this paper.

References

[1] Arup Acharya and B.R. Badrinath. Deliver-
ing multicast messages in networks with mobile
hosts. In Proceedings of the 13th International

Conference on Distributed Computing Systems,
May 1993.

Ashar Aziz and Whitfield Diffie. Privacy
and authentication for wireless local area net-
works. IEEE Personal Communications, 1(1):25—
31, First Quarter 1994.

[3] Michael J. Beller, Li-Fung Chang, and Yacov Ya-
cobi. Privacy and authentication on a portable
communications system. IEEE Journal on Se-
lected Areas in Communications, 11(6):821-829,
August 1993.

[4] Gilles Brassard, Claude Crepeau, and Jean-Marc
Robert. All-or-nothing disclosure of secrets. In
Advances in Cryptology — CRYPTO ’86, pages

234-238, August 1986.

12

[6] Ulf Carlsen. Optimal privacy and authentication
on a portable communications system. Operating
Systems Review, 28(3):16-23, July 1994.

[6] David Chaum. Untraceable electronic mail, re-
turn addresses, and digital pseudonyms. Com-
munications of the ACM, 24(2):84-88, February

1981.
[7]

David Chaum. The dining cryptographers prob-
lem: Unconditional sender and recipient untrace-

ability. Journal of Cryptology, 1(1):65-75, 1988.
[8]

Daniel Duchamp, Steven K. Feiner, and Ger-
ald Q. Maguire, Jr. Software technology for wire-
less mobile computing. IEEE Network Magazine,

5(6):12-18, November 1991.
[9]

Stephen R. Dussé and Burton S. Kaliski
Jr. A cryptographic library for the Motorola
DSP56000. In Advances in Cryptology - EURO-

CRYPT ’90, pages 230-244, May 1990.

[10] National Bureau of Standards. Data Encryption

Standard, FIPS-PUB-/6, 1977.

[11] Choonsik Park, Kazutomo Itoh, and Kaoru
Kurosawa. Efficient anonymous channel and
all/nothing election scheme. In Advances in
Cryptology - EUROCRYPT 93, pages 248-259,

May 1993.

[12] Andreas Pfitzmann, Birgit Pfitzmann, and
Michael Waidner. ISDN-MIXes: Untraceable
communications with very small bandwidth over-
head. In Proceedings of the IFIP TC11 Seventh
International Conference on Information Secu-
rity: Creating Confidence in Information Pro-

cessing, IFIP/Sec ’91, pages 245-258, May 1991.

Andreas Pfitzmann and Michael Waidner. Net-
works without user observability. In Computers
& Security 6, pages 158-166, 1987.

[13]

[14] Birgit Pfitzmann. Breaking an efficient anony-
mous channel. In Advances in Cryptology - EU-
ROCRYPT 94, pages 339-348, May 1994.

[15] Birgit Pfitzmann and Andreas Pfitzmann. How

to break the direct RSA-implementation of mixes.
In Advances in Cryptology — EUROCRYPT ’89,
pages 373-381, April 1989.

Charles Rackoff and Daniel R. Simon. Crypto-
graphic defense against traffic analysis. In Pro-
ceedings of the 25th Annual ACM Symposium on
the Theory of Computing, pages 672-681, May
1993.

[16]

[17]

[18]

[19]

Michael K. Reiter. Secure agreement protocols:
Reliable and atomic group multicast in Ram-
part. In Proceedings of the 2nd ACM Confer-
ence on Computer and Communications Security,
November 1994.

R.L. Rivest, A. Shamir, and L. Adleman. A
method for obtaining digital signatures and

public-key cryptosystems. Communications of
the ACM, 21(2):120-126, February 1978.

M. Shand and J. Vuillemin. Fast implementations
of RSA cryptography. In 1998 IEEE 11th Sympo-
sium on Computer Architecture, pages 252—259,
1993.

13

[20]

[21]

[22]

Gustavus J. Simmons. Contemporary Cryptol-
ogy: The Science of Information Integrity. IEEE
Press, 1992.

B. Simons, J. Lundelius Welch, and N. Lynch.
An overview of clock synchronization. In Fauli-
Tolerant Distributed Computing, pages 84-96,
1990.

Robbert van Renesse, Takako M. Hickey, and
Kenneth P. Birman. Design and performance of

Horus: A lightweight group communications sys-
tem. Technical Report TR 94-1442, Cornell Uni-
versity, August 1994.

