
An Efficient System for Non-transferable
Anonymous Credentials with Optional

Anonymity Revocation

Jan Camenisch

IBM Research
Zurich Research Laboratory

CH–8803 Rüschlikon
jca@zurich.ibm.com

Anna Lysyanskaya?

MIT LCS
545 Technology Square

Cambridge, MA 02139 USA
anna@theory.lcs.mit.edu

Abstract. A credential system is a system in which users can obtain cre-
dentials from organizations and demonstrate possession of these credentials.
Such a system is anonymous when transactions carried out by the same user
cannot be linked. An anonymous credential system is of significant practi-
cal relevance because it is the best means of providing privacy for users. In
this paper we propose a practical anonymous credential system that is based
on the strong RSA assumption and the decisional Diffie-Hellman assumption
modulo a safe prime product and is considerably superior to existing ones: (1)
We give the first practical solution that allows a user to unlinkably demon-
strate possession of a credential as many times as necessary without involving
the issuing organization. (2) To prevent misuse of anonymity, our scheme is
the first to offer optional anonymity revocation for particular transactions.
(3) Our scheme offers separability: all organizations can choose their crypto-
graphic keys independently of each other. Moreover, we suggest more effective
means of preventing users from sharing their credentials, by introducing all-
or-nothing sharing: a user who allows a friend to use one of her credentials
once, gives him the ability to use all of her credentials, i.e., taking over her
identity. This is implemented by a new primitive, called circular encryption,
which is of independent interest, and can be realized from any semantically
secure cryptosystem in the random oracle model.
Keywords. Privacy protection, credential system, pseudonym system, e-cash,
blind signatures, circular encryption, key-oblivious encryption.

1 Introduction

As information becomes increasingly accessible, protecting the privacy of indi-
viduals becomes a more challenging task. To solve this problem, an application
that allows the individual to control the dissemination of personal information
is needed. An anonymous credential system (also called pseudonym system), in-
troduced by Chaum [18], is the best known idea for such a system. In this paper,
we propose a new efficient anonymous credential system, considerably superior
to previously proposed ones. The communication and computation costs of our
solution are small, thus introducing almost no overhead to realizing privacy in
a credential system.
? This research was carried out while the author was visiting IBM Zürich Research

Laboratory.



An anonymous credential system [18, 19, 21, 25, 34] consists of users and orga-
nizations. Organizations know the users only by pseudonyms. Different pseudo-
nyms of the same user cannot be linked. Yet, an organization can issue a cre-
dential to a pseudonym, and the corresponding user can prove possession of this
credential to another organization (who knows her by a different pseudonym),
without revealing anything more than the fact that she owns such a credential.
Credentials can be for unlimited use (these are called multiple-show credentials)
and for one-time use (these are called one-show credentials). Possession of a
multi-show credential can be demonstrated an arbitrary number of times; these
demonstrations cannot be linked to each other.

Basic desirable properties. It should be impossible to forge a credential for
a user, even if users and other organizations team up and launch an adaptive
attack on the organization. Each pseudonym and credential must belong to some
well-defined user [34]. In particular, it should not be possible for different users
to team up and show some of their credentials to an organization and obtain a
credential for one of them that that user alone would not have gotten. Systems
where this is not possible are said to have consistency of credentials. As orga-
nizations are autonomous entities, it is desirable that they be separable, i.e., be
able to choose their keys themselves and independently of other entities, so as
to ensure security of these keys and facilitate the system’s key management.

The scheme should also provide user privacy. An organization cannot find
out anything about a user, apart from the fact of the user’s ownership of some
set of credentials, even if it cooperates with other organizations. In particular,
two pseudonyms belonging to the same user cannot be linked [8, 18, 19, 21, 25,
34].

Finally, it is desirable that the system be efficient. Besides requiring that it be
based on efficient protocols, we also require that each interaction involve as few
entities as possible, and the rounds and amount of communication be minimal.
In particular, if a user has a multiple-show credential from some organization,
she ought to be able to demonstrate it without getting the organization to reis-
sue credentials each time.

Additional desirable properties. It is an important additional requirement
that the users should be discouraged from sharing their pseudonyms and cre-
dentials with other users. The previously known way of discouraging the user
from doing this was by PKI-assured non-transferability. That is, sharing a cre-
dential implies also sharing a particular, valuable secret key from outside the
system (e.g., the secret key that gives access to the user’s bank account) [26, 32,
34]. However, such a valuable key does not always exist. Thus we introduce an
alternative, novel way of achieving this: all-or-nothing non-transferability. Here,
sharing just one pseudonym or credential implies sharing all of the user’s other
credentials and pseudonyms in the system, i.e., sharing all of the user’s secret
keys inside the system. These two methods of guaranteeing non-transferability
are different: neither implies the other, and both are desirable and can in fact
be combined.



In addition, it may be desirable to have a mechanism for discovering the iden-
tity of a user whose transactions are illegal (this feature, called global anonymity
revocation, is optional); or reveal a user’s pseudonym with an issuing organiza-
tion in case the user misuses her credential (this feature, called local anonymity
revocation, is also optional). It can also be beneficial to allow one-show creden-
tials, i.e., credentials that should only be usable once and should incorporate an
off-line double-spending test. It should be possible to encode attributes, such as
expiration dates, into a credential.

Related work. The scenario with multiple users who, while remaining anony-
mous to the organizations, manage to transfer credentials from one organization
to another, was first introduced by Chaum [18]. Subsequently, Chaum and Ev-
ertse [19] proposed a solution that is based on the existence of a semi-trusted
third party who is involved in all transactions. However, the involvement of a
semi-trusted third party is undesirable.

The scheme later proposed by Damg̊ard [25] employs general complexity-
theoretic primitives (one-way functions and zero-knowledge proofs) and is there-
fore not applicable for practical use. Moreover, it does not protect organizations
against colluding users. The scheme proposed by Chen [21] is based on discrete-
logarithm-based blind signatures. It is efficient but does not address the prob-
lem of colluding users. Another drawback of her scheme and the other practical
schemes previously proposed is that to use a credential several times, a user
needs to obtain several signatures from the issuing organization.

Lysyanskaya, Rivest, Sahai, and Wolf [34] propose a general credential sys-
tem. While their general solution captures many of the desirable properties, it
is not usable in practice because their constructions are based on one-way func-
tions and general zero-knowledge proofs. Their practical construction, based on
a non-standard discrete-logarithm-based assumption, has the same problem as
the one due to Chen [21]: a user needs to obtain several signatures from the
issuing organization in order to use unlinkably a credential several times.

Other related work is that of Brands [8] who provides a certificate system in
which a user has control over what is known about the attributes of a pseudonym.
Although a credential system with one-show credentials can be inferred from
his framework, obtaining a credential system with multi-show credentials is not
immediate and may in fact be impossible in practice. Another inconvenience of
these and the other discrete-logarithm-based schemes mentioned above is that
all the users and the certification authorities in these schemes need to share the
same discrete logarithm group.

The concept of revocable anonymity is found in electronic payment systems
(e.g., [9, 37]) and group signature and identity escrow (e.g., [2, 14, 20, 33] schemes.

Prior to our work, the problem of constructing a practical system with
multiple-use credentials eluded researchers for some time [8, 21, 25, 34]. We solve
it by extending ideas found in the constructions of strong-RSA-based signature
schemes [23, 30] and group signature schemes [2].



Our contribution. In Section 2 we present our definitions for a credential
system with the basic properties. Although not conceptually new and inspired
by the literature on multi-party computation [15, 16] and reactive systems [36],
these definitions are of interest, as our treatment is more formal than the one usu-
ally encountered in the literature on credential and electronic cash systems. We
omit formal definitions for a credential system satisfying the additional desirable
properties and instead refer the reader to the full version of this paper [12].

Our basic credential system, presented in Section 4, provably satisfies the
basic properties listed above under the strong RSA assumption and the decisional
Diffie-Hellman assumption modulo a strong prime product. Our basic solution is
practical. When using an RSA modulus n of 1024 bits, a credential-pseudonym
pair is about 4K bits, and the most expensive operation of proving possession
of a credential requires about 22 exponentiations in Z∗n for both parties and can
be done in three rounds.

Our extended credential system, presented in Sections 6 and 7, describes how
to incorporate additional desirable properties into the basic credential system.
These are also efficient, except the one with all-or-nothing non-transferability:
when using RSA moduli of length 1024 bits, establishing a pseudonym is some-
what less efficient: it takes about 200 exponentiations in Z∗n for both parties, but
batch-verification techniques [4] could be applied to reduce this, and organiza-
tions have to store about 25K bits per user (here computation complexity could
be traded against storage).

All-or-nothing non-transferability is based on a new primitive we call circular
encryption, discussed in Section 6.1; we implement this primitive in the random
oracle model; it is a challenging open problem whether this primitive can be
realized outside the random oracle model.

This work is the first to introduce one-show credentials with an off-line
double-spending test, similar to known e-cash schemes (in fact, our one-show
credentials can be used as anonymous coins). These one-show credentials are
described in Section 7.1. More precisely, our double-spending test mechanism
together with the all-or-nothing property ensures that, if a user presents such a
credential more than once, then the verifying entity gets the ability to demon-
strate possession of all the pseudonyms and credentials of that user — a strong
incentive to users not to double-spend. From a technical point of view, it might
be interesting that the anonymity of our one-show credentials is not obtained by
blind signatures but by an alternative mechanism.

Another innovation of this work is the possibility of anonymity revocation,
described in Section 7.2. We stress that this feature is entirely optional. More-
over, for each transaction, the user has the freedom of specifying under which
conditions the anonymity can be revoked (maybe subject to conditions of the
other parties involved in the transaction). The user may also choose uncondi-
tional anonymity, and then his identity will not be retrievable under any circum-
stances. Yet another innovation is separability for organizations.



2 Formal Definitions and Requirements

A basic credential system has users, organizations, and verifiers as types of play-
ers. Users are entities that receive credentials. The set of users in the system may
grow over time. Organizations are entities that grant and verify the credentials
of the users. Each organization grants a unique (for simplicity of exposition) type
of credential. Finally, verifiers are entities that verify credentials of the users.

Variations of such a system allow a single organization to issue different types
of credentials. For the purposes of non-transferability, we can add a CA to the
model who verifies that the users entering the system possess an external public
and secret key. This CA will be trusted to do his job properly. For PKI-assured
non-transferability, this will make sure that access to a user’s pseudonym or
credential is sufficient to obtain this user’s secret key from an external PKI.
For all-or-nothing non-transferability, this will make sure that access to one
pseudonym or credential of a user is sufficient to obtain access to all of them.
To allow revocable anonymity, an anonymity revocation manager can be added.
This entity will be trusted not to use his ability to find out a user’s identity or
pseudonym unless dictated to do so. As the trusted parties perform tasks that
are not required frequently, these parties can be implemented in a distributed
fashion to weaken the trust assumptions. Finally, a credential may include an
attribute, such as an expiration date. These variations are simple to handle in
the model; for simplicity of exposition of the model, however, we do not discuss
them here. The extended solution we propose already incorporates some of them,
and can be easily adapted to incorporate others.

We first give a specification for an ideal credential system that relies on
a trusted party T as an intermediator; we then explain what it means for a
cryptographic system to conform to this specification.

Initialization: To initialize the system, the organizations create a public file
which, for each organization O, describes the type of credential that the or-
ganization grants.
Ideal communication: All communication is routed through T . If the sender of a
message wishes to be anonymous, he requests T not to reveal his identity to the
recipient. Also, a sender of a message may request that a session be established
between him and the recipient. This session then gets a session id sid.
Events in the system: Each transaction between players is an event in the sys-
tem. Events in the system can be triggered through external processes, some of
which may be controlled by an adversary. An external process can trigger some
particular event between a particular user and organization; or may trigger a set
of events; or may cause some probability distribution on the events.
Input of the players: The players are interactive Turing machines. Initially, they
have no input; then as transactions are triggered, they obtain inputs and act
accordingly.
Output of the players: In the end of the system’s lifetime, each user outputs a
list of the transactions she participated in, complete with the pseudonym used



in each transaction, session ids of the transactions, and transaction outcomes.
Organizations and verifiers output a list of transaction identifiers for transactions
in which they participated, the pseudonym involved (in case of organizations),
and the outcome of the transaction.

The system supports the following transactions:

FormNym(U,O): This protocol is a session between a user U and an organization
O. The user U contacts T with a request to establish a pseudonym between
herself and organization O. She further specifies the login name LU by which
T knows her and the corresponding authenticating key KU . If she does not
have an account with T yet, she first establishes it by providing to T a login
name LU and obtaining KU in return. She further specifies N1. Then T verifies
the validity of (LU ,KU ) and, if KU is the authenticating key corresponding
to login name LU , contacts O and tells it that some user wants to establish a
pseudonym with it with prefix N1. The organization either accepts or rejects.
If it accepts, it sends a pseudonym suffix N2, so the pseudonym becomes
N(U,O) := N1‖N2 ( ‖ denotes concatenation). T forwards the resulting N(U,O)

to U in case of acceptance, or notifies U of rejection.
GrantCred(N,O): This protocol is a session between a user U and an organization
O. U approaches T , and submits her login name LU , her authenticating key
KU , the pseudonym N , and the name of organization O. If KU is not a valid
authenticating key for LU , or if N is not U ’s pseudonym with O, then T replies
with a “Fail” message. Otherwise, T contacts O. If O accepts, then T notifies
the user that a credential has been granted, otherwise it replies with “Reject.”

VerifyCred(V,N,O): This protocol is a session between a user U and a verifier V .
A user approaches T and gives it her login LU , her authenticating key KU , a
name of the verifier V , a pseudonym N and a name of a credential-granting
organization O. If KU is a valid authenticating key for LU , and N is U ’s
pseudonym with organization O, and a credential has been granted by O to
N , then T notifies V that the user talking to V in the current session sid has
a credential from O. Otherwise, T replies with a “Fail” message.

VerifyCredOnNym(V,NV , NO, O): This protocol is a session between a user U and
an verifier V . U approaches T and gives it her login name LU , her authen-
ticating key KU , a name of the verifier V , pseudonyms NV and NO, and a
name of a credential-granting organization O. If KU is a valid authenticating
key for LU , and NV is U ’s pseudonym with V while NO is U ’s pseudonym
with organization O, and a credential has been granted by O to NO, then T
notifies V that the user with pseudonym NV has a credential from O.

This ideal system captures the intuitive requirements, such as unforgeability
of credentials, anonymity of users, unlinkability of credential showings, and con-
sistency of credentials. Ideal operations that allow additional desirable features
can be implemented as well.

Let us briefly illustrate the use of the credential system by a typical ex-
ample. Consider a user U who wants to get a credential from organization O.



Organization O requires the possession of credentials from organizations O1 and
O2 as a prerequisite to get a credential from O. Assume that U possesses such
credentials. Then U can get a credential from O as follows: she first establishes
a pseudonym with O by executing FormNym(U,O) and then shows O her cre-
dentials from O1 and O2 be executing VerifyCredOnNym(O,NO, NO1 , O1) and
VerifyCredOnNym(O,NO, NO2 , O2). Now O knows that the user it knows under
NO possesses credentials fromO1 andO2 and will grant U a credential, i.e., U can
execute GrantCred(NO, O). We remark that the operation VerifyCred(V,N,O) ex-
ists for efficiency reasons. This operation can be used by U if she wants to show
a party only a single credential, e.g., to access a subscription-based service.

The ideal-world (resp., real-world) adversary. The ideal-world (resp., real-world)
adversary is a probabilistic polynomial-time machine that gets control over the
corrupted parties in the ideal world (resp., real world). He receives, as input, the
number of honest users and organizations, as well as all the public information
of the system. The adversary can trigger an event as described above.

Definition 1. Let the ideal credential system described above be denoted ICS.
Let a cryptographic credential system without T be denoted CCS. Let V =
poly(k) be the number of players in the system with security parameter k. By
ICS(1k, E) (resp., CCS(1k, E)) we denote a credential system with security pa-
rameter k and event scheduler E for the events that take place in this system. As
events are scheduled adversarially, E schedules them according to the adversary’s
wishes, therefore we will write EA. By Zi(1k), we denote the output of party i in
the credential system. If {A1(1k), . . . , AV (1k)} is a list of the players’ outputs,
then we denote these players’ outputs by {A1(1k), . . . , Al(1k)}CS(1k,E) when all
of them, together, exist within a credential system CS. CCS is secure if there
exists a simulator S (ideal-world adversary) such that the following holds, for all
interactive probabilistic polynomial-time machines A (real-world adversary), for
all sufficiently large k:
1. In the ICS, S controls the ideal-world players corresponding to the real-world
players controlled by A.
2. For all event schedulers EA

{{Zi(1k)}Vi=1,A(1k)}CCS(1k,E) c
≈ {{Zi(1k)}Vi=1,SA(1k)}ICS(1k,E) ,

where S is given black-box access to A. (“D1(1k)
c
≈ D2(1k)” denotes computa-

tional indistinguishability of the distributions D1 and D2.)

3 Protocol Notation

By neg(k) we denote any function that vanishes faster than any inverse polyno-
mial in k. By poly(k) we denote a function bounded by a polynomial in k.

In the description of our scheme, we use the notation introduced by Ca-
menisch and Stadler[14] for various proofs of knowledge of discrete logarithms



and proofs of the validity of statements about discrete logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that
y = gαhβ and ỹ = g̃αh̃γ holds, where v < α < u,” where y, g, h, ỹ, g̃, and h̃ are
elements of some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention
is that Greek letters denote quantities the knowledge of which is being proved,
while all other parameters are known to the verifier. Using this notation, a proof-
protocol can be described by just pointing out its aim while hiding all details.

In the random oracle model, such protocols can be turned into signature
schemes using the Fiat-Shamir heuristic [28]. We use the notation SPK{(α) :
y = gα}(m) to denote a signature obtained in this way.

It is important that we use protocols that are concurrent zero-knowledge.
They are characterized by remaining zero-knowledge even if several instances
of the same protocol are run arbitrarily interleaved. In the public key model,
Damg̊ard [24] shows a general technique for making the so-called Σ-protocols
(these include all the proofs of knowledge used here) composable under con-
current composition without incurring a penalty in communication or round
complexity. All the proofs of knowledge we use in this paper incorporate this
technique.

In this paper we apply such PK ’s and SPK ’s to the group of quadratic
residues modulo a composite n, i.e., G = QRn. This choice for the underlying
group has some consequences. First, the protocols are proofs of knowledge under
the strong RSA assumption [29]. Second, the largest possible value of the chal-
lenge c must be smaller that the smallest factor of G’s order. Third, soundness
needs special attention in the case that the verifier is not equipped with the fac-
torization of n because then deciding membership in QRn is believed to be hard.
Thus the prover needs to convince the verifier that the elements he presents are
indeed quadratic residues, i.e., that the square roots of the presented elements
exist. This can in principle be done with a protocol by Fiat and Shamir [28].
However, often it is sufficient to simply execute PK{(α) : y2 = (g2)α} instead of
PK{(α) : y = gα}. The quantity α is defined as logg2 y2, which is the same as
logg y in case y is in QRn.

For the an explanation of how the PK ’s used in the paper can be realized
efficiently, we refer to the full version of this paper [12].

4 The Basic Anonymous Credential System

The basic system comprises protocols for a user to join the system, register with
an organization, obtain multi-show credentials, and show such credentials.

Throughout we assume that the users and organizations are connected by
perfectly anonymous channels. Furthermore, we assume that for each protocol
an organization authenticates itself to the user and that they establish a secure
channel between them for each session. For any protocol we describe, we implic-
itly assume that if some check or sub-protocol (e.g., some proof of knowledge
PK) fails for some party, it informs the other participants of this and stops.



4.1 High-Level Description

In our system, each organization O will have, in its public key PKO, an RSA
modulus nO, and five elements of QRnO : (aO, bO, dO, gO, hO). Each user U will
have her own master secret key xU . A pseudonym of user U with organization O,
denoted N(U,O), is just a name by which the user is known to the organization,
and consists of a user-generated part N1 and an organization-generated part
N2. The pseudonym N(U,O) = N1‖N2 will be tagged with a value P(U,O). This
validating tag is of the form P(U,O) = axUO b

s(U,O)

O , where s(U,O) is a short random
string to which the user and organization contribute randomness, but of which
only the user knows its value. An appropriate choice of parameters for the length
of xU and s(U,O) ensures that the resulting P(U,O) is statistically independent of
the user’s key xU and of any other validating tags formed by the same user with
other organizations.

A credential issued by O to a pseudonym N(U,O) is a tuple (e(U,O), c(U,O))
where e(U,O) is a sufficiently long prime and c(U,O)

e(U,O) ≡ P(U,O)dO. Under the
strong RSA assumption, such tuples cannot be existentially forged for correctly
formed tags even by an adaptive attack (Theorem 2).

To protect the user’s privacy in our system, proof of possession of a creden-
tial is realized by a proof of knowledge of a correctly formed tag P(U,O) and a
credential on it. This is done by publishing statistically secure commitments to
both the validating tag and the credential, and proving relationships between
these commitments. It can also include a proof that the underlying secret key is
the same in both the committed validating tag (corresponding to the pseudonym
formed with the issuing organization) and the validating tag with the verifying
organization. This ensures consistency of credentials, e.g., guarantees that even
users that fully trust each other cannot pool their credentials.

4.2 System Parameter and Key Generation.

We name some common system parameters: the length of all the RSA moduli `n,
the integer intervals Γ = ]− 2`Γ , 2`Γ [, ∆ = ]− 2`∆ , 2`∆ [, Λ = ]2`Λ , 2`Λ+`Σ [ such
that `∆ = ε(`Λ+`n)+1, where ε > 1 is a security parameter, and `Λ > `Σ+`∆+4.

Each organization Oi chooses random `n/2-bit primes p′Oi , q
′
Oi

such that
pOi = 2p′Oi + 1 and qOi = 2q′Oi + 1 are prime and sets modulus nOi = pOiqOi . It
also chooses random elements aOi , bOi , dOi , gOi , hOi ∈ QRnOi

. It stores SKOi :=
(pOi , qOi) as its secret key and publishes PKOi := (nOi , aOi , bOi , dOi , gOi , hOi)
as its public key. In the public-key model, we assume that there is a special
entity that verifies, through a zero-knowledge protocol with Oi, that nOi is the
product of two safe primes (see [13] for how this can be done efficiently) and
that the elements aOi , bOi , dOi , gOi , hOi are indeed in QRnOi

(see, for example,
Goldwasser et al. [31]). Alternatively, this can be carried out in the random
oracle model using the Fiat-Shamir heuristic [28]. The parameter `Λ should be
chosen such that computing discrete logarithms in QRnOi

with `Λ-bits exponents
is hard.



4.3 Generation of a Pseudonym

We now describe how a user U establishes a pseudonym N(U,O) and its validating
tag P(U,O) with organization O. Let xU ∈ Γ be U ’s master secret. The proto-
col below assures that the pseudonym’s validating tag is of the right form, i.e.,
P(U,O) = axUO b

s(U,O)

O , with xU ∈ Γ and s(U,O) ∈ ∆. The value s(U,O) is chosen
jointly by O and U without O learning anything about either xU or sU,O. Note
that this protocol does not force U to use the same xU as with other organiza-
tions; this is taken care of later in Protocol 4.

Protocol 1

1. U chooses a value N1 ∈ {0, 1}k, and values r1 ∈R ∆ and r2, r3 ∈R {0, 1}2`n .
U sets C1 := gr1O h

r2
O , C2 := gxUO hr3O . U sends N1, C1, and C2 to O.

2. To prove that C1 and C2 are formed correctly, U serves as the prover to
verifier O in

PK{(α, β, γ, δ) : C2
1 = (g2

O)α(h2
O)β ∧ C2

2 = (g2
O)γ(h2

O)δ} .

3. O chooses a random r ∈R ∆ and a value N2 and sends r, N2 to U .
4. U sets her pseudonym N(U,O) := N1‖N2. U computes s(U,O) = (r1 + r mod

(2`∆+1 − 1))−2`∆ +1, (s(U,O) is the sum of r1 and r, adjusted appropriately
so as to fall in the interval ∆). U then sets her validating tag P(U,O) :=
axUO b

s(U,O)

O and sends P(U,O) to O.
5. Now, U must show that P(U,O) was formed correctly. To that end, she com-

putes s̃ =
⌊

r1+r
2`∆+1−1

⌋
(s̃ is the value of the carry resulting from the compu-

tation of s(U,O) above) and chooses r4 ∈R {0, 1}`n , sets C3 := gs̃Oh
r4
O , and

sends C3 to O. Furthermore, U proves to O that the values in step 4 were
chosen correctly by executing

PK{(α, β, γ, δ, ε, ζ, ϑ, ξ) : C2
1 = (g2

O)α(h2
O)β ∧ C2

2 = (g2
O)γ(h2

O)δ ∧

C2
3 = (g2

O)ε(h2
O)ζ ∧ C

2
1 (g2

O)(r−2`∆+1)

(C2
3 )(2`∆+1−1)

= (g2
O)ϑ(h2

O)ξ ∧

P 2
(U,O) = (a2

O)γ(b2O)ϑ ∧ γ ∈ Γ ∧ ϑ ∈ ∆} .

6. O stores N(U,O), P 2
(U,O) and P(U,O).

7. U stores N(U,O), P 2
(U,O), P(U,O), and s(U,O).

4.4 Generation of a Credential

A credential on (N, P ) issued by O is a pair (c, e) ∈ Z∗nO×Λ such that P(U,O)dO =
ce. To generate a credential on a previously established pseudonym N(U,O) with
validity tag P(U,O), organization O and user U carry out the following protocol:

Protocol 2



1. U sends (N(U,O), P(U,O)) to O and authenticates herself as its owner by exe-
cuting

PK{(α, β) : P 2
(U,O) = (a2

O)α(b2O)β} .

2. O makes sure (N(U,O), P(U,O)) is in its database, chooses a random prime
e(U,O) ∈R Λ, computes c(U,O) = (P(U,O)dO)1/e(U,O) mod nO, sends c(U,O)

and e(U,O) to U and stores (c(U,O), e(U,O)) in its record for N(U,O).
3. U checks if c(U,O)

e(U,O) ≡ P(U,O)dO (mod nO) and stores (c(U,O), e(U,O)) in
its record with organization O. The tuple (P(U,O), c(U,O), e(U,O)) is called a
credential record.

Step 1 can be omitted if Protocol 2 takes place in the same session as some other
protocol where U already proved ownership of N(U,O).

4.5 Showing a Single Credential

Assume a user U wants to prove to a verifier V the possession of a credential
issued by O, i.e., possession of values (P(U,O) = axUO b

s(U,O)

O , c(U,O), e(U,O)), where
c
e(U,O)

(U,O) = dOP(U,O). U and verifier V engage in the following protocol:

Protocol 3

1. U chooses r1, r2 ∈R {0, 1}2`n , computes A = c(U,O)h
r1
O and B = hr1O g

r2
O , and

sends A,B to V .
2. U engages with V in

PK{(α, β, γ, δ, ε, ζ, ξ) : d2
O = (A2)α(

1
a2
O

)β(
1
b2O

)γ(
1
h2
O

)δ ∧

B2 = (h2
O)ε(g2

O)ζ ∧ 1 = (B2)α(
1
h2
O

)δ(
1
g2
O

)ξ ∧

β ∈ Γ ∧ γ ∈ ∆ ∧ α ∈ Λ} .

The PK in step 2 proves that U possesses a credential issued by O on some
pseudonym registered with O. We refer to the proof of Lemma 2 in the full
version of this paper [12] for more details about this PK.

4.6 Showing a Credential with Respect to a Pseudonym

Assume a user U wants to prove possession of a credential record (P(U,Oj) =
axU bs(U,Oj) , c(U,Oj), e(U,Oj)) to organization Oi with whom U has established a
pseudonym (N(U,Oi), P(U,Oi)). That means Oi not only wants to be assured that
U owns a credential by Oj but also that the pseudonym connected with this
credential is based on the same master secret key as P(U,Oi).

Protocol 4



1. U chooses random r1, r2, r3 ∈R {0, 1}2`n , computes A = c(U,Oj)h
r1
Oj

and
B = hr1Ojg

r2
Oj

, and sends N(U,Oi), A,B to Oi.
2. U engages with Oi in

PK{(α, β, γ, δ, ε, ζ, ξ, η) : d2
Oj = (A2)α(

1
a2
Oj

)β(
1
b2Oj

)γ(
1
h2
Oj

)δ ∧

B2 = (h2
Oj )

ε(g2
Oj )

ζ ∧ 1 = (B2)α(
1
h2
Oj

)δ(
1
g2
Oj

)ξ ∧

P 2
(U,Oi)

= (a2
Oi)

β(b2Oi)
η ∧ β ∈ Γ ∧ γ ∈ ∆ ∧ α ∈ Λ} .

The first three equations of this proof of knowledge are the same as Protocol 3.
The fourth equation proves that the same master secret key is used in P(U,Oi)

and in the validating tag to the pseudonym established with Oj .
In the random oracle model, the verifier (or verifying organization) can ob-

tain the receipt from a showing transaction by turning step 2 of Protocol 4 (or
Protocol 3, respectively) into the corresponding SPK on the description of the
transaction. This step will add efficiency and also will enable a user to sign an
agreement with a verifier using her credential as a signature public key. This
could, for instance, be useful if possessing a credential means being allowed to
sign on behalf of the issuing organization (cf. group signatures).

5 Proof of Security for the Basic Credential System

The following technical lemmas about the protocols described above are stated
here without proof; their proofs can be found in the full version of this paper [12].

Lemma 1. Under the strong RSA assumption and the decisional Diffie-Hellman
assumption modulo a safe prime product, step 5 of Protocol 1 (the protocol for
establishing a pseudonym) is a statistical zero-knowledge proof of knowledge of
the correctly formed values xU , s(U,O) that correspond to a pseudonym validating
tag P(U,O).

Lemma 2. Under the strong RSA assumption and the decisional Diffie-Hellman
assumption modulo a safe prime product, step 2 of Protocol 3 (the protocol for
showing a single credential) is a statistical zero-knowledge proof of knowledge of
the values x ∈ Γ , s ∈ ∆, e ∈ Λ, and c such that x, s correspond to a pseudonym
validating tag P = axOb

s
O, and ce = PdO mod nO.

Lemma 3. Under the strong RSA assumption and the decisional Diffie-Hellman
assumption modulo a safe prime product, step 2 of Protocol 4 (the protocol for
showing a credential corresponding to a given validating tag P(U,Oi)) is a statis-
tical zero-knowledge proof of knowledge of the values x ∈ Γ , s1, s2 ∈ ∆, e ∈ Λ,
and c such that P(U,Oi) = axOib

s1
Oi

mod nOi , x, s2 correspond to a validating tag
P = axOj b

s2
Oj

and ce = PdOj mod nOj holds.



5.1 Description of the Simulator

We now describe the simulator S for our scheme and then in Section 5.2 show
that it satisfies Definition 1.

Setup. For the organizations not controlled by the adversary, the simulator sets
up their secret and public keys as dictated by the protocol. For each organization,
the simulator creates an archive where it will record the credentials issued by
this organization to the users controlled by the adversary. It also initializes a list
of the users controlled by the adversary.

Generation of a pseudonym. If a user controlled by the adversary establishes
a pseudonym from an honest organization, the simulator uses the knowledge
extractor of Lemma 1 to discover the user’s underlying key x and the value s. If
no user with key x is present in the list of dishonest users, S creates a new user
U with login name LU , and runs FormNym(U,O) to create a pseudonym N(U,O)

for this user, and to obtain a key KU for further interactions of this user with
T . The simulator stores the record (U , LU , x, KU , N(U,O), s) in its list of users
controlled by the adversary. If some user U with key x is already present, the
simulator runs FormNym(U,O) to create a pseudonym N(U,O) for this user, and
adds (N(U,O),s) to U ’s record.

If an honest user, through T , establishes a pseudonym with an organization
controlled by the adversary, our simulator will use the zero-knowledge simulator
from Lemma 1 to furnish the adversary’s view of the protocol.

Generate a credential. If a user controlled by the adversary requests a credential
from an honest organization O, then, upon receiving a message from T to that
effect, the simulator runs the knowledge extractor for the proof of knowledge of
step 1 of Protocol 2. It determines the values x and s. The simulator looks at its
list of the pseudonyms of users controlled by the adversary. If it does not find
a record with x and s, then it refuses to grant a credential (as an organization
would). If it finds that there is a record containing these x and s and pseudonym
N , then the simulator runs GrantCred(N,O) with T . Upon hearing from T that
the user may have a credential, the simulator runs the organization’s side of the
rest of the Protocol 2, and issues the correct e and c. It stores the values (x,s,e,c)
in the archive for organization O.

If an honest user, through T , requests a credential from an organization
controlled by the adversary, then the simulator will run the zero-knowledge sim-
ulator for step 1 of Protocol 2, and execute the rest of the user’s side of it. If the
user accepts, then the simulator informs T that the credential was granted.

Showing a single credential. This part of the simulator can easily be inferred
from the part for Showing a credential with respect to a pseudonym that follows.

Showing a credential with respect to a pseudonym. If a user controlled by the
adversary wants to show a credential from an honest organizationOj to an honest



organization Oi with whom it has pseudonym N(U,Oi), then the simulator runs
Oi’s part of Protocol 4, and extracts the user’s values (x,s(U,Oi), s(U,Oj),e,c) with
the knowledge extractor of Lemma 3. If Oi’s side of Protocol 4 accepts, while
(x,s(U,Oj),e,c) is not in the archive of Oj , then S rejects. Otherwise, it finds the
user U with key x, the user’s corresponding key K and pseudonym N(U,Oj) and
runs VerifyCred(Oi, N(U,Oi), N(U,Oj), Oj).

If a dishonest user wants to prove to an honest organization Oi that he has
a credential from a dishonest organization Oj , then the simulator runs Oi’s side
of Protocol 4, with the knowledge extractor of Lemma 3 to obtain the values
(x, s(U,Oi), s, e, c). If Oi’s side of the protocol rejects, it does nothing. Otherwise:
(1) It checks if there exists a user with key x in Oj ’s archive. If so, denote this
user by U . If not, let U be the user with key x. Next it runs FormNym(U,Oj) to
get N(U,O). (2) It checks if U has a credential record in Oj ’s archive. If not, it runs
GrantCred(N(U,Oj), Oj). (3) It runs VerifyCredOnNym(Oi, N(U,Oi), N(U,Oj), Oj).

If an honest user (through T ) wants to prove to organization Oi controlled
by the adversary, that he has a credential from an honest organization Oj , then
the simulator runs the zero-knowledge simulator of Lemma 3 to do that.

5.2 Proof of Successful Simulation

We show that our simulator fails with negligible probability only. As a first step,
we show in Theorem 2 that a tuple (x, s, e, c) the knowledge of which is essential
for proving possession of a credential, is unforgeable even under an adaptive
attack. For this we rely on the following theorem due to Ateniese et al. [2]:

Theorem 1. Suppose an `n-bit RSA modulus n = pq = (2p′ + 1)(2q′ + 1) is
given, where p, q, p′, and q′ are primes. Let ∆′ =] − 2`∆′ , 2`∆′ [, Π ′ =] − T, T [
and Λ′ =]2`Λ′ , 2`Λ′+`Σ′ [ with 2`∆′ ≥ T > 22`n and `Λ′ > `Σ′ + `∆′ + 3. Suppose
random b, d ∈R QRn are given. Further, suppose we have access to an oracle
which, on the i-th query outputs tuples (yi, ei, ci) such that yi ∈R Π ′, ei ∈R Λ′

is a prime, and ceii = byid mod n. Under the strong RSA assumption, it is hard,
upon seeing the oracle output for 1 ≤ i ≤ K, K polynomial in `n, to produce a
tuple (y, e, c) such that for all 1 ≤ i ≤ K, (y, e) 6= (yi, ei), and y ∈ ∆′, e ∈ Λ′,
and c2e = (byd)2.

Theorem 2. Suppose an `n-bit RSA modulus n = pq = (2p′ + 1)(2q′ + 1) is
given, where p, q, p′, and q′ are primes. Suppose random a, b, d ∈R QRn are
given. Further, suppose we have access to an oracle O which, on the i-th query
with a value xi ∈ Γ , outputs a tuple (si, ei, ci) such that that si ∈R ∆, ei ∈R Λ is
a prime, and ceii = axibsid. Under the strong RSA assumption and the discrete
logarithm assumption modulo a safe prime product, it is hard, upon seeing the
oracle output for 1 ≤ i ≤ K, K polynomial in `n, to produce a tuple (x, s, c, e)
such that for all 1 ≤ i ≤ K, (x, s, e, c) 6= (xi, si, ci, ei), and x ∈ Γ , s ∈ ∆, e ∈ Λ,
and c2e = (axbsd)2 mod n.

Proof. We will prove our theorem by exhibiting a reduction to Theorem 1. The
reduction has access to a forger A that forges a tuple (x, s, e, c) under condi-
tions stated in the theorem. Using A, the reduction will forge a tuple (y, e, u)



under conditions stated in Theorem 1. This, in turn, contradicts the strong RSA
assumption.

The reduction will take, as input, the public parameters (n, b, d) as in Theo-
rem 1. Then it will define the public parameters for the setting of the theorem:
b and d are as given, and to form a, pick α ∈R [0, n/4] and set a := bα.

Then, the reduction makes K queries and obtains a set of tuples {(yi, ei, ci)}.
Now the reduction proceeds as follows: upon receiving a query xi ∈ Γ , set
si := yi−αxi. Setting the parameter T of Theorem 1 to 2`∆ −2`Λ+`n will assure
that si ∈ ∆. Setting `∆ = ε(`Λ + `n) + 1 with ε > 1 (cf. Section 4.2) assures that
T > 2`n and also that si will be distributed statistically close to uniformly from
∆. Further, note that axibsid = bαxi+sid = ayid = ceii . Setting `Σ′ = `Σ and
`Λ′ = `Λ, the tuple (si, ei, ci) is distributed statistically close to the distribution
induced by the actual oracle O.

After answering the K queries, the reduction receives from the forger a tuple
(x, s, e, c) such that for all 1 ≤ i ≤ K, (x, s, e, c) 6= (xi, si, ei, ci), x ∈ Γ , s ∈ ∆,
e ∈ Λ, and c2e = (axbsd)2 mod n. Compute y = s+αx. Setting `′∆ of Theorem 1
to `∆ + 1 gives us the condition `Λ = `Λ′ > `Σ′ + `∆′ + 3 = `Σ + `∆ + 4
(cf. Section 4.2). With these settings, the triple (y, e, c) constitutes a forgery for
Theorem 1, provided that (y, e) 6= (yi, ei) for all i.

Suppose the probability that (y, e) = (yi, ei) for some i is non-negligible.
Then we can use A to break discrete logarithm modulo n. Suppose (g, h) ∈ QRn

are given. It is known that finding (α1, β1) and a distinct (α2, β2) such that
gα1hβ1 = gα2hβ2 is hard if factoring is hard and computing discrete logarithms
modulo a safe prime product is hard.

The reduction takes, as input, the modulus n, and the values (g, h). Then it
selects K random primes {ei ∈R Λ}Ki=1, chooses a random v ∈R QRn, and sets
d = v

∏k
i=1 ei , a = g

∏k
i=1 ei , b = h

∏k
i=1 ei .

On input (xi, Vi), do the following: select an si ∈R ∆. Compute the value
Ei =

∏K
j=1,j 6=i ej . Set ui := (gxihsiv)Ei . Note that by construction, ceii =

axibsid. Then output (si, ei, ci). With non-negligible probability, obtain a forgery
(x, s, e, c) from the forger such that (x, s, e, c) 6= (xi, si, ei, ci) for all i, and yet
for some i, (axibsid)2 = (axbsd)2. Because a,b, and d are quadratic residues, it
follows that axibsid = axbsd. From here, we either break the discrete logarithm
problem or factor n.

Lemma 4. Under the strong RSA assumption and the decisional Diffie-Hellman
assumption modulo a safe prime product, the simulator rejects with only negligi-
ble probability.

Proof. (Sketch) Note that the only time when the simulator rejects is when a
dishonest user makes the verifier accept in Protocol 3 or in Protocol 4, and yet
the tuple (x, s, e, c) extracted by the simulator was not given to the adversary
by the simulator itself. Under the appropriate assumptions, by Lemmas 2 and 3
knowledge extraction succeeds with probability 1−neg(k). Then if we are given
an adversary that can make the simulator reject non-negligibly often, we can use
this adversary to create a forgery to contradict Theorem 2.



The statistical zero-knowledge property of the underlying protocols gives us
Lemma 5 which in turn implies Theorem 3.

Lemma 5. The view of the adversary in the real protocol is statistically close
to his view in the simulation.

Theorem 3. Under the strong RSA assumption, the decisional Diffie-Hellman
assumption modulo a safe prime product, and the assumption that factoring is
hard, the credential system described above is secure.

6 All-or-nothing and PKI-based Non-transferability

The protocols described in Section 4 ensure consistency of credentials, i.e., cre-
dential pooling is not possible. However, credential (or pseudonym) lending is
still possible. More precisely, revealing to a friend the secrets xU and s(U,Oi)

attached to some credential does not mean that the friend obtains some other
valuable secret of the user or can use any of the user’s other credentials. This
section provides protocols to obtain PKI-based non-transferability and all-or-
nothing non-transferability to discourage users from credential lending.

The idea of the former is that the user provides the CA with a (verifiable)
encryption of some valuable external secret that can be decrypted with xU .

The idea for achieving the latter is similar, i.e., the user provides each orga-
nization with a (verifiable) encryption of the secrets underlying her validating
tag. This approach raises some technical problems:

First, the approach requires that each user encrypts each of her secret keys
Di under one of her public keys Ej , thereby creating “circular encryptions”.
However, the canonical definitions [35] of secure encryption do not provide se-
curity for such encryptions. Moreover, it is not known whether circular security
is possible under general assumptions. Nevertheless, we introduce in this section
a new cryptographic primitive called circular encryption which is an encryption
scheme that provides security for circular encryptions. Given any semantically
secure encryption scheme, we provide a generic construction of such a scheme
and prove its security in the random oracle model

Second, the encryptions made by a user must not reveal the public key this
encryption was made with, i.e., we require that the encryption scheme be key-
oblivious. We provide a formal definition of this and show that our circular
encryption scheme satisfies it.

Third, the encryption must be verifiable. To this end we review the verifi-
able encryption protocol due to Camenisch and Damg̊ard [10] and adapt it to
suit our needs. Specifically, we want to enable verification without revealing the
public key. We provide a verification method involving a committed public key,
so that by inspecting this verifiable encryption, an adversary would not be able
to discover the underlying public key.

Independently of and concurrently with our work, Black et al. [5] proposed
symmetric encryption schemes for key-dependent messages (which is what we
call circular symmetric encryption) and Bellare et al. [3] studied key-private
encryption (which is what we call key-oblivious encryption).



6.1 Circular Encryption

Definition 2. Let n,m ∈ poly(k). A semantically secure encryption scheme
G = (E ,D) is circular-secure if

1. There exists a message, denoted by 0, such that for all E ∈ E(1k), 0 is in
the message space of E.

2. For all E1 ∈ E(1k), D2 ∈ D(1k), the message space of E1 includes D2.
3. For all n-node directed graphs G with m edges, given n randomly chosen

public keys, {Ei}ni=1, we have: {Ei(Dj)}(i,j)∈E(G)
c
≈ {Ei(0)}(i,j)∈E(G) .

The idea here is that having access to encryptions of the secret keys does
not help the adversary in breaking the security of the system. Note that if, in
the definition above, we had limited our attention to acyclic graphs, then any
semantically secure cryptosystem would be enough to satisfy such a definition.
As the definition can only be more powerful if we include graphs that have cycles,
we call this notion of security “circular security.”

Let us present a cryptosystem that satisfies this definition in the random
oracle model. Suppose the length of a secret key is p(k). Let H : {0, 1}∗ →
{0, 1}p(k) be a random oracle, and let ⊕ denote the bitwise xor operation.
Let G = (E ,D) be a semantically secure cryptosystem with a sufficiently large
message space. Construct G′ = (E ′,D′) as follows: generate (E,D) according
to G. To encrypt a message m ∈ {0, 1}p(k), E′ picks a random r ∈R {0, 1}`
and sets E′(m) := (E(r),H(r) ⊕ m). To decrypt a tuple (a, b), D′ computes
m̃ := H(D(a))⊕ b. For this construction, the following theorem holds (the proof
can be found in the full version of this paper [12]).

Theorem 4. If G is semantically secure, G′ is circular-secure.

As a basis for our circular encryption scheme, we use the ElGamal encryp-
tion [27] in some G = 〈g〉. It is easy to see that the ElGamal cryptosystem is
semantically secure under the decisional Diffie-Hellman assumption. Let P = gx

be a public key. The resulting circular encryption scheme is as follows. To encrypt
a message m ∈ {0, 1}k, choose a random element r1 ∈ G and a random integer
r2 ∈ {0, 1}2`, and compute the encryption (u, v, z) := (P r2r1, g

r2 ,H(r1) ⊕m).
Decryption works by computing H(u/vx)⊕z. We denote this encryption scheme
by CElG.

6.2 Verifiable Encryption with a Committed Public Key

Verifiable encryption [1, 10], is a protocol between a prover and a verifier such
that as a result of the protocol, on input public key E and value v, the verifier
obtains an encryption e of some value s under E such that (s, v) ∈ R. Here R
is a relation such as, e.g., {(s, gs)|s ∈ Zq} ⊂ Zq ×G. More formally,

Definition 3. Let (E ,D) be a semantically secure encryption scheme. A two-
party protocol between a prover P(R, E, s, v) and a verifier V(R, E, v) is a ver-
ifiable encryption protocol with respect to public keys E for a polynomial-time
verifiable relation R if



– For all (E,D) ∈ G(1k) and for all (s, v) ∈ R, if P and V are honest then
VP(R,E,s,v)(R, E, v) 6= ⊥.

– There is an efficient extractor algorithm C such that for all sufficiently large
k, and ∀(E,D) ∈ (E ,D)(1k)

Pr[(C(D, e), v) ∈ R | e = VP̃(R,E,s,v)(R, E, v) ∧ e 6= ⊥] = 1− neg(k) .

– There is a black-box simulator S such that ∀ Ṽ, ∀(s, v) ∈ R we have
SṼ(R,E,v)(R, E, v)

c
≈ ṼP(R,E,s,v)(R, E, v), where the probability “hidden” in

the
c
≈ notation is over the choice of E and the random cointosses of Ṽ.

Note that e is not a single message from the prover, but the verifier’s entire
transcript of the protocol. Furthermore, C does not necessarily extract the same
s that was the additional input to the prover. It could extract some other value
s′ 6= s, but only if (s′, v) ∈ R.

It is clear that an (inefficient) way of implementing verifiable encryption
would be for the prover to encrypt s under the public key E, and then carry
out a zero-knowledge proof that the encrypted value satisfies relation R with
respect to v. But this is not satisfactory, because it is important that verifiably
encryption be executed efficiently enough to be useful in practice. Generalizing
the protocol of Asokan et al. [1], Camenisch and Damg̊ard [10] provide a practi-
cal verifiable encryption scheme for all relations R that have an honest-verifier
zero-knowledge three-move proof of knowledge where the second message is a
random challenge and the witness can be computed from two transcripts with
the same first message but different challenges. This includes most known proofs
of knowledge, and all proofs about discrete logarithms considered in this paper.
Their construction is secure with respect to any public key for a semantically
secure cryptosystem.

We use similar notation for verifiable encryption as for the PK ’s and denote
by, e.g., e := VE(ElGamal, (g, y)){(ξ) : a = bξ} the verifiable encryption protocol
for the ElGamal scheme, whereby logb a is encrypted in e under public key (y, g).

For guaranteeing the all-or-nothing non-transferability, we need to have each
user verifiable encrypt all of her secret information under a public key that
corresponds to her secret key. However, revealing this public key will leak in-
formation about the user. Therefore, we need to realize verifiable encryption
in such a manner that the public key corresponding to the resulting ciphertext
cannot be linked to the verifier’s view, i.e., a verifiable encryption scheme must
be key-oblivious:

Definition 4. Let (P,V) be a verifiable encryption scheme with respect to public
keys E, for a polynomial-time verifiable relation R. We say that this scheme
is key-oblivious if for all polynomially bounded Ṽ, for all E,E′ ∈ E(1k) and
∀(s, v) ∈ R we have ṼP(R,E,s,v)(R, v, E,E′)

c
≈ ṼP(R,E′,s,v)(R, v, E,E′), where

the probability “hidden” in the
c
≈ notation is over the random cointosses of Ṽ.

In case the verifier does not know the public key under which the encryption
is carried out, previously known constructions do not work, as they require



that the verifier be able to check that a given ciphertext is an encryption of a
given value. Thus we propose a new construction, based on the circularly secure
variant of the ElGamal cryptosystem described above. Here we assume that the
prover P knows the secret key of the encryption; this is not the general case,
but it works for our construction. Let P = gx serve as a public key, and x as
the corresponding secret key. Let C = Phr be a commitment to P , where h is
another generator of G = 〈g〉, and let (u, v, z) = (P r2r1, g

r2 ,H(r1) ⊕m) be an
encryption of m as above. To convince the verifier that (u, v, z) is an encryption
of m under the public key committed to by C, the prover reveals r1 and engages
with the verifier in PK{(α, β, γ) : C = gαhβ ∧ v = gγ ∧ u/r1 = vα}. The
verifier further needs to check if z = H(r1)⊕m. By using techniques developed
by Camenisch and Damg̊ard [10], a key-oblivious verifiable encryption scheme is
obtained.

In the sequel, we write, e.g., Com-VE(CElG, (H, g, h, C)){(ξ) : a = bξ} for
this key-oblivious verifiable encryption with respect to a committed public key.
The proof of the following lemma uses standard techniques and is given in the
full version of this paper [12]:

Lemma 6. Under the decisional Diffie-Hellman assumption, the verifiable en-
cryption scheme described above is key-oblivious.

6.3 All-or-nothing Non-transferability

As already mentioned, all-or-nothing non-transferability is achieved by ensuring
that if a user U gives away her master secret xU , then she will also reveal the
secret keys underlying her validating tag with O. More precisely, U has to supply
O a verifiable encryption of these secrets w.r.t. the secret key xU . This is done
in the following protocol, which U and O should carry out as part of Protocol 1.
A prerequisite of the protocol is that during the setup of the system, a group
G = 〈g〉 = 〈h〉 of prime order q > 2`Γ is chosen such that logg h is unknown.

Protocol 5

1. U chooses r ∈R Zq, sets C := gxUhr, and sends C to O. U proves to O that
C is a commitment to her public key by carrying out

PK{(γ, ϑ, ϕ) : P 2
(U,O) = (a2

O)γ(b2O)ϑ ∧ C = gγhϕ} .
2. U and O engage in the verifiable encryption protocol

wP(U,O) = Com-VE(CElG, (H, g, h, C)){(α, β) : P 2
(U,O) = (a2

O)α(b2O)β} .
3. O publishes N(U,O) and wP(U,O) .

However, publishing N(U,O) and wP(U,O) is not sufficient for using U ’s creden-
tial with O even when knowing xU . Therefore, the organizations must publish all
related information together with the verifiable encryption. Hence, at the end
of Protocol 2, O must publish (c(U,O), e(U,O)) together with N(U,O). Thus, we
obtain all-or-nothing transferability: whenever a user’s friend gets to know xU ,
he can look at the organizations’ public records to obtain all information needed
to use all the user’s credentials.



6.4 PKI-assured Non-transferability.

We assume that the user possesses some external valuable public key PKU . Then
PKI-assured non-transferability is achieved by having the CA ask for this public
key, check whether it is indeed the user’s public key (e.g., via some external
certificate), and require the user to verifiably encrypt the corresponding secret
key SKU with respect to xU . This verifiable encryption is then published by the
CA. Now, if the user ever gives xU away to her friend, then her friend, by reading
the CA’s public records, will recover the verifiable encryption of SKU , and will
succeed in decrypting it.

The technical realization is similar to the one for all-or-nothing non-trans-
ferability. The main difference is that we do not need circular encryption and
thus can use regular ElGamal. We give an example for what this protocol looks
like when U ’s external public key YU is discrete-logarithm based, i.e., YU = gx

for some generator g in some group G. Other cases are similar. A prerequisite
of the protocol is that during the setup of the system, a group G = 〈g〉 = 〈h〉 of
prime order q > 2`Γ is chosen such that logg h is unknown.

Protocol 6

1. U sends YU , g, and the certificate on YU of the external PKI to CA who
checks their validity.

2. U chooses r ∈R Zq, sets C := gxUhr, and sends C to CA. U proves to CA
that C is a commitment to her public key by carrying out

PK{(γ, ϑ, ϕ) : P 2
(U,O0) = (a2

O0
)γ(b2O0

)ϑ ∧ C = gγhϕ} .

3. U and CA engage in

wPKI = Com-VE(ElGamal, (H, g, h, C)){(α) : YU = gα} .

4. CA publishes (wPKI,PKI).

7 One-Show Credentials and Revocation

This section describes how the basic credential scheme can be extended to allow
for global and local revocation as well as to enable organizations to issue one-
show credentials.

7.1 One-Show Credentials

The credentials we considered so far can be shown an unlimited number of times.
However, for some services it might be required that a credential can only be
used once (e.g., when it represents money). Of course, one possibility would be
that a user just reveals the credential to the verifier. This, however, would mean
that the user is not fully anonymous any more as the verifier and the organi-
zation then both know the credential and thus can link the transaction to the



user’s pseudonym. Traditionally, this problem has been solved using so-called
blind signatures [17]. Here, we provide a novel and alternative way to approach
this problem, i.e., instead of blinding the signer we blind the verifier. In the
sequel we describe the general idea, the changes to the protocols that need to
be made, and provide a protocol for showing one-show credentials.

Addition to key generation. Each organization O publishes an additional
generator zO ∈ QRnO .

Changes to Protocol 1. The validating tag P(U,O) on a user’s pseudonym
N(U,O) is formed slightly differently: P(U,O) = axUO b

s(U,O)

O z
r(U,O)

O , where r(U,O) is
chosen by O and U together in the same way as s(U,O) is. (Credentials, however,
are issued in the same way as before, i.e., U obtains c(U,O) and e(U,O) such that
c(U,O)

e(U,O) ≡ P(U,O)dO (mod nO) holds.)

Showing a one-show credential. When proving possession of a one-show
credential issued by O (with respect to a pseudonym or not), the user provides
to verifier V (which might be an organization) the value H(U,O) = h

r(U,O)

O and
proves that it is formed correctly w.r.t. to the pseudonym U established with O.
Of course, the various proofs of knowledge in the respective protocols have to be
adapted to reflect the different form of the pseudonym U holds with O. These
adaptions, however, are immediate and we do not describe them here.

Now, different usages of the same credential can be linked to each other but
not to the user’s pseudonym with the issuing organization. This allows to prevent
users from using the same credential several times, if the verifier checks with the
issuing organization whether H(U,O) was already used or not, similar as it is done
for anonymous on-line e-cash.

Off-line checking could be done as well. As here double usage can only be
detected but not prevented, a mechanism for identifying double-users is required.
This could for instance be achieved using revocation as described in the previous
section, or using similar techniques that are used in for anonymous off-line e-cash
(e.g., [7]).

We now describe how the latter can be done such that using a one-show
credential twice would expose the user’s secret keys connected with the corre-
sponding pseudonym. Together with (any kind of) non-transferability this would
be quite a strong incentive for the users not to use one-show credentials twice.
The main idea is that the verifying entity chooses some random challenge c
from a suitably large set, say {0, 1}`c with `c = 60, and the user replies with
r = cxU + s(U,O) and proves correctness of this result. To assure that r hides xU
statistically, we must have that `∆ > ε(`Γ + `c) because xU ∈ Γ and s(U,O) ∈ ∆.
However, when a user uses the same credential twice, one can compute xU from
the the different replies the user provides. We present the resulting protocol for
showing a single credential (cf. Protocol 3).

Protocol 7

1. U chooses r1, r2 ∈R {0, 1}2`n , computes A = c(U,Oi)h
r1
O and B = hr1O g

r2
O , and

sends A,B,H(U,O) to V .



2. V chooses c ∈R {0, 1}`c and sends c to U .
3. U replies with r = cxU + s(U,O) (computed in Z).
4. U engages with V in

PK{(α, β, γ, ϕ, δ, ε, ζ, ξ) : d2
O = (A2)α(

1
a2
O

)β(
1
b2O

)γ(
1
z2
O

)ϕ(
1
h2
O

)δ ∧

B2 = (h2
O)ε(g2

O)ζ ∧ 1 = (B2)α(
1
h2
O

)δ(
1
g2
O

)ξ ∧

H(U,O) = hϕO ∧ grO = (gcO)βgγO ∧ β ∈ Γ ∧ γ ∈ ∆ ∧ ϕ ∈ ∆ ∧ α ∈ Λ} .

The adaption of Protocol 4 to implement one-show credentials with built-in
anonymity revocation is similar.

7.2 Local and Global Revocation

For simplicity we assume a single revocation manager R who is responsible for
local and global revocation (extending the scheme to one revocation manager
per organization is easy). Given the transcript of a protocol where some user
proved possession of a credential from organization Oi, R will have the task of
providing information that allows the organization to identify the pseudonym of
the user in case of local revocation, or allows the CA to retrieve the identity of
the user.

In the sequel we describe how the protocols for proving possession of a creden-
tial must be adapted such that local revocation is possible using Cramer-Shoup
encryption [22]. We then discuss global revocation. We remark that it can be
decided at the time when the possession of a credential is proved whether local
and/or global revocation shall be possible for the transaction at hand.

Additions to key generation. The revocation manager R chooses a groupG =
〈g〉 = 〈h〉 of prime order q > 2`Γ . The he chooses five secret keys x1, . . . , x5 ∈R
Zq and computes (y1, y2, y3) := (gx1hx2 , gx3hx4 , gx5) as his public key. Each
organization O publishes an additional generator vO ∈ QRnO .

Changes to Protocol 1. A validating tag P(U,O) on a user’s pseudonym N(U,O)

is formed slightly differently: P(U,O) = axUO b
s(U,O)

O v
x(U,O)

O , where x(U,O) is chosen
from Γ by U . However, credentials are issued in the same way as before, i.e., U
obtains c(U,O) and e(U,O) such that c(U,O)

e(U,O) ≡ P(U,O)dO (mod nO) holds.
If Protocol 1 is carried out with the CA, it is extended by the following steps.

8. U computes YU = gxU and sends YU to CA.
9. U engages with CA in

PK{(α, β, γ) : P 2
(U,CA) = (a2

CA)α(b2CA)β(v2
O)γ ∧ YU = gα ∧ γ ∈ Γ} .

10. Both CA and U store YU with P(U,CA).



In case Protocol 1 is carried out with an organization O different from the CA,
it is extended by the following steps.

8. U computes Y(U,O) = gx(U,O) and sends Y(U,O) to O.
9. U engages with O in

PK{(α, β, γ) : P 2
(U,O) = (a2

O)α(b2O)β(v2
O)γ ∧ Y(U,O) = gγ ∧ γ ∈ Γ} .

10. Both O and U store Y(U,O) with P(U,CA).

Changes to Protocols 3 and 4. Suppose Protocol 3 (resp., Protocol 4) is be-
ing executed. Suppose the user U and the verifying organization V agree upon
text m that describes under what conditions V can find out U ’s identifying in-
formation. Specifically, m describes the conditions under which V may find out
U ’s pseudonym with the issuing organization O, as well as the conditions under
which V may find out U ’s identity. The text ofm can also include part of the com-
munication transcript of the current protocol. The former mode of anonymity
revocation is called local revocation, while the latter is called global revocation.
We provide the two protocols to be executed as sub-routines of Protocol 3 (resp.,
Protocol 4) in order to get local and/or global revocation, respectively, where
the user proves possession of a credential issued by organization O.

Protocol 8 (Global Revocation)

1. U chooses r2 ∈R Zn and computes w1 := gr2 , w2 := hr2 , w3 := yr23 YU , and
w4 := yr21 y

r2H(w1,w2,w3,m0)
2 and sends w(U,R) = (w1, w2, w3, w4) to V .

2. U and V engage in

PK
{

(α, β, γ, δ, ε, ξ) : d2
O = (A2)α(

1
a2
O

)β(
1
b2O

)γ(
1
v2
O

)ξ
1
h2
O

)δ ∧ w1 = gε ∧

w2 = hε ∧ w3 = gβyε3 ∧ w4 =
(
y1y
H(w1,w2,w3,m0)
2

)ε}
.

Protocol 9 (Local Revocation)

1. U chooses r1 ∈R Zq and computes w1 := gr1 , w2 := hr1 , w3 := yr13 Y(U,O),
and w4 = yr11 y

r1H(w1,w2,w3,mj)
2 and sends w(U,Rlj)

= (w1, w2, w3, w4) to V .
2. U and V engage in

PK
{

(α, β, γ, δ, ε, ξ) : d2
O = (A2)α(

1
a2
O

)β(
1
b2O

)γ(
1
v2
O

)ξ(
1
h2
O

)δ ∧ w1 = gε ∧

w2 = hε ∧ w3 = gξyε3 ∧ w4 =
(
y1y
H(w1,w2,w3,mj)
2

)ε}
.

Revocation. Upon presentation of an encryption w = (w1, w2, w3, w4) and a
revocation condition m, stemming from Protocol 8 or 9, the revocation manager
checks whether w4 = w

x1+x3H(w1‖w2‖w3‖m)
1 w

x2+x4H(w1‖w2‖w3‖m)
2 and whether m

is satisfied. If these checks succeed, he returns Ŷ := w3/w
x5
1 . In case of local

revocation, Ŷ will allow retrieval of the user’s pseudonym with the organization
that issued the credential of which that user proved possession. In case of global
revocation, Ŷ will allow the CA to retrieve the identity of the user.



7.3 Encoding Expiration Dates and Other Personal Attributes

Expiration dates and other attributes of credentials can be encoded in the ex-
ponent e(U,O) as this is the organization’s choice. We need to divide the interval
Λ into subintervals. Then, if a user is required to prove certain attributes of her
credential, she proves that the exponent lies in the subinterval instead of proving
that it lies in Λ.

Acknowledgements

The authors are grateful to Ron Rivest for fruitful discussions and comments.
We thank the anonymous referees for their helpful and detailed remarks. The
second author acknowledges the support of an NSF graduate fellowship and of
the Lucent Technologies GRPW program.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE Journal on Selected Areas in Communications, 18(4):591–610, 2000.

2. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. In CRYPTO 2000, vol. 1880 of
LNCS, pp. 255–270. Springer Verlag, 2000.

3. M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key
encryption. Manuscript, 2001.

4. M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In EUROCRYPT ’98, vol. 1403 of LNCS, pp.
236–250. Springer Verlag, 1998.

5. J. Black, P. Rogaway, and T. Shrimpton. Encryption scheme security in the pres-
ence of key-dependent messages. Manuscript, 2001.

6. F. Boudot. Efficient proofs that a committed number lies in an interval. In EU-
ROCRYPT 2000, vol. 1807 of LNCS, pp. 431–444. Springer Verlag, 2000.

7. S. Brands. Untraceable Off-line Cash in Wallets With Observers. In CRYPTO
’93, vol. of LNCS. pp. 302–318. Springer Verlag, 1993.

8. S. Brands. Rethinking Public Key Infrastructures and Digital Certificates; Building
in Privacy . PhD thesis, Eindhoven Institute of Technology, the Netherlands, 1999.

9. E. Brickell, P. Gemmel, and D. Kravitz. Trustee-based tracing extensions to anony-
mous cash and the making of anonymous change. In Proc. ACM-SIAMs, pp. 457–
466. ACM press, 1995.

10. J. Camenisch and I. Damg̊ard. Verifiable encryption and applications to group sig-
natures and signature sharing. Technical Report RS-98-32, BRICS, Departement
of Computer Science, University of Aarhus, December 1998.

11. J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. Technical Report
Research Report RZ 3295, IBM Research Division, 2000.

12. J. Camenisch and A. Lysyanskaya. An Efficient Non-transferable Anonymous Cre-
dential System with Optional Anonymity Revocation. http://eprint.iacr.org/2001.

13. J. Camenisch and M. Michels. Proving in zero-knowledge that a number n is the
product of two safe primes. In EUROCRYPT ’99, vol. 1592 of LNCS, pp. 107–122.



14. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In CRYPTO ’97, vol. 1296 of LNCS, pp. 410–424. Springer Verlag, 1997.

15. R. Canetti. Studies in Secure Multiparty Computation and Applications. PhD
thesis, Weizmann Institute of Science, Rehovot 76100, Israel, 1995.

16. R. Canetti. Security and composition of multi-party cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

17. D. Chaum. Blind signatures for untraceable payments. In CRYPTO ’82, pp.
199–203. Plenum Press, 1983.

18. D. Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

19. D. Chaum and J.-H. Evertse. A secure and privacy-protecting protocol for trans-
mitting personal information between organizations. In CRYPTO ’86, vol. 263 of
LNCS, pp. 118–167. Springer-Verlag, 1987.

20. D. Chaum and E. van Heyst. Group signatures. In EUROCRYPT ’91, vol. 547 of
LNCS, pp. 257–265. Springer-Verlag, 1991.

21. L. Chen. Access with pseudonyms. In Cryptography: Policy and Algorithms, vol.
1029 of LNCS, pp. 232–243. Springer Verlag, 1995.

22. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In CRYPTO ’98, vol. 1642 of LNCS,
pp. 13–25, 1998, Springer Verlag.

23. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
In Proc. 6th ACM CCS, pp. 46–52. ACM press, 1999.

24. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
EUROCRYPT 2000, vol. 1807 of LNCS, pp. 431–444. Springer Verlag, 2000.

25. I. Damg̊ard. Payment systems and credential mechanism with provable security
against abuse by individuals. In CRYPTO ’88, vol. 403 of LNCS, pp. 328–335.

26. C. Dwork, J. Lotspiech, and M. Naor. Digital signets: Self-enforcing protection of
digital information. In Proc. 28th STOC, 1996.

27. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In CRYPTO ’84, vol. 196 of LNCS, pp. 10–18. Springer Verlag, 1985.

28. A. Fiat and A. Shamir. How to prove yourself: Practical solution to identification
and signature problems. In CRYPTO ’86, vol. 263 of LNCS, pp. 186–194, 1987.

29. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In CRYPTO ’97, vol. 1294 of LNCS, pp. 16–30, 1997.

30. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the
random oracle. In EUROCRYPT ’99, vol. 1592 of LNCS, pp. 123–139, 1999.

31. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. In Proc. 27th FOCS, pages 291–304, 1985.

32. O. Goldreich, B. Pfitzman, and R. Rivest. Self-delegation with controlled
propagation—or—what if you lose your laptop. In CRYPTO ’98, vol. 1642 of
LNCS, pp. 153–168, 1998.

33. J. Kilian and E. Petrank. Identity escrow. In CRYPTO ’98, vol. 1642 of LNCS,
pp. 169–185, Springer Verlag, 1998.

34. A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In Selected
Areas in Cryptography, vol. 1758 of LNCS. Springer Verlag, 1999.

35. S. Micali, C. Rackoff, and B. Sloan. The notion of security for probabilistic cryp-
tosystems. SIAM Journal on Computing, 17(2):412–426, 1988.

36. B. Pfitzmann and M. Waidner. Composition and integrity preservation of secure
reactive systems. In Proc. 7th ACM CCS, pp. 245–254. ACM press, 2000.

37. M. Stadler, J.-M. Piveteau, and J. Camenisch. Fair blind signatures. In EURO-
CRYPT ’95, vol. 921 of LNCS, pp. 209–219. Springer Verlag, 1995.


