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ABSTRACT

OneSwarm is a system for anonymous p2p file sharing in use
by thousands of peers. It aims to provide Onion Routing-like
privacy and BitTorrent-like performance. We demonstrate
several flaws in OneSwarm’s design and implementation
through three different attacks available to forensic investiga-
tors. First, we prove that the current design is vulnerable to
a novel timing attack that allows just two attackers attached
to the same target to determine if it is the source of queried
content. When attackers comprise 15% of OneSwarm peers,
we expect over 90% of remaining peers will be attached to two
attackers and therefore vulnerable. Thwarting the attack in-
creases OneSwarm query response times, making them longer
than the equivalent in Onion Routing. Second, we show that
OneSwarm’s vulnerability to traffic analysis by colluding at-
tackers is much greater than was previously reported, and is
much worse than Onion Routing. We show for this second
attack that when investigators comprise 25% of peers, over
40% of the network can be investigated with 80% precision
to find the sources of content. Our examination of the One-
Swarm source code found differences with the technical paper
that significantly reduce security. For the implementation in
use by thousands of people, attackers that comprise 25% of
the network can successfully use this second attack against
98% of remaining peers with 95% precision. Finally, we show
that a novel application of a known TCP-based attack allows
a single attacker to identify whether a neighbor is the source
of data or a proxy for it. Users that turn off the default
rate-limit setting are exposed. Each attack can be repeated as
investigators leave and rejoin the network. All of our attacks
are successful in a forensics context: Law enforcement can
use them legally ahead of a warrant. Furthermore, private
investigators, who have fewer restrictions on their behavior,
can use them more easily in pursuit of evidence for such civil
suits as copyright infringement.
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1. INTRODUCTION

OneSwarm [8,9] is a peer-to-peer (p2p) system for anony-
mous file sharing that is actively used by thousands of peers
and has been downloaded by hundreds of thousands of users.
Like Gnutella, peers can query for content and download it
from other users. The main design goal of OneSwarm is to
resist monitoring and traffic analysis attacks that are easily
performed on p2p file sharing networks such as Gnutella
and BitTorrent [11]. In short, OneSwarm aims to provide
Onion Routing-like privacy and BitTorrent-like performance.
OneSwarm’s architecture is based on a dense topology of
peers to ensure availability of content, probabilistic forward-
ing of queries to neighbors to thwart traffic analysis, and
application-level delays to thwart timing attacks.

OneSwarm provides privacy using a much different method
than Onion Routing (OR), which is the architectural basis for
Tor [6]. If a peer possesses queried content, it will not forward
the query, and it will answer the query only after some delay;
otherwise it forwards the query to each of its neighbors with
probability p, again after some delay. Thus, as the original
paper points out [8], colluding neighbors can determine the
chance that a target possesses content when the query is not
forwarded to them. For example, that analysis showed that
with p = 0.5 and a population of 1,000 users, the chances are
only 1% that 30 colluding attackers will succeed with 95%
precision in determining that a specific, targeted peer is the
source of a queried file. Users have downloaded and joined
the system with these expectations.

The network is sure to receive the attention of many civil
and government investigators. Our law enforcement part-
ners were able to download images of the sexual abuse of
prepubescent children through the OneSwarm system; our
past work with law enforcement has demonstrated the same
for Gnutella [11] and BitTorrent. We take the perspective of
criminal forensic investigators that seek to meet standards
of evidence for lawfully obtaining warrants for seizing and
searching computers observed to be sharing child pornogra-
phy. We note that, like all p2p networks, the vast majority
of users are sharing copyrighted materials rather than child
pornography, but as we explain below, investigations of copy-
right are easier than the criminal standard we hold to.



In this paper, we demonstrate several flaws in OneSwarm’s
design and implementation based on three different attacks
that are available to investigators. First, we prove that One-
Swarm is vulnerable to a novel timing attack that allows
just two attackers attached to the same target to distinguish
whether it is the source of queried content. When attackers
comprise 15% of OneSwarm peers, we expect over 90% of re-
maining peers will be attached to two attackers and therefore
vulnerable. The attack itself is simple: two attackers simul-
taneously query for the same content and they compare the
summed response time. If the summed application delay is
no greater than 600ms above the summed network roundtrip
time to the target, then the neighbor target is the source.
We derive the proper application-level delays that can deter
this attack, but also show that the increased delays result
in significantly higher path delays than are present in onion
routing [20] architectures. Our attack does not distinguish
whether a target is the source of a file or a trusted friend
of the source, but as we discuss, both are crimes within our
forensic goals.

Second, we show that OneSwarm’s vulnerability to at-
tackers that collude to compare probabilistically forwarded
traffic is much greater than was previously reported. We use
a corrected analysis that also considers the implications of
content popularity and is based on a realistic legal model.
As in papers that demonstrated flaws in the Vanish p2p
system [7,25], we show that the steep growth in effectiveness
of the attack as the population of attackers grows was not
considered in the original analysis of OneSwarm. We show for
this second attack that when investigators comprise just 25%
of peers, over 40% of the network can be investigated with
80% precision to find sources of content that is not popular.
The attack’s success increases with content popularity.

Third, we analyze the OneSwarm source code and find
that differences with the technical paper significantly reduce
the security of the system. Specifically, the probability of
forwarding is hard-coded to p = 0.95 instead of 0.5. For the
implementation in use by thousands of people, attackers that
comprise 25% of the network can successfully use this second
attack against 98% of remaining peers with 95% precision due
to this value of p. In comparison, should attackers comprise
25% of an Onion Routing network, at most 8% of the circuits
are vulnerable in an analogous attack.

Finally, we demonstrate a novel application of a known
TCP-based attack, which allows a single attacker to identify
whether a neighbor is the source of data or a proxy for it.
Using optimistic acknowledgements of data not yet received,
an attacker can drive up a target’s TCP send rate. If the
target is a proxy rather than a source, it will run out of data
to send before the true source can supply it. Hence, sources
and proxies are distinguishable. Since this requires a single
attacker, the entire network can be attacked with a trivial
number of attackers — however, only users that turn off the
default rate-limit setting are exposed. Onion Routing is not
vulnerable to this attack, due to chained proxies. For this
and the other two attacks, investigators can increase attack
success by repeatedly leaving and re-joining the network to
expose a new set of peers.

While our attacks are based on OneSwarm’s design, our
results are applicable to broad design principles for anony-
mous communication systems. For example, our TCP-based
attack works on anonymous systems that don’t use onion-
based encrypted layers when streaming data, and several

such open-source systems exist, including MUTE [16] and
RShare [17]. We revalidate the common wisdom that there is
a tradeoff between privacy and performance, and we quantify
OneSwarm’s anonymity so that it can be compared directly
to Onion Routing. We also develop a different attacker model,
one based on a conservative set of legal restrictions.

2. OVERVIEW OF ONESWARM

OneSwarm is a popular p2p system for anonymous file
sharing. There are North American (http://oneswarm.cs.
washington.edu), French (https://forum.oneswarm-fr.net),
and Russian (http://oneswarm.ru) communities each with
many thousands of users. Below, we include details of only
the OneSwarm mechanisms that are relevant to our analysis.
We examined the source code available from http://www.cs.
washington.edu/homes/isdal/OneSwarm-20110115.tar.bz2,
which is version 0.7. We note any relevant differences between
the technical paper and source code.

OneSwarm is based on a dense topology of peers that dis-
cover each other through a community server. Neighboring
peers can be trusted or untrusted. Trust is assigned by the
user, and trusted peers see none of the delays or other mech-
anisms that OneSwarm introduces, as if they were standard
BitTorrent peers. The content shared by trusted friends is
displayed explicitly in the OneSwarm GUI.

Topology Construction. Each peer has 26 neighbors, and
they can be added from out-of-band methods (such as email
or social networking sites) as trusted or untrusted friends, or
assigned as untrusted friends by the community server. The
simplest method of investigation is to be randomly assigned
to peers by the community server, and that is the case we
focus on here. The source code assigns peers between 22 and
39 neighbors; as peers quit, community server can assign more
peers to clients. When a target does have a trusted friend,
all privacy controls are turned off, and therefore becoming
a trusted friend is an appealing method of investigation;
we don’t investigate such an approach in this paper. But
we do quantify the affect of trusted friends on our attacks,
and we summarize the legal implications, which favor law
enforcement, in Section 4.3.

Neighboring peers communicate via SSL over TCP. Key
exchange is based on an underlying DHT; we elide the de-
tails. The public/private keypair used by each peer does not
change and is stored on the local computer. The public keys
of neighbors are also stored on the user’s local computer.
The user’s keys and neighbors’ keys are never deleted (until
the application is uninstalled) and are useful corroborating
evidence.

Searching for Content. OneSwarm is strongly linked to
BitTorrent, and peers can search for content by flooding a
query containing a text string or by a unique BitTorrent
infohash, which is a standard method of uniquely identifying
a torrent. When content is found, peers indicate they have
a path to the content, without disclosing whether they are
the source of the content or just a proxy to it. Pieces of the
torrent are then swarmed from all remote peers that provide
a path.

When a OneSwarm peer possesses queried content, it will
return a search reply message after some delay but not for-
ward the query any further. In the OneSwarm paper, the
delay is selected uniformly at random from 150-300ms. The
choice is consistent (random but deterministic) for the match-



ing content (by info hash). Two neighbors that query a source
for the same file will see the same delays. A peer that queries
for two different files from the source will see different delays,
but when a query is repeated it will see a consistent delay.
In the source code, query replies are returned with a delay
of 170-340ms. In the case of infohash searches, the delay is
chosen on the basis of the infohash; for text searches, the
delay is selected based on the content that matches the query.
When intermediaries receive a search reply, they forward the
message along the reverse path back to the original querier.
The reply messages are forwarded by intermediaries with no
delay in the source code, though the paper specifies that all
OneSwarm protocol messages are delayed.

If the peer does not possess the queried content, it forwards
the query to each of its neighbors with probability p; the
choice to forward a specific query to a specific neighbor is
random but deterministic. In the paper, forwarding of queries
is delayed again by 150-300ms, a value chosen at random but
again consistent for the specific query and the neighboring
peer. In the software, query replies are forwarded without
delay. In the paper, p = 0.5 is a suggested value, but it
is stated that “privacy-conscious users are free to decrease
their forwarding probability”. However, the software follows
a different design. p is set to a much higher value of 0.95 and
there is not yet a user-visible method to change the value
of p; users must edit and recompile the source. As we show,
this setting greatly reduces the privacy of the system.

Once the querier receives a reply, the content is requested
and relayed through the path of OneSwarm peers using the
BitTorrent protocol. There are no direct downloads between
peers unless they are neighbors, but peers cannot naively
identify these direct connections.

OneSwarm messages have no time-to-live (TTL) fields, as
they would allow attackers to determine if a neighbor is a
source of a file by falsely setting the TTL of an outgoing
query to 1. Without TTLs, queries might cause congestion
collapse from unlimited traffic, and so OneSwarm uses an-
other mechanism. As search replies are returned along the
reverse path to the querier, search cancel messages are sent to
any neighbor that received the original query. These cancel
messages are sent without delay and are designed to catch
up to and stop the propagating query.

Like BitTorrent, OneSwarm allows a form of parallel down-
loading (called swarming) that Onion Routing implemen-
tations, like Tor, do not support well. Our analysis of
OneSwarm’s privacy is so that users can evaluate if the
performance benefits are worth the decline in security in
comparison. The reason Onion Routing does not support
swarming well is that a separate 3-proxy tunnel is needed to
each peer offering part of a torrent.

Other details of OneSwarm’s operation do not introduce
vulnerabilities that we’ve discovered, and we do not describe
them further here.

3. PROBLEM STATEMENT & MODEL

In this section, we provide a problem statement, attacker
model, and our assumptions. Related work appears inline.

3.1 Problem Statement

OneSwarm was designed to thwart third parties from
monitoring peers on its p2p network. For years, academic
projects [3,15] have measured p2p networks. Private compa-
nies such as DtecNet, Peer Media Technologies, and Media

Defender have also monitored p2p networks to assist copy-
right holders in filing civil copyright infringement lawsuits.

For more than a decade [22], p2p networks have been an
enormous venue for the distribution of child sexual abuse
imagery, according to the US Dept. of Justice [21], past
work by ourselves [11,12], and others [5,10]. Our work
with law enforcement identified over 425,000 Gnutella users,
as identified by application-level IDs, sharing known files
of child pornography (CP) during 2010 [11]. Our focus is
on US-based criminal investigations of OneSwarm peers for
two reasons. First, criminal investigators are at a disadvan-
tage compared to other civil investigators. The former are
far more restricted by the legal process defined in the US
for law enforcement. Accordingly, this process provides a
lower bound on OneSwarm’s vulnerabilities. Second, our law
enforcement partners have verified there is CP shared on
OneSwarm, and thus it is of interest to them.

Investigator Goals. The investigator is essentially an at-
tacker, attempting to violate OneSwarm’s privacy promises,
though more limited in ability than is typically assumed [24].
Their goal is to identify a subset of all OneSwarm peers that
are each sharing (or conspiring to share) one or more files of
interest. The files are content that is known to be CP, and
this represents a small fraction of files shared on the network.
The overriding goal of the attacker is to gather evidence
sufficient for a search warrant so that the physical location
corresponding to a peer’s IP address can be searched, and
relevant physical evidence seized. Hence, we consider success
only when evidence can be gathered that is sufficient at least
for probable cause.

The OneSwarm threat model is designed to be resistant to
the disclosure of user behavior to an attacker with control
over a limited number of overlay nodes and that wishes to
monitor millions of users. In contrast, our investigators want
to quickly gather sufficient evidence for a subset of actors that
are breaking the law, all while expending minimal resources.
The investigator is not looking to catch everyone at once,
but can repeat attacks over time.

Probable cause is a lower standard than the beyond a
reasonable doubt standard needed for conviction. There is no
quantitative standard for probable cause, and courts have
defined it only qualitatively as a “fair probability” ; see United
States v. Sokolow, 490 U.S. 1 (1989). Accordingly, we say
a peer has been identified if the investigator’s statistical
confidence is above a level sufficient to serve as probable
cause. While Isdal et al. analyze attacks requiring 95%
precision, we believe that 80%, or perhaps even lower, is
still a conservative quantification of this standard, though of
course it depends on context. We evaluate different scenarios
throughout this paper.

Evidence is forensically valid if gathered using techniques
that are based on testable hypotheses, have a known error
rate, are based on accepted scientific methods, and are peer
reviewed; see Daubert v. Merrell Dow Pharma. 509 U.S. 579
(1993).

A basic tenet of criminal forensics is that investigators
have limited resources. Like narcotics crimes, the number
of persons arrested for CP possession is generally limited by
investigator resources, not by the number of suspects. Each
identified peer requires weeks of additional legal processing,
and so maximizing the number identified is not necessary for
success.



3.2 Model and Assumptions

The general approach adopted by law enforcement for
investigating CP trafficking is based on a series of legal
restrictions. We assume our attacker is in fact an investigator
in the US and following these restrictions. The law places
limits on how investigators can gather information prior to
the receipt of a search warrant. The primary restriction
is that investigators can only gather information in plain
view. For p2p networks, any traffic is in plain view if either:
(i) in the normal operation of the protocol the traffic can
be observed by any peer on the normal path (for example,
search queries that are broadcast to all peers, including the
attacker); (1) if the traffic is destined for the attacker (for
example, a response to the attacker’s search query). U.S.
v. Gabel, 2010 WL 3927697 is a recent ruling that confirms
this procedure’s legality. We do not allow attackers in our
model to analyze or compromise the contents of encrypted
traffic. We do not allow attackers to seize or compromise
peers through privilege escalation as that is outside the plain
view standard.

Our attacker controls some fraction of all peers in the
network. We detail three specific attacks on the anonymity of
OneSwarm in the following sections, and describe the value of
the evidence investigators discover from these attacks. Based
on these attacks, an investigator can determine if a specific
IP address is of interest. The first attack leverages timing
information; the second leverages traffic information; the
third leverages TCP information.

With a magistrate-ordered subpoena, the billing record of
an [P address provides a specific geographic location. With
the attack’s evidence provided as part of a court-issued war-
rant, this location is searched, any computer systems and
media are seized, and the media are examined for other evi-
dence of the possession or distribution of CP. Such evidence
includes CP burned to a DVD or other unassailable [2] evi-
dence of intent to possess. Often the evidence gathered for
the search warrant is not introduced at the criminal trial
unless the search warrant is challenged; thus it is essential to
investigations but must meet only the lower probable cause
standard.

In comparison, a civil claim of copyright infringement need
meet much lower standards. While a warrant cannot be
issued by civil investigators, the billing records and comput-
ers at the location can be subpoenaed based on merely a
relevance standard. Evidence is relevant if it “has a ten-
dency to make any fact more probable or less probable than
it would be without the evidence” [23]. As previous work
has shown [14] this bar is very low, and the smallest success
from our attacks would be sufficient for civil subpoena —
precision of 95% confidence, as we can achieve, is for a civil
subpoena extraordinarily high. Once at trial, only a prepon-
derance of evidence standard must be met for a judgment to
be awarded.

4. TIMING ATTACKS

In this section, we demonstrate that the current design of
OneSwarm is subject to a novel timing attack. We also show
that the deployed version of the system has this flaw. We
then derive a configuration of OneSwarm delays that deters
the attack; however, the new delays that OneSwarm enforces
for responding to queries must be increased to 133%—-400% of
the delays imposed by Onion Routing. Further, the resultant

search traffic on OneSwarm floods potentially thousands of
nodes.

The basic design goal of OneSwarm is to prevent attackers
from distinguishing between two cases for some targeted
peer T and the source of some file (we use file and content
synonymously):

e Case A: T is the source a particular file;

e Case B: T is not the source a particular file. Instead
T is only a proxy on the path to some other peer it does
not know, S, that is a source.
There is a major difference between the goals of the One-
Swarm security model and the goals our forensic analysis.
When the source of a file is a trusted friend, the OneSwarm
design considers that as an example of Case B. In our analy-
sis, we consider it as an example of Case A since the peer
has explicit knowledge via the OneSwarm GUI of what its
trusted friends are sharing on the network, and the peer is
therefore a knowing source of the content as well; we return
to this point in Section 4.3.

OneSwarm’s design defeats a Basic Timing Attack where
a single peer A issues a query to its neighbor T. The at-
tacker compares the application-level response time to the
network-based roundtrip time; if they are similar, then the
attacker judges that T is the source.

To defeat the attack, when a peer is the source a requested
file, it introduces an artificial delay of 150-300ms before
answering queries, as described in Section 2. This response
delay, r, is chosen randomly but deterministically for the
specific file.

If a peer does not possess a queried file, it forwards the
query on to its neighbors only after a delay, ¢, which is
150-300ms in the paper (but exactly 150ms in the current
implementation). This added delay allows the original querier
and intermediaries the chance to send a query cancel message
that will catch up with the propagating query. Recall from
Section 2 that the cancel messages are essential in preventing
traffic explosions, since there are no TTL fields in OneSwarm
messages.

OneSwarm peers do not keep a cache of previously an-
swered queries. However, we discuss the effects of query and
response caching on this attack later in the section and show
that the attack is not substantively affected.

The attack makes use of two central variables:

e [ is the one-way network layer delay between two peers.

We assume such delays are symmetric and let RTT = 2I.

e § is the application-level roundtrip delay in receiving
OneSwarm search query responses from a source. Since
OneSwarm enforces extra delays, this is not equal to
the RTT.

4.1 The Twin Timing Attack

OneSwarm is vulnerable to a new attack using simultaneous
queries from two attackers, which we dub the twin timing
attack. The peers don’t need synchronized clocks, but the
two queries must be issued before the target changes from
possessing the file to not possessing it, and before network-
layer conditions change drastically. The complete attack
appears in Algorithm 4.1 and refers to two attackers C; and
C>, both attached to a target peer T.



Figure 1: The attacker attempts to distinguish two
scenarios. In Case A, peer T is the source of queried
content. In Case B, peer S, one hop from 7T, is the
source.

Algorithm 4.1: TWINTIMINGATTACK(T')

1. C1 and C2 each measure their respective network roundtrip
time to T" as RTTy and RT'T5, respectively.

2. C1 and (3 simultaneously query T for the same content.

3. Let §; and d2 be the total delays after which Cy7 and Ca
receive replies, respectively.

4. If (61 4 62) — (RTTy + RTTy) < 600 ms, then T is the

source.

THEOREM 1: If T is the source of the queried content,
then (01 4 d2) — (RTT1 + RTT>) < 600 ms; else T is not the
source.

PROOF: This proof uses the delays defined in the One-
Swarm paper; the case for the delays defined in the software
is discussed subsequently. Case A is illustrated in Fig. 1(left)

where
e T is the source of a file;

e [; is the network delay between Cy and T}
e /5 is the network delay between C2 and T
e 1 is the response delay at T' for a query, whether by C1

or Cs.
The total delay for each attacker is
01 =201 +r (1)
02 = 2lo +1r (2)

Let suma equal the sum of §; and d2 for Case A.
suma =201 +r+ 2l +1r (3)
Because 7 is chosen from 150-300ms, we can bound sum4 as
suma < 600 + 211 + 2I2 (4)

Case B is illustrated in Fig. 1(right) and adds the following
variables.
e T is not the source S;

e [3 is the network delay between T and S;
e ¢ is the delay at T before it forwards the query to S;
In this case, the total delays are
01 =2l +q+23+r (5)
) :2l2+q+213+7' (6)

Let sump equal the sum of §; and d2 for Case B.
sump = 211 + 2q + 2l2 + 2r + 4l3 (7

Because all application-level delays are chosen from 150—
300ms, we can bound sump as

sump > 600 + 211 + 2l + 4l3 (8)

Let RTT: and RTT5 be the measure network roundtrip time
to T from C; and Cq, respectively. When T is not the source
(Case B), the difference of the summed network RTTs and
the total response delay summed is at least

sump — (RTTl +4 RTTQ) > 600 + 4i3 (9)

When T is the source (Case A), the difference of the summed
network RTTs and the total response delay summed is at
most:

suma — (RTTy + RTT5) < 600 (10)

In short, the attack works because the minimum value of

sump is always larger than maximum value of suma.
Therefore, if the difference between 2(11 +12) and 61 + J2 is

less than 600 ms, 7" is the source or T is knowingly conspiring

with the source as per Section 4.3. -

Caching query results. OneSwarm does not cache queries
or query responses at peers. Doing so would thwart the attack
as it would not be clear if a response was from a cached result
or the original source. To defeat this defense, the timing
would instead be on the request for the actual content. We
assert that requests for content must also have delays as
queries for content (forwarding and response) otherwise the
Basic Timing Attack and variants would be possible. To
defeat the twin timing attack on the requests for content,
OneSwarm peers would have to cache actual content that
was recently transferred, which is an enormous change to the
OneSwarm’s design. It would increase the resources required
of peers dramatically.

4.2 Software Vulnerability to the Attack

In the OneSwarm software, r appears to be chosen between
170-340ms for text queries. If the node does not have the
file, it will forward the query after a delay of ¢ = 150ms
but it appears that there are undocumented delays as well.
An added detail is that if a query is for a specific infohash,
the operation is slightly different. First, the source chooses
a value for r between 170-340ms. Then, the querier learns
the torrent’s meta-information after this delay, it requests
specific pieces, and the responses to each are delayed by 20—
40ms by the source. We analyze only the text query process
in this paper. When responses to a query are forwarded to
an intermediate peer there is never a delay in forwarding.
With these settings in the software, the proof remains valid.
However, the multi-threaded nature of the software makes
it impossible for us to be sure of its actual operation. In
fact, in examining the software, we found unintended delays
unknown to the developers themselves, which were fixed in
later versions that we did not test. An added delay of about
100 ms is unintended in the code according to the developers.
We rely on experimentation to empirically validate the attack
on the software since its exact operation is unclear.

We implemented the attack on a set of four machines
within our building on separate networks, taking the roles
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Figure 2: Results of the Twin Timing Attack imple-
mentation with 200 trials on a small network. The
distribution of timing values is presented using a ker-
nel density estimator. The two cases are from two
distinctly different distributions.

shown in Figure 1. We did not attack any real users of
OneSwarm because we did not have any ground truth for
what they actually shared, so the experiments would have
been impossible to evaluate. The attack fails when RTT
variance is high and would be less successful across some
Internet paths. However, if we had performed the attack on
a node we controlled on the Internet, we would have not been
able to isolate the aspects of OneSwarm’s implementation
that allow the attack. Moreover, we could not have asserted
that the amount variance we observed would be typical of
every path on the Internet. Stronger security is more often
provided by a known design quality rather than relying on
protean characteristics of Internet traffic that cannot be
controlled or relied on, and we tested the former case here.

In our tests, each machine was running version 0.70 of
OneSwarm; peers C7 and C> were instrumented to display
the relevant timing information, and network-level RTTs
were determined by ICMP pings. We show the results of
200 trials of the attack in Figure 2 for 200 files, one trial
per file. The results for each case is displayed using a kernel
density estimator (KDE). The two cases, of possessing or
proxying the file, are clearly and always differentiable as
samples from distinct distributions. In our experiments, the
maximum summed application-layer delay was 816 ms when
T was not the source. The minimum application-layer delay
when T" was the source was 996 ms. The KDE representation
of the distribution increases the maximum and minimum
of each case, yet the distributions remain distinct. As we
noted in the introduction, when attackers comprise 15% of
OneSwarm network, we expect 90% of the remaining peers
to be connected to two attackers and therefore vulnerable;
see Eq. 20 in Section 5.

4.3 Trusted Neighbors

Trusted relationships are an important aspect of One-
Swarm’s design. When a neighbor is trusted, there are no
delays for OneSwarm messaging. Accordingly, the Twin
Timing Attack will not always distinguish between a target

and its trusted friends as sources of a specific file, however,
this is not a problem.

When peers act as a proxy for a trusted friend sharing child
pornography, it is also a serious crime, and the attack’s result
is sufficient evidence of such criminal distribution. Filenames
shared by trusted peers are shown in the target’s GUI, and
therefore a target of the Twin Timing Attack is distributing
CP with knowing intent — the target can be charged with
conspiracy to distribute; see 18 U.S.C. Sec. 2252A(b)(1).
Furthermore, by setting a trusted relationship, the target
gains a non-pecuniary benefit of better performance, which
incurs a greater punishment; see US v. Schaefer, 472 F.3d
1219 sentencing memo, and USSG Sec. 2G2.2(b)(3)(B). Ev-
idence found at the target could serve to support a search
warrant of the trusted peer that is actually sourcing the child
pornography, and so finding the proxy for a source of CP is a
good strategy for investigators. In short, trusting a neighbor
raises a significant criminal liability. While the system is
designed to obscure whether a peer or its trusted neighbor
is sharing a file, the distinction does not concern or thwart
law enforcement investigations as in either case the target
is breaking the law. The same conclusion can be drawn for
civil investigations, where the bar of relevance is lower; see
Section 3.2.

4.4 Deterring the Attack with Longer Delays

We now show that defeating the basic timing attack and
the twin timing attack requires that the range of response
delay r be larger than the forwarding delay q. However, the
search cancel messages place a lower bound on the value of
g. Under these constraints, finding content 1 hop away will
require a delay of 4 times an expected Internet RT'T. Finding
content 3 hops away requires an additional delay of 12 times
the expected RT'T. While Onion Routing does not directly
support search for content, its chain of 3 proxies (at a cost
of 3 times the normal RTT) has much better performance
when searching for torrents via Web sites, or when proxying
the traffic of p2p systems that do support search.

First, we note that to defeat the Basic Timing Attack,
OneSwarm enforces the following constraint for an expected
RTT [8].

min(r) > RTT (11)

With this minimum delay, a response from a target could
appear to have come from a trusted peer, one hop away
from the target. In the design, this value is chosen between
150-300ms to emulate the expected Internet delay of one to
two hops.

THEOREM 2: To defeat the twin timing attack, the fol-
lowing constraint must hold

max(r) > min(q) — min(r) + RTT3 (12)

where RT'T5 is the roundtrip time between the Target and
the Source as shown in Figure 1(right). We let max(-) and
min(-) represent the maximum and minimum values of a
given delay variable taken from uniform distributions.
PROOF: The twin timing attack is possible because of the
difference between the summed total delay for Cases A and
B. Based on logic similar to our proof of Theorem 1 (Egs. 9
and 10), the attack is defeated if

min(sump) — maz(suma) < 0 (13)
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Figure 3: OneSwarm query and cancel message de-
lays.

By first substituting Eqgs. 3 and 7 (from the Proof of Theorem
1) into Eq. 13, it can be reduced to

min(2q + 2r + RTTy+RTT, + 2RTTs)
—max(2r — (RTT, + RTT?)) <0 (14)

The target does not control the min or max values of the
network-determined RTT, and thus must assume the worst
case of min(RTT) = max(RTT). Therefore, we have

min(q) + min(r) + RTTs — maz(r) <0

which is equivalent to Eq. 12. The Theorem holds, for
example, when ¢ = 0 and the range of r is greater than RTT5.
Since T' can measure RT'T3 and it sets r, it can defeat the
twin timing attack with correctly set delays. Moreover, it is

not possible for the attacker to measure RTT5. -

However, when ¢ = 0, cancel messages will not work at all.

We now prove the constraints that are necessary for cancel
messages to work correctly. Unlimited propagation of query
messages would prevent OneSwarm from scaling to large
topologies: all nodes would receive all query messages, which
is untenable.

Cancel messages are illustrated in Fig. 3.

e () is the querier of content;

e S is the source of the content;

e X1 will forward the query to its neighbors if not stopped
by @Q;

e g is the query delay randomly chosen by X1 before it
forwards the query to the rest of the network.

e 7 is the response delay chosen at random by S for a
query by Q.
Once @ receives a response from S, it will immediately
forward a cancel message to X1. In this scenario, X1 is
representative of T’s 37 other neighbors; X2 is representative
of X 1’s neighbors, each having 38 neighbors, and so on.

THEOREM 3: For a querier’s cancel messages to stop all
instances of the query message within A hops of @, then

maz(r) < min(q)h — 2. (15)

PROOF: We compare the latencies of the two messages as
illustrated in the figure (dropping subscripts for link delays).
For the cancel message to stop search queries within h hops,
the following inequality must hold

maz(r)+20 + hl <h(min(q) +1) (16)

which directly reduces to Eq. 15. -

THEOREM 4: The constraints of the Basic Timing Attack,
Twin Timing Attack, and search cancel messages imply that

min(q) > (61)/(h — 1). (17)

PROOF: Starting from Eq. 12, we substitute max(r) with
the bound from Eq. 15. By then substituting min(r) with
the bound from Eq. 11, we have the inequality stated in

Eq. 17. .

4.5 Performance Implications

Given that we have bounds on ¢ and r that are required
to defeat these attacks while ensuring cancel messages work,
we can now determine the performance implications for One-
Swarm. Specifically, we calculate the length of time to re-
ceive query responses from sources for these new delays. A
large component delays in any implementation of Onion
Routing come not from network latency, but rather from
non-intentional application-layer queuing delays, and this is
true in OneSwarm as well. Here, we perform a comparison of
minimum delays imposed by the architecture of the systems
that enables privacy, independent of traffic load or other
external factors.

First, we determine for the existing OneSwarm implemen-
tation the number of hops queries can travel before being
cancelled by a source one hop from a querier (as in Fig. 3.
In the source code, maz(r) = 340ms, min(r) = 170ms, and
q = 150ms. Therefore, when [ ~ 75ms, and from Eq. 15, we
know that h > (maz(r) + 21)/q = (340 + 150)/150 = 3.26;
therefore h = 4 since it can only take on an integer value.
We can show that the earliest that messages can be stopped
is h > (min(r) +21)/q = (170 4+ 150) /150 = 2.13; therefore,
messages cannot be stopped before h = 3 hops from the
querier. For smaller values of [, 2 < h < 3, which we assume
below as a conservative estimate.

Second, given this value, we can determine the number
of peers that receive traffic for each query, even if answered
by a direct neighbor. When h = 2, and p = 0.95 and with
a full topology, each query will reach (39 * 0.95)® = 1373
peers. When h = 3 this value increases to 50,859 peers; the
importance of limiting A = 2 is clear.

Third, given h = 2, we can now solve for values of ¢ and r
that protect OneSwarm users. From Eq. 17: ¢ > % = 61;
and from Eq. 11: min(r) > 2l; and from Eq. 12: maz(r) >
101.

Finally, these values allow us to compute, for a version of
OneSwarm immune to timing attacks, the expected time ¢
it takes to receive a response from a source x hops away is
E[t] = 8zl. For x=1, E(t) = 8l; For x=3, E(t) = 24l.

In comparison, because Onion Routing always consists
of a chain of 3 proxies, the delay in receiving data from
a Torrent search engine is E[t] = 6l. Therefore, for any
query, OneSwarm is always one RTT slower in terms of
roundtrip delay; for many queries OneSwarm is about 4
times slower. The number of nodes that receive query traffic
(in the thousands) is inefficient compared to contacting a
single web server over an Onion Routing circuit.

S. COLLUSION ATTACK REVISITED

The collusion attack is a fundamental threat to OneSwarm
peers as it based on only two aspects of the protocol’s design:
that queries are forwarded with probability p when the peer



Non-attacker(s)
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Figure 4: Setting for collusion attack. One attacker
queries for content and the remaining attacker each
have a probability p of receiving the query if T is not
the source.

doesn’t have requested content; and that each peer has up
to 39 neighbors. If all other attacks we present in this paper
are patched, the collusion attack remains. In this section, we
demonstrate that Isdal et al. incorrectly calculate the chance
of this attack in two ways. First, they overestimate the
success of the attack by assuming attackers are chosen with
replacement. Second, they underestimate the quick ramp up
of the attack’s success as the number of attackers grows. The
collusion attack is significantly easier in OneSwarm than in
OR. For example, we show the chances of success reach near
100% when attackers comprise 25% of the network, whereas
success for OR would remain below 10%.

5.1 The Collusion Attack

As described in Section 2, if a peer receives a query and
does not have the requested file, it forwards the query to
only a subset of its neighbors. This subset is chosen based
upon a forwarding probability p.! The decision to forward is
decided independently for each piece of unique content and
each neighbor and remains consistent.

The collusion attack is illustrated in Fig. 4. A set of k
colluding attackers labeled C4, ..., C} are directly connected
to a target peer. When C issues a query to target 7' that
has the requested file, T' does not forward the query on to
its neighbors. Instead it sends back a reply after a randomly
chosen delay. Therefore, if none of the other k — 1 colluding
attackers receive the query from 7', there is a non-negligible
probability that 7" may be sharing the file requested by
C'1. This probability, which we call the attack’s precision,
is greater when k is larger. For law enforcement, higher
precision better justifies having sufficient probable cause, as
we discuss in Section 3.

Isdal et al. calculate that with p = 0.5, achieving 95%
precision requires that at least kK = 6 attackers (a querier
and 5 colluders) to be directly connected to the target. The
chance that a target that is not a source will forward the
query to at least one of the k — 1 colluders is [§]

1—(1-p)*! (18)

For example, we have 1 — (1 — 0.5)% = 97% (which is greater
than 95%). Isdal et al. state the chances that 6 or more
colluders are attached to a particular peer when C' = 30 of
the N = 1000 peers are attackers is “much less than 1%” and
“given by the binomial CDF” [8]. While they don’t state a
formula, to use the binomial, we let A be a random variable

"Here p = 1 — py, where p; is Isdal et al.’s notation for the
probability of not forwarding a query.
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Figure 5: (top) For a fixed probability of forwarding
p = 0.5 (the value suggested in the paper), the plot
shows the required attackers k£ given the the popu-
larity of content ¢ from Eq. 23. Each line is a differ-
ent precision require ¢; (bottom) The same plot for
fixed probability of forwarding p = 0.95 (the value
hardcoded in software) again from Eq. 23. Both
graphs use logscales.

that denotes the number of attackers assigned to a target.
For N peers of which C are attackers, each with 26 neighbors,
we have

26
P{AZk} =) (26) (%)i(l - %)zeﬂﬂ 19)
i=k

2

Unfortunately, the binomial is not entirely accurate, and the
statement “much less than 1%” does not give a complete
picture.

5.2 Re-Deriving the Attack

We re-derive the attack effectiveness with several changes.
First, because community servers select neighbors for peers
without replacement, the hypergeometric CDF is the correct
model. Second, the paper states peers have 26 neighbors, but
in the code, peers have at least 22 but up to 39 untrusted
neighbors. We let U be the number of untrusted neighbors
of a peer.

U (C\(N-C
P{A>k}= Z M

= @

Therefore, we have in the worst case that U = 39 for Eq. 20.

(20)



In the best case, U = 0. In reality, for each trusted neighbor,
there is a probability that it is an undercover investigator,
but it is not a scenario that we evaluate here.

The next step is to determine the value of k that defeats
OneSwarm, and we do not use Eq. 18. Instead, we let X
denote the event that the target 7" has content that was
searched for, and let Y denote the event that none of the
k — 1 colluders were forwarded the search query issued by
Ci. From Bayes’ Theorem, we can define the precision of
the collusion attack as

P(Y|X)P(X)
(Y|X)P(X) + P(Y|X)P(X)

PXIY) = (21)
We know that P(Y|X) = 1 because given that T" has the
content, the k — 1 colluders will not be forwarded the search
query. In general, not every peer will have the files of interest
that the attacker queries for; to model this situation simply,
we let P(X) = v, where 0 < v < 1 interpreted as the
popularity of some file of interest being queried. We know
that P(Y|X) = (1 — p)*~'. Finally, we let ¢ = P(X|Y), and
substituting we have

= v 22
O T )
Solving for k we get
s
N .

Fig. 5(top) plots Eq. 23 for p = 0.5 (the value suggested
in the paper) showing the minimum k value required for
different precision levels and v as an independent variable.
Fig. 5(bottom) shows the same equation for p = 0.95 (the
value hardcoded in software). Each plot shows three lines
corresponding to precision values of 95%, 80%, and 60%. The
first is the value used in Isdal et al., the second is conservative
for probable cause, and the last is weak evidence for probable
cause. (Note that the value of k is independent of U.)

For example, for p = 0.5,v = 0.1, and ¢ = 0.95, then the
attack requires k = 8 attackers (rather than 6); however, the
more important point is that the value of k varies quite a
bit with v. Roughly, as content is an order of magnitude
more popular, k typically halves in size. Comparison of the
two plots makes the obvious point that p also has a strong
influence on k. Releasing the software with a higher value
for p than documented in the paper reduced the required
number of attackers by 60-75% in all cases. Finally, when
p = 0.95, the plots demonstrate that values of k& > 4 are
definitely sufficient for probable cause for content that is
sourced at only one in a thousand peers.

The false positive rate for the collusion attack is the prob-
ability that the target does not forward the query to any of
the colluding attackers given that it is not the source of the
file of interest:

FPR=(1-p)*! (24)

This quantity is less than 0.0025 for £k > 3 and p = 0.95.
Thus investigators are at a very low risk of falsely suspecting
any peer in OneSwarm as deployed. When p = 0.5 the false
positive rate is less than 1.6% only when k > 7; note that
for files less popular than v < 0.06, the same bound of k > 7
holds for precision values of 95% (see Fig. 5(top)) and so the
requirement of a low FPR is not an significant issue for the
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Figure 6: Plots of collusion attack success (Eq. 20
where U = 39) and first-and-last attack against OR
(Eq. 25): The probability of success for the collusion
attack on OneSwarm for a given required minimum
value of k. The plot also shows the comparable at-
tack success against OR (first and last peers on a
circuit).

investigator. Querying for multiple files of interest will affect
the FPR, as we discuss in Section 5.3.

Comparison Against Onion Routing. Isdal et al. do not
quantitatively compare OneSwarm directly against any other
privacy mechanism. As a basic comparison we analyze the
following simple OR attack. Peers hiding behind a OR circuit
can be deanonymized if attackers are selected at random to be
in the first and last positions. Selection of these nodes occurs
without replacement. Once in these positions, attackers
can use a well-known attack of sending a specific sequence
of duplicate packets to determine if they are on the same
path [20], essentially with a precision of 1 and FPR of 0.
Therefore, the chances of a circuit being compromised in a
OR network of N peers where C' are attackers is

P{A =2} = (F)(59)- (25)
Mechanisms such as guard nodes [26,27] can make this attack
on OR more difficult. However, in general the simplicity of
the model in Eq. 25 prevents us from comparing OneSwarm
to Tor directly, instead of Onion Routing.

We use this passive attack because it’s a tractable, con-
ceptually simple presentation of the collusion attack on the
OR architecture, allowing a straightforward comparison with
OneSwarm’s architecture. A more accurate model would
consider the active attacks that are available against Tor,
which are more effective than Eq. 25. This would require
updating Bauer et al. [1] with the latest Tor path selection
algorithm and measurements of Tor, to model weighted path
selection. It wouldn’t change our analysis of OneSwarm,
and we expect it wouldn’t change the relative comparison,
barring a gross bias in the Tor route selection algorithm.

Fig. 6 compares effectiveness of these attacks against One-
Swarm and OR. The plot is independent of a chosen value
for p; to determine the required value of k, we first choose a
value of p and consult Fig. 5(top or bottom). There are a
number of implications to note. First, there is a non-linear,



sharp increase in attacker success as they increase their pro-
portion of the OneSwarm network. When the attack requires
only that k& > 4, the chances of success are 98% as attackers
comprise 25% of peers in the network. Note that k > 4 is
sufficient for even unpopular content when p = 0.95, which
is the hard coded value in the released software. However,
even if p = 0.5, requiring larger values of k, the effectiveness
of the attack on OneSwarm grows far more quickly than the
simple attack on OR.

All of the previous analysis assumes that the attackers
join the network once. As such, they can only investigate
peers to whom they’ve attached sufficient colluders. But
attackers can repeatedly quit and rejoin the system with new
identities, thereby investigating more and more peers over
time. OneSwarm offers no Sybil attack protections.

Trusted Neighbors. Our attacks are worst case in that
we assume the peer has 39 neighbors. To give a point of
comparison, if the node has only U = 20 neighbors from
the community server (and 19 trusted friends) then the
investigator’s job is harder. For example, the k£ > 4 line in
Fig. 6 shifts roughly to almost where k > 8 is in the figure;
these values can be compared more directly by re-plotting
Eq. 20. Again, attackers can execute this attack as many
times as necessary — churn in the OneSwarm population
will force the community server to assign and re-assign new
untrusted relationships.

5.3 Practical Considerations

The Multiple Comparison Problem. A naive version
of the collusion attack would see investigators joining the
network as described above. The investigator would then
test each connected peer for possession of all known files of
interest, and claim probable cause for each peer which was
determined to have at least one file. This naive version is
susceptible to the well-known multiple comparison problem of
testing sets of hypothesis at once. We elide the analysis here,
but we note the false positive rate quickly grows unusably
high as the number of files tested per peer increases.

There are several ways to limit the effect of this problem,
each of which centers around limiting the number of different
files investigators check a peer for possession of. One such
method is as follows. First, investigators survey the network
for files of interest by searching for well-known keywords. In
other p2p networks such as Gnutella and eDonkey2000, these
files are typically named with explicit and descriptive names;
our law enforcement partners confirm the same appears to
be true of OneSwarm. The files are rank ordered by their
apparent popularity in the system. Investigators then sweep
through the network by performing the collusion attack for
the top n files, where n is chosen to keep the FPR acceptably
low. Only once these peers have been fully investigated,
including offline searches and the subsequent legal process,
do investigators repeat their survey to determine the next
rank-ordered list to investigate.

Post-Warrant Confirmation. OneSwarm peers connect
to one another using SSL bootstrapped by their RSA key
pairs. A OneSwarm peer stores keys of neighbors and its
own key on the local file system. Once a search warrant is
executed and a machine seized, the investigator can tie that
machine to specific network traffic based on the recovered
key file. Even if the content has been deleted locally, the
mechanism can confirm with cryptographic precision if this
machine is the machine that transferred it. BitTorrent clients

Attacker Target Source

Attacker Target and Source

Figure 7: An attacker distinguishes two scenarios.
In the first, the target is a proxy for the real source
of a file. The goal is to increase the rate of trans-
fer, t, from the target so that it is greater than the
rate of transfer from the source, s. The buffer at
the proxy should empty before the transfer is com-
pleted. In the second case, the target is the source,
and therefore, for any value of ¢, the transfer should
complete.

are subject to forensic tagging [12], in which investigators
covertly ask remote machines to store nonces. These nonces
can later be recovered to confirm that the correct machine
was seized. However, OneSwarm makes this task redundant
since all outgoing traffic is signed and the keys are stored
persistently.

6. TCP-BASED ATTACKS

In this section, we demonstrate a novel adaptation of a
known TCP-based attack [18] that can identify whether a
OneSwarm peer is the source of data or a proxy. Peers that
do not rate limit outgoing traffic are vulnerable. OneSwarm
happens to turn on rate limiting by default to 80% of a test
transfer to a central server, but nothing prevents eager users
from turning off the rate limiting. A more robust defense
without rate limiting is to probabilistically drop outgoing
packets and audit incoming selective acks. In this section,
we detail the attack and its limitations, show experimental
results for a simplified implementation of the attack executed
on a simple non-OneSwarm transfer, and we discuss defenses
to the attack.

The attack leverages optimistic acking [18], where a receiver
sends TCP acknowledgements for data before it is received,
increasing throughput. Sherwood et al. [19] leverage the
same mechanism to perform denial-of-service attacks against
a server. Our contribution is in showing that the same
mechanisms can be used to distinguish proxies from sources.
The attack is not specific to OneSwarm; anonymous file-
sharing protocol designers should be aware of the attack.

Fig. 7 illustrates our TCP attack scenario. An attacker
requests a file from a target. The attacker induces a higher-
bandwidth connection between itself and target than between
the target and a potential source of data. If ¢ can be made
greater than any potential s and the target is not the source, it
will stall out. The stall occurs because the target’s application
level buffers will run out before the actual source can fill
them. Our tests show that it is possible to induce a sending
rate that is higher than is typical even between nodes within
the same building.

In our tests, we show that the attack can succeed in prac-
tice. In sum, OneSwarm is vulnerable (when rate-limiting is



Algorithm 6.1: DETECTPROXY (maxExtra, rate)

local p, ack, extra,last Received, max Received
while (download is not complete)
p = RECEIVEPKT (¢timeoutV alue)
if timeout occurred
ack = lastReceived
extra =0
if too many timeouts
then return (“proxy”)

then

do lastReceived = SEQNUM(p)

if SEQNUM(p) > max Received
then maxReceived = SEQNUM(p)

extra += rate

extra = MIN(extra, maxExtra)

ack = mazxReceived + extra

else

SENDACK (ack)
return (“sender”)

off) because it defends against only application-level timing
and traffic attacks, and does not defend against an attacker
breaking the underlying network abstraction.

Trusted Peers. When a peer has trusted peers (that are not
undercover investigators), they reduce the chances that an
investigator has an opportunity to execute the TCP attack,
but do not affect the success of the attack itself. Vulnerable
peers are those that have at least one untrusted relationship
to an investigator; i.e., set k = 1 in Eq. 20.

6.1 Attack Details

We assume that targets of the attack follow TCP speci-
fications properly, but we place no limit on the connection
bandwidth between peers. The attacker does not follow TCP
rules for receivers, by incorrectly acking packets that were
lost and optimistically acking packets that have not yet been
received. The receiver also always advertises a large TCP
flow control window so as not to inhibit the sender.

The idealized attack algorithm is presented as pseudocode
in Algorithm 6.1. The pseduocode assumes a TCP connection
has been set up and a download requested via application-
level messaging. The input to the algorithm is the rate
at which the optimistic acking increases and the maximum
value it can reach. Reasonable values can be found through
heuristic hill-climbing.

Whenever a packet is received, the attacker sends an ack for
the highest sequence number ever received from the sender,
regardless of whether earlier bytes in the TCP flow were
lost. Because acks are cumulative in TCP, the skipped over
byte sequences are not a concern of the sender. Additionally,
the receiver optimistically acks extra segments it has yet to
receive but are likely on the way. The value of exrtra starts
at 0 and the receiver increases it by rate bytes (and rounded
to segment sizes) for each packet received, regardless of loss
or duplication, until a given mazFExtra value is reached.

The reason to grow this optimistic acking slowly is that
the sender will silently drop acks for packets beyond what it
has sent. If a sender receives overly optimistic acks, it will
not close the connection, as TCP was designed to manage
the occasional odd error. Accordingly, thoughtless optimistic
acking by the attacker will have no effect, and the attacker

must grow the window commensurately with the sender’s
values. As the window grows, heavy packet loss will occur,
and the attack is partly blind in that sense.

If attacker grows the sender’s window too aggressively, the
RTT calculation at the sender can become mis-estimated as
a very small duration, making a timeout exceedingly easy.
When a timeout occurs, the sender will back off, cutting
the rate drastically, and will resend old data, which is very
bad for the attack. Therefore, if the receiver doesn’t receive
data by some timeout (250ms in our implementation), an
ack packet is sent to the sender for the latest packet received,
rather than the highest received. In our tests, this quickly
re-initiates the data flow, and the attacker can return to
acking the highest byte sent.

Pipelining. OneSwarm is BitTorrent based, and therefore
requests for a file are piecewise. There are seven BitTorrent
piece sizes in common use, and the most common are 256kB,
512kB, and 1MB. Our tests show that for the two smaller
size, the sender barely gets out of slow start before the attack
is complete. Inside of slow start, the congestion window
is so small that the attack cannot achieve significant gains.
However, pipelining of piece requests has been a feature
since the protocol was introduced in 2003 to avoid reseting
TCP’s bandwidth algorithm and causing “disastrous” transfer
rates [4]; this pipelining prevents the attack from stalling.

6.2 Attack Experimentation

We implemented the attack in about 700 lines of C++ to
test its feasibility. The attack implementation and details
of our measurement experiments (including packet header
logs) are available from http://traces.cs.umass.edu. Our
prototype implementation attacks the HT'TP protocol rather
than the BitTorrent protocol, as HT'TP has fewer implemen-
tation details to manage. In principle, the same attack will
work on pipelined BitTorrent requests. Further, our imple-
mentation does not implement the SSL handshake between
peers that OneSwarm requires.

Methodology. We configured a network as shown in Fig. 7.
We could not use PlanetLab for this experiment since it
enforces a bandwidth cap, which is splits among all virtual
hosts on each node [13]. The attacking machines were lo-
cated at UMass, Wesleyan (CT), and UT Arlington (TX);
the targets were a superset of the attacking machines and
also included UCSB (CA); and the proxied sources at Central
Michigan University, Harvey Mudd College (CA) and Mojo-
host, Inc. (FL). We chose these proxies to model relatively
close (UCSB and HMC are both in CA) and distant (UCSB
to Mojohost crosses the country) peers. We served the file
directly through an httpd daemon from the targets, and we
used netcat to act as an application-level proxy to the other
sources. Our target file was a 10MB ISO image. We used
wget as the well-behaved requester. We fixed the parame-
ters of our attack implementation at relatively conservative
values. We set the maxExtra value to 50 TCP segments for
all connections, though in our experience this value should
vary per bandwidth of the connection to the target. We
report the bandwidth speedup of the attack, rather than
seeking a maxFExtra value that causes a timeout (as per
Alg. 6.1). We ran measurement experiments across all paths
(27 in total), varying type of retrieval (wget or tcp attack)
and potential source (direct from UCSB, or proxied to either
HMC or Mojohost). Each measurement was repeated five
times.



Path

Target Possesses File |

Target Proxies File |

Attacker Target Proxied Source wget attack (relative) wget attack (relative)
CMich 1.29 MB/s * 686 KB/s *
UCSB HMC 1.25 MB/s * 646 KB/s *
Mojohost 686 KB/s  * 714 KB/s  *
CMich 3.66 MB/s 1.43 1.09 MB/s *
Wesleyan  UMass HMC 3.56 MB/s 1.96 1.04 MB/s *
Mojohost 357 MB/s 1.44 933 KB/s  *
CMich 350 kB/s 1.90 311 KB/s 1.07
UTA HMC 385 KB/s 1.46 329 KB/s 1.05
Mojohost 344 KB/s 1.26 304 KB/s 1.21
CMich 281 KB/s 13.5 274 KB/s 4.42
Wesleyan HMC 277 KB/s  13.6 292 KB/s  3.94
Mojohost 270 KB/s  14.0 280 KB/s  3.74
CMich 446 KB/s 2.84 407 KB/s 1.75
UMass UCSB HMC 413 KB/s  3.13 475 KB/s  1.48
Mojohost 402 KB/s  3.12 342 KB/s  2.06
CMich 158 KB/s 10.4 168 KB/s 8.48
UTA HMC 183 KB/s 10.2 178 KB/s 7.95
Mojohost 200 KB/s  8.76 209 KB/s 7.15
CMich 94.7 KB/s 16.8 117 KB/s  11.3
Wesleyan HMC 86.6 KB/s 19.2 115 KB/s  11.2
Mojohost 93.7KB/s 18.0 116 KB/s  12.2
CMich 1.61 MB/s 0.861 681 KB/s 0.976
UTA UCSB HMC 1.69 MB/s 0.793 659 KB/s  1.01
Mojohost 1.41 MB/s 0.903 707 KB/s 0.920
CMich 2.02 MB/s 0.750 1.25 MB/s 0.850
UMass HMC 3.58 MB/s 0.458 1.04 MB/s 1.02
Mojohost 1.98 MB/s 0.678 1.03 MB/s 1.05

Table 1: Results of experiments that test our implementation of the TCP-based attack. Reading left-to-right,
the first three columns denote a path, corresponding to the setup in Fig 7. The next pair of columns show,
for the case where the target possesses the file, the mean throughput of the well-behaved downloader across
five runs, and the relative mean throughput of the attack (for example, a value of 2.0 indicates the attack
had twice the throughput of wget). The final pair of columns show the mean throughputs for the case where
the target is proxying the file. The attack succeeds when the speedup for a possessed file is greater than the
speedup of a proxied file (including timeouts). An asterisk indicates that all measurements timed out.

Results. Our results, shown in Table 1, show that the attack
can differentiate between files served directly by the target,
and files proxied by the target. Among all files made available
by the target, those served at the highest rate are possessed
by the target; those served at lower rates (or that result in
timeouts) are proxied from a different source. The attack
succeeds when the relative speedup of the attack (versus
wget) is higher when the target is the source compared to
when the target is the proxy; this is true in most cases even
though mazExtra is fixed. While preliminary, these results
indicate that the attack can succeed in practice, though we
do not estimate error rates for this attack in general given
these limited tests.

Limitations. We note that the attack depends upon the
attacker being able to force the target to serve files faster
than they can be retrieved from potential sources when prox-
ied. This assumption does not always hold. The attacker
could have poor connectivity to the target; this is easily de-
tected in advance, and attackers can acquire high-bandwidth
connections. Less avoidably, there could be rate limiting or
traffic shaping in place, or the target, acting as a proxy, may
have an extremely high bandwidth connection to the true
source. In the latter case, the machines may be co-located,
which is acceptable for a search warrant, or the owner of the

machine may choose to cooperate with law enforcement in
investigation of a crime. This type of cooperation is typical
in practice, such as when investigations of non-anonymous
systems lead to an innocent owner of an open Wi-Fi base
station whose neighbor is using the connection illicitly.

Defenses. To detect this attack, nodes can purposefully
drop outgoing packets from their TCP stream and determine
if the remote peer requests the missing data or acknowledges
receiving it. There is a patch? to an old version of the Linux
kernel that addresses this vulnerability, but any such fix
results in a non-standard TCP implementation and is unlikely
to be deployed on a wide scale. To defend against the attack
without detecting it, OneSwarm can force a bandwidth cap
on peers that can’t be turned off, which isn’t done currently.
Since OneSwarm is an open source project, investigators will
know if and when such defenses are deployed.

7. CONCLUSIONS

OneSwarm is in use by thousands of peers and is of interest
to criminal and civil investigators. We have detailed three
attacks on the system that are available for use by investi-
gators using only plain view data. We have quantified the

2See https://www.kb.cert.org/vuls/id/102014.



precision and error rates of two of these attacks so that they
are applicable in legal context. Each attack can be repeated
for increased success when investigators leave and re-join the
network, exposing a different set of peers.

Our novel timing attack is successful with only two at-
tackers as we show by proof and experimentation with the
released software on a small network. We have described
a defense and shown that it places delays on OneSwarm
querying that is slower than the use of Onion Routing. We
have re-analyzed the collusion attack, showing the vulner-
ability is much greater than was previously reported, and
is much worse than OR’s. Our revised model accounts for
probabilistic forwarding, content popularity, precision, and
details from OneSwarm’s source code. We show for this
second attack that when investigators comprise just 25% of
peers, over 40% of the network can be investigated with 80%
precision to find sources of content that is not popular. For
the implementation in use by thousands of people, attack-
ers that comprise 25% of the network can successfully use
this second attack against 98% of remaining peers with 95%
precision. Finally, we show that OneSwarm is vulnerable
to a novel application of a known TCP-based attack, which
allows a single attacker to identify whether a neighbor is the
source of data or a proxy for it. An implementation of the
attack succeeds given that the attacker’s traffic is not shaped
by third-party routers. Only users that turn off the default
rate limit setting are exposed.

We provided the details of our attacks and results to
the OneSwarm developers in May 2011. In August 2011,
they reported that the following changes to OneSwarm have
been made: the default value of p is set to 0.5, unintended
forwarding latency has been decreased from about 100ms to
less than 10ms, and the discrepancy between text search and
hash search delays have been fixed.
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