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ABSTRACT
The ability to locate random relays is a key challenge for
peer-to-peer (P2P) anonymous communication systems. Ear-
lier attempts like Salsa and AP3 used distributed hash ta-
ble lookups to locate relays, but the lack of anonymity in
their lookup mechanisms enables an adversary to infer the
path structure and compromise user anonymity. NISAN
and Torsk are state-of-the-art systems for P2P anonymous
communication. Their designs include mechanisms that are
specifically tailored to mitigate information leak attacks.
NISAN proposes to add anonymity into the lookup mech-
anism itself, while Torsk proposes the use of secret buddy
nodes to anonymize the lookup initiator.

In this paper, we attack the key mechanisms that hide
the relationship between a lookup initiator and its selected
relays in NISAN and Torsk. We present passive attacks
on the NISAN lookup and show that it is not as anony-
mous as previously thought. We analyze three circuit con-
struction mechanisms for anonymous communication using
the NISAN lookup, and show that the information leaks in
the NISAN lookup lead to a significant reduction in user
anonymity. We also propose active attacks on Torsk that
defeat its secret buddy mechanism and consequently com-
promise user anonymity. Our results are backed up by prob-
abilistic modeling and extensive simulations. Our study mo-
tivates the search for a DHT lookup mechanism that is both
secure and anonymous.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.4 [Computer-Communication

Networks]: Distributed Systems

General Terms
Security
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1. INTRODUCTION
Anonymous communication hides the identities of com-

municating partners from third parties, or the user identity
from a remote party. As a key privacy-enhancing technology,
anonymous communication is gaining widespread popular-
ity in an era of pervasive surveillance. The Tor network [8]
is a deployed anonymous communication system that cur-
rently serves hundreds of thousands of users a day [13]. Tor
is widely used to preserve privacy for journalists, whistle-
blowers, law enforcement, and even embassies [10].

A key problem in Tor’s architecture is that it requires all
users to maintain a global view of the system, which could be
costly as the size of the Tor network increases. McLachan
et al. [16] show that in the near future, the Tor network
could be spending an order of magnitude more bandwidth
in maintaining a global view of the system, than for relaying
anonymous traffic. In order to address this problem, a peer-
to-peer (P2P) architecture will likely be necessary. Indeed,
several proposals for P2P anonymous communication have
been put forward [17, 24, 9, 29, 16, 25, 19].

P2P networks present new challenges to anonymity, in-
cluding the ability to locate random relays for anonymous
communication. Earlier attempts at P2P anonymous com-
munication like Salsa [24] and AP3 [17] used distributed
hash table (DHT) lookups to locate random relays. Mit-
tal and Borisov [18] showed that the lookup mechanisms
of these systems leak information about the relationship be-
tween a lookup initiator and the communication destination,
and thus are not anonymous. Moreover, such information
leaks in the lookup could then be used to attack the circuit
construction mechanisms and compromise user anonymity.

Recently, NISAN [25] and Torsk [16] P2P systems have
been proposed to alleviate the scalability problems in the Tor
network. Both NISAN and Torsk also use DHT lookups to
locate relays for anonymous communication, but in contrast
to Salsa and AP3, they include mechanisms that are specif-
ically designed to mitigate information leak attacks [18]. In
this paper, we show that these mechanisms are vulnerable
to several passive and active attacks.

NISAN proposes the use of a custom secure and anony-
mous lookup mechanism to locate relays. The NISAN lookup
relies on redundancy and bound checking [25] to defend
against active attacks, while trying to keep the lookup des-
tination secret from attackers. In this paper, we present
passive attacks on the NISAN lookup and show that it is
not as anonymous as previously thought. We analyze three
circuit construction mechanisms for anonymous communi-
cation using the NISAN lookup, and show that information



leaks in the NISAN lookup lead to a significant reduction in
user anonymity for all the three circuit construction strate-
gies. For a network size of 10 000 nodes, with 20% compro-
mised nodes, our analysis and simulation results show that
our passive attacks can reduce entropy of the circuit initia-
tor by 2.2 bits, which is close to the ideal passive attacks
whose entropy reduction is 2.6 bits.

Unlike NISAN, Torsk [16] does not attempt to add anony-
mity into the lookup itself. Instead, nodes in Torsk per-
form random walks to obtain secret buddy nodes before the
lookups are performed. The lookup querier can then use the
secret buddy node as a proxy to perform the lookup on its
behalf, thus hiding the relationship between itself and the
lookup target. However, we shall show that the informa-
tion leaks in the lookup itself allow an attacker to launch
active attacks to defeat the secret buddy mechanism, and
consequently compromise user anonymity. Our analysis and
simulation results show that with 20% malicious nodes, the
attacker can compromise over 80% of constructed circuits.
We also study potential improvements to Torsk, but find
that they do not fully defend against our attacks.

Our analysis of NISAN and Torsk shows that their key
mechanisms to anonymously look up a node are vulnerable
to either passive attacks or active attacks, motivating the
search for a secure and anonymous DHT lookup. We note
that the vulnerabilities in the current P2P anonymous com-
munication designs are a result of some properties in their
lookup mechanisms not being fully analyzed in the security
evaluation of the system, leading us to conclude that system
designers should explicitly model the mechanism for anony-
mous lookup and analyze its security.

The remainder of the paper is organized as follows. We
describe background material including the threat model in
Section 2. We show that both NISAN and Torsk lookups
are not anonymous in Section 3. In Section 4, we propose
circuit construction strategies using the NISAN lookup and
analyze their anonymity. Section 5 describes our attacks
on Torsk and considers potential improvements. Finally, we
discuss related work in Section 6 and conclude in Section 7.

2. BACKGROUND
In this section, we present a brief overview of anonymous

communication. We discuss why P2P systems have strong
potential for anonymous communication, and describe the
state-of-the-art systems that are based on DHT lookups.
We also describe our adversarial threat model.

2.1 Low-Latency Anonymous Communication
Systems

Anonymous systems are typically divided into high-latency
and low-latency systems. High-latency anonymous systems,
such as Mixminion [6] and Mixmaster [20], are designed to
resist a powerful global attacker, but the communication la-
tency for such systems could be up to several hours, which
make them unsuitable for interactive communications, such
as web browsing and instant messaging. The focus of this
paper is on low-latency anonymous communication systems.

Tor [8] is a popular low-latency anonymous communica-
tion system, which serves hundreds of thousands of users
every day [13]. Each Tor client obtains a list of servers
from a central directory authority, and selects random re-
lays from the list to construct a circuit for onion routing
[31]. Tor requires each client to maintain a global view of

all the servers. However, as the number of servers increases,
maintaining a global view of the system become costly, since
churn will cause frequent updates and a large bandwidth
overhead. In fact, McLachan et al. [16] show that in the
near future, the Tor network could be spending an order
of magnitude more bandwidth in maintaining a global view
of the system, than for relaying anonymous traffic. A P2P
architecture will likely be necessary to address this problem.

Several designs for P2P anonymous communication have
been proposed [9, 29, 17, 24, 19, 16, 25]. We can broadly
classify these designs based on their mechanisms to locate
relays. Designs like Tarzan [9], Morphmix [29] and Shad-
owWalker [19] perform random walks on restricted topolo-
gies to find relays, while Salsa [24], AP3 [17], NISAN [25]
and Torsk [16] use DHT lookups to select random relays. In
this work, we focus on DHT-lookup-based P2P anonymous
communication systems.

Distributed hash tables, also known as structured peer-
to-peer topologies, provide an attractive foundation for P2P
anonymous communication. Structured topologies assign
neighbor relationships using a pseudorandom but determin-
istic mathematical formula based on the IP addresses or
public keys of nodes. This allows the relationships to be ver-
ified externally, presenting fewer opportunities for attacks.
We now briefly describe the P2P anonymous communication
systems that use DHT lookups.

The design of Salsa [24] is similar to Tor, in that a circuit
is built by selecting three random nodes (or relays) in the
network and constructing a circuit through them. Salsa uses
a specifically designed secure lookup over a custom DHT to
locate relays. The secure lookup uses redundant checks to
mitigate potential attacks. These checks are able to limit
the bias an adversary can introduce in the lookup, but make
Salsa susceptible to information leak attacks: attackers can
detect a large fraction of lookups and thus infer the path
structure [18]. Salsa is also vulnerable to selective denial-
of-service (DoS) attack, where nodes try to deny service for
circuits that they cannot compromise [3].

AP3 [17] also relies on secure lookups to locate relays,
but the design of AP3 is more similar to Crowds [28] than
to Tor, with paths being formed by performing a stochas-
tic expected-length random walk. The stochastic nature of
AP3 makes it difficult for a rogue node to decide whether
its preceding hop is the initiator or simply a relay on the
path. However, for low-latency communication, timing at-
tacks may make this decision simpler. Similar to Salsa, the
secure lookup used in AP3 reveals a lot of information about
the lookup initiator, and makes it vulnerable to passive in-
formation leak attacks [18].

NISAN and Torsk are the state-of-the-art P2P anonymous
communication systems. Their designs include mechanisms
that are specifically tailored to mitigate information leak
attacks. NISAN proposes to incorporate anonymity into the
lookup itself, and Torsk uses secret buddy nodes. However,
we shall show that these mechanisms are vulnerable to either
passive attacks or active attacks, resulting in a significant
reduction in user anonymity.

2.2 Threat Model
Low-latency anonymous communication systems are not

designed to resist a global passive adversary. We consider a
partial adversary who controls a fraction f of all the nodes
in the network. This set of malicious nodes collude and can



launch both passive and active attacks. We consider the
set of colluding nodes is static and the adversary cannot
compromise nodes at will.

Even in networks with a large number of nodes, f can
be a significant fraction of the network size. Powerful ad-
versaries, such as governments or large organizations, can
potentially deploy enough nodes to gain a significant frac-
tion of the network. Similarly, botnets, whose average size
has grown in excess of 20 000 nodes [26], present a real threat
to anonymous systems. In our analysis, we will consider the
maximum value of f to be 0.2, since P2P systems are not
designed to be secure at higher values of f .

3. INFORMATION LEAKS IN DHT
LOOKUPS

In this section, we study two recently proposed DHT lookup
mechanisms, Torsk [16] and NISAN [25], and analyze infor-
mation leaks in both lookups. Since the Torsk lookup is
“louder” and simpler to analyze, we start with discussing
the Torsk lookup.

3.1 Torsk Lookup
The authors of Torsk [16] proposed a custom secure it-

erative lookup scheme (we refer to as the Torsk lookup) to
construct Torsk. The design of the Torsk lookup is based
on Kademlia DHT [15] and Myrmic [33]. Its main goal is
to resist active attacks, rather than preserving information
leaks.

In the Torsk lookup, a querier Q who wants to look up a
target x first selects t fingers from its finger table (FT) that
are closest to x (typically, t = 3), and uses them as starting
points for t independent lookup branches. Q maintains a
best list of closest fingers to x for each lookup branch. In
each iteration, t fingers that have not been contacted are
selected from each best list and are queried with x in paral-
lel. Any requested node returns k fingers closest to x. The
wide parallel lookup process terminates when any best list
is unchanged at the end of one iteration. To resist active
attacks, each node U keeps a certificate (nCertU ) issued by
a trusted central authority. nCertU includes all fingers of U
and its expiration time etc. Therefore, Q can verify whether
the finally found node V is responsible for x by verifying
nCertV and querying V ’s neighbors about the freshness of
nCertV . V is accepted by Q only when V passes all these
checkings.

Since x is revealed to each queried node, an attacker can
observe the lookup and associate V with Q, as long as one
malicious node is queried in the lookup. We simulate the
Torsk lookup using a simulator written in C++ with about
1000 lines. We measure the probability of associating the
target with the querier in different sized networks (n = 1000,
2000, 5000). We choose typical values for parameters used in
the simulation according to the Torsk paper [16] (ID space
= 220, #buckets = 16, bucket size = 20, and nList size =
6). Each data point is averaged over 100 random topologies
with 10 000 independent runs. We can see from Figure 1 that
when f = 0.2, the attacker can nearly observe all lookups
and associate all the targets with the queriers. Also, as the
size of the network grows, the attacker has a better chance to
observe the lookup with the same fraction of compromised
nodes. This is because as the length of the lookup path
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Figure 1: Simulation results: probability that the

attacker can associate the querier with the target in

the Torsk lookup.

increases, a malicious node would more likely be involved in
the lookup.

3.2 NISAN Lookup
The NISAN lookup [25] is based on the Chord DHT [30],

and is specifically designed to preserve anonymity. In par-
ticular, the querier Q maintains a top list (we refer to as
TopList) of m best fingers that are closest to the target ID
x during the lookup (typicallym is set as the size of the FT).
At each iteration, Q asks the nodes in the TopList that have
not been queried for their whole FTs, rather than revealing
the target x, in hopes of hiding x from passive attackers.
The TopList is updated with the returned FTs if any node
closer to x is discovered. The lookup process stops when the
TopList is unchanged at the end of one iteration.1

To limit malicious nodes from replying with manipulated
FTs, NISAN applies bound checking on each obtained FT:
Q calculates the mean of the distance between the actual
fingers in the FT and the optimal fingers (i.e., IDowner+2i).
FTs with mean distance larger than a threshold is discarded
by Q. To make it even harder for the attacker to learn the
ultimately selected node, the authors suggest considering
the whole TopList and picking a uniformly random finger
out of the TopList as the final result, so that even if the
attacker gains some knowledge about x, there is still some
uncertainty about the finally picked node.

3.2.1 Passive Attacks on the NISAN Lookup
We show that the NISAN lookup is not as “anonymous”

as expected: the attacker can learn both a lower bound and
an upper bound of x. Since the ultimately selected node
(denoted by T ) is withinm−1 hops preceding x, the attacker
can estimate the range of T based on the knowledge of x.

Range estimation. The attacker’s strategy is based on the
fact that Q will not query a node succeeding x (except in the
first iteration) since the Chord ring is directed. Initially, the
lower bound and the upper bound of x are set as the direct
successor and direct predecessor of Q, respectively, and the

1We note that the NISAN lookup is different from the Chord
lookup. The Chord lookup finds the successor of the target
ID. Whereas, in the NISAN lookup, all the fingers in the
final TopList (including the finally chosen node) precede the
target ID. This has been confirmed by the NISAN authors
in a private communication.
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Figure 2: Simulation results: range estimation for

the finally selected node in the NISAN lookup.

initial estimation range of T covers all nodes (except Q)
on the ring. As the iterative lookup proceeds, whenever a
malicious node W is queried by Q, the attacker can learn
that W must precede x, and hence she can update the lower
bound to be W . In addition, since queried malicious nodes
will return their FTs to Q, the attacker can know that the
malicious nodes in the returned FTs will be known to Q.
Therefore, if W is contacted and some other malicious node
Z known to Q is not queried, the attacker can be sure that
Z must succeed x; among all the malicious nodes known to
Q but not queried, the attacker chooses the closest one that
succeeds the lower bound W as the new upper bound. The
final estimated range of T includes all nodes between the
upper and lower bounds as well as the nodes that are no
more than m− 1 hops preceding the lower bound.

We simulate the above estimation process using C++ with
about 500 lines of code. We use a typical network size with
#nodes = 10 000 nodes and ID space = 220, and choose
m = 20. We use 100 random Chord rings. For each topol-
ogy, we run 100 independent lookups. The simulation results
(Figure 2) show that this passive attack can narrow T to a
small number of possible nodes with high probability, com-
pared with the large size of the network. We can calculate
the average entropy of T as follows:

H(T ) =
n
∑

i=1

Pr(RangeSize = i) · log2(i)

Aggressive range estimation. The range estimation strategy
allows the attacker to reliably compute the range of T , which
means that the probability that T belongs to the estimation
range is 1. If small false positive rate is allowed, the attacker
may further narrow the estimation range. Since all fingers
in the final TopList are queried, the lower bound will belong
to the TopList as long as there is a malicious node in the
TopList. This happens with probability 1−(1−f)m (98.85%
with f = 0.2, m = 20). In this case, T is at most m-hops
from the lower bound. If the attacker would like to take
small risk of false positives (less than 1.2% in the above
case), guessing that the lower bound is in the TopList, she
can bound the size of the estimation range to be 2m − 1.
We call this range estimation strategy as aggressive range
estimation. Similarly, H(T ) is calculated as:

H(T ) = Pr(T ∈ TopList) · log2(2m− 1)

+Pr(T /∈ TopList) · log2(n)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
4

6

8

10

12

14

16

Fraction of malicious nodes (f)

E
nt

ro
py

 o
f T

Range estimation
Aggressive range estimation
No attack (expected entropy)

Figure 3: Passive attacks on the NISAN lookup:

entropy of the finally selected node.

We can see from Figure 3 that when f = 0.2, the entropy of
T is only 5.5 (while the expected entropy is over 16), showing
that significant information is leaked to a passive attacker.
2

4. NISAN
The authors of NISAN do not describe how to use the

NISAN lookup to construct circuits. To concretely evaluate
the effectiveness of the NISAN lookup in building anony-
mous communication systems, we consider three typical cir-
cuit constructions with the NISAN lookup, as shown in Fig-
ure 4. For each construction, we describe corresponding at-
tacks to compromise anonymity by using information leaks
in the NISAN lookup.

Since our goal is to compromise the whole circuit, the exit
relay of the circuit (or tunnel) must be compromised; oth-
erwise, the destination would be unknown to the attacker.
Our following analysis is based on the pre-condition that
the exit relay of the circuit is malicious. This happens with
probability f (assuming the circuit construction is secure).

4.1 Construction I
We start with analyzing a simple approach to construct-

ing circuits using the NISAN lookup. As we know, in Tor
the initiator I picks three random relays A, B, and C from
the router list provided by a central authority to build the
tunnel. However, due to potential high costs of maintaining
a global view of the system, such a centralized approach can-
not scale to a large number of users. To address this prob-
lem, an alternative way could be to let I perform NISAN
lookups to locate relays.

However, this construction allows the attacker to link the
exit node C to I , since C is contacted by I directly. If C is
compromised, then the attacker can learn both the destina-
tion and I , and thus break the tunnel. In order to formally
calculate the attacker’s success probability, we need to con-
sider concurrent lookups when C is being looked up, in that
if C is the finally picked node in multiple concurrent lookups,

2We note that the attacker could apply the passive attack
together with other active attacks to further increase the
entropy reduction. One example is to let malicious nodes
return FTs that are crafted to have as many bad fingers as
possible without tripping the mean distance threshold. For
simplicity, in this paper we only focus on the most effective
attack – the passive attack.
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Figure 4: Circuit constructions using the NISAN lookup.

the attacker may not be able to correctly associate C with
I . We let BR denote the event that the attacker can suc-
cessfully break the circuit, FP denote the false-positive case
in which C is not correctly linked to I , and MC represent
that C is malicious. Then, we have:

BR ≡ MC ∧ ¬FP

Pr(BR) = f (1− Pr(FP ))

We define α as the number of nodes in the network that are
performing lookups at the same time. A reasonable num-
ber for α could be α = n/100, which means that during
this lookup, 1% of all nodes are also performing lookups. A
number much larger than this (e.g. n/10) would mean that
nodes are spending a significant fraction of their time (10%)
performing lookups, rather than using them for anonymous
communication. Among the α concurrent lookups, α

3
of

them are searching for an exit node, and fα

3
of them end

up with a malicious exit node. Therefore,

Pr(FP ) = 1−

(

1−
1

fn

)
fα
3

Figure 5 shows Pr(BR) as a function of f . We note that
the attacker can rely on other observations to further reduce
the false positive rate. When C is compromised, the ID of
B is known to the attacker. If the attacker can link B to
I with fairly high probability, she can significantly decrease
Pr(FP ), since FP is true only when there is another initia-
tor querying both B and C at the same time. In fact, we
shall show in the next subsection that due to information
leaks in the NISAN lookup, the chance of successfully link-
ing B to I is very high even if B is honest. In this case, the
false positive rate can be reduced to be nearly 0.

4.2 Construction II
The main reason for the weakness of Construction I is that

the attacker is able to link the exit node C to the initiator
I due to I contacting C directly in the NISAN lookup. One
way to avoid this is to let I use the already found relay as
proxy to extend the circuit. In particular, I first performs a
NISAN lookup to find the first relay A and then establishes
a partial circuit with A; next, I uses A as a proxy to look
up the second relay B and extends the circuit to B; finally,
I requests B to perform a lookup for C. Intuitively, the
attacker cannot directly link C to I , since C is contacted by
B rather than I .

Unfortunately, this construction alone is vulnerable to two
attacks: public-key modification attack [3] and route capture
attack. In public key modification attack, a malicious proxy
gives I a manipulated public key of the next relay, and thus
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Figure 5: Pr(BR) – Fraction of compromised circuits

in Construction I with n = 1 000 000.

can intercept all messages routing through the tunnel. In
route capture attack, the first malicious relay simulates all
the remaining lookups, and hence becomes the end relay
of the circuit. In order to show that Construction II is in-
herently vulnerable to passive information leak attack, we
consider the worst case for the attacker: we assume there
exists a trusted PKI available to the system (although the
centralized PKI may reduce scalability of P2P systems and
create a single point of failure) that enables I to check the
results returned by proxy nodes, so that both the public-
key modification attack and the route capture attack can be
avoided.

4.2.1 Hop-By-Hop Tracing Attack
We present a passive attack to trace the circuit in a hop-

by-hop manner from the exit relay C back to I , so that the
attacker can learn significant knowledge of I . The idea is to
make use of information leaks in the NISAN lookup to link
successive relays on the path.

SupposeX and Y are two (honest) successive relays on the
path, the ID of Y is known to the attacker, and the attacker
attempts to trace back from Y to X. Recall that we have
presented a passive attack on the NISAN lookup in Section
3.2 that allows the attacker to learn lower and upper bounds
of the target ID. Let L denote the lower bound related to
the lookup performed by X for Y . Since L is contacted by
X in the lookup, the attacker could infer X as long as she
can associate L with Y . Assuming there are α concurrent
lookups being performed in the network, then there could be
up to α concurrent lower bounds. The attacker’s task is to
guess the correct lower bound L associated with Y among all
the concurrent lower bounds. More precisely, the attacker
will assign probability to all the concurrent lower bounds:



the lower bounds that are more likely to be L will receive
high probability, while the lower bounds that are less likely
to be L will receive small probability.

Since L is the contacted malicious node laying closest to
the lookup target and the Chord ring is directed, intuitively
L would be very likely to lay close to Y . As we analyzed in
Section 3.2, L would belong to the final TopList as long as
there is a malicious node in the TopList. This happens with
very high probability (98.85% when f = 0.2, m = 20). In
this case, both L and Y are in the TopList, and hence there
are at most m−1 nodes between L and Y on the ring. Note
that, there could be very few lower bound nodes that are
within m hops from Y . This is because to be a lower bound,
a node must be malicious, queried in a concurrent lookup,
and closest to the lookup target. Therefore, the attacker
can make a good guess on L by assigning high probability
on the lower bound nodes that are within m hops from Y ,
and consequently the entropy of X could be very low. The
attacker can apply the hop-by-hop tracing attack multiple
times until reaching the initiator I .

4.2.2 Analysis
We formally analyze the hop-by-hop tracing attack, and

use the entropy of I as the metric to evaluate the anonymity.
We show that with the hop-by-hop tracing attack, the en-
tropy of I is much lower than the expected value.

The average entropy of I is calculated as follows (note
that the exit relay C must be compromised):

H(I) = Pr(MC ∧MB ∧MA) ·H(I |MC ∧MB ∧MA)

+ Pr(MC ∧MB ∧ ¬MA) ·H(I |MC ∧MB ∧ ¬MA)

+ Pr(MC ∧ ¬MB ∧MA) ·H(I |MC ∧ ¬MB ∧MA)

+ Pr(MC ∧ ¬MB ∧ ¬MA) ·H(I |MC ∧ ¬MB ∧ ¬MA)

+ Pr(¬MC) · log2(1− f) · n

Since the attacker can break the tunnel when both A and
C are compromised, the entropy of I in this case is 0. Hence,
H(I |MC ∧MB ∧MA) = 0, and H(I |MC ∧¬MB ∧MA) = 0.
Now we calculate H(I |MC ∧ MB ∧ ¬MA) and H(I |MC ∧
¬MB ∧ ¬MA), respectively.

(1) Calculation of H(I |MC∧MB∧¬MA). In this scenario,
the ID of A is known to the attacker, and she needs to link
A to I . To compute this entropy, we consider two cases:
either L belongs to the TopList, or L is outside the TopList.
We let H1 and H2 denote the entropies for the two cases,
respectively. Then, H(I |MC ∧ MB ∧ ¬MA) can be written
as:

Pr(L ∈ TopList) ·H1 + Pr(L /∈ TopList) ·H2

As we mentioned before, Pr(L ∈ TopList) ≫ Pr(L /∈
TopList). Hence, for the case L /∈ TopList, we use an upper
bound log2(1− f)n to compute H2 for simplicity.

As for the case L ∈ TopList, we use the following nota-
tions when computing H1. We let Lp(1), · · · , Lp(u) denote
the sequence of concurrent lower bounds that precede A in
the TopList (if any), and let Ls(1), · · · , Ls(v) denote the list
of concurrent lower bounds that succeed A in the TopList
(if any). It is possible that a lower bound node could be
the lower bound in multiple concurrent lookups. Hence, we
let Ip(t), 1 ≤ t ≤ u (or Is(r), 1 ≤ r ≤ v) denote the set of
concurrent lookup queriers related with Lp(t) (or Ls(r)).

We let θ(g) denote the probability that L is a lower bound
in g concurrent lookups (excluding the one performed by I

for A), g = 0, 1, · · · . Since among the α concurrent lookups,
(1−f)2α of them are performed by a honest node and finish

with a honest relay, we have θ(g) = bino
(

g, (1− f)2α, 1
fn

)

,

where bino(x, y, z) ≡ zx(1− z)y−x. Then, we have:

H1 = −
∑

t

∑

g

∑

Ip(t),g∈Ip(t)

θ(g) · Pr(I = Ip(t),g)

· log2
(

θ(g) · Pr(I = Ip(t),g)
)

−
∑

r

∑

h

∑

Is(r),h∈Is(r)

θ(h) · Pr(I = Is(r),h)

· log2
(

θ(h) · Pr(I = Is(r),h)
)

, where Ip(t),g denotes an element in Ip(t) when Ip(t) contains
g + 1 elements (including the correct initiator I). Similar
definition applies to Is(r),h.

Based on the attacker’s observation, she cannot distin-
guish the initiators related with a same lower bound, and
thus she will make an even guess on these initiator candi-
dates. Therefore,

Pr(I = Ip(t),g) =
1

g + 1
· Pr(L = Lp(t))

Pr(I = Is(r),h) =
1

h+ 1
· Pr(L = Ls(r))

Now we do some preparation calculations before comput-
ing Pr(L = Lp(t)) and Pr(L = Ls(r)). We define SL and
SA as the positions of L and A in the TopList (clockwise),
respectively. Since L is the queried malicious node closest
to the target, all fingers succeeding L in the TopList must
be honest. Therefore, we have:

Pr(SL = i) = f(1− f)m−i 1 ≤ i ≤ m

Since A is selected randomly from the TopList and can not
be L (since L is malicious and A is honest), we have:

Pr(SA = j) =
1

m− 1
1 ≤ j ≤ m

We define β as the probability that a node is a lower bound.
Then β is calculated as:

β = f

(

1−

(

1−
1

fn

)(1−f)α
)

There are r− 1 lower bounds laying between Ls(r) and A,
and thus Pr(L = Ls(r)) is:

m−r
∑

j=1

Pr(SA = j) ·

m
∑

i=j+r

Pr(SL = i) · bino(r − 1, i− j − 1, β)

Since all fingers succeeding L in the TopList are honest
and are impossible to be lower bounds, only Lp(u) (the clos-
est lower bound that precedes B) is likely to be L. So,

Pr(L = Lp(t)) = 0, 1 ≤ t ≤ u− 1

Pr(L = Lp(u)) =
m
∑

j=2

Pr(SA = j) ·

j−1
∑

i=1

Pr(SL = i)

(2) Calculation of H(I |MC ∧ ¬MB ∧ ¬MA). In this sce-
nario, the ID of B is learned by the attacker, and she needs
to trace back two hops: B to A, and A to I . Using the same
strategy, the attacker first finds a number of candidates for
A and assigns them with probabilities. The calculation of
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Figure 6: Entropy of I to the attacker. n = 10 000.

these probabilities for A is the same as the above scenario.
Then for each candidate of A, the attacker further finds a
number of candidates for I . The entropy is averaged over
all candidates of I . Since the calculation is similar in spirit
with scenario (1), we omit the details for simplicity.

4.2.3 Results
We calculate H(I) using the above analysis, and the re-

sults are given in Figure 6. We also simulate the hop-by-
hop tracing attack using the simulator we developed for
the NISAN lookup. We adopt the same configuration as
the simulation of the NISAN lookup (Section 3.2). We use
n = 10 000 nodes, and 100 random Chord rings. The sim-
ulation results are averaged over 10 000 independent runs.
Figure 6 shows that our analysis results are upper bounds
of the actual values. This is because we use an upper bound
value for H2 when computing H(I |MC ∧MB ∧ ¬MA).

We compare our attack against the ideal passive attack, in
which the attacker can obtain full knowledge of I as long as
the exit relay is compromised3, i.e., H(I) = (1− f) log2(1−
f)n. We can see that the entropy of I achieved by our attack
is very close to the optimal value of the ideal attack, showing
that the hop-by-hop tracing attack is a very powerful attack.

4.3 Construction III: Further Enhancements
to Construction II

One way to mitigate the attacker’s knowledge of I is to use
a longer path. To reduce the expense of relaying traffic over
a long path and mitigate selective DoS attack, we adopt the
idea of ShadowWalker proposed by Mittal and Borisov [19]
to construct the circuit: I first follows Construction II to
find a sequence of l relays, and then use the last two relays
to build the circuit.

However, this approach can only mitigate attackers’ knowl-
edge of I to some extent, since timing analysis (on lookup
traffic) allows the attacker to associate the first malicious
relay and the last non-exit malicious relay on the path, and
thus skip linking the relays in the middle. Figure 7 shows
that the attacker can still reduce the entropy of I by 1.2
bits when l = 20 and f = 0.2. Furthermore, this construc-
tion substantially increases bootstrapping latency and ren-
ders the system vulnerable to DoS attack (i.e., preventing

3Note that when the exit relay is honest, it is impossible
for the attacker to learn both I and the destination, so the
entropy in this case is the maximum value log2(1− f)n.
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Figure 8: Torsk circuit construction.

clients from conducting anonymous communication by drop-
ping lookup traffic).

5. TORSK
From the discussion of the NISAN circuit constructions,

we can see that letting the initiator I or the end relay of a
partial circuit to look up the next hop allows an attacker to
launch hop-by-hop tracing attack to associate the destina-
tion with I . The authors of Torsk [16] proposed an alter-
native design for circuit construction by using secret buddy
nodes. We show that although Torsk is immune to passive
hop-by-hop tracing attack, introducing secret buddies ren-
ders the system seriously vulnerable to active attacks.

5.1 Secret Buddy
One important notion in Torsk is secret buddy. Torsk

requires each node to privately select a number of random
buddies from the global pool of nodes in the network; a
lookup querier will request one of its buddies to perform the
lookup on its behalf, so that an attacker cannot associate the
lookup target with the querier. Then, hop-by-hop tracing
attack cannot be applied, as long as the relationship between
nodes and their buddies is kept secret from the attacker and
the buddies are not compromised.

Torsk proposes four mechanisms to ensure secrecy of re-
lationship between nodes and their buddies as well as the
security of the buddy selection process. First, Torsk pro-
poses to use anonymous random walks to select buddies,
leaking little information about the relationship between the
random walk initiator and the finally picked node. Second,
the buddy selection process is performed off-line (before a
lookup is performed), so that timing analysis attack cannot
be applied. Third, Torsk requires that buddies must be one-
time use. Otherwise, an attacker can associate a node U
with its buddy, by requesting U to perform a lookup for x∗

(for circuit extension), and the node that looks up x∗ subse-



quently is learned as U ’s buddy node. Finally, Torsk applies
certificate verification at each hop of the random walk, pre-
venting attackers from biasing the random walk to increase
the chance of malicious nodes being selected as buddies.

5.2 Buddy Exhaustion Attack on Torsk
Although using secret buddies to extend circuits breaks off

the “clue” of tracing the path backwards, the one-time use
of buddies makes the system vulnerable to buddy exhaustion
attack : an attacker can prevent the circuits having honest
entry nodes from being extended, by exhausting buddies
of the end relays of these partial circuits. Consequently, a
large fraction of constructed circuits would have malicious
entry nodes. Among these circuits, the attacker can further
apply selective DoS attack [3] by letting the malicious entry
nodes tear down the circuits that have honest exit relays.
As a result, the majority of built circuits would have both
compromised entry and exit nodes, and hence the attacker
can launch timing analysis attack to break the tunnel.

Now we describe buddy exhaustion attack in details. First,
we let all malicious nodes choose colluding nodes as their
buddies. Hence, when the attacker observes a lookup per-
formed by a honest buddy, she is sure that this lookup is re-
quested by a honest node. In particular, we consider the case
when the entry relay A is honest (if A is malicious, then se-
lective DoS attack can be applied directly). As shown in Sec-
tion 3.1, due to information leaks, the attacker can observe
nearly all lookups (over 99.5% when f = 0.2). Hence, when
Bud(A) looks up B, the attacker can observe the lookup and
infer that A is honest4. Then, the attacker floods B with
sufficiently many lookup requests, so that all cached bud-
dies of B would be exhausted. Consequently, B will have no
buddy to perform any lookup for A to extend the circuit.

The buddy exhaustion attack can successfully defeat the
second mechanism of Torsk (off-line buddy selection), since
the victim node B under the buddy exhaustion attack has
to find new buddies during the circuit construction.

Now we show that the attacker can further preventB from
recovering from the buddy exhaustion attack, by blocking B
from finding new buddies. We first briefly review the ran-
dom walk process for buddy selection. First, the querier
randomly picks a finger F1 out of its FT as the first hop of
the random walk, and then asks F1 for its FT, from which
the second hop F2 is selected at random. This process is
iteratively performed for l hops, and is followed by a geo-
metrically distributed “tail” with expected length l. To pre-
vent the attacker from biasing the random walk, the querier
requests and verifies the certificates related to the incoming
and outgoing links of Fi. If an invalid certificate is found, the
random walk is restarted. Therefore, to prevent the querier
from finding new buddies, the attacker can let malicious
nodes involved in a random walk return invalid certificates
to force the random walk to restart. Since the random walks
are typically long (with 2l hops, l = 14 5), the attacker could
have a very good chance to interrupt the buddy selection
process.

4Note that even if Bud(A) is not honest, the attacker can
still learn that A is honest. The attacker can obtain the ID
of A through Bud(A), since A requests Bud(A) to perform
the lookup.
5Values of l are selected according to the Torsk paper [16]:

l = ⌈
2 log2

nκ
ǫ

3
⌉, where we use typical values κ = 3, ǫ = 0.01.
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Figure 9: Pr(RW ) – Probability that the attacker

can block a honest node from performing a random

walk to select a buddy.

5.3 Analysis
Now we analyze the anonymity of Torsk under buddy ex-

haustion attack. We let RW denote the event that the at-
tacker can interrupt a random walk. Then, Pr(RW ) equals
the chance that there is at least one malicious node picked
in the random walk. Therefore,

Pr(RW ) = (1− f)l
(

1−
∞
∑

i=1

(1− p)i−1p(1− f)i
)

+
(

1− (1− f)l
)

= 1−
p(1− f)l+1

1− (1− f)(1− p)

where p = 1
l
, representing the probability that the random

walk stops at a particular hop of the tail. Figure 9 shows
that when f = 0.2, the attacker can successfully interrupt
about 99% random walks.

A node under buddy exhaustion attack could try to re-
peatedly perform random walks in parallel, in hopes of find-
ing new buddies before the client gives up the circuit con-
struction. However, the number π of concurrent random
walks a querier can perform is limited by its computational
capacity. During the random walk, the querier needs to
perform 2d certificate-verifying operations at each hop (the
Torsk authors [16] suggest d is 8 or 16). We let ϕ denote
the average latency between two hops in a random walk
(according to the experimental results in [16], ϕ ≈ 0.2sec).
Suppose that the time needed to verify a public-key signa-
ture is τ (e.g., τ = 0.5ms). Then, π is bounded by ϕ

2dτ
,

which is equal to 25 with d = 8, ϕ = 0.2sec, and τ = 0.5ms.
Apart from π, the maximum number of random walks the

querier can perform in parallel before the client’s timeout
is also determined by the time σ needed to perform an in-
terrupted random walk. σ is determined by the number of
hops that a random walk travels before meeting the first
malicious node. Hence, the expected value of σ, E(σ), is
calculated as:

ϕ

(

∞
∑

j=1

(j + l)(1− p)j−1p(1− f)l+j−1f +
l
∑

i=1

i(1− f)i−1f

)

We assume the attacker floods B with ν + µ lookup re-
quests, where µ is the number of buddies maintained by each
node. We let EX denote the event that the attacker can
successfully prevent B from extending the circuit, and let Φ
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Figure 10: Pr(EX) – Probability that the attacker

can prevent a honest node from extending a circuit.

Φ = 5min, and π = 25.

denote the client’s maximum waiting time before giving up
the circuit construction (e.g., Φ = 5min). Then,

Pr(EX) =
ν
∑

i=0

bino

(

i,
πΦ

E(σ)
, 1− Pr(RW )

)

Figure 10 shows that when ν is larger than a threshold
value (e.g., 200 when f = 0.15, n = 10 000), the attacker
can prevent a particular relay from extending the circuit
with success probability nearly 1. We note that it is reason-
able to consider fairly large ν, in that the attacker may ask
her controlled malicious nodes to flood a particular node in
collaboration. For instance, in a network with n = 10 000
nodes and 20% malicious nodes, there would be 2000 flood-
ing requests if each malicious node contributes one.

Now we analyze the anonymity of Torsk under buddy ex-
haustion attack. We let R denote the event that a circuit
is reliable (either when both the entry and exit nodes are
compromised, or when the attacker fails to launch buddy
exhaustion attack). R is equivalent to:

(MA ∧MC) ∨ ¬MA ∧ ¬MB ∧ ¬MC ∧ ¬(LK ∧ EX)

We let LK denote the event that a lookup is observed by the
attacker, and let BR represent that a circuit is compromised.
Then, the fraction of compromised circuits out of reliable
circuits, Pr(BR|R), is calculated as:

Pr(BR ∧R)

Pr(R)
=

f2

f2 + (1− f)3(1− Pr(LK)Pr(EX))

Figures 11, and 12 present the analysis results for Pr(BR|R)
with different impact factors. We simulate the buddy ex-
haustion attack on Torsk. We generate 20 random topolo-
gies, and for each topology we perform 1000 circuit con-
structions. Figure 13 shows the simulation results, with
ν = 500, Φ = 5min, and π = 25. We can see that with
buddy exhaustion attack, the attacker can break over 80%
of all constructed circuits.

5.4 Improvements to Torsk
The authors [16] suggested that the random walk process

for buddy selection needs to start over whenever a queried
malicious node returns an invalid certificate. This allows
the attacker to block honest nodes from finding new bud-
dies. Nevertheless, we think restarting the random walk
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Figure 11: Effect on varying the number of flooding

lookup requests. Φ = 5min, and π = 25.
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Figure 12: Effect on varying the client’s maximum

waiting time Φ. ν = 500, and π = 25.

upon seeing an invalid certificate is not a necessity. Instead,
the random walk can step back one hop and choose another
random finger as the next hop. If all fingers of a particular
hop are malicious, the random walk can step back one more
hop and try other branches. By doing so, it would be infea-
sible for the attacker to interrupt a random walk, and thus
honest nodes can find buddies as expected.

However, it is important to note that the querier under
buddy exhaustion attack may still need substantial time to
find enough buddies to get through the flooding lookup re-
quests, even though random walks are not interrupted. For
example, when ν = 1200, l = 15 and π = 25, it will take the
victim node 2lϕν

π
≈ 5min to find enough buddies to perform

a lookup. It is very likely that the client will not wait 5min
before starting communication.

We can speed up the process of buddy selection via some
cryptographic mechanisms. For example, if the certificates
associated with each hop are formed into Merkle trees, the
computational latency at each hop could be reduced6. How-
ever, the effectiveness of this strategy still depends on the
attacker’s capability of sending flood requests. Finally, we
note that each bogus lookup request may generate consid-

6Forming certificates into Merkle trees increases mainte-
nance costs, since whenever a node joins/churns or a sig-
nature expires, all related Merkle trees have to be recon-
structed.
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Figure 13: Simulation results: fraction of compro-

mised circuits in the reliable circuits. ν = 500,
Φ = 5min, and π = 25.

erable traffic due to the buddy selection process, and there-
fore buddy exhaustion attack could substantially degrade
network performance and may lead to system overload.

6. RELATED WORK
P2P anonymous communication systems have been the

subject of a lot of research [17, 24, 9, 29, 19, 25, 16]. AP3 and
Salsa are among the first attempts at using DHT lookups for
anonymous communication. Their secure lookup protocols
rely heavily on redundancy and are shown to be vulnerable
to information leak attacks [18]. NISAN and Torsk are also
based on DHT lookups, but they are specifically designed
to mitigate information leak attacks. We have proposed a
variety of passive and active attacks on NISAN and Torsk
that significantly reduce user anonymity.

An alternate approach to building circuits for anonymous
communication is to connect relays into a restricted topology
and construct circuits along paths in this topology [9, 29, 19].
For example, in Tarzan [9], each node has a small set ofmim-
ics, and all circuits must be created on links between mim-
ics. To verify that paths are constructed correctly, nodes in
Tarzan maintain a global view of the system. This limits
Tarzan to networks of about 10 000 or fewer nodes. Mor-
phMix [29] is designed to eliminate such scalability con-
straints by creating a randomized, unstructured overlay be-
tween relays, with circuits built on paths along the over-
lay. Instead of maintaining a global view, MorphMix uses
a collusion detection mechanism involving witness nodes to
verify neighbor information. However, the collusion detec-
tion mechanism can be circumvented by a set of colluding
adversaries who model the internal state of each node, thus
violating anonymity guarantees [32]. In [25], the authors
of NISAN also considered a random walk construction to
complement their DHT-lookup-based design, which is found
to be vulnerable to active attacks. ShadowWalker [19] is
a recent design that proposes the use of redundant struc-
tured topologies to enable verification of neighbor informa-
tion while mitigating information leak attacks.

Danezis and Clayton [5] studied attacks on peer discovery
and route setup in anonymous P2P networks. They showed
that if the attacker learns the subset of nodes known to the
initiator (by observing lookups, for example), its routes can
be fingerprinted unless the initiator knows about the vast
majority of the network. Danezis and Syverson [7] extended

this work to observe that an attacker, who learns that certain
nodes are unknown to the initiator, can carry out attacks as
well and separate traffic going through a relay node.

Reiter and Rubin [28] proposed the predecessor attack,
which was later extended byWright et al. [34, 35, 36]. In this
attack, an attacker tracks an identifiable stream of commu-
nication over multiple communication rounds and logs the
preceding node on the path. To identify the initiator, the
attacker uses the observation that an initiator is more likely
to be the predecessor than any other node in the network.
Similar to predecessor attacks, there is a thread of research
that deals with degradation of anonymity over a period of
time. Berthold et al. [2] and Raymond [27] proposed inter-
section attacks that aim to compromise sender anonymity
by intersecting sets of users that were active at the time the
intercepted message was sent, over multiple communication
rounds. Similarly, Kesdogan et al. [12] used intersection to
find recipients of a given user’s message. A statistical ver-
sion of this attack was proposed by Danezis [4] and later
extended by Mathewson and Dingledine [14].

An important point of our paper is that, when building
anonymous systems, it is important not to abstract away the
properties of the system that can affect anonymity. Similar
in spirit to ours, a lot of recent research has focused on
details abstracted away by conventional analysis models to
break the anonymity of the system. Such details include
congestion and interference [22, 1], clock skew [21], hetero-
geneous path latency [11, 1], the ability to monitor Internet
exchanges [23], and reliability [3]. For example, Murdoch
and Zieliński [23] showed that Internet exchange-level adver-
saries are capable of observing a vast majority of user traffic
and could degrade user anonymity by performing end-to-end
timing analysis. Borisov et al. [3] proposed selective-DoS at-
tack and showed that attackers could selectively affect the
reliability of the system to degrade user anonymity.

7. CONCLUSION
In this paper, we have analyzed mechanisms that hide the

relationship between a user and its selected relays in two
state-of-the-art anonymous communication systems NISAN
and Torsk. We presented passive attacks on the NISAN
lookup and show that it is not as anonymous as previously
thought. Information learned from the NISAN lookup can
be used degrade anonymity of constructed circuits.We have
also shown that the information leaks in the Torsk lookup
allow an attacker to launch active attacks to defeat its se-
cret buddy mechanism, and substantially compromise user
anonymity. Our analysis of NISAN and Torsk shows that
their key mechanisms to anonymously look up a node are
vulnerable to either passive attacks or active attacks, moti-
vating the search for a secure and anonymous DHT lookup.
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