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ABSTRACT
Network information distribution is a fundamental service for any
anonymization network. Even though anonymization and infor-
mation distribution about the network are two orthogonal issues,
the design of the distribution service has a direct impact on the
anonymization. Requiring each node to know about all other nodes
in the network (as in Tor and AN.ON – the most popular anonymiza-
tion networks) limits scalability and offers a playground for inter-
section attacks. The distributed designs existing so far fail to meet
security requirements and have therefore not been accepted in real
networks.

In this paper, we combine probabilistic analysis and simulation
to explore DHT-based approaches for distributing network infor-
mation in anonymization networks. Based on our findings we in-
troduce NISAN, a novel approach that tries to scalably overcome
known security problems. It allows for selecting nodes uniformly
at random from the full set of all available peers, while each of the
nodes has only limited knowledge about the network. We show
that our scheme has properties similar to a centralized directory in
terms of preventing malicious nodes from biasing the path selec-
tion. This is done, however, without requiring to trust any third
party. At the same time our approach provides high scalability and
adequate performance. Additionally, we analyze different design
choices and come up with diverse proposals depending on the at-
tacker model. The proposed combination of security, scalability,
and simplicity, to the best of our knowledge, is not available in any
other existing network information distribution system.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; C.2.0 [Computer-Communication Networks]: General—
Security and protection

General Terms
Security
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1. INTRODUCTION
While cryptography can be used to protect integrity and confi-

dentiality of the data part of packets, everyone along their route can
still observe the addresses of the communication parties. Anony-
mous communication deals with hiding relationships between com-
municating parties.

Many approaches have been proposed in order to provide pro-
tection on the network layer. Still, only some of them have been
implemented in practice, e.g. [8, 3, 19]. The most popular and
widespread system is Tor [8]. The Tor network is a circuit switched,
low-latency anonymizing network for preserving privacy on the
network layer. It is an implementation of the so-called onion rout-
ing technology [22], that is based on routing TCP streams through
randomly chosen paths in a network of routers using layered en-
cryption and decryption of the content. The number of servers in
the network is currently about two thousand whereas the number of
users is estimated to be hundreds of thousands [18, 24].

In order to discover the network information, most systems make
use of a centralized directory service and assume that each node has
to know all other nodes in the network. This has several advantages,
such as making it hard for an attacker to poison the directory with
forged entities, mount the eclipse attack [21], or bias path selec-
tion. However, this approach has scalability problems and requires
trusting the directory. In Tor, for example, clients choose paths for
creating circuits by selecting three suitable servers from a list of
all currently available routers, the so-called directory. To this end,
certain trusted nodes act as directory servers and provide signed
documents that are downloaded by users periodically via HTTP.
Such a network status document contains router descriptors of all
currently known servers, including several flags that are used to de-
scribe their current state. Due to scalability issues, there have been
changes in the original protocol and its successors, so that Tor is
now already using the third version of the directory protocol. In
the design document, the authors admit that requiring each node to
know all the others will not work out in the long run because of
scalability issues [7]. On that account, we strive to make network
information scale by carefully distributing the task.

2. RELATED WORKS
The Tarzan [9] P2P network requires every peer in the network to

know all the others. To achieve this, the authors use a simple gos-
siping protocol to find every other peer in the network (the protocol,



though, is only described on a high level). For the initial join to the
network a Tarzan peer needs to know at least a few other peers.
The approach is believed to not scale beyond 10.000 nodes [17].
In contrast to this, MorphMix [20] requires nodes to know only a
few neighbors. For the circuit setup so-called witness nodes are
used to facilitate the selection of nodes for circuit extension; this
is a unique feature in MorphMix, as in most other networks the
users choose the path themselves for security reasons. In order
to alleviate possible security issues arising from this feature, Mor-
phMix uses a collusion detection mechanism, detecting malicious
nodes that misbehave by offering other colluding1 nodes for traver-
sal. However, due to the vulnerability of their collusion detection
mechanism [23], this approach does not have direct practical im-
pact on new designs any more.

Salsa [17] is a DHT which has been specifically developed for
anonymization networks. Identities are based on hashes of the
nodes’ IP addresses and are organized in a tree structure. Redun-
dancy and bounds checking are used while doing lookups in order
to prevent malicious nodes from returning false information. Ac-
cording to simulations, the scheme prevents attackers from biasing
the path selection as long as the fraction of malicious nodes in the
system does not exceed 20%. However, further analysis [15] has
shown that even in this case Salsa is less secure than previously
thought: with the number of corrupt nodes below 20%, still more
than a quarter of all circuits are compromised because of infor-
mation leakage. Because defending against active attacks requires
higher redundancy, this directly increases the threat of passive at-
tacks since a small fraction of malicious nodes can observe a signif-
icant part of the lookups. This compromises anonymity by leaking
information about the initiator and the nodes involved in a tunnel.

Castro et al. [5] consider security issues in structured P2P net-
works. The attacker model consists of a fraction of colluding nodes.
To thwart the attacks, the authors propose three techniques: (i) se-
cure assignment of node identifiers, (ii) secure routing table main-
tenance, and (iii) secure message forwarding. They show that the
overhead of their technique is proportional to the fraction of ma-
licious nodes and is efficient if the attacker controls up to 25% of
nodes in the system.

Their approach is not applicable in our scenario because of the
following reasons: recursive queries, a centralized trusted third
party, and information leakage. The use of recursive queries is not
practical because it allows an attacker to execute DoS attacks with
very small effort. It has been shown by Borisov et al. [4] that DoS
attacks applied in anonymous communications considerably reduce
the provided anonymity. That is why there is a strong need to as-
sure reliability against adversaries, not just against random failures.
Additionally, a client in the approach of Castro has the possibility
to check only the final result of the query, while not being able to
control and influence intermediate steps. Moreover, the need of a
trusted third party hardens practical realization of the approach. Fi-
nally, information leakage [15] enables bridging and fingerprinting
attacks [6].

Baumgart and Mies [2] propose several improvements for Kadem-
lia [13] in order to make it more resilient against attacks. The
improvements are threefold: using crypto puzzles for restricting
node ID generation; sibling broadcast for ensuring replicated data
storage; using multiple disjoint paths for node lookups. The most
significant proposal is the secure node ID generation, since the lat-
ter two are merely refinements of mechanisms already existing in
Kademlia. The crypto puzzles restrict the node ID generation in the
sense that it is computationally expensive to generate valid node

1We use colluding and malicious w.r.t. nodes as synonyms in this
paper.

IDs. However, the adversary is free to generate valid IDs offline
without any time bounds before actually joining and subverting the
network. Moreover, in Section 4 we prove that the security prop-
erties of the latter three approaches cannot be upheld with growing
network size.

Westermann et al. [25] study default Kademlia behavior w.r.t. col-
luding nodes that answer queries with malicious nodes closest to
the searched-for ID. Their finding is that, due to redundancy, the
fraction of malicious nodes found in queries is not significantly
larger than the overall fraction of malicious nodes in the system.
The simulations, however, have only been conducted up to 50,000
nodes.

Kapadia et al. [10] propose a method for performing redundant
searches over a Chord-based DHT. In a network of 10,000 their ap-
proach is able to tolerate up to 12% colluding nodes while applying
a non-recursive search.

Recently, Awerbuch and Scheiderler [1] have published a theo-
retical approach to building a scalable and secure DHT that might
potentially solve many of the problems we are facing in this ap-
plication. A multitude of active attacks are actually proven to be
impossible on this structure, even though passive information leak-
age attacks are not considered. Unfortunately, the downside of the
formal approach taken is that the high level of vantage does not
allow for instant practical implementation. In fact, the authors “be-
lieve that designing such protocols is possible though their design
and formal correctness proofs may require a significant effort” [1].
Even if this belief is correct, it is foreseeable that it would lead to
a very complex system, hard to analyse and implement correctly,
while in the networking/anonymity community we observe a trend
towards security by simplicity.

3. ATTACKER MODEL
We consider a local attacker with the following capabilities:

• Passively observe some portion of network traffic;

• Actively operate its own nodes or compromise some fraction
of honest nodes;

• Actively delete, modify and generate messages.

Further we assume that the adversary cannot break cryptographic
primitives. This is a standard assumption in the area of anonymous
communication.

4. WHY REDUNDANCY THROUGH INDE-
PENDENT PATHS DOES NOT SCALE

One basic idea for finding a random node in a DHT is choosing
a random number x in the node identity hash space and then use the
DHT to look up the owner of x. Most often this is the node whose
identity is closest to x in the distance metric of the DHT. This idea
lies at the heart of approaches like Salsa [17] and AP3 [14], and
its employment opens up the possibility of using any DHT as a
building block that deems to fit for the purpose.

In this paper, we will follow this basic approach while analyzing
possible attacks and giving remedies in a cumulative fashion. A
naïve implementation of searching for x in an environment with a
fraction f of collaborating adversarial nodes has success probabil-
ity ps = (1− f )l , where l is the length of the search path, when we
assume the adversary to either simply drop requests in a denial of
service fashion or return false information such as claiming to be
the owner of x. Because l has to grow larger with the size of the
network, typically on the order of log(n) [12], this success proba-
bility approaches zero for growing networks asymptotically, when



f is, say, constant. Thus, we can say that, under this simple attack,
the naïve implementation does not scale.

Of course, earlier scholarship [17, 5, 2] has recognized this prob-
lem. As a solution, redundancy in the form of several search paths
has been introduced without fail. The cited papers all try to ensure
routing towards x using multiple, preferably independent, paths.
This is itself a difficult proposition, because the structure of DHTs
usually leads to path convergence in a lot of cases, and quite some
auxiliary constructions have been taken to still ensure indepen-
dence. Yet, even when we assume independent paths, the redun-
dancy required endangers scalability in the limit:

THEOREM 1. The number of paths required to reach constant
success probability ps is at least ps

(1− f )l ∈ nΩ(1) for l ∈ Ω(logn)
and f constant.

PROOF. Let Ii be a random indicator variable that takes the value
1 if path i is attacker-free, and 0 otherwise. A single path i is free
from attackers with probability (1− f )l , thus E(Ii)= (1− f )l . Then
∑α

i=1 Ii is a variable that counts the number of successes out of α
paths, and

ps = P[
α

∑
i=1

Ii ≥ 1] ≤ E(
α

∑
i=1

Ii) =
α

∑
i=1

E(Ii) = α(1− f )l

by the Markov inequality and linearity of expectation. Notice that
we have not made any assumptions about path independence.

Solving for α, substituting Ω(log n) for l and assuming f , ps con-
stant yields

α ≥ ps

(1− f )l
∈ (1/(1− f ))Ω(logn) = nΩ(1).

With simple greedy routing, the lower bound of Ω(logn) path
length is valid for a large class of small world networks, including
all the DHTs we know of, as well as skip graphs [12]. Therefore,
the theorem shows that the number of independent paths needed to
route successfully with some fixed probability grows at least poly-
nomially in n. This is exponentially greater than, e.g., the number
of neighbors a node has in the most common DHTs. Thus, even
in the first step of routing, we rapidly run out of independent pos-
sibilities to choose from with growing networks. The aforemen-
tioned research efforts [17, 5, 2, 25] evaluated their approaches ex-
perimentally in environments between 10,000 and 100,000 nodes.
While their results suggest practicability in this range, the above
considerations show that we cannot expect this to hold up when
the networks grow larger. Moreover, our simulation of [25] sug-
gests that already starting from 40,000 peers their approach fails
due to almost double fraction of found colluding nodes by random
look-ups compared to the overall fraction of colluding nodes in the
system.

One might argue that a constant fraction of collaborating nodes
assumes a very strong adversary, and there have been results that
only work with fewer adversarial nodes [11], yet there are multiple
reasons why we consider this adversarial model here: Firstly, most
practical suggestions to solving the problem have assumed fixed
percentages of malicious nodes [17, 5, 2]. Secondly, real world
phenomena like botnets suggest that we might have to deal with
strong attacks like this.

Thirdly, as we will show in the next section, we can do better.
Instead of striving to make paths independent, we want them to
work together in order to reach x more reliably.

5. NISAN
In this section we describe our approach. It consists of several

steps. We begin with a simple Chord-like DHT, and start building
protection measures on top of it in order to reach the required prop-
erties. Chord [16] has been chosen because of its simplicity, and,
most notably, because its finger table entries are deterministic in the
sense that there is exactly one correct neighbor for each finger in a
given DHT. Moreover, since the Chord distance metric is directed,
there is asymmetry in the sense that a node does not usually belong
in the finger tables of its neighbors. We will use the first property
to restrict malicious behavior in Section 5.3, and the second one
against a stronger adversarial model in Section 6.3. Still, both our
protection measures and scalability bounds, especially outside of
these two sections, carry over to a very generic class of DHTs. For
example, the results in the following section have serious implica-
tions for the security of Kademlia [13]. We do, however, decid-
edly prefer iterative search over recursive search, because, among
other reasons, firstly we will use the added control we gain over
the course of the search in our protection measures, and secondly,
we consider the increased potential for denial-of-service attacks in
recursive approaches as a too big threat to ignore.

5.1 Better Redundancy: Aggregated Greedy
Search

Most of the approaches studied before make use of redundant
independent lookups. This leads to a convergence on many paths.
Therefore we follow another approach: instead of making indepen-
dent lookups, we propose to use an aggregated search which com-
bines the knowledge available on each of the independent branches.
We call this aggregated greedy search.

It proceeds as follows. To find a random node, the searcher v
generates a random ID x. At this point we assume that node IDs are
uniformly distributed in the ID space (another case is considered in
Section 6.3). In each round v chooses the α nodes closest to x that
he is aware of and queries them for x. The search terminates when
after one iteration the list of α closest peers2 has not been changed.
The owner of x (the peer which is closest to the searched ID) is the
result of the query.

Interestingly, this description almost fits the behavior described
in the Kademlia specification [13]. And indeed, it has been demon-
strated [25] that Kademlia, and thus aggregated greedy search, works
well against an active adversary in networks of up to 50,000 nodes.
Unfortunately, we believe that these results can be explained by
the overwhelming redundancy employed for a relatively small net-
work. This is because the following theorem shows that aggregated
greedy search, on its own, does not scale.

THEOREM 2. Let α be an upper bound to the number of nodes
queried in every round, β the maximum number of neighbors ac-
cepted from any one queried node, and f the fraction of corrupted
nodes, a constant. Then, as long as (αβ)O(logα) ⊆ o(n), there is an
attack that makes the success probability of the search approach 0
in the limit. For example, this holds when α,β ∈ O(logn).

PROOF. The attacker proceeds by returning as many different
corrupt nodes as possible, in the order of proximity to the search
goal x, until only corrupted nodes are queried. If this attack suc-
ceeds, the attacker then has complete control over the course of the
search.

Let Bk = {b1, . . . ,b|Bk|} be the set of corrupt nodes that the search-
ing node v knows after k rounds, and say that the bi are ordered by

2We use peer and node as synonyms in this paper.



proximity to x, that is, ∀1 ≤ i ≤ j ≤ |Bk|, d(x,bi) ≤ d(x,b j). No-
tice that the attacker, by returning the collaborators closest to x first,
can make sure that this order is static during the whole search.

Let us first find an upper bound to the number of rounds k re-
quired such that |Bk| > α with high probability. Of course, this
presupposes that f n, the number of colluded nodes, exceeds α in
the first place, a trivial side condition that is guaranteed in the long
run by the assumption (αβ)O(logα) ⊆ o(n).

W.h.p., at least one corrupted node is queried within the first
round, if either α or β is in ω(1). Let us assume this for the moment.
Moreover, without loss of generality β ≥ 2, because for β = 1, ag-
gregated greedy search degenerates to simple greedy search with
redundancy α, and Theorem 1 can be applied to yield the claim,
because (αβ)O(logα) ⊆ o(n) implies α /∈ nΩ(1).

Let us further assume that in this phase, every colluded node
that v learns of will be queried, since v does not yet encounter any
honest nodes closer to x than bα. We will justify this in short. It is
then easy to see by induction that in each following round, |Bk| at
least doubles, because every corrupted node will return at least two
more hitherto unknown corrupted nodes. Thus, |Bk| > α for some
k ∈ O(logα) with high probability. Of course, this is a very weak
bound, but it will suffice for our needs here.

During these k rounds, v will learn of at most (αβ)O(logα) nodes
altogether. Assuming randomly distributed nodes (both honest and
corrupted), the size of the set Y of honest nodes closer to x than
bα is Pascal distributed with parameters α and f , and the expected
value is E(|Y |) = α(1/ f −1). Each of these nodes has probability
(αβ)O(logα)/n of being known to v before the attacker can make
v query only corrupt nodes after k rounds. As in Theorem 1, we
define indicator variables Iy that indicate this event for every y ∈Y .
Then, the expected total number of nodes in Y that v learns of in
time k is

E(∑
y∈Y

Iy) = E(E(∑
y∈Y

Iy)) = E(∑
y∈Y

E(Iy)) = E(|Y |)E(Iy).

Employing the Markov inequality just like in Theorem 1 shows
that this is an upper bound to the probability that v gets to know
any node that is closer than bα before the attacker can make him
query only corrupt nodes:

P[∑
y∈Y

Iy ≥ 1] ≤ E(|Y |)E(Iy) ∈ α(1/ f −1)(αβ)O(logα)

n
⊆ o(1)

when (αβ)O(logα) ⊆ o(n). This proves the first claim in the non-
constant case.

In the case that both α and β are constant, getting to know at least
one corrupted node with high probability might take a little longer,
say log(logn) rounds. Asymptotically this dominates the remain-
ing O(logα) rounds to make |Bk| > α. With the same reasoning as
above, the success probability is now at most (αβ)O(log logn)/n, but
for α,β ∈ O(1), this is also o(1).

Finally, when α,β ∈ O(logn), the success probability is

(αβ)O(logα)

n
=

(logn)O(log(logn))

n
=

eO(log2(logn))

n
⊆ o(1).

The theorem suggests that for all realistic choices of search pa-
rameters, a rather simple eclipse attack defeats aggregated greedy
search (and thus, Kademlia) in the limit. Notice, however, that this
attack is based on the malicious nodes knowing x even in the first
round. In order to overcome the problem, we propose to hide the
search value. This protection strategy will be discussed in the next
section.

5.2 Hiding the Search Value
We modify our search as follows. As before, in each round v

chooses the α known nodes closest to x. From each of these nodes,
instead of asking for x, v requests their whole finger table (FT).

Let α = log2(n) from now on. This value maximizes redun-
dancy, yet might still be tuned in real applications to avoid exces-
sive network load. In the first step, v queries all peers in his finger
table. Each of the retrieved finger tables contains log2(n) entries.
These are all aggregated, and the best (closest to the searched ID)
log2(n) are selected for the next iteration. Only hitherto unqueried
nodes are requested to provide their finger tables. The search con-
tinues until the top list of log2(n) closest peers is not modified at the
end of an iteration. The closest peer is then returned as the result of
the search.

We choose to retrieve the whole FT because of the following
reasons: First, we get extra redundancy while executing the lookup;
Second, the queried node does not know which ID v is interested in.
This keeps the adversary from responding with targeted malicious
nodes, which are close to the searched ID.

Figure 1 shows the simulation results for aggregated greedy search
while trying to hide the searched value. All the plots include 95%
confidence intervals in order to show the solidity of the results.
Malicious nodes provide only other malicious nodes in their FTs.
Since the searched ID is not known, malicious nodes deliver ran-
dom colluding nodes. Surprisingly, the rate of found malicious
nodes seems to approach 2 f − f 2. This phenomenon might intu-
itively be explained as follows: Since the first round is unbiased,
we can expect a rate of f colluding nodes to be queried. However,
when we assume that all these nodes reply with malicious nodes
only, while the honest nodes’ finger tables still have attacker ratio
f , the new attacker ratio in the replies from round 1 is expected to
be f · 1 +(1− f ) f = 2 f − f 2. Notice that from the second round
on, all queried nodes have an ID bias towards x. While the attacker
nodes still answer with random colluded nodes, the honest nodes’
finger tables, due to the exponentially increasing finger distances
in Chord (see Section 5.3 for more details), contain more nodes in
their own vicinity, and thus in the vicinity of x. Thus, the attacker
quickly loses its advantage in the course of the search process and
may not be able to increase the attacker ratio from the second stage
on. This explanation does not yet give a full formal model for the
search process, still it might help account for the results we have
seen.
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nodes



While these results are a step in the right direction, they are far
from ideal on their own. Moreover, there is an even more efficient
attack against this search strategy. Due to the fact that the search in
a DHT in the follow-up iterations depends on the results in the pre-
vious step, colluding nodes can combine their knowledge in order
to find out the searched-for ID. Because the Chord ring is directed,
the searcher will not ask for IDs laying “behind” the search value x.
Thus, the attacker can estimate the interval of the ID by looking at
which colluding nodes the searcher knows of (they were communi-
cated by colluding nodes to the searcher in the previous iteration)
but does not query. It can then return malicious nodes which are as
close as possible to the searched-for ID (i.e. malicious nodes within
the estimated interval of the ID). Figure 2 shows the simulation re-
sults for the case when the malicious nodes estimate the queried
ID. Note, that this is only possible after the second search iteration
since the first round does not leak information about the direction
of search. We see that even having only 10% of malicious nodes in
the system leads to more that 50% attacker success.
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Figure 2: Malicious nodes respond with collaborating nodes
closest to the search value

Thus, even aggregated greedy search without explicitly telling
the search value does not offer enough protection: an adversary can
still learn x, eclipse the searcher and guide him into a cluster con-
sisting of malicious nodes only. Therefore, we need one additional
building block.

5.3 Bounds Checking in Finger Tables
The success of the active attack described in the previous section

is based on the fact that colluding nodes can provide arbitrary other
nodes in their FTs. In order to mitigate this, we utilize properties of
DHTs with a deterministic choice of peers in the FT. Chord is one
such DHT. In Chord, the ith finger of a node with ID m is supposed
to point to the node whose ID is closest to m+2i−1. Since v knows
the IDs of the nodes it queries, it can calculate these values and
compare them to the actual finger table values in the responses it
receives.

Since we already retrieve and have the whole FT, the check can
be performed “for free” – without transmitting any additional in-
formation. In contrast to earlier approaches [17, 5], we do not only
check the final result of the query, but all the intermediate steps.
As our evaluation shows, this significantly improves the success
probability.

We propose to perform bounds checking in finger tables as fol-
lows. Each peer calculates means of the distance between the ac-
tual IDs in its FT and optimal IDs (as if all IDs would exist). Let

 0

 1

 2

 3

 4

 5

0 100000 200000 300000 400000 500000

F
r
a
c
t
i
o
n
 
o
f
 
p
e
e
r
s
 
[
%
]

Means

Finger table means distribution (100,000 Peers, 20% malicious)

FTs of honest peers

 0

 1

 2

 3

 4

 5

0 100000 200000 300000 400000 500000

F
r
a
c
t
i
o
n
 
o
f
 
p
e
e
r
s
 
[
%
]

Means

Finger table means distribution (100,000 Peers, 20% malicious)

FTs of malicious peers

Figure 3: Finger table analysis: malicious nodes change 10 en-
tries

 0

 1

 2

 3

 4

 5

0 100000 200000 300000 400000 500000

F
r
a
c
t
i
o
n
 
o
f
 
p
e
e
r
s
 
[
%
]

Means

Finger table means distribution (100,000 Peers, 20% malicious)

FTs of honest peers

 0

 1

 2

 3

 4

 5

0 100000 200000 300000 400000 500000

F
r
a
c
t
i
o
n
 
o
f
 
p
e
e
r
s
 
[
%
]

Means

Finger table means distribution (100,000 Peers, 20% malicious)

FTs of malicious peers

Figure 4: Finger table analysis: malicious nodes change 4 en-
tries

us denote this as a mean distance. The mean distance is further
multiplied with a factor – we call it FT tolerance factor.

The search is now modified as follows: in each iteration, FTs are
only accepted and considered for finding the log2(n) nodes closest
to x, if they pass the FT test. The test yields a positive result if and
only if the mean distance of the considered FT is smaller than the
average sampled mean distance of the own FT times the tolerance
factor.

Figures 3 and 4 show differences in the mean distances of honest
and colluding nodes’ FTs. While Figure 3 shows the case where
malicious nodes change 10 honest node entries to malicious one, in
Figure 4 only 4 entries are changed. Malicious nodes change their
entries from the actual value to the malicious node closest to this
value. This is the best strategy for them to make the FT still look
plausible.

Since there are 100,000 nodes in the considered scenario, on
average there are 16 nodes in each finger table. We see that the
mean distance is clearly distinguishable when many FT entries are
changed, and becomes closer and less distinguishable when only a
few entries are modified. Even though this finding is obvious, the
real values give an intuition to which extent the FTs of malicious
nodes can be changed while still successfully passing the FT check
test.

Figure 5 shows the influence of the FT tolerance factor on false
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positives and the rate of found malicious nodes, when the adver-
saries make their FT contain only colluded nodes by changing en-
tries to the next colluded node where necessary. Even if the attacker
is the correct owner of the searched ID, in case his FT check fails,
his ID is thrown out resulting in a smaller fraction of malicious
nodes found than present in the system.
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In contrast to that, in Figure 6 malicious nodes detect the search
directions and intelligently replace honest nodes with colluded ones,
starting with the honest nodes closest to the searched area. This
is done in such a way that the closest malicious node to the to-
be-replaced honest node is selected for this operation. This in-
creases the plausibility of modified FTs. The other entries remain
unchanged. We can see the dependency of the attacker success rate
on both the FT tolerance factor and the number of replaced entries.
A staggering finding here is that replacing all the entries in the FT
with the closest malicious nodes does not help the adversary to sig-
nificantly increase the rate of its nodes in the final results of the
queries, even if the searcher were to believe all these FTs. Thus,
as long as the FTs look plausible, the attacker is not able to sig-
nificantly bias the user selection, even if he provides the searcher
with only malicious nodes. This provides a clue into why NISAN,
or the combination of aggregated greedy search with finger table
checking, provides such strong protection against eclipse attacks:
by forcing the attacker to conform closely to the original structure
of the DHT and aggregating results, we can always correct mis-

leading information by taking into account FTs of close-by honest
nodes. We conjecture that this combination could probably deter
eclipse attacks even without hiding the search value, but we keep
this feature because it does not cost us anything at this point and
might be useful against information leakage attacks (see Section 6
for more details).
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In Figure 7 we additionally assume that the adversary knows the
FT acceptance threshold of the users. As in the previous plot the at-
tacker learns the search value. He replaces FT entries in the search
direction, but only up to the acceptance threshold, so that his FT
would be still accepted by an honest user. This is the strongest ad-
versarial behavior that we tested, because it seems hard to conceive
of an easy way for the attackers to optimize their responses beyond
this point. The optimization problems arising are hard enough to
describe, let alone solve efficiently. Certainly, there is ample space
for future research in this direction. Because the structure of DHTs
like Chord seems so benign to our approach, we conjecture though,
that the effect of further optimization, at least when restricted to
efficiently solvable problems, will be limited.

As our simulations show, bounds checking on FTs is a very
promising technique. A FT tolerance factor of 3 seems to be a
good choice for the considered setup. As Figure 7 shows, virtually
no FTs of honest users are rejected when we apply this factor. Fur-
thermore, malicious nodes are not able to increase their rate in the
system while changing more than 3 entries (see Figure 6). Know-
ing the searched ID and the acceptance threshold of the honest users
does not help malicious nodes to significantly increase their rate in
the queries beyond their rate in the system as Figure 7 suggests.
Castro et al. [5] give a very precise statistical method for optimiz-
ing the tolerance factor when checking final results. Their method
could easily be adapted to our FT checking. Yet, we find that sim-
ply selecting an ad-hoc value such as 3 works pretty well in our
simulations. Further inspection of Figure 6 helps us to understand
this: We are relatively free to minimize the false positive rate by
choosing a rather high tolerance factor, because there is no need to
strictly minimize the false negatives. This is because as long as the
fraction of malicious nodes found remains below the actual attacker
rate f , it just makes no sense for an attacker to lie about its FT.

Performing the FT check test based on the mean distance only is
certainly not the only possibility. Possibly, other strategies would
yield even better results. In fact, the whole armament of statisti-
cal classification techniques can be imagined to be brought to use.
However, the results show that even our simple strategy works well
in the considered simulations. That is why we leave improvements



in this direction for future work. See Section 6.3 for arguments why
research in this direction might still be worthwhile. One possible
improvement might be to consider only (or to weight additionally)
those entries which are leading into the direction of search and are
considered for the top list of log2(n) best nodes seen so far. If an
adversary is able to learn the search direction, these are the first
entries he would replace.

As the results show, our protection works well against an active
attacker. Most of the simulations provided here have been con-
ducted with 20% of malicious nodes in the system. However, we
have also conducted simulations for 1,10, and 40% of colluding
nodes, respectively. Due to the space limit and similarity of the
results we forego their presentation in this paper.

5.4 Further Improvements
We have analyzed the rate of the malicious nodes in the log2(n)

best nodes list depending on the iteration. Our initial idea was to
also accept the nodes found in the intermediate steps of a search
as onion router candidates in order to mitigate bridging and finger-
printing attacks. However, as the results in Figure 8 show, this is
not a good idea. Still, the rate of colluded nodes in the last search it-
eration corresponds to the rate of malicious nodes if we only look at
the single result of the search (cf. Figure 7). Thus, it makes sense to
consider the whole list of log2(n) closest nodes to the search value
instead of the single value only as possible routers. This increases
the uncertainty of an attacker about the nodes which are known to
honest users (as their number is significantly increased), and thus
helps us counter passive information leakage attacks, as explained
in the following section.
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6. DISCUSSION AND ALTERNATIVES
In this section, we discuss challenges to network information

services that have rarely been seriously addressed when proposing
new methods, but have to be considered when deploying a system
in the real world. One of these is information leakage, which invites
passive attacks such as bridging and fingerprinting.

The fingerprinting attack relies on the fact that an adversary,
observing some tunnel through the network can associate it to a
small set of possible initiators. Bridging an honest node assumes
that, similarly as with the fingerprinting, the nodes constructing the
paths only know a fraction of all routers. Thus, not all combinations
of in-/output links of a router are valid: possibly no node knows all
the routers needed to construct them. In order to deanonymize a

user, the attacker has to control (or observe) at least the exit node
involved in the user’s tunnel. Observing or controlling the middle
node can be used to further reduce the set of possible initiators.
For a full deanonymization, however, the involved combination of
nodes should be known to a single user only. In other cases this
information merely reduces the anonymity set (the set of possible
initiators), but does not necessarily give confidence in the conjec-
ture.

Even though from our point of view bridging and fingerprint-
ing attacks have been of rather theoretical interest so far and could
not yet be shown to significantly compromise anonymity in open
networks like Tor, where the number of users is estimated to be in
the hundreds of thousands, we still find it challenging to look for
defenses against these attacks. Because all approaches with par-
tial knowledge about the network known so far are susceptible to
them, we try to overcome these attacks by discussing a radically
different alternative to NISAN, namely random walk, as well as a
combination of both methods.

After evaluating these two approaches, in 6.2 we address the of-
ten overlooked question of bootstrapping. While keeping a rather
generic view, we give implementation pointers and argue why we
believe that NISAN can be bootstrapped and maintained securely
when carefully implemented. Finally, in 6.3 a more powerful adver-
sarial model is examined, as we look into NISAN’s behavior under
the assumption that the attacker is free to choose their positioning
within the ID space of the DHT.

6.1 Information Leakage and Random Walks
All known DHT-based information distribution services, includ-

ing NISAN, are endangered by passive information leakage attacks
[15, 6]. These attacks generally use the fact that searching in a DHT
entails talking to many colluded nodes in the process. The redun-
dancy typically used to prevent active attacks only makes this ex-
posure worse, so that we may even talk about a trade-off in protec-
tion against active and passive attacks [15]. Through these search
queries, the attacker learns who is searching whom, either directly
or through linking multiple queries. Measures such as recursive
routing or hiding the search goal may make this information harder
to obtain or less precise, yet in general cannot keep the adversary
from gaining significant insight. This kind of information can then
be abused in a number of subtle ways that are out of scope in this
paper. In fact, the types of attacks possible have become a very
active research topic lately [15, 6]. Still, in all of these attacks the
worst case that can arise is the attacker gaining knowledge of the
complete routing circuit. Though this is clearly not desirable, there
is little research about the consequences in real-world systems. Ar-
guably, we are worse off if the attacker controls the routing circuit,
as is the goal of eclipse attacks. That is why so far, we have placed
emphasis on avoiding this kind of attack.

The information leakage in NISAN lies in giving away x, or,
more precisely, the link between the searching node v and x. Through
hiding the search value (cf. 5.2) and taking into consideration the
whole top list at the end of the search (cf. 5.4) we have already
introduced some uncertainty for the attacker. In general, a good
way to raise the entropy for the attacker in our choice of circuit
nodes is to simply conduct multiple searches, sequentially or in
parallel, thereby learning a greater part of the network. Moreover,
such behavior, especially when conducted by a great many nodes,
may serve to obscure the links between searchers and searched-for
nodes.

Although these measures may foil most attacks in practice, and
though it is not clear how much an attacker could profit at all from
knowledge gained this way, it would obviously be preferable from a
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Figure 9: Theoretical lower bound to attacker success on ran-
dom walks for attacker ratio f = 0.2 and increasing attacker
finger table corruption g

theoretical point of view if we could provably avoid passive attacks
altogether. Hence we looked for an entirely different approach that
cannot give away a search goal since there is no such thing. A
random walk (RW) through the network is a relatively obvious so-
lution.

In a RW, we randomly select one of our neighbors, ask this
neighbor for its finger table, and, again, randomly select one of
its neighbors, iterating this method for a path length l. On average,
l should at least be log2(n), since this ensures that each peer in the
DHT can be reached by the RW. Intuitively, there is little informa-
tion leakage in this process, probably as little as we can reach when
routing in a DHT, since there really is no direction to the search that
might be leaked.

It is clear that this approach can be combined with our finger ta-
ble checking to keep the attacker from presenting arbitrary neigh-
bor tables and thus hijacking a path with certainty. Still, we have
to assume a different ratio g of colluding nodes in attacker fin-
ger tables that is potentially higher than f , especially when we al-
low for arbitrary attacker positioning as discussed in Section 6.3.
Let p f (l) = 1 − ps(l) be the probability of selecting a colluded
node after l steps. Obviously, p f (1) = f . Moreover, for l > 1,
p f (l) ≥ gp f (l − 1)+ f ps(l − 1). Solving this recurrence relation

using geometric series yields p f (l) ≥ f 1−(g− f )l+1

1−g+ f , which can eas-
ily be checked by using induction.

We observe that with growing path length, this probability rapidly
becomes f

1−g+ f . Figure 9 plots this predicted attacker success rate
for increasing g with f = 0.2.

Unfortunately, this strong dependency on g turns out to be prob-
lematic in the real world, because it compounds with another prop-
erty of RWs. Figure 10 displays the results of our simulations.
Specifically, we look at the impact of the tolerance factor, when
the attackers know this factor and try to modify as many fingers as
possible without being detected. Unlike aggregated greedy search,
where it is important for the attacker to change FT entries close to
x, with RW, every FT entry is equally important and so it becomes
a good adversarial strategy to adapt as many entries as possible,
which translates into making small changes first. We can see that
already with a factor of 3, the attackers can modify about 12 out
of 16 FT entries on average, which, consistent with our prediction,
translates to almost 50 percent attacker success for f = 0.2. The

sweet spot seems to be at a lower factor here, but even at factor 2
we get a failure rate of about 0.35, with already significant false
positives.
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This shows that using RWs for network information is only ad-
visable when the active attacker ratio is low and information leak-
age is a serious issue. On the other hand, the results highlight the
effective protection against an active adversary that is provided by
our improved aggregated greedy search scheme with finger table
checking.

We have been thinking of a combined approach that might bring
together the advantages of both aggregated greedy search (secu-
rity against active attacks) and RWs (security against passive at-
tacks). Unfortunately, the straightforward idea of searching for a
few rounds and then randomly switching the goal x seems to have
limited applicability, as Figure 11 suggests. It makes clear that dur-
ing the search process, the ratio of colluding nodes in the total set
of nodes surveyed, as well as in the closest nodes top list is rising
rather quickly in the first few steps, a finding echoed in Figure 8.
It is mitigated only later on, when the search converges towards x.
By this time, however, the attacker already has a pretty good idea
of the search direction.
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6.2 Bootstrapping Process
So far in our analysis we have assumed a correct bootstrapping

of the network. Under this assumption we have shown that our



approach NISAN is able to provide an adequate protection to its
users: the fraction of malicious nodes found in random look-ups is
not significantly larger than the overall fraction of malicious nodes
in the system. Additionally, sampling a significant fraction of the
network considerably hardens bridging and fingerprinting attacks.
In this section we discuss how the users can overcome the problem
of malicious nodes while joining the network, i.e. bootstrapping.

We assume that before joining the network a user knows a few
DHT members and at least one of them is not colluding. This as-
sumption is meaningful since it is unlikely that any approach would
work if only malicious nodes are known to the user. The user gen-
erates its ID (which might be a hash of its DHT public key, say),
and asks the known DHT members to execute the bootstrapping
for this ID. Each of these nodes executes the lookups (in the way
we proposed before) for the entries in the new nodes’ FT and com-
municate them to the new node. The new node selects the entries
closest to the optimum values. Notice that even a majority of evil
nodes could not break this process, as long as there is one honest
node whose searches succeed. After the stabilization protocol run
[16] the new node is a regular member of the network. By basing
bootstrapping (and maintenance, which can be conducted in a sim-
ilar manner) on our secure routing primitive, we are confident not
to introduce additional security hazards.

6.3 Arbitrary Positioning of Malicious Nodes
So far we have considered the case where malicious nodes are

uniformly distributed along the ID space. It is beyond the scope
of this paper to discuss the realism of this assumption and possi-
ble measures for enforcing it. Still, we briefly look at a stronger
adversarial scenario: what if the colluded nodes could arbitrarily
position themselves within the whole ID space of the Chord ring?
Clearly, if this were to work instantly, or the DHT remained very
stable for a long time, the adversaries could eclipse a single user if
they knew his ID. We consider the case where they do not have a
concrete victim but are rather interested to be in as many paths in
the system as possible, thus trying to get as much information as
possible about the whole system.

At this point, the asymmetry of our DHT distance metric comes
into play: It assures that, typically, a (colluded) node is not a neigh-
bor of its neighbors. Thus, it is a nontrivial feat for the adversary
to construct positions for its nodes such that their FTs may contain
many of their own while still being plausible. Again, a presumably
hard problem arises for the attacker, and we can only give a sim-
ple solution that we believe close to optimal, without being able to
prove this conjecture.

From our point of view, the so-called bisection would be a very
good attacker positioning strategy in this case: recursive division of
the ID space into two equal parts (halves) and placing the malicious
nodes on the dividing points. This would lead to “perfect” FTs in
the sense that the mean distance would rapidly approach zero with
an increasing number of malicious nodes. Figure 12 shows the sim-
ulation results for this scenario. Even though the results are worse
than in the regular case when the arbitrary positioning is not pos-
sible, the rate of found colluding nodes in random searches is still
fixed with increasing network size, while non-linearly dependent
on the total attacker rate. Therefore, when the attackers are able to
mount this kind of attack, we can say that NISAN – as it is – still
scales, yet is more vulnerable to high attacker rates.

However, having perfect finger tables is also conspicuous and
can be detected by the honest users. Note that malicious nodes
cannot easily improve their positioning by being only close to the
optimal value – this would work only for a few of them. The rest
would have “regular” FTs.
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It is not hard to come up with slight modifications to our DHT
scheme that foil the simple bisection attacker plan. For example,
we might think of requiring the ith FT entry of node m to be strictly
greater than m+2i−1, instead of just greater or equal. This already
breaks symmetry. However, it seems much harder to come up with
a DHT structure that can actually be shown to allow for no or not
much advantage through any chosen positioning. We have to leave
this fascinating research topic for future work, yet remark that it is
a standard problem in security research that unknown attacks can
never be ruled out in general. In light of our findings, we therefore
propose NISAN as the most secure and scalable approach to truly
distributed network information distribution that we know of; and
while we cannot guarantee the absence of unthought-of attacks, the
above considerations inspire us with confidence that NISAN will
defend against them gracefully, or at the very least can be adapted
to do so easily.

7. CONCLUSIONS
Although peer discovery and anonymization are two disjoint tasks,

the network information distribution has a direct impact on the
anonymization. Therefore, during the design of new anonymization
systems the network information distribution has to be addressed as
well.

In this paper we proposed a DHT-based practical approach for
distribution of network information. Our scheme prevents mali-
cious nodes from biasing the node look-ups, while requiring each
node to know only a small subset of the network. The approach is
highly scalable and does not require to trust any third party.

Just like every other known approach that does not lead to a full
network view, our approach is still susceptible to bridging and fin-
gerprinting attacks. Even though their practical seriousness and im-
pact are under research, we hardened NISAN against these attacks
by hiding the searched goal and learning a significantly large part
of the network. If information leakage is intolerable in a given sce-
nario, we propose the alternative approach of random walks, while
acknowledging that this method does not feature equally strong
protection against active attacks. In practice, a more typical way of
dealing with the problem would be to adjust the number of searches
before actually selecting a router. This way, a greater part of the
network is known over time, making fingerprinting-type inference
significantly harder for the attacker. In the limit, this poses the
question if gossiping-like alternatives that lead to discovery of the
entire network can be made scalable, and adversarial exploitation
of a full network view as in intersection attacks can be prevented.



These alternatives have to be further researched in order to find the
most appropriate solution for the addressed problem.
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