
A Formal Treatment of Onion Routing
(Preliminary Version)

Jan Camenisch

IBM Research
Zurich Research Laboratory

CH–8803 Rüschlikon
jca@zurich.ibm.com

Anna Lysyanskaya

Computer Science Department
Brown University

Providence, RI 02912 USA
anna@cs.brown.edu

June 22, 2005

Abstract. Anonymous channels are necessary for a multitude of privacy-protecting protocols. Onion
routing is probably the best known way to achieve anonymity in practice. However, the cryptographic
aspects of onion routing have not been sufficiently explored: no satisfactory definitions of security have
been given, and existing constructions have only had ad-hoc security analysis for the most part.
We provide a formal definition of onion-routing in the universally composable framework, and also
discover a simpler definition (similar to CCA2 security for encryption) that implies security in the UC
framework. We then exhibit an efficient and easy to implement construction of an onion routing scheme
satisfying this definition.

1 Introduction

The ability to communicate anonymously is requisite for most privacy-preserving interactions. Many cryp-
tographic protocols, and in particular, all the work on group signatures, blind signatures, electronic cash,
anonymous credentials, etc., assume anonymous channels as a starting point.

One means to achieve anonymous communication are mix-networks [6]. Here, messages are wrapped in
several layers of encryption and then routed through intermediate nodes each of which peels off a layer of
encryption and then forwards them in random order to the next node. This process is repeated until all layers
are removed. The way messages are wrapped (which determines their path through the network) can either
be fixed or can be chosen by each sender for each message.

The former case is usually preferred in applications such as e-voting where one additionally want to
ensure that no message is dropped in transit. In that case, each router is required to prove that it behaved
correctly: that the messages it outputs are a permutation of the decryption of the messages it has received.
The communication model suitable for such a protocol would have a broadcast channel or a public bulletin
board; this is not considered efficient in a standard point-to-point network.

In the latter case, where the path is chosen on a message-by-message basis, one often calls the wrapped
messages onions and speaks of onion routing [12, 10]. An onion router is simply responsible for removing a
layer of encryption and sending the result to the next onion router. Although this means that onion routing
cannot provide robustness (a router may drop an onion and no one will notice), the simplicity of this protocol
makes it very attractive in practice. In fact, there are several implementations of onion routing available (see
Dingledine et al. [10] and references therein). Unfortunately, these implementations use ad-hoc cryptography
instead of provably secure schemes.

The only prior attempt to formalize and construct a provably secure onion routing scheme is due to
Möller [16]. Contrary to his claimed goals, it is not hard to see that his definition of security does not guarantee
that the onion’s distance to destination is hidden from a malicious router. Additionally, his definition does
not consider adaptive attacks aimed to break the anonymity properties of onion routing. Thus, although
his work represents a first step in the right direction, it falls short of giving a satisfactory definition. His
construction does not seem to meet our definition, but has some similarity to our construction.

Alternative means of achieving anonymous communications include Chaum’s dining cryptographer
networks [7, 8] and Crowds [18].

Onion routing: definitional issues. The state of the literature on anonymous channels today is compa-
rable to that on secure encryption many years ago. While there is a good intuitive understanding of what
functionality and security properties an anonymous channel must provide, and a multitude of constructions
that seek to meet this intuition, there is a lack of satisfactory definitions and, as a result, of provably secure
constructions. Indeed, realizing anonymous channels — and constructions aside, simply reasoning about the
degree of anonymity a given routing algorithm in a network can provide — remains a question still largely
open to rigorous study.

This paper does not actually give a definition of an anonymous channel. We do not know how to define it
in such a way that it is, on the one hand, realizable, and, on the other hand, meets our intuitive understanding
of what an anonymous channel must accomplish. The stumbling block is that, to realize anonymous channels,
one must make non-cryptographic assumptions on the network model. The fact that a solution is proven
secure under one set of assumptions on the network does not necessarily imply that it is secure under another
set of assumptions.

For example, if one is trying to obtain anonymous channels by constructing a mix network [6], one must
make the assumption that (1) there is a dedicated mix network where at least one server is honest; and,
more severely, (2) everyone sends and receives about equal amount of traffic and so one cannot match senders
to receivers by analyzing the amount of traffic sent and received. In fact, that second assumption on the
network was experimentally shown to be crucial — it is known how to break security of mix networks using
statistics on network usage where the amount of traffic sent and received by each party is not prescribed to
be equal, but rather there is a continuous flow of traffic [14, 9, 23].

In cryptography, however, this is a classical situation. For example, semantic security [13] was introduced
to capture what the adversary already knows about the plaintext (before the ciphertext is even formed) by
requiring that a cryptosystem be secure for all a-priori distributions on the plaintext, even those chosen by
the adversary. Thus, the cryptographic issue of secure encryption, was separated from the non-cryptographic
modelling of the adversary’s a-priori information. We take a similar approach here.

An onion routing scheme can provide some amount of anonymity when a message is sent through a
sufficient number of honest onion routers and there is enough traffic on the network overall. However,
nothing can really be inferred about how much anonymity an onion routing algorithm provides without
a model that captures network traffic appropriately. As a result, security must be defined with the view
of ensuring that the cryptographic aspects of a solution remain secure even in the worst-case network scenario.

Our results. Armed with the definitional approach outlined above, we give a definition of security of an
onion routing scheme in the universally composable framework [4]. We chose this approach not because we
want onion routing to be universally composable with other protocols (we do, but that’s a bonus side effect),
but simply because we do not know how to do it in any other way! The beauty and versatility of the UC
framework (as well as the related reactive security framework [17, 1]) is that it guarantees that the network
issues are orthogonal to the cryptographic ones — i.e., the cryptographic aspects remain secure under the
worst-case assumptions on the network behavior. (Similarly to us, Wikström [22] gives a definition of security
in the UC framework for general mix networks.)

Definitions based on the UC-framework, however, can be hard to work with. Thus we also give a cryp-
tographic definition, similar to CCA2-security for encryption [11]. We show that in order to satisfy our
UC-based definition, it is sufficient to give an onion routing scheme satisfying our cryptographic definition.

Finally, we give a construction that satisfies our cryptographic definition.

Overview of our definition and solution. Our ideal functionality does not reveal to an adversarial router
any information about onions apart from the prior and the next routers; in particular, the router does not
learn how far a given message is from its destination. This property makes traffic analysis a lot harder to
carry out, because now any message sent between two onion routers looks the same, even if one of the routers
is controlled by the adversary, no matter how close it is to destination [2]. It is actually easy to see where
this property comes in. Suppose that it were possible to tell by examining an onion, how far it is from

2

destination. In order to ensure mixing, an onion router that receives an onion O that is h hops away from
destination must buffer up several other onions that are also h hops away from destination before sending
O to the next router. Overall, if onions can be up to N hops away from destination, each router will be
buffering Θ(N) onions, a few for all possible values of h. This makes onion routing slow and expensive. In
contrast, if an onion routing scheme hides distance to destination, then a router may just buffer a constant
number of onions before sending them off.

However, achieving this in a cryptographic implementation seems challenging; let us explain why. In onion
routing, each onion router Pi, upon receipt of an onion Oi, decrypts it (“peels off” a layer of encryption) to
obtain the values Pi+1 and Oi+1, where Pi+1 is the identity of the next router in the chain, and Oi+1 is the
data that needs to be sent to Pi+1.

Suppose that the outgoing onion Oi+1 is just the decryption of the incoming onion Oi. Semantic security
under the CCA2 attack suggests that, even under active attack from the adversary, if Pi is honest, then the
only thing that the incoming onion Oi reveals about the corresponding outgoing onion Oi+1 is its length.

In the context of encryption, the fact that the length is revealed is a necessary evil that cannot be
helped. In this case, however, the problem is not just that the length is revealed, but that, in a secure (i.e.,
probabilistic) cryptosystem, the length of a plaintext is always smaller than the length of a ciphertext.

One attempt to fix this problem is to require that Pi not only decrypt the onion, but also pad it so
|Oi| = |Oi+1|. It is clear that just padding will not work: |Oi+1| should be formed in such a way that even
Pi+1 (who can be malicious), upon decrypting Oi+1 and obtaining the identity of Pi+2 and the data Oi+2,
still cannot tell that the onion Oi+1 was padded, i.e., router Pi+1 cannot tell that he is not the first router in
the chain. At first glance, being able to pad the onion seems to contradict non-malleability: if you can pad
it, then, it seems, you can form different onions with the same content and make the scheme vulnerable to
adaptive attacks.

Our solution is to use CCA2 encryption with tags (or labels) [21, 19, 3], in combination with a pseudoran-
dom permutation (block cipher). We make router Pi pad the onion is such a way that the next router Pi+1

cannot tell that it was padded; and yet the fact this is possible does not contradict the non-malleability of
the scheme because this padding is deterministic. The onion will only be processed correctly by Pi+1 when
the tag that Pi+1 receives is correct, and the only way to make the tag correct is if Pi applied the appropriate
deterministic padding. To see how it all fits together, see Section 4.1.

2 Onion Routing in the UC Framework

Setting. Let us assume that there is a network with J players P1, . . . , PJ . For simplicity, we do not distinguish
players as senders, routers, and receivers; each player can assume any of these roles. In fact, making such
a distinction would not affect our protocol at all and needs to be considered in its application only. We
define onion routing in the public key model (i.e., in the hybrid model where a public-key infrastructure is
already in place) where each player has an appropriately chosen identity Pi, a registered public key PKi

corresponding to this identity, and these values are known to each player.
In each instance of a message that should be sent, for some (s, r), we have a sender Ps (s stands for

“sender”) sending a message m of length `m (the length `m is a fixed parameter, all messages sent must be
the same length) to recipient Pr (r stands for “recipient”) through n < N additional routers Po1 , . . . , Pon

(o
stands for “onion router”), where the system parameter N − 1 is an upper bound on the number of routers
that the sender can choose. How each sender selects his onion routers Po1 , . . . , Pon is a non-cryptographic
problem independent of the current exposition. The input to the onion sending procedure consists of the
message m that Ps wishes to send to Pr, a list of onion routers Po1 , . . . , Pon

, and the necessary public keys
and parameters. The input to the onion routing procedure consists of an onion O, the routing party’s secret
key SK, and the necessary public keys and parameters. In case the routing party is in fact the recipient, the
routing procedure will output the message m.

Definition of security. The honest players are modelled by imagining that they obtain inputs (i.e., the data
m they want to send, the identity of the recipient Pr, and the identities of the onion routers Po1 , . . . , Pon

)

3

from the environment Z, and then follow the protocol (either the ideal or the cryptographic one). Similarly,
the honest players’ outputs are passed to the environment.

Following the standard universal composability approach (but dropping most of the formalism and sub-
tleties to keep presentation compact), we say that an onion routing protocol is secure if there exists a
simulator (ideal-world adversary) S such that no polynomial-time in λ (the security parameter) environment
Z controlling the inputs and outputs of the honest players, and the behavior of malicious players, can dis-
tinguish between interacting with the honest parties in the ideal model through S, or interacting with the
honest parties using the protocol.

We note that the solution we present is secure in the public-key model, i.e., in the model where players
publish the keys associated with their identities in some reliable manner. In the proof of security, we will
allow the simulator S to generate the keys of all the honest players.

The ideal process. Let us define the ideal onion routing process. Let us assume that the adversary is static,
i.e., each player is either honest or corrupted from the beginning, and the trusted party implementing the
ideal process knows which parties are honest and which ones are corrupted.

Ideal Onion Routing Functionality: Internal Data Structure.

– The set Bad of parties controlled by the adversary.
– An onion O is stored in the form of (sid , Ps, Pr,m, n,P, i) where: sid is the identifier, Ps is the sender, Pr

is the recipient, m is the message sent through the onion routers, n < N is the length of the onion path,
P = (Po1 , . . . , Pon

) is the path over which the message is sent (by convention, Po0 = Ps, and Pon+1 = Pr),
i indicates how much of the path the message has already traversed (initially, i = 0). An onion has reached
its destination when i = n + 1.

– A list L of onions that are being processed by the adversarial routers. Each entry of the list consists of
(temp, O, j), where temp is the temporary id that the adversary needs to know to process the onion, while
O = (sid , Ps, Pr,m, n,P, i) is the onion itself, and j is the entry in P where the onion should be sent next
(the adversary does not get to see O and j). Remark: Note that entries are never removed from L. This
models the replay attack: the ideal adversary is allowed to resend an onion.

– For each honest party Pi, a buffer Bi of onions that are currently being held by Pi. Each entry consists of
(temp′, O), where temp′ is the temporary id that an honest party needs to know to process the onion and
O = (sid , Ps, Pr,m, n,P, i) is the onion itself (the honest party does not get to see O). Entries from this
buffer are removed if an honest party tells the functionality that she wants to send an onion to the next
party.

Ideal Onion Routing Functionality: Instructions. The ideal process is activated by a message from router P ,
from the adversary S, or from itself. There are four types of messages, as follows:

(Process New Onion, Pr,m, n,P). Upon receiving such a message from Ps, where m ∈ {0, 1}`m ∪ {⊥}, do:
1. If |P| ≥ N , reject.
2. Otherwise, create a new session id sid , and let O = (sid , P, Pr,m, n,P, 0).

Send itself message (Process Next Step, O).
(Process Next Step, O). This is the core of the ideal protocol. Suppose O = (sid , Ps, Pr,m, n,P, i). The ideal
functionality looks at the next part of the path. The router Poi

just processed1 the onion and now it is being
passed to Poi+1 . Corresponding to which routers are honest, and which ones are adversarial, there are two
possibilities for the next part of the path:
I) Honest next. Suppose that the next node, Poi+1 , is honest. Here, the ideal functionality makes up a
random temporary id temp for this onion and sends to S (recall that S controls the network so it decides
which messages get delivered): “Onion temp from Poi to Poi+1 .” It adds the entry (temp, O, i + 1) to list L.
(See (Deliver Message, temp) for what happens next.)
1 In case i = 0, processed means having originated the onion and submitted it to the ideal process.

4

II) Adversary next. Suppose that Poi+1 is adversarial. Then there are two cases:
– There is an honest router remaining on the path to the recipient. Let Poj

be the next honest router.
(I.e., j > i is the smallest integer such that Poj is honest.) In this case, the ideal functionality creates a
random temporary id temp for this onion, and sends the message “Onion temp from Poi , routed through
(Poi+1 , . . . , Poj−1) to Poj

” to the ideal adversary S, and stores (temp, O, j) on the list L.
– Poi

is the last honest router on the path; in particular, this means that Pr is adversarial as well. In that
case, the ideal functionality sends the message “Onion from Poi

with message m for Pr routed through
(Poi+1 , . . . , Pon

)” to the adversary S. (Note that if Poi+1 = Pr, the list (Poi+1 , . . . , Pon
) will be empty.)

(Deliver Message, temp). This is a message that S sends to the ideal process to notify it that it agrees that
the onion with temporary id temp should be delivered to its current destination. To process this message,
the functionality checks if the temporary identifier temp corresponds to any onion O on the list L. If it does,
it retrieves the corresponding record (temp, O, j) and update the onion: if O = (sid , Ps, Pr,m, n,P, i), it
replaces i with j to indicate that we have reached the j’th router on the path of this onion. If j < n + 1, it
generates a temporary identifier temp′, sends “Onion temp′ received” to party Poj

, and stores the resulting
pair (temp′, O = (sid , Ps, Pr,m, n,P, j)) in the buffer Boj

of party Poj
. Otherwise, j = n + 1, so the onion

has reached its destination: if m 6= ⊥ it sends “Message m received” to router Pr; otherwise it does not
deliver anything2.
(Forward Onion, temp′). This is a message from an honest ideal router Pi notifying the ideal process that it
is ready to send the onion with id temp′ to the next hop. In response, the ideal functionality
– Checks if the temporary identifier temp′ corresponds to any entry in Bi. If it does, it retrieves the corre-

sponding record (temp′, O).
– Sends itself the message (Process Next Step, O).
– Removes (temp′, O) from Bi.

This concludes the description of the ideal functionality. We must now explain how the ideal honest
routers work. When an honest router receives a message of the form “Onion temp′ received” from the ideal
functionality, it notifies environment Z about it and awaits instructions for when to forward the onion temp′

to its next destination. When instructed by Z, it sends the message “Forward Onion temp′” to the ideal
functionality.

It’s not hard to see that Z learns nothing else than pieces of paths of onions formed by honest senders
(i.e., does not learn a sub-path’s position or relations among different sub-paths). Moreover, if the sender
and the receiver are both honest, the adversary does not learn the message.

2.1 Remarks and Extensions

Mixing strategy. It may seem that, as defined in our ideal functionality, the adversary is too powerful
because, for example, it is allowed to route just one onion at a time, and so can trace its entire route. In an
onion routing implementation however, the instructions for which onion to send on will not come directly
from the adversary, but rather from an honest player’s mixing strategy. That is, each (honest) router is
notified that an onion has arrived and is given a handle temp to that onion. Whenever the router decides
(under her mixing strategy) that the onion temp should be sent on, she can notify the ideal functionality of
this using the handle temp. A good mixing strategy will limit the power of the adversary to trace onions in
the ideal world, which will translate into limited capability in the real world as well. What mixing strategy
is a good one depends on the network. Additionally, there is a trade-off between providing more anonymity
and minimizing latency of the network. We do not consider any of these issues in this paper but only point
out that our scheme guarantees the maximum degree of security that any mixing strategy can inherently
provide.

2 This is needed to account for the fact that the adversary inserts onions into the network that at some point do not
decrypt correctly.

5

Replay attacks. The definition as is allows replay attacks by the adversary. The adversary controls the
network and can replay any message it wishes. In particular, it can take an onion that party Pi wants to send
to Pj and deliver it to Pj as many times as it wishes. However, it is straightforward to modify our security
definition and our scheme so as to prevent replay attacks. For instance, we could require that the sender
inserts time stamps into all onions. I.e., a router Pi, in addition to the identity of the next router Pi+1,
will also be given a time time and a random identifier oidi (different for each onion and router). An onion
router will drop the incoming onion when either the time time + t∆ (where t∆ is a parameter) has passed
or it finds oidi in its database. If an onion is not dropped, the router will store oidi until time time + t∆
has passed. It is not difficult to adapt our scheme and model to reflect this. We omit details to keep this
exposition focused.

Forward security. Forward secrecy is a desirable property in general, and in this context in particular [5,
10]. Our scheme can be constructed from any CCA2-secure cryptosystem, and in particular, from a forward-
secure one.

The response option. Another desirable property of an onion routing scheme is being able to respond
to a message received anonymously. We address this after presenting our construction.

3 A Cryptographic Definition of Onion Routing

Here we give a cryptographic definition of an onion routing scheme and show why a scheme satisfying this
definition is sufficient to realize the onion routing functionality described in the previous section.

Definition 1 (Onion routing scheme I/O). A set of algorithms (G,
FormOnion, ProcOnion) satisfies the I/O spec for an onion routing scheme for message space M(1λ)
and set of router names Q if:

– G is a key generation algorithm, possibly taking as input some public parameters p, and a router name P :
(PK,SK)← G(1λ, p, P).

– FormOnion is a probabilistic algorithm that on input a message m ∈ M(1λ), an upper bound on the
number of layers N , a set of router names (P1, . . . , Pn+1) (each Pi ∈ Q, n ≤ N), and a set of public keys
corresponding to these routers (PK1, . . . ,PKn+1), outputs a set of onion layers (O1, . . . , On+1). (As N is
typically a system-wide parameter, we usually omit to give it as input to this algorithm.)

– ProcOnion is a deterministic algorithm that, on input an onion O, identity P , and a secret key SK, peels
off a layer of the onion to obtain a new onion O′ and a destination P ′ for where to send it: (O′, P ′) ←
ProcOnion(SK,O,P).

Definition 2 (Onion evolution, path, and layering). Let (G, FormOnion, ProcOnion) satisfy the onion
routing I/O spec. Let p be the public parameters. Suppose that we have a set Q, ⊥ /∈ Q, consisting of a
polynomial number of (honest) router names. Suppose that we have a public-key infrastructure on Q, i.e.,
corresponding to each name P ∈ Q there exists a key pair (PK(P),SK(P)), generated by running G(1λ, p, P).
Let O be an onion received by router P ∈ Q. Let E(O,P) = {(Oi, Pi) : i ≥ 1} be the maximal ordered list of
pairs such that P1 = P , O1 = O, and for all i > 1, Pi ∈ Q, and (Oi, Pi) = ProcOnion(SK(Pi−1), Oi−1, Pi−1).
Then E(O,P) is the evolution of onion O starting at P . Moreover, if E(O,P) = {(Oi, Pi)} is the evolution
of an onion, then P(O,P) = {Pi} is the path of the onion, while L(O, P) = {Oi} is the layering of the
onion.

Onion-correctness is the simple condition that if an onion is formed correctly and then the correct routers
process it in the correct order, then the correct message is received by the last router Pn+1.

Definition 3 (Onion-correctness). Let (G, FormOnion, ProcOnion) satisfy the I/O spec for an onion
routing scheme. Then for all settings of the public parameters p, for all n < N , and for all Q with a public-
key infrastructure as in Definition 2, for any path P = (P1, . . . , Pn+1),P ⊆ Q, for all messages m ∈M(1λ),

6

and for all onions O1 formed as

(O1, . . . , On+1)← FormOnion(m,N, (P1, . . . , Pn+1), (PK(P1), . . . ,PK(Pn+1)))

the following is true: (1) correct path: P(O1, P1) = (P1, . . . , Pn+1); (2) correct layering: L(O1, P1) =
(O1, . . . , On+1); (3) correct decryption: (m,⊥) = ProcOnion(SK(Pn+1), On+1, Pn+1).

Onion-integrity requires that even for an onion created by an adversary, the path is going to be of length
at most N .

Definition 4 (Onion-integrity). (Sketch) An onion routing scheme satisfies onion-integrity if for all prob-
abilistic polynomial-time adversaries, the probability (taken over the choice of the public parameters p, the
set of honest router names Q and the corresponding PKI as in Definition 2) that an adversary with adaptive
access to ProcOnion(SK(P), ·, P) procedures for all P ∈ Q, can produce and send to a router P1 ∈ Q an
onion O1 such that |P(O1, P1)| > N , is negligible.

Our definition of onion security is somewhat less intuitive. Here, an adversary is launching an adaptive
attack against an onion router P . It gets to send onions to this router, and see how the router reacts, i.e.,
obtain the output of ProcOnion(SK(P), ·, P). The adversary’s goal is to distinguish whether a given challenge
onion corresponds to a particular message and route, or a random message and null route. The unintuitive
part is that the adversary can also succeed by re-wrapping an onion, i.e., by adding a layer to its challenge
onion.

Definition 5 (Onion-security). (Sketch) Consider an adversary interacting with an onion routing chal-
lenger as follows:

1. The adversary receives as input a challenge public key PK, chosen by the challenger by letting (PK,SK)←
G(1λ, p), and the router name P .

2. The adversary may submit any number of onions Oi of his choice to the challenger, and obtain the output
of ProcOnion(SK,Oi, P).

3. The adversary submits n, a message m, a set of names (P1, . . . , Pn+1), and index j, and n key pairs
1 ≤ i ≤ n + 1, i 6= j, (PKi,SKi). The challenger checks that the router names are valid3, that the public
keys correspond to the secret keys, and if so, sets PKj = PK, sets bit b at random, and does the following:

– If b = 0, let

(O1, . . . , Oj , . . . , On+1)← FormOnion(m, (P1, . . . , Pn+1), (PK1, . . . ,PKn+1))

– Otherwise, choose r ←M(1λ), and let

(O1, . . . , Oj)← FormOnion(r, (P1, . . . , Pj), (PK1, . . . ,PKj))

4. Now the adversary is allowed get responses for two types of queries:
– Submit any onion Oi 6= Oj of his choice and obtain ProcOnion(SK,Oi, P).
– Submit a secret key SK ′, an identity P ′ 6= Pj−1, and an onion O′ such that Oj =

ProcOnion(SK ′, O′, P ′); if P ′ is valid, and (SK ′, O′, P ′) satisfy this condition, then the challenger
responds by revealing the bit b.

5. The adversary then produces a guess b′.

We say that a scheme with onion routing I/O satisfies onion security if for all probabilistic polynomial time
adversaries A of the form described above, there is a negligible function ν such that the adversary’s probability
of outputting b′ = b is at most 1/2 + ν(λ).
3 In our construction, router names are formed in a special way, hence this step is necessary for our construction to

satisfy this definition.

7

This definition of security is simple enough, much simpler than the UC-based definition described in the
previous section. Yet, it turns out to be sufficient. Let us give an intuitive explanation why. A simulator that
translates between a real-life adversary and an ideal functionality is responsible for two things: (1) creating
some fake traffic in the real world that accounts for everything that happens in the ideal world; and (2)
translating the adversary’s actions in the real world into instructions for the ideal functionality.

In particular, in its capacity (1), the simulator will sometimes receive a message from the ideal function-
ality telling it that an onion temp for honest router Pj is routed through adversarial routers (P1, . . . , Pj−1).
The simulator is going to need to make up an onion O1 to send to the adversarial party P1. But the simulator
is not going to know the message contained in the onion, or the rest of the route. So the simulator will instead
make up a random message r and compute the onion so that it decrypts to r when it reaches the honest
(real) router Pj . I.e, it will form O1 by obtaining (O1, . . . , Oj)← FormOnion(r, (P1, . . . , Pj), (PK1, . . . ,PKj)).
When the onion Oj arrives at Pj from the adversary, the simulator knows that it is time to tell the ideal
functionality to deliver message temp to honest ideal Pj .

Now, there is a danger that this may cause errors in the simulation as far as capacity (2) is concerned:
the adversary may manage to form another onion Õ, and send it to an honest router P̃ , such that (Oj , P) ∈
E(Õ, P̃). The simulator will be unable to handle this situation correctly, as the simulator relies on its ability
to correctly decrypt and route all real-world onions, while in this case, the simulator does not know how to
decrypt and route this “fake” onion past honest router Pj . A scheme satisfying the definition above would
prevent this from happening: the adversary will not be able to form an onion O′ 6= Oj−1 sent to an honest
player P ′ such that (Pj , Oj) = ProcOnion(SK(P ′), O′, P ′).

In the full version of this paper, we give a formal proof of the following theorem:

Theorem 1. An onion routing scheme (G, FormOnion,ProcOnion) satisfying onion-correctness, integrity
and security, when combined with secure point-to-point channels, yields a UC-secure onion routing scheme.

4 Onion Routing Scheme Construction

Tagged encryption. The main tool in our construction is a CCA2-secure cryptosystem (Gen,E ,D) that
supports tags. Tags were introduced by Shoup and Gennaro [21]. The meaning of a tagged ciphertext is that
the tag provides the context within which the ciphertext is to be decrypted. The point is that an adversary
cannot attack the system by making the honest party under attack decrypt this ciphertext out of context.
The input to E is (PK,m, T), where T is a tag, such that D(SK, c, T ′) should fail if c← E (PK,m, T) and
T ′ 6= T . In the definition of CCA2-security for tagged encryption, the adversary is, as usual, given adaptive
access to the decryption oracle D throughout its attack; it chooses two messages (m0,m1) and a tag T and is
given a challenge ciphertext c← E (PK,mb, T) for a random bit b. The adversary is allowed to issue further
queries (c′, T ′) 6= (c, T) to D . The definition of security stipulates that the adversary cannot guess b with
probability non-negligibly higher than 1/2. We omit the formal definition of CCA2-security with tags, and
refer the reader to prior work.

Pseudorandom permutations. We also use pseudorandom permutations (PRPs). Recall [15] that a
polynomial-time algorithm p(·)(·) defines a pseudorandom permutation family if for every key K ∈ {0, 1}∗,
pK : {0, 1}`(|K|) 7→ {0, 1}`(|K|) (where the function `(·) is upper-bounded by a polynomial, and is called the
“block length” of p) is a permutation and is indistinguishable from a random permutation by any probabilistic
poly-time adversary A with adaptive access to both pK and p−1

K . We have the same key K define a set of
simultaneously pseudorandom permutations {pi

K : 1 ≤ i ≤ `(|K|)}, where i is the block length for a
permutation pi

K . (This can be obtained from any standard pseudorandom permutation family by standard
techniques. For example, let Ki = FK(i), where F is a pseudorandom function, and let pi

K = pi
Ki

.)
Notation. In the sequel, we will denote pi

K by pK because the block length is always clear from the
context. Let {m}K denote p

|m|
K (m). Let {m}K−1 denote (p−1)|m|

K (m). By ‘◦’ we denote concatenation.
Parameters. Let λ be the security parameter. It guides the choice of `K which is the length of a PRP

key, and of `C , which is the upper bound on the length of a ciphertext formed using the CCA2 secure

8

cryptosystem (Gen,E ,D) when the security parameter is λ. Let `m be the length of a message being sent.
Let `H = `K + `C .

Non-standard assumption on the PRP. We assume that, if P1 and P2 are two strings of length 2`K

chosen uniformly at random, then it is hard to find N keys K1, . . . ,KN and a string C of length `C such
that

{{. . . {P1 ◦ 0`C}K−1
1

. . .}K−1
N−1
}K−1

N
∈ {P1 ◦ C,P2 ◦ C}

In the random-oracle model, it is easy to construct a PRP with this property: if p is a PRP, define p′ as p′K =
pH(K) where H is a random oracle. If this assumption can hold in the standard model, then our construction
is secure in the plain model as well.

4.1 Construction of Onions

We begin with intuition for our construction. Suppose that the sender Ps would like to route a message m
to recipient Pr = Pn+1 through intermediate routers (P1, . . . , Pn). For a moment, imagine that the sender
Ps has already established a common one-time secret key Ki with each router Pi, 1 ≤ i ≤ n + 1. In that
setting, the following construction would work and guarantee some (although not the appropriate amount
of) security:

Intuition: Construction 1. For simplicity, let N = 4, n = 3, so the sender is sending message m to P4

via intermediate routers P1, P2 and P3. Send to P1 the onion O1 formed as follows:

O1 = ({{{{m}K4}K3}K2}K1 , {{{P4}K3}K2}K1 , {{P3}K2}K1 , {P2}K1)

Upon receipt of this O1 = (M (1),H
(1)
3 ,H

(1)
2 ,H

(1)
1), P1 will remove a layer of encryption using key K1, and

obtain

({M (1)}K−1
1

, {H(1)
3 }K−1

1
, {H(1)

2 }K−1
1

, {H(1)
1 }K−1

1
) =

({{{m}K4}K3}K2 , {{P4}K3}K2 , {P3}K2}, P2)

Now P1 knows that P2 is the next router. It could, therefore, send to P2 the set of values
({M (1)}K−1

1
, {H(1)

3 }K−1
1

, {H(1)
2 }K−1

1
). But then the resulting onion O2 will be shorter than O1, which in

this case would make it obvious to P2 that he is only two hops from the recipient; while we want P2 to think
that he could be up to N − 1 hops away from the recipient. Thus, P1 needs to pad the onion somehow. For
example, P1 picks a random string R1 of length |P1| and sets:

(O2, P2) = ProcOnion(K1, O1, P1)

= (({M (1)}K−1
1

, R1, {H(1)
3 }K−1

1
, {H(1)

2 }K−1
1

), {H(1)
1 }K−1

1
)

= (({{{m}K4}K3}K2 , R1, {{P4}K3}K2 , {P3}K2}), P2)

Upon receipt of this O2 = (M (2),H
(2)
3 ,H

(2)
2 ,H

(2)
1), P2 will execute the same procedure as P1, but using his

key K2, and will obtain onion O3 and the identity of router P3. Upon receipt of O3, P3 will also apply the
same procedure and obtain O4 and the identity of the router P4. Finally, P4 will obtain:

(O5, P5) = ProcOnion(K4, O4, P4)

= (({M (4)}K−1
4

, R4, {H(4)
3 }K−1

4
, {H(4)

2 }K−1
4

), {H(4)
1 }K−1

4
)

= ((m,R4, {R3}K−1
4

, {{R2}K−1
3
}K−1

4
), {{{R1}K−1

2
}K−1

3
}K−1

4
)

How does P4 know that he is the recipient? The probability over the choice of K4 that P5 obtained this way
corresponds to a legal router name is negligible. Alternatively, P4 may be able to tell if, by convention, a
legal message m must begin with k 0’s, where k is a security parameter.

9

Intuition: Construction 2. Let us now adapt Construction 1 to the public-key setting. It is clear that
the symmetric keys Ki, 1 ≤ i ≤ n+1, need to be communicated to routers Pi using public-key encryption. In
Construction 1, the only header information H

(i)
1 for router Pi was the identity of the next router, Pi+1. Now,

the header information for router Pi must also include a public-key ciphertext Ci+1 = E (PKi+1,Ki+1, Ti+1),
which will allow router Pi+1 to obtain his symmetric key Ki+1. We need to explain how these ciphertexts
are formed. Let us first consider C1. Tag T1 is used to provide the context within which router P1 should
decrypt C1. C1 exists in the context of the message part and the header of the onion, and therefore the
intuitive thing to do is to set T1 = H(M (1),H(1)), where H is a collision-resistant hash function. Similarly,
Ti = H(M (i),H(i)), because router Pi uses the same ProcOnion procedure as router P1. Therefore, to compute
C1, the sender first needs to generate the keys (K1, . . . ,Kn+1), then compute (C2, . . . , Cn+1). Then the sender
will have enough information to obtain the tag T1 and to compute C1.

So, let us figure out how to compute O2. Consider how P1 will process O1 (adapting Construction 1):

(O2, P2) = ProcOnion(SK(P1), O1, P1)
= (M (2),H(2), C2, P2)

= ({M (1)}K−1
1

, (R1, {H(1)
3 }K−1

1
, {H(1)

2 }K−1
1

), {H(1)
1 }K−1

1
)

= ({{{m}K4}K3}K2 , (R1, {{C4, P4}K3}K2 , {C3, P3}K2}), C2, P2)

We need to address how the value R1 is formed. On the one hand, we have already established (in
Construction 1) that it needs to be random-looking, as we need to make sure that P2 does not real-
ize that R1 is a padding, rather than a meaningful header. On the other hand, consider the ciphertext
C2 ← E (PK(P2),K2, T2), where, as we have established T2 = H(M (2),H(2)). So, as part of the header H(2),
the value R1 needs to be known to the sender at FormOnion time, to ensure that the ciphertext C2 is formed
using the correct tag T2. Thus, let us set R1 pseudorandomly, as follows: R1 = {P1 ◦ 0`C}K−1

1
, where recall

that `C is the number of bits required to represent the ciphertext C1. Similarly, Ri = {Pi ◦ 0`C}K−1
i

. (Why
include the value Pi into the pad? This is something we need to make the proof of security go through.
Perhaps it is possible to get rid of it somehow.)

Now we can explain how FormOnion works (still using N = 4, n = 3): pick symmetric keys
(K1,K2,K3,K4). Let Ri = {Pi ◦ 0`C}K−1

i
for 1 ≤ i ≤ 4. First, form the innermost onion O4, as follows:

O4 = ({m}K4 , (R3, {R2}K−1
3

, {{R1}K−1
3
}K−1

2
), C4 ← E (PK(P4),K4, T4))

where recall that T4 = H(M (4),H(4)). Now, for 1 < i ≤ 4, to obtain Oi−1 from Oi =
(M (i), (H(i)

3 ,H
(i)
2 ,H

(i)
1), Ci), let

M (i−1) = {M (i)}Ki−1 H
(i−1)
3 = {H(i)

2 }Ki−1

H
(i−1)
2 = {H(i)

1 }Ki−1 H
(i−1)
1 = {Ci, Pi}Ki−1

Ti−1 = H(M (i−1),H(i−1)) Ci−1 ← E (PK(Pi−1),Ki−1, Ti−1)

It is easy to verify that the onions (O1, O2, O3, O4) formed this way will satisfy the correctness property
(Definition 3).

We are now ready to describe our construction more formally. Note that without the intuition above, the
more formal description of our construction may appear somewhat terse.

Setup. The key generation/setup algorithm G for a router is as follows: run Gen(1k) to obtain (PK,SK).
Router name P must be a string of length 2`K , chosen uniformly at random by a trusted source of randomness;
this needs to be done so that even for a PK chosen by an adversary, the name P of the corresponding router
is still a random string. (In the random oracle model, this can be obtained by querying the random-oracle-like
hash function on input PK.) Register (P,PK) with the PKI.

Forming an onion. On input message m ∈ {0, 1}`m , a set of router names (P1, . . . , Pn+1), and a set of
corresponding public keys (PK1, . . . ,PKn+1), the algorithm FormOnion does:

10

1. (Normalize the input). If n + 1 < N , let Pi = Pn+1, and let PKi = PKn+1 for all n + 1 < i ≤ N .
2. (Form inner layer). To obtain the inner onion ON , choose symmetric keys Ki ← {0, 1}`K , for 1 ≤ i ≤ N .

Let Ri = {Pi ◦ 0`C}K−1
i

. Let M (N) = {m}KN
. As for the header, H

(N)
N−1 = RN−1, H

(N)
N−2 = {RN−2}K−1

N−1
,

and, in general, H
(N)
i = {. . . {Ri}K−1

i+1
. . .}K−1

N−1
for 1 ≤ i < N − 1. Let TN = H(M (N), H

(N)
N−1, . . . ,H

(N)
1).

Finally, let CN ← E (PKN ,KN , TN). Let ON = (M (N),H
(N)
N−1, . . . ,H

(N)
1 , CN).

3. (Adding a layer). Once Oi = (M (i),H
(i)
N−1, . . . ,H

(i)
1 , Ci) is computed for any 1 < i ≤ N , compute Oi−1

as follows: M (i−1) = {M (i)}Ki−1 ; H
(i−1)
j = {H(i)

j−1}Ki−1 for 1 < j ≤ N ; H
(i−1)
1 = {Pi, Ci}Ki−1 . Let

Ti−1 = H(M (i−1), H
(i−1)
N−1 , . . . ,H

(i−1)
1). Finally, let Ci−1 ← E (PKi−1,Ki−1, Ti−1). The resulting onion is

Oi−1 = (M (i−1),H
(i−1)
N−1 , . . . ,H

(i−1)
1 , Ci−1).

Processing an onion. On input a secret key SK, an onion O = (M,HN , . . . , H1, C), and the router
name P , do: (1) compute tag T = H(M,HN , . . . ,H1); (2) let K = D(SK,C, T); if K = ⊥, reject; otherwise
(3) let (P ′, C ′) = {H1}K−1 ; (4) if P ′ does not correspond to a valid router name, output ({M}K−1 ,⊥)
(that means that P is the recipient of the message m = {M}K−1); otherwise (5) send to P ′ the onion
O′ = ({M}K−1 , {P ◦ 0`C}K−1 , {HN}K−1 , . . . , {H2}K−1 , C ′)

Theorem 2. The construction described above is correct, achieves integrity, and is onion-secure in the PKI
model where each router’s name is chosen as a uniformly random string of length 2`K , and assuming that (1)
(Gen,E ,D) is a CCA-2 secure encryption with tags; (2) p is a PRP simultaneously secure for block lengths
`M and `H for which the non-standard assumption holds, and (3) hash function H is collision-resistant.

Proof. (Sketch) Correctness follows by inspection. Integrity is the consequence of our non-standard assump-
tion: Suppose that our goal is to break the non-standard assumption. So we are given as input two strings
P ′

1 and P ′
2. We set up the the set of honest players Q, together with their key pairs, as in Definition 2, giving

each player a name chosen at random and assigning the strings P ′
1 and P ′

2 as names for two randomly chosen
routers. Note that as our reduction was the one to set up all the keys for the honest routers, it is able to
successfully answer all ProcOnion queries on their behalf, as required by Definition 4. Suppose the adversary
is capable of producing an onion whose path is longer than N . With probability 1/|Q|, this onion O1 is sent
to router P1 = P ′

1. Let {(P1, O1,K1), . . . , (Pi, Oi,Ki), . . .} be the evolution of this onion augmented by the
symmetric keys (K1, . . . ,Ki, . . .) that router Pi obtains while running ProcOnion(SK(Pi), Oi, Pi). According
to our ProcOnion construction, the value (if any) that router PN obtains as a candidate for (PN+1 ◦ CN+1)
is the string {H(N)

1 }K−1
N

= {{. . . {P1 ◦ 0`C}K−1
1

. . .}K−1
N−1
}K−1

N
= P ◦C. For this to be a valid onion ON+1, P

must be a valid router name. If P = P1, then we have broken our assumption. Otherwise P 6= P1, but then
with probability at least 1/|Q|, P = P ′

2 and so we also break the non-standard assumption.
It remains to show onion-security. First, we use a counting argument to show that, with probability

1− 2−`K+Θ(log |Q|) over the choice of router names, the adversary cannot re-wrap the challenge onion.
Suppose that the challenger produces the onion layers (O1, . . . , Oj). Consider the header H

(j)
N−1 of the

onion Oj . By construction, H
(j)
N−1 = R(j−1) = {Pj−1 ◦ 0`C}K−1

j−1
. Also by construction, any SK, O′ =

(M ′,H ′, C ′) and P ′ such that Oj = ProcOnion(SK,O′, P ′) must satisfy {P ′ ◦ 0`C}(K′)−1 = H
(j)
N−1, where K ′

is the decryption of C ′ under key SK. Thus, to re-wrap the onion, the adversary must choose Pj−1, P ′ and
K ′ such that {Pj−1 ◦ 0`C}K−1

j−1
= {P ′ ◦ 0`C}(K′)−1 .

Let P be a router name, and let K be a key for the PRP p. Let

Bad(P,K) = {P ′ : ∃K ′ such that P ′ 6= P ∧ {P ◦ 0`C}K−1 = {P ′ ◦ 0`C}(K′)−1} .

As there are at most 2`K choices for K ′, and p is a permutation, for all (P,K), |Bad(P,K)| ≤ 2`K . Let
Bad(Q,K) = {P ′ : ∃P ∈ Q such that P ′ ∈ Bad(P,K)}. Then |Bad(Q,K)| ≤ |Q|maxP |Bad(P,K)| ≤
|Q|2`K .

11

Assume without loss of generality that the key Kj−1 is fixed. Thus, for this onion to be “re-wrappable,”
it must be the case that there exists some P ′ ∈ Bad(Q,Kj−1) that corresponds to a valid router name, i.e.
Q ∩ Bad(Q,Kj−1) 6= ∅. As any P ′ ∈ Q is chosen uniformly out of a set of size 22`K , while |Bad(Q,Kj−1)|
≤ 2`K+log |Q|, it is easy to see that the probability over the choice of Kj−1 and the router names for the set
Q that the onion is “re-wrappable,” is only 2−`K+Θ(log |Q|).

It remains to show that no adversary can guess the challenger’s bit b, provided (as we have shown) that
it cannot re-wrap the onion. This proof follows the standard “sequence of games” [20] argument. Suppose
that we set up the following experiments. In experiment (1), the challenger interacts with the adversary as in
Definition 5 when b = 0, using FormOnion. In experiment (2), the challenger departs from the first experiment
in that it deviates from the usual FormOnion algorithm in forming the ciphertext Cj as Cj ← E (PK,K ′, Tj),
where K ′ 6= Kj is an independently chosen key. It is easy to see that distinguishing experiments (1) and (2)
is equivalent to breaking either the CCA2 security of the underlying cryptosystem, or the collision-resistance
property of H.

In experiment (3), the challenger forms Oj as follows: Choose keys K1, . . . Kj−1, and K ′. Let Ri =
{Pi ◦ 0`C}K−1

i
for 1 ≤ i < j. M (j) ← {0, 1}`m , H

(j)
i = {. . . {Ri}K−1

i+1
. . .}K−1

j−1
for 1 ≤ i < j, H

(j)
i ← {0, 1}`H

for j ≤ i ≤ N − 1. Finally, Cj ← E (PK,K ′, Tj). The other onions, Oj−1 through O1, are formed using the
“adding a layer” part of the FormOnion construction. It can be shown (omitted here for lack of space) that
an adversary who can distinguish experiments (2) and (3) can distinguish pKj

from a random permutation.
The intuition here is that in experiment (3), everything that’s supposed to be the output of pKj or p−1

Kj
is

random.
In experiment (4), the onion is formed by running FormOnion(r, (P1, . . . , Pj), (PK1, . . . ,PKj)), except

that Cj is formed as Cj ← E (PK,K ′, Tj). Telling (3) and (4) apart is also equivalent to distinguishing p
from a random permutation. The intuition here is that in experiment (4) the first j − 1 parts of the header
of onion Oj are formed as in experiment (3), while the rest are formed differently, and permuted using key
Kj .

Finally, experiment (5) does what the challenger would do when b = 1. It is easy to see that distinguishing
between (4) and (5) is equivalent to breaking CCA2 security of the cryptosystem or collision-resistant of H.

4.2 Response Option

Suppose that Ps wants to send an anonymous message m to Pr and wants Pr to be able to respond. Our
construction allows for that possibility (however we omit the definition and proof of security).

The sender chooses a path (P ′
1, . . . , P

′
n) for the return onion, (so P ′

0 = Pr, and P ′
n+1 = Ps).

Next, the sender forms (O′
1, . . . , O

′
n+1) = FormOnion(ε, (P ′

1, . . . , P ′
n+1), (PK(P ′

1), . . . ,PK(P ′
n+1))). It then

chooses a symmetric authentication and encryption key a and remembers all the keys (K ′
1, . . . ,K

′
n+1)

used during FormOnion. Finally, it forms its message as m′ = m ◦ a ◦ O′
1 ◦ P ′

1, and forms its ac-
tual onion in the usual way, i.e., chooses intermediate routers (P1, . . . , Pn) and sets (O1, . . . , On+1) ←
FormOnion(m′, (P1, . . . , Pn, Pr), (PK(P1), . . . ,PK(Pn), PK(Pr))).

Upon receipt of m′ = (m,a,O′
1, P

′
1), Ps responds as follows. Suppose his response is M . He encrypts and

authenticates M using a, forming a ciphertext c1. He then sends (c1, O
′
1) to P ′

1, with the annotation that
this is a response onion. A router P receiving a message (c,O′) with the annotation that this is a response
onion, applies ProcOnion to onion O′ only, ignoring c. Recall that as a result of this, P ′ obtains (O′′, P ′′)
(what to send to the next router and who the next router is) and the key K ′. It then sends the values
({c}K′ , O′′) to P ′′, also with the annotation that this is a response onion. Eventually, if all goes well, the
tuple ({. . . {c1}K′

1
. . .}K ′

n, O′
n+1) reaches Ps, who, upon processing O′

n+1 recognizes that he is the recipient
of this return onion, and is then able to obtain c1 using the keys K ′

1, . . . ,Kn it stored, and to validate and
decrypt c1 using the key a. Note that, due to the symmetric authentication step using the key a, if Pr is
honest, then no polynomial-time adversary can make Ps accept an invalid response.

12

5 Acknowledgments

We thank Ron Rivest for pointing out that our cryptographic definition must guarantee onion-integrity in
addition to correctness and security. We are grateful to Leo Reyzin for valuable discussions. We thank the
anonymous referees for their thoughtful comments. Jan Camenisch is supported by the IST NoE ECRYPT
and by the IST Project PRIME, which receive research funding from the European Community’s Sixth
Framework Programme and the Swiss Federal Office for Education and Science. Anna Lysyanskaya is sup-
ported by NSF CAREER Grant CNS-0374661.

References

1. M. Backes, B. Pfitzmann, and M. Waidner. A general composition theorem for secure reactive systems. In TCC
2004, vol. 2951 of LNCS, pp. 336–354.

2. O. Berthold, A. Pfitzmann, and R. Standtke. The disadvantages of free MIX routes and how to overcome them.
In Proceedings of Designing Privacy Enhancing Technologies, vol. 2009 of LNCS, pp. 30–45. Springer-Verlag, July
2000.

3. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of discrete logarithms. In Advances
in Cryptology — CRYPTO 2003, LNCS, 2003.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proc. 42nd IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 136–145, 2001.

5. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In EUROCRYPT 2003, vol.
2656 of LNCS, pp. 255–271. Springer Verlag, 2003.

6. D. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM,
24(2):84–88, Feb. 1981.

7. D. Chaum. Security without identification: Transaction systems to make big brother obsolete. Communications
of the ACM, 28(10):1030–1044, Oct. 1985.

8. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of
Cryptology, 1:65–75, 1988.

9. G. Danezis. The traffic analysis of continuous-time mixes. In Privacy Enhancing Technologies (PET), 2004.
10. R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-generation onion router. In USENIX Security

Symposium, pp. 303–320. USENIX, 2004.
11. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. SIAM Journal on Computing, 2000.
12. D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Onion routing for anonymous and private internet connections.

Comm. of the ACM, 42(2):84–88, Feb. 1999.
13. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 28(2):270–299,

Apr. 1984.
14. D. Kesdogan, D. Agrawal, and S. Penz. Limits of anonymity in open environments. In Information Hiding 2003,

vol. 2578 of LNCS, pp. 53–69. Springer, 2003.
15. M. Luby and C. Rackoff. How to construct pseudorandom permutations and pseudorandom functions. SIAM J.

Computing, 17(2):373–386, Apr. 1988.
16. B. Möller. Provably secure public-key encryption for length-preserving Chaumian mixes. In Cryptographer’s

Track — RSA 2003, pp. 244–262. Springer, 2003.
17. B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure message

transmission. In IEEE Symposium on Research in Security and Privacy, pp. 184–200. IEEE Computer Society
Press, 2001.

18. M. K. Reiter and A. D. Rubin. Crowds: anonymity for Web transactions. ACM Transactions on Information
and System Security (TISSEC), 1(1):66–92, 1998.

19. V. Shoup. A proposal for an ISO standard for public key encryption. http://eprint.iacr.org/2001/112, 2001.
20. V. Shoup. Sequences of games: a tool for taming complexity in security proofs. http://eprint.iacr.org/2004/332,

2004.
21. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack. In EUROCRYPT

’98, vol. 1403 of LNCS. Springer, 1998.
22. D. Wikström. A universally composable mix-net. In Theory of Cryptography Conference, vol. 2951 of LNCS, pp.

317–335. Springer, 2004.
23. Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On flow correlation attacks and countermeasures in mix

networks. In PET, 2004.

13

