
A Signature Scheme with Efficient Protocols

Jan Camenisch

IBM Research
Zurich Research Laboratory

CH–8803 Rüschlikon
jca@zurich.ibm.com

Anna Lysyanskaya

Computer Science Department
Brown University

Providence, RI 02912 USA
anna@cs.brown.edu

Abstract. Digital signature schemes are a fundamental cryptographic
primitive, of use both in its own right, and as a building block in cryp-
tographic protocol design. In this paper, we propose a practical and
provably secure signature scheme and show protocols (1) for issuing a
signature on a committed value (so the signer has no information about
the signed value), and (2) for proving knowledge of a signature on a com-
mitted value. This signature scheme and corresponding protocols are a
building block for the design of anonymity-enhancing cryptographic sys-
tems, such as electronic cash, group signatures, and anonymous creden-
tial systems. The security of our signature scheme and protocols relies
on the Strong RSA assumption. These results are a generalization of the
anonymous credential system of Camenisch and Lysyanskaya.

1 Introduction

Digital signature schemes are a fundamental cryptographic application, invented
together with public-key cryptography by Diffie and Hellman [20] and first con-
structed by Rivest, Shamir and Adleman [32]. They give the electronic equivalent
of the paper-based idea of having a document signed.

A digital signature scheme consists of (1) a key generation algorithm that
generates a public key PK and a secret key SK; (2) a signing algorithm that takes
as inputs a message m and a secret key SK and generates a signature σ; and (3) a
verification algorithm that tests whether some string σ is a signature on message
m under the public key PK. Signature scheme exists if and only if one-way
functions exist [30, 33]. However, the efficiency of these general constructions,
and also the fact that these signature schemes require the signer’s secret key
to change between invocations of the signing algorithm, makes these solutions
undesirable in practice.

Using an ideal random function (this is the so-called random-oracle model),
several, much more efficient signature schemes were shown to be secure. Most
notably, those are the RSA [32], the Fiat-Shamir [21], and the Schnorr [34]
signature schemes. However, ideal random functions cannot be implemented in
the plain model [12], and therefore in the plain model, these signature schemes
are not provably secure.

Gennaro, Halevi, and Rabin [24] and Cramer and Shoup [16] proposed the
first signature schemes whose efficiency is suitable for practical use and whose
security analysis does not assume an ideal random function. Their schemes are
secure under the so-called Strong RSA assumption.

In contrast to these stand-alone solutions, our goal is to construct signature
schemes that are suitable as building blocks for other applications.

Consider the use of signature schemes for constructing an anonymous creden-
tial system [13–15, 19, 27, 7]. While such a system can be constructed from any
signature scheme using general techniques for cryptographic protocol design, we
observe that doing it in this fashion is very inefficient. Let us explain this point
in more detail.

In a credential system, a user can obtain access to a resource only by pre-
senting a credential that demonstrates that he is authorised to do so. In the
paper-based world, examples of such credentials are passports that allow us to
prove citizenship and authorise us to vote, driver’s licenses that prove our ability
to drive cars, etc. In the digital world, it is reasonable to imagine that such a
credential will be in the form of a digital signature. Let us imagine that the
user’s identity is his secret key SK. Let us think of a credential as a signature
on this secret key.

A credential system is anonymous if it allows users to demonstrate such
credentials without revealing any additional information about their identity. In
essence, when the user shows up before the verifier and demonstrates that he has
a credential, the verifier can infer nothing about who the user is other than that
the user has the right credential. Additionally, an anonymous credential system
allows the user to obtain a credential anonymously.

Using general zero-knowledge proofs, it is possible to prove statements such
as “I have a signature,” without saying anything more than that (i.e., without
disclosing what this credential looks like). However, doing so requires that the
problem at hand be represented as, for example, a Boolean circuit, and then
the proof that the statement is true requires a proof that the circuit has a
satisfying assignment. This method, however, requires expensive computations
beyond what is considered practical.

An additional complication is obtaining credentials in a secure way. The
simple solution where the user reveals his identity SK to the credential granting
organization, who in turn grants him the credential, is ruled out: we want to
allow the user to be anonymous when obtaining credentials as well; we also want
to protect the user from identity theft, and so the user’s secret key SK should
never be leaked to any other party. Here, general techniques of secure two-party
computation save the day: the user and the organization can use a secure two-
party protocol such that the user’s output is a signature on his identity, while
the organization learns nothing. But this is also very expensive: general secure
two-party computation also represents the function to be computed as a Boolean
circuit, and then proceeds to evaluate it gate by gate.

So far, we have come up with a construction of an anonymous credential
system from a signature scheme using zero-knowledge proofs of knowledge and
general two-party computation. We have also observed that this solution is not
satisfactory as far as efficiency is concerned. A natural question therefore is
whether we can create a signature scheme which will easily yield itself to an
efficient construction of an anonymous credential system. In other words, we need

signature schemes for which proving a statement such as “I have a signature,”
is a much more efficient operation than representing this statement as a circuit
and proving something about such a circuit. We also need to be able to have the
user obtain a signature on his identity without compromising his identity.

In this paper, we construct a signature scheme that meets these very general
requirements. The generality of our approach enables the use of this signature
scheme for other cryptographic protocols in which it is desirable to prove state-
ments of the form “I have a signature,” and to obtain signatures on committed
values.

Our signature scheme is based on the Strong RSA assumption, and of all
provably secure signatures known, it runs a close second in efficiency to the
signature scheme of Cramer and Shoup [16].

Our results can be thought of as a generalization of the anonymous credential
system due to Camenisch and Lysyanskaya [7], and can also be viewed as a
generalization of the Ateniese et al. [1] group signature scheme.

In Section 2 we give the basic signature scheme, for which we give a proof
of security in Section 3. In Section 4 we generalize this signature scheme to a
scheme that allows to sign a block of messages instead of one message. Such
a signature scheme can for example be used to encode public-key attributes as
proposed by Brands [5], or to issue signatures that can only be used once (see
Section 6.3). In section 5 we mention known protocols that are needed for our
purposes, and then in section 6 we give protocols for signing a committed value
and for proving knowledge of a signature.

To be more accessible to a non-specialist reader, our exposition also includes
two extra sections. In the Appendix A, we explain our notation, and give the
definition of a secure signature scheme, and a definition of a proof of knowledge.
We also cover a few number-theoretic basics in Appendix B.

2 The Basic Signature Scheme

2.1 Preliminaries

Let us recall some basic definitions (see Appendix B for more in-depth discussion)

Definition 1 (Safe primes). A prime number p is called safe if p = 2p′ + 1,
such that p′ is also a prime number. (The corresponding number p′ is known as
a Sophie Germain prime.)

Definition 2 (Special RSA modulus). An RSA modulus n = pq is special
if p = 2p′ + 1 and q = 2q′ + 1 are safe primes.

Notation: By QRn ⊆ Z∗n we will denote the set of quadratic residues modulo
n, i.e., elements a ∈ Z∗n such that ∃b ∈ Z∗n such that b2 ≡ a mod n.

2.2 The Scheme

Key generation. On input 1k, choose a special RSA modulus n = pq, p =
2p′ + 1, q = 2q′ + 1 of the length `n = 2k. Choose, uniformly at random,
a, b, c ∈ QRn. Output PK = (n, a, b, c), and SK = p.

Message space. Let `m be a parameter. The message space consists of all
binary strings of length `m. Equivalently, it can be thought of as consisting
of integers in the range [0, 2`m).

Signing algorithm. On input m, choose a random prime number e of length
`e ≥ `m + 2, and a random number s of length `s = `n + `m + l, where l is
a security parameter. Compute the value v such that

ve ≡ ambsc mod n

Verification algorithm. To verify that the tuple (e, s, v) is a signature on
message m in the message space, check that ve ≡ ambsc mod n, and check
that 2`e > e > 2`e−1.

Efficiency analysis. In practice, `n = 1024 is considered secure. As for the
message space, if the signature scheme is intended to be used directly for signing
messages, then `m = 160 is good enough, because, given a suitable collision-
resistant hash function, such as SHA-1, one can first hash a message to 160 bits,
and then sign the resulting value. Then `e = 162. The parameter l guides the
statistical closeness of the simulated distribution to the actual distribution, hence
in practice, l = 160 is sufficient, and therefore `s = 1024 + 160 + 160 = 1346.

Therefore, this signature scheme requires one short (160-bit) and two long
(1024 and 1346) exponentiations for signing, while verification requires two short
(162 and 160 bits) and one long (1346-bit) exponentiations. This is not as efficient
as the Cramer-Shoup signature, which requires three short (i.e., 160-bit) and one
long (i.e., 1024-bit) exponentiations for signing, and four short exponentiations
for verifying. However, our signature scheme has other redeeming qualities.

3 Proof of Security

We will show that the signature scheme in Section 2 is secure. Note that a forgery
(m, s, e, v) may have value e of length `e not necessary a prime number.

We prove security under the Strong RSA assumption [2, 22]:

Assumption 1 (Strong RSA Assumption). The strong RSA assumption
states that it is hard, on input an RSA modulus n and an element u ∈ Z∗n,
to compute values e > 1 and v such that ve ≡ u mod n. More formally, we
assume that for all polynomial-time circuit families {Ak}, there exists a negligible
function ν(k) such that

Pr[n← RSAmodulus(1k);u← QRn; (v, e)← Ak(n, u) :
e > 1 ∧ ve ≡ u mod n] = ν(k)

The tuple (n, u) generated as above, is called an instance of the flexible RSA
problem.

The following lemma (proved in Appendix B, Lemma 14) is important for
the proof of security:

Lemma 1. Let a special RSA modulus n = pq, p = 2p′+1, q = 2q′+1, be given.
Suppose we are given the values u, v ∈ QRn and x, y ∈ Z, gcd(x, y) < x such
that vx ≡ uy mod n. Values z, w > 1 such that zw ≡ u mod n can be computed
efficiently.

Suppose that a forger’s algorithm F is given. Suppose F makes K signature
queries in expectation before it outputs a successful forgery. By the Markov
inequality, half the time, F needs 2K or fewer queries. Without loss of generality,
we may assume that K is known (because if it is not, then it can be estimated
experimentally).

Suppose that the output of F is (m, s, e, v). Let us distinguish three types of
outputs.

– Type 1: The forger’s exponent e is relatively prime to all the exponents
output by the signature oracle.

– Type 2: The forger’s value e is not relatively prime to some previously seen
exponent ei and the root v is different from the corresponding root vi.

– Type 3: The forger’s values e is not relatively prime to some previously seen
exponent ei and v = vi , but the tuple (m, s) is new.

By F1 (resp., F2, F3) let us denote the forger who runs F but then only
outputs the forgery if it is of Type 1 (resp., Type 2, Type 3). The following
lemma is clear by the standard hybrid argument:

Lemma 2. If the forger F success probability is ε, then one of F1, F2, or F3

succeeds with probability at least ε/3.

Next, we will show that under the strong RSA assumption, success probabil-
ities for each of F1, F2, F3 are negligible.

Lemma 3. Under the Strong RSA assumption, the success probability of F1

is negligible. More strongly, if F1 succeeds with probability ε1 in expected time
O(p1(k)), using expected number Q(k) queries, then there is an algorithm that
runs in time O(p1(k)) and solves the flexible RSA problem with probability ε/4.

Proof. Suppose F1 succeeds with non-negligible probability. Let us show that
this contradicts the Strong RSA assumption.

Recall that Q is the expected number of queries, and by the Markov inequal-
ity, half the time, F1 will need at most 2Q = O(p1(k)) queries.

Let us construct an algorithm A such that, on input a strong RSA instance
(n, u), and with access to F1, A will output (v, e) such that e > 1 and ve ≡
u mod n.

Now A plays the role of the signer, as follows:

Key generation: Choose 2Q prime numbers e1, . . . , e2Q. Choose, at random,
value r1 ∈ Zn2 and r2 ∈ Zn2 . Let a = uE , where E =

∏2Q
i=1 ei, b = ar1 ,

c = ar2 . Let (n, a, b, c) be the public key.
Signing: Upon receiving the ith signature query mi, choose a value si of length

`s uniformly at random. Output (ei, si, vi), where vi = ami
i bsi

i ci, where ai =
uE/ei , bi = ar1

i , ci = ar2
i . (In other words, ai, bi and ci are values such

that aei
i = a, bei

i = b, and cei
i = c). Note that (ei, si, vi) constitute a valid

signature:

vei
i = (ami

i bsi
i ci)ei

= amibsic .

Note that the public key and all the signatures have the same distribution
as in the original scheme.

Suppose the forgery is (e, s, v) on message m, and e > 4. This gives us ve =
ambsc = uE(m+r1s+r2). Observe that if it is the case that e and E(m + r1s + r2)
are relatively prime, then by Shamir’s trick (Lemma 13) we are done. We will
not necessarily have this nice case, but we will show that things will be good
enough.

First, by assumption on F1 we have gcd(e,E) = 1. Second, we will use the
following claim:

Claim. With probability at least 1/2 over the random choices made by the re-
duction, it is the case that either gcd(e,m + r1s + r2) < e, or, on input e, one
can efficiently factor n.

The claim immediately gives us the conditions of Lemma 1, which gives us
values v, w > 1 such that vw ≡ u mod n.

We must now prove the claim. Suppose that it is false. Then the probability
that gcd(e,m + r1s + r2) < e is less than 1/2. Suppose r2 = x + φ(n)z. Note
that z is independent of the view of the adversary and it is chosen statistically
indistinguishable from random over Zn. Therefore, if with probability greater
than 1/2, e | m + r1s + r2, this holds for greater than 1/2 of all the possible
choices for z. Then there exists a value z0 ∈ Zn such that e | (m+r1s+x+φ(n)z0)
and e | (m+r1s+x+φ(m)(z0 +1)). Then it holds that e | φ(n) with probability
at least 1/2. Therefore, with probability 1/2, we either factor n (by Lemma 11)
or γ = gcd(e,m + r1s + r2) < e.

Therefore, A succeeds in breaking the strong RSA assumption whenever the
number of queries does not exceed 2Q (which happens with probability 1/2 by
Markov inequality) and whenever the conditions of the claim are satisfied (which
happens with probability 1/2, independently on the number of queries), and so
the success probability of A is ε1/4, while its running time is O(p1(k)).

Lemma 4. Under the Strong RSA assumption, the success probability of F3

is negligible. More strongly, if F3 succeeds with probability ε1 in expected time
O(p1(k)), using expected number Q(k) queries, then there is an algorithm that
runs in time O(p3(k)) and succeeds with probability ε3/2.

Proof. The input to the reduction is (n, e), an instance of the flexible RSA
problem.

The key generation and signatures in this case are as in the proof of Lemma 3.
The signatures (m, s, e, v) and (mi, si, ei, v) give us the following: Note that from
gcd(ei, e) 6= 1 and the fact that 2`e > e, ei > 2`e−1 it follows that ei = e
and thus ambs ≡ amibsi . This implies that m + r1s ≡ mi + r1si mod φ(n).
As (m, s) 6= (mi, si), and r1 > m, r1 > mi, m + r1s 6= mi + r1si. Therefore,
φ(n) | m + r1s−mi + r1si 6= 0, and so by Corollary 3, we are done.

The probability that A succeeds in breaking the Strong RSA assumption is
at least ε/2 because with probability at least 1/2, the forger F3 will need at most
2Q queries.

Lemma 5. Under the Strong RSA assumption, the success probability of F2

is negligible. More strongly, if F2 succeeds with probability ε2 in expected time
O(p2(k)), using expected number Q(k) queries, then there is an algorithm that
runs in time O(p2(k)) and succeeds with probability ε(k)/8Q(k).

Proof. The input to the reduction is (n, u), an instance of the flexible RSA
problem.

Choose a value 1 ≤ i ≤ 2Q(k) uniformly at random. With probability
1/2Q(k), the exponent e will be the same as in the i’th query to the signature
oracle.

The idea of this reduction is that we will set up the public key in such a way
that, without knowledge of the factorization of n, it is possible to issue correctly
distributed signatures on query j 6= i, in almost the same manner as in the
proof of Lemma 3. For query i, the answer will be possible only for a specific,
precomputed value of t = mα + s, where α = logb a.

Key Generation: Choose 2Q(k) random primes {ej}. Let E = (
∏2Q

j=1 ej)/ei.
Choose α, β ∈ Z2n uniformly at random. Choose a random value t of length
`s. Let b = uE mod n. Let a = bα mod n, and c = beiβ−t. Let (n, a, b, c) be
the public key.

Signing: Upon receiving the jth signature query mj , j 6= i, choose a value sj

of length `s uniformly at random. Output (ej , sj , vj), where vj = a
mj

j b
sj

j cj ,
where bj = uE/ej , aj = bα

j , cj = beiβ−t
j . (In other words, aj , bj and cj

are values such that a
ej

j = a, b
ej

j = b, and c
ej

j = c). Note that (ej , sj , vj)
constitute a valid signature.
Upon receiving the ith signature query mi, compute the value si = t−αmi.
vi = bβ . Note that vei

i = beiβ−t+t = btc = amibsic. Note that if `s is
sufficiently long (e.g., `n + `m + l, where `n is the length of the modulus n,
`m is the length of a message, and l is a security parameter), si is distributed
statistically close to uniform over all strings of length `s.

Suppose the forgery gives (m, s, e, v) such that e is not relatively prime to
ei. Then e = ei because e is of length `e. Also, as the verification is successful
for the forgery as well as for the i’th query, vei = ambsc = bmα+s+eiβ−t =

b(m−mi)α+(s−si)+eiβ . Let α = α1φ(n)+α2. Note that with probability very close
to 1, the value α1 ∈ {0, 1}. Also, note that α1 is independent on the adversary’s
view. Therefore, if the probability that ei | (m −mi)α + (s − si) + eiβ is non-
negligibly higher than 1/2, then it is the case that ei | (m−mi)α2+(s−si)+eiβ
and ei | (m −mi)(φ(n) + α2) + (s − si) + eiβ, and therefore ei | (m −mi)
(note that by definition of a forgery m 6= mi). If the length `e is at least two bits
longer than the length of a valid message `m, this is impossible.

Therefore, with probability at least 1/2, the following condition is met: ei -
(mα + s + eiβ − t) = γ. Therefore, we have the following: vei ≡ uEγ , where
gcd(ei, γ) = 1, and so by Lemma 13, we compute ei’th root of u.

Therefore, A succeeds in solving an instance of the flexible RSA problem
when 2Q is a sufficient number of queries (with probability at least 1/2 this is
the case by the Markov inequality), when i is chosen correctly (this is the case
with probability 1/2Q) and when the condition is met (with probability 1/2
independently of everything else). Therefore, A succeeds with probability ε2/8Q
in time p2(k).

As the number of signature queries is upper-bounded by the number of steps
performed by the adversary (i.e., the running time), we have shown the following
theorem:

Theorem 1. Our signature scheme is secure under the Strong RSA assump-
tion. More precisely, if a forger breaks our signature scheme in time p(k) with
probability ε(k), then the Strong RSA assumption can be broken in time O(p(k))
with probability Ω(ε(k)/p(k)).

4 The Scheme for Blocks of Messages

Suppose, instead of signing a single message m, one wants to sign a block of L
messages m1, . . . ,mL. For most applications, these two problems are equivalent,
as in order to sign such a block, it is sufficient to hash it to a small message m
using a collision-resistant hash function, and then to sign m using a one-message
signature scheme.

However, if the application we have in mind involves proving knowledge of
a signature and proving relations among certain components of m1, . . . ,mL, it
may be helpful to have a signature scheme especially designed to handle blocks
of L messages. Here, we propose one such scheme.

Key generation. On input 1k, choose a special RSA modulus n = pq, p =
2p′ + 1, q = 2q′ + 1. Choose, uniformly at random, a1, . . . , aL, b, c ∈ QRn.
Output PK = (n, a1, . . . , aL, b, c), and SK = p. Let `n denote the length of
the modulus n. `n = 2k.

Message space. Let `m be a parameter. The message space consists of all
binary strings of length `m. Equivalently, it can be thought of as consisting
of integers in the range [0, 2`m).

Signing algorithm. On input m1, . . . ,mL, choose a random prime number e >
2`m+1 of length `e ≥ `m+2, and a random number s of length `s = `n+`m+l,
where l is a security parameter. Compute the value v such that

ve ≡ am1
1 . . . amL

L bsc mod n

Verification algorithm. To verify that the tuple (e, s, v) is a signature on
message m, check that ve ≡ am1

1 . . . amL

L bsc mod n, and check that e > 2`e−1.

Theorem 2. The signature scheme above is secure for blocks of messages, under
the Strong RSA assumption.

Proof. We will show a reduction from a forger F for this signature scheme, to an
algorithm that breaks the basic signature scheme from Section 2. The reduction
receives as input the public key of the basic scheme: (n, a, b, c), and has oracle
access to the basic signature scheme.

Key Generation. Choose an index I ∈ [1, L] at random. Let Let aI = a. For
j ∈ [1, L], j 6= I, choose and integer rj from Z2n uniformly at random, and
let aj = brj . Output the public key (n, a1, . . . , aL, b, c).

Signature generation. On input signature query (m1, . . . ,mL), ask the signa-
ture oracle for a signature on the value mI . Upon receiving the value (s, v, e),
let s′ = s−

∑
j 6=I rjmj . The resulting signature is (s′, v, e). It is easy to see

that it is distributed statistically close to the right distribution provided that
`s = `n + `m + l, where l is sufficiently long.

Suppose the adversary’s forgery is (m1, . . . ,mL, s, v, e). Then (s +∑L
j=2 rjmj , v, e) is a valid signature in the basic scheme on message mI . Suppose

the signature’s e is different from any previously seen ei. Then we are done: we
have created forger F∞ and contradicted Lemma 3. So suppose this e = ei. But
(m1, . . . ,mL) 6= (mi

1, . . . ,m
i
L). With probability at least 1/L, it is the case that

mI ≤ mi
I , and we have created a forged signature on message mI .

Overall, if the adversary F succeeds in time p(k) with probability ε using
Q(k) queries, the reduction succeeds against the basic scheme in time p(k) with
probability at least ε/2L also using Q(k) queries.

5 Preliminary Protocols

In this section, we will show how to construct a secure protocol for signing a
committed message as described in Section 1, under our basic signature scheme
described in Section 2.

5.1 Commitment Scheme

The following commitment scheme is due to Fujisaki and Okamoto [23] and
elaborated on by Damg̊ard and Fujisaki [18]. Its security relies on the hardness
of factoring.

Key generation The public key consists of a special RSA modulus n of length
`n, and h← QRn, g ← 〈h〉, where 〈h〉 is the group generated by h.

Commitment The commitment Commit(PK,x, r) for inputs of length `x and
randomness r ∈ Zn, is defined as follows: Commit((n, g, h), x, r) = gxhr mod
n.

Lemma 6. The commitment scheme described above is statistically hiding and
computationally binding if factoring is hard.

Remark 1. Note that for the hiding property, the only requirement from the
public key is that g ∈ 〈h〉, and so the public key can be generated adversarially
provided that this requirement holds.

We want to guarantee the security of this commitment scheme even when
the commitment scheme’s public key is provided by the adversary. To ensure
that, we add the following key certification procedure: the party that generated
the commitment keys (n, g, h) must prove existence of the discrete logarithm
logh g mod n. This can be done using well-known techniques that we elaborate
on in the sequel (cf. [18]).

5.2 Known Discrete-Logarithm-Based Protocols

All protocols assume that the public parameters were fixed after the adversary
was fixed (otherwise a non-uniform adversary may know secret keys).

The following known protocols are secure under the strong RSA assumption:

– Proof of knowledge of discrete logarithm representation modulo a compos-
ite [22]. That is to say, a protocol with common inputs (1) a (n, g1, . . . , gm),
where n is a special RSA modulus and gi ∈ QRn for all 1 ≤ i ≤ m; and (2) a
value C ∈ QRn, the prover proves knowledge of values α1, . . . , αm such that
C =

∏m
i=1 gαi

i mod n.
– Proof of knowledge of equality of representation modulo two (possibly dif-

ferent) composite moduli [9]. That is to say, a protocol with common in-
puts (n1, g1, . . . , gm) and (n2, h1, . . . , hm) and the values C1 ∈ QRn1

and
C2 ∈ QRn2

, the prover proves knowledge of values α1, . . . , αm such that

C1 =
m∏

i=1

gαi
i mod n1 and C2 =

m∏
i=1

hαi
i mod n2 .

– Proof that a committed value is the product of two other committed val-
ues [8]. That is to say, a protocol with common inputs (1) a commitment
key (n, g, h) as described in Section 5.1; and (2) values Ca, Cb, Cab in QRn,
where the prover proves knowledge of the integers α, β, ρ1, ρ2, ρ3 such that
Ca = gαhρ1 mod n, Cb = gβhρ2 mod n, and Cab = gαβhρ3 mod n.

– Proof that a committed value lies in a given integer interval. That is to say,
a protocol with common inputs (1) a commitment key (n, g, h) as described
in Section 5.1; (2) a value C ∈ QRn; (3) integers a and b, where the prover

proves knowledge of the integers α and ρ such that C = gαhρ mod n and
a ≤ α ≤ b. An efficient protocol that implements such proofs is due to
Boudot [4].
However, if the integer α the prover knows in fact satisfies the the more
restrictive bound, then there are more efficient protocols (these protocols are
very similar to a simple proof of knowledge of a discrete log; see, e.g.,[9]).
More precisely, there protocols are applicable if the prover’s secret α satisfies
b−a
2 −

b−a
2 2−` ≤ α ≤ b−a

2 + b−a
2 2−`, where ` is a security parameter derived

from the size of the challenge sent by the verifier as second message in the
protocol and from the security parameter that governs the zero-knowledge
property. We note that in many setting this restriction can be easily dealt
with.

Notation: In the sequel, we will sometimes use the notation introduced by
Camenisch and Stadler [10] for various proofs of knowledge of discrete logarithms
and proofs of the validity of statements about discrete logarithms. For instance,

PK{(α, β, γ) : y = gαhβ ∧ ỹ = g̃αh̃γ ∧ (u ≤ α ≤ v)}

denotes a “zero-knowledge Proof of Knowledge of integers α, β, and γ such that
y = gαhβ and ỹ = g̃αh̃γ holds, where v < α < u,” where y, g, h, ỹ, g̃, and h̃ are
elements of some groups G = 〈g〉 = 〈h〉 and G̃ = 〈g̃〉 = 〈h̃〉. The convention
is that Greek letters denote quantities the knowledge of which is being proved,
while all other parameters are known to the verifier. Using this notation, a proof-
protocol can be described by just pointing out its aim while hiding all details.

6 Protocols for the Signature Scheme

In the sequel, we rely on honest-verifier zero-knowledge proofs of knowl-
edge of representation protocols; they can be converted into a general zero-
knowledge proof using standard techniques based on trapdoor commitment
schemes (cf. [17]).

6.1 Protocol for Signing a Committed Value

Informally, in a protocol for signing a committed value, we have a signer with
public key PK, and the corresponding secret key SK, and a user who queries
the signer for a signature. The common input to the protocol is a commitment
C for which the user knows the opening (m, r). In the end of the protocol, the
user obtains a signature σPK(m), and the signer learns nothing about m.

Lemma 7. Figure 1 describes a secure protocol for signing a committed value.

Proof. Let the extractor E be as follows: it runs the extractor for step 6.1 of
the protocol, and discovers x and r that are of lengths `x and `r respectively. It
then queries the signature oracle for a signature on x. It obtains the signature

Common inputs: Public key (n, a, b, c) of the signature scheme with param-
eters `m, `s, `e.

Commitment public key (nC , gC , hC), commitment C.
User’s input: x and rC such that C = gx

ChrC
C mod nC .

Signer’s input: Factorization of n.

U ←→ S Form commitment Cx = axbr mod n, and prove that Cx is a com-
mitment to the same value as C.
Prove knowledge of x, r. Prove that x ∈ (0, 2`m), and r ∈ (0, 2`n).

U ←− S Choose a random r′ of length `s, and a prime number of length `e.
Compute v = (Cxbr′

c)1/e. Send (r′, e, v) to the user.
User’s output: Let s = r + r′. The user outputs a signature (s, e, v) on x.

Fig. 1. Signature on a Committed Value

(s, e, v). Note that the value s is a random integer of length `s. The extractor
then sets r′ = s− r. If `s ≥ `n + `, where ` is a security parameter guiding the
statistical closeness, then the value r′ obtained this way will be statistically close
to the value r′ generated by S, and so statistically, the adversary’s view is the
same whether talking to the real signer S, or to the extractor E.

6.2 Proof of Knowledge of a Signature

In this section, we give a zero-knowledge proof of knowledge protocol for show-
ing that a committed values is a signature on another committed value. The
protocol is meant to be comprehensible rather than to be optimized; an protocol
is provided in Appendix C.

The protocol provided in this section as well as the one provided Appendix C
apply proofs that a secret lies in a given interval. If one wants to use the more
efficient protocols to implement there proofs (c.f. Section 5), then the primes e
used to issue signatures should lie in the interval [2e−1+2e−2−2e−4−`c−`z , 2e−1+
2e−2 + 2e−4−`c−`z] where `c and `z are the security parameters (`c is the size of
the challenges sent by the verifier and `z controls the statistical zero-knowledge
property). Similarly, only messages in the interval [0, 2`m−4−`c−`z] should be
signed. Typical values are `c = `z = 80. Thus, when wanting an effective message
space of 160 bits, then one must set `m = 160 + 80 + 80 + 4 = 324 and hence
e = `m + 2 = 326 and s = 1024 + 160 + 324 = 1408.

Lemma 8. The protocol in Figure 2 is a zero-knowledge proof of knowledge of
the values (x, rx, s, e, v) such that Cx = gxhrx mod n and VerifyPK(x, s, e, v).

Proof. The completeness property is clear. The zero-knowledge property follows
because the simulator can form the commitments at random (as they reveal noth-
ing statistically), and then invoke the simulator for the zero-knowledge proofs of
knowledge of representation and belonging to an interval.

Common inputs: Public key (n, a, b, c) of the signature scheme with param-
eters `m, `s, `e

Public key (g, h) of a commitment scheme modulo n
Commitment public key (nC , gC , hC), commitment Cx

User’s input: The values (x, rx) such that Cx = gx
Chrx

C mod nC

and x is of length `m and rx is of length `n.
Values (s, e, v), a valid signature on message x.

U ←→ V Choose, uniformly at random, values w, rs, re, rw, rz and r of
length `n. Compute the following quantities: Cs = gshrs mod n, Ce =
gehre mod n, Cv = vgw mod n, Cw = gwhrw , z = ew, Cz = gzhrz . C =
(Cv)ehr mod n.
It is important to note that C = (Cv)ehr = vegwehr = (axbsc)gzhr mod
n.
Send the values (Cs, Ce, Cv, Cw, Cz, C) to the verifier and carry out the
following zero-knowledge proofs of knowledge:
1. Show that C is a commitment in bases (Cv, h) to the value committed

to in the commitment Ce:

PK{(ε, ρ, ρe) : C = Cε
vhρ ∧ Ce = gεhρe}

2. Show that C/c is also a commitment in bases ((a, b, g), h), to the
values committed to by commitments Cx,Cs,Cz, and that the power
of h here is the same as in C:

PK{(ξ, σ, ζ, ε, ρx, ρs, ρz, ρ) : C/c = aξbσgζhρ ∧ Cx = gξhρx ∧
Cs = gσhρs ∧ Cz = gζhρz ∧ C = (Cv)εhρ}

3. Show that Cz is a commitment to the product of the values committed
to by Cw and Ce:

PK{(ζ, ω, ε, ρz, ρw, ρe, ρ
′) : Cz = gζhρz ∧ Cw = gωhρw ∧

Ce = gεhρe ∧ Cz = (Cw)εhρ′
}

4. Show that Cx is a commitment to an integer of length `m and Ce is
a commitment to an integer in the interval (2`e−1, 2`e).

Fig. 2. Proof of Knowledge of a Signature

We must now show that there exists an extractor that computes a valid
signature. Our extractor will invoke the extractor for the proof protocols we use
as a building block. If our extractor fails, then we can set up a reduction that
breaks the Strong RSA assumption.

Suppose the extractor succeeds and computes (x, s, e, w, z, rx, rs, re, rw, rz, r)
such that C = (Cv)ehr and C = axbscgzhr, and Cz = gewhrz . Note that this
implies that Ce

v = axbscgz. Let v = Cv/gw. Note that ve = Ce
v/gz = axbsc.

Because we also know that x is of length `m, s is of length `s and e is of length
`e, we are done: we output (s, e, v) which is a signature on the message x.

6.3 Protocols for Signatures on Blocks of Messages

We note that straightforward modifications to the protocols above give us proto-
cols for signing blocks of committed values, and to prove knowledge of a signature
on blocks of committed values. We also note that, using any protocol for proving
relations among components of a discrete-logarithm representations of a group
element [11, 8, 5], can be used to demonstrate relations among components of a
signed block of messages. We highlight this point by showing a protocol that
allows an off-line double-spending test.

In order to enable an off-line double-spending test, a credential is a signature
on a tuple (SK,N1, N2), and in a spending protocol (i.e., credential showing) a
user reveals the value b = aSK + N1 mod q, for some prime number q, and N2,
for a value a ∈ Zq chosen by the verifier. The user must then prove that the
value revealed corresponds to the signed block of messages (SK,N1, N2).

Here, we describe a mechanism that, combined with our signature scheme
for blocks of messages, achieves this. We note that these types of techniques are
similar to those due to Brands [5].

We assume that we are given, as public parameters, public values (p = 2q +
1, gp) where p and q are primes, and gpZp has order q. We require that q >
max(2`m , 2`N) where `N is the length of the nonce N1. We also assume that we
are given another commitment public key, (nC , gC , hC), same as in the rest of
this Chapter.

In order to prove that the values (b, N2) correspond to the signature on his
secret key committed to in commitment CSK the user forms commitments and
C1 to N1 and C2 to N2. He then shows that he has a signature on the block of
values committed to by this block of commitments, and that the value committed
to in C1 is of length `N . He reveals N2 and shows that C2 is a valid commitment
to N2. He also carries out the following proof of knowledge protocol:

PK{(α, β, rα, rβ) : gb
p = (ga

p)αgβ ∧ CSK = gα
Chrα

C ∧ C1 = gβ
Ch

rβ

C } .

Lemma 9. The protocol described above is a proof of knowledge of a block of
values (SK,N1) such that (SK,N1, N2) is signed, and CSK is a commitment to
SK, and b = aSK + N1 mod q.

Proof. (Sketch) The completeness and zero-knowledge properties follow in the
usual way. We must now address the question of extraction. The fact that we
extract (SK,N1, N2) and a signature on them follows similarly as for the protocol
in Figure 2. The only thing we worry about is that b = aSK + N1 mod q. Using
a knowledge extractor from the proofs of knowledge of equal representations,
we extract values α and β of lengths `m and `N such that loggp

(gb
p) = b =

αa + β mod q, (as the order of gp is q) and α is the value committed to in CSK

while β is the value committed to in C1. Under the strong RSA assumption, it
follows that α = SK and β = N1, and so b = SKa + N1 mod q as we require.

References

1. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably secure
coalition-resistant group signature scheme. In M. Bellare, editor, Advances in
Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,
pages 255–270. Springer Verlag, 2000.

2. N. Barić and B. Pfitzmann. Collision-free accumulators and fail-stop signature
schemes without trees. In W. Fumy, editor, Advances in Cryptology — EURO-
CRYPT ’97, volume 1233 of Lecture Notes in Computer Science, pages 480–494.
Springer Verlag, 1997.

3. M. Bellare and O. Goldreich. On defining proofs of knowledge. In E. F. Brickell,
editor, Advances in Cryptology — CRYPTO ’92, volume 740 of Lecture Notes in
Computer Science, pages 390–420. Springer-Verlag, 1992.

4. F. Boudot. Efficient proofs that a committed number lies in an interval. In B. Pre-
neel, editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807 of Lec-
ture Notes in Computer Science, pages 431–444. Springer Verlag, 2000.

5. S. Brands. Rethinking Public Key Infrastructure and Digital Certificates— Build-
ing in Privacy. PhD thesis, Eindhoven Institute of Technology, Eindhoven, The
Netherlands, 1999.

6. G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2):156–189, Oct. 1988.

7. J. Camenisch and A. Lysyanskaya. Efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In B. Pfitzmann,
editor, Advances in Cryptology — EUROCRYPT 2001, volume 2045 of Lecture
Notes in Computer Science, pages 93–118. Springer Verlag, 2001.

8. J. Camenisch and M. Michels. Proving in zero-knowledge that a number n is
the product of two safe primes. In J. Stern, editor, Advances in Cryptology —
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages 107–
122. Springer Verlag, 1999.

9. J. Camenisch and M. Michels. Separability and efficiency for generic group sig-
nature schemes. In M. Wiener, editor, Advances in Cryptology — CRYPTO ’99,
volume 1666 of Lecture Notes in Computer Science, pages 413–430. Springer Ver-
lag, 1999.

10. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In B. Kaliski, editor, Advances in Cryptology — CRYPTO ’97, volume 1296 of
Lecture Notes in Computer Science, pages 410–424. Springer Verlag, 1997.

11. J. L. Camenisch. Group Signature Schemes and Payment Systems Based on the
Discrete Logarithm Problem. PhD thesis, ETH Zürich, 1998. Diss. ETH No. 12520,
Hartung Gorre Verlag, Konstanz.

12. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
In Proc. 30th Annual ACM Symposium on Theory of Computing (STOC), pages
209–218, 1998.

13. D. Chaum. Security without identification: Transaction systems to make big
brother obsolete. Communications of the ACM, 28(10):1030–1044, Oct. 1985.

14. D. Chaum and J.-H. Evertse. A secure and privacy-protecting protocol for trans-
mitting personal information between organizations. In M. Odlyzko, editor, Ad-
vances in Cryptology — CRYPTO ’86, volume 263 of Lecture Notes in Computer
Science, pages 118–167. Springer-Verlag, 1987.

15. L. Chen. Access with pseudonyms. In E. D. ann J. Golić, editor, Cryptography:
Policy and Algorithms, volume 1029 of Lecture Notes in Computer Science, pages
232–243. Springer Verlag, 1995.

16. R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.
In Proc. 6th ACM Conference on Computer and Communications Security, pages
46–52. ACM press, nov 1999.

17. I. Damg̊ard. Efficient concurrent zero-knowledge in the auxiliary string model. In
B. Preneel, editor, Advances in Cryptology — EUROCRYPT 2000, volume 1807
of Lecture Notes in Computer Science, pages 431–444. Springer Verlag, 2000.

18. I. Damg̊ard and E. Fujisaki. An integer commitment scheme based on groups with
hidden order. http://eprint.iacr.org/2001, 2001.

19. I. B. Damg̊ard. Payment systems and credential mechanism with provable security
against abuse by individuals. In S. Goldwasser, editor, Advances in Cryptology —
CRYPTO ’88, volume 403 of Lecture Notes in Computer Science, pages 328–335.
Springer Verlag, 1990.

20. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. on
Information Theory, IT-22(6):644–654, Nov. 1976.

21. A. Fiat and A. Shamir. How to prove yourself: Practical solution to identification
and signature problems. In A. M. Odlyzko, editor, Advances in Cryptology —
CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer Verlag, 1987.

22. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In B. Kaliski, editor, Advances in Cryptology — CRYPTO
’97, volume 1294 of Lecture Notes in Computer Science, pages 16–30. Springer
Verlag, 1997.

23. E. Fujisaki and T. Okamoto. A practical and provably secure scheme for pub-
licly verifiable secret sharing and its applications. In K. Nyberg, editor, Advances
in Cryptology — EUROCRYPT ’98, volume 1403 of Lecture Notes in Computer
Science, pages 32–46. Springer Verlag, 1998.

24. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without
the random oracle. In J. Stern, editor, Advances in Cryptology — EUROCRYPT
’99, volume 1592 of Lecture Notes in Computer Science, pages 123–139. Springer
Verlag, 1999.

25. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. SIAM Journal of Computing, 18(1):186–208, Feb. 1989.

26. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308,
Apr. 1988.

27. A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In H. Heys
and C. Adams, editors, Selected Areas in Cryptography, volume 1758 of Lecture
Notes in Computer Science. Springer Verlag, 1999.

28. S. Micali. 6.875: Introduction to cryptography. MIT course taught in Fall 1997.

29. G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer
and System Sciences, 13:300–317, 1976.

30. M. Naor and M. Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the Twenty-First Annual ACM Symposium on The-
ory of Computing, pages 33–43, Seattle, Washington, 15–17 May 1989. ACM.

31. M. O. Rabin. Probabilistic algorithm for testing primality. Journal of Number
Theory, 12:128–138, 1980.

32. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, Feb.
1978.

33. J. Rompel. One-way functions are necessary and sufficient for secure signatures.
In Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC), pages
387–394, Baltimore, Maryland, 1990. ACM.

34. C. P. Schnorr. Efficient signature generation for smart cards. Journal of Cryptology,
4(3):239–252, 1991.

35. A. Shamir. On the generation of cryptographically strong pseudorandom se-
quences. In ACM Transaction on Computer Systems, volume 1, pages 38–44,
1983.

A On the Notation and Definitions Used

A.1 Notation

Let A be an algorithm. By A(·) we denote that A has one input (resp., by
A(·, . . . , ·) we denote that A has several inputs). By A(·) we will denote that A
is an indexed family of algorithms.

y ← A(x) denotes that y was obtained by running A on input x. In case A
is deterministic, then this y is unique; if A is probabilistic, then y is a random
variable. If S is a set, then y ← S denotes that y was chosen from S uniformly
at random.

Let A and B be interactive Turing machines. By (a← A(·)↔ B(·)→ b), we
denote that a and b are random variables that correspond to the outputs of A
and B as a result of their joint computation.

Let b be a boolean function. The notation (y ← A(x) : b(y)) denotes the
event that b(y) is true after y was generated by running A on input x.

Finally, the statement

Pr[{xi ← Ai(yi)}1≤i≤n : b(xn)] = α

means that the probability that b(xn) is TRUE after the value xn was obtained
by running algorithms A1, . . . , An on inputs y1, . . . , yn, is α.

(The above notation is from the Cryptography course taught by Silvio Micali
at MIT [28].)

By A(·)(·), we denote a Turing machine that makes oracle queries. I.e., this
machine will have an additional (read/write-once) query tape, on which it will
write its queries in binary; once it is done writing a query, it inserts a special
symbol “#”. By external means, once the symbol “#” appears on the query
tape, an oracle is invoked and its answer appears on the query tape adjacent to
the “#” symbol. By

Q = Q(AO(x))← AO(x)

we denote the contents of the query tape once A terminates, with oracle O and
input x. By (q, a) ∈ Q we denote the event that q was a query issued by A, and
a was the answer received from oracle O.

By A1(·)(·), we denote a Turing machine that makes just one oracle query.
Analogously, by A`(·)(·), we denote a Turing machine that makes ` oracle queries.

By A
�→B we denote that algorithm A has black-box access to algorithm B,

i.e. it can invoke B with an arbitrary input and reset B’s state.
We say that ν(k) is a negligible function, if for all polynomials p(k), for all

sufficiently large k, ν(k) < 1/p(k).

A.2 Signature Scheme

First, we cite the definition of a secure signature scheme.

Definition 3 (Signature scheme [26]). Probabilistic polynomial-time algo-
rithms (G(·), Sign(·)(·), Verify(·)(·, ·)), where G is the key generation algorithm,
Sign is the signature algorithm, and Verify the verification algorithm, constitute
a digital signature scheme for efficiently samplable (in the length of its index)
message space M(·) if for all m ∈M(·)

Correctness: If a message m is in the message space for a given PK, and SK
is the corresponding secret key, then the output of SignSK(m) will always
be accepted by the verification algorithm VerifyPK . More formally, for all
values m:

Pr[(PK,SK)← G(1k);σ ← SignSK(m) :
m ∈MPK ∧ ¬VerifyPK(m,σ′)] = 0

Security: Even if an adversary has oracle access to the signing algorithm which
provides signatures on messages of the adversary’s choice, the adversary
cannot create a valid signature on a message not explicitly queried. More
formally, for all families of probabilistic polynomial-time oracle Turing ma-
chines {A(·)

k }, there exists a negligible function ν(k) such that

Pr[(PK,SK)← G(1k); (Q, x, σ)← A
SignSK(·)
k (1k) :

VerifyPK(m,σ) = 1 ∧ ¬(∃σ′ | (m,σ) ∈ Q)] = ν(k)

A.3 Proof of Knowledge

We also give a definition of a zero-knowledge black-box proof of knowledge pro-
tocol. Zero knowledge proofs of knowledge were introduced independently by
Brassard, Chaum, and Crépeau [6] and by Goldwasser, Micali, and Rackoff [25],
and further refined by Bellare and Goldreich [3].

The definition we give here is both stronger and simpler than some other,
more general definitions, for example the one due to Goldreich and Bellare. As
our main goal here is in exhibiting protocols, this is good enough because our
protocols satisfy this stronger definition. In particular, our knowledge extraction
property implies very strong soundness, and so some protocols that the literature
considers to be proofs of knowledge would not be so under our definition.

Let x be an input, and let R be a polynomially computable relation. A
zero-knowledge proof of knowledge of a witness w such that R(x,w) = 1 is a
probabilistic polynomial-time protocol between a prover P and a verifier V such
that there exists an expected polynomial-time simulator S and a polynomial-
time extractor E such that:

Completeness: For all

Pr[P (1k, x, w)↔ V (1k, x)→ b : b = 1] = 1

Black-box zero-knowledge: For all (x, w) ∈ R, for all polynomial auxiliary inputs
a, for all probabilistic polynomial-time families of Turing machines {Vk},
there exists a negligible function such that

|Pr[P (1k, x, w)↔ Vk(a, x)→ b : b = 1] −

Pr[S(1k, x) �→Vk(a, x)→ b : b = 1]| = ν(k)

Black-box extraction: For all x, for all {Pk}, for all auxiliary inputs a, if for any
function ε Pr[Pk(a, x) ↔ V (1k, x) → b : b = 1] ≥ ε(k), then there exists a

constant c and a negligible function ν(k) such that Pr[Pk(a, x) �←E(1k, x)→
w : R(x, w) = 1] ≥ εc(k) − ν(k). In other words, if the prover convinces
the verifier often, then the extractor computes the witness almost as often.
Note that as the relation R is polynomial-time computable, the extractor
can always just test whether its output satisfies (x, w) ∈ R. Let (E) denote
the extractor that runs E with black-box access to Pk until w is computed.

Definition 4 (Proof of knowledge). A protocol that satisfies the above de-
scription for relation R is called a proof of knowledge protocol for relation R.

B Number-Theoretic Crash Course

Definition 5 (RSA modulus). A 2k-bit number n is called an RSA modulus
if n = pq, where p and q are k-bit prime numbers.

Definition 6 (Euler totient function). Let n be an integer. The Euler totient
function φ(n) measures the cardinality of the group Z∗n.

Fact 1. If n = pq is an RSA modulus, then φ(n) = (p− 1)(q − 1).

Notation: We say that an RSA modulus n = pq is chosen uniformly at random
with security k if p and q are random k-bit primes. Let RSAmodulus denote
the algorithm that, on input 1k, outputs a random RSA modulus with security
k. Let RSApk(1k) denote the algorithm that, on input 1k, chooses two random
k-bit primes, p and q, and outputs n = pq and a random e ∈ Z∗n such that
gcd(e, φ(n)) = 1. Such a pair (n, e) is also called RSA public key, where the
corresponding secret key is the value d ∈ Zφ(n) such that ed ≡ 1 mod φ(n).

Assumption 2 (RSA Assumption). The RSA assumption is that given an
RSA public key (n, e), and a random element u ∈ Z∗n, it is hard to compute
the value v such that ve ≡ u mod n. More formally, we assume that for all
polynomial-time circuit families {Ak}, there exists a negligible function ν(k)
such that

Pr[(n, e)← RSApk(1k);u← Z∗n; v ← Ak(n, e, u) : ve ≡ u mod n] = ν(k)

The strong RSA assumption was introduced by Barić and Pfitzmann [2] and
Fujisaki and Okamoto [22].

Assumption 3 (Strong RSA Assumption). The strong RSA assumption is
that it is hard, on input an RSA modulus n and an element u ∈ Z∗n, to compute
values e > 1 and v such that ve ≡ u mod n. More formally, we assume that for
all polynomial-time circuit families {Ak}, there exists a negligible function ν(k)
such that

Pr[n← RSAmodulus(1k);u← Z∗n; (v, e)← Ak(n, u) :
e > 1 ∧ ve ≡ u mod n] = ν(k)

The tuple (n, u) generated as above, is called a general instance of the flexible
RSA problem.

Notation: By QRn ⊆ Z∗n we will denote the set of quadratic residues modulo
n, i.e., elements a ∈ Z∗n such that ∃b ∈ Z∗n such that b2 ≡ a mod n.

If (n, u) is a general instance of the flexible RSA problem, and u ∈ QRn,
then (n, u) is a quadratic instance of the flexible RSA problem.

Note that as one quarter of all the elements of Z∗n are quadratic residues,
the strong RSA assumption implies that it is hard to solve quadratic instances
of the flexible RSA problem. In the sequel, by an instance of the flexible RSA
problem, we will mean a quadratic, rather than general instance.

Corollary 1. Under the strong RSA assumption, it is hard, on input a flexible
RSA instance (n, u), to compute integers e > 1 and v such that ve ≡ u mod n.

Definition 7 (Safe primes). A prime number p is called safe if p = 2p′ + 1,
such that p′ is also a prime number. (The corresponding number p′ is known as
a Sophie Germain prime.)

Definition 8 (Special RSA modulus). An RSA modulus n = pq is special
if p = 2p′ + 1 and q = 2q′ + 1 are safe primes.

Notation: We say that a special RSA modulus n = pq was chosen at random
with security k if p and q are random k-bit safe primes.

Theorem 3 (Chinese Remainder Theorem). If n = pq, and gcd(p, q) = 1,
then Φ : Zn 7→ Zp×Zq, Φ(x) = (x mod p, x mod q) is an efficiently computable
and invertible ring isomorphism.

Lemma 10. If n = pq, p = 2p′ + 1, q = 2q′ + 1 is a special RSA modulus, then
QRn is a cyclic group under multiplication, of size p′q′, where all but p′ + q′ of
the elements are generators.

Corollary 2. If (n, u) is an instance of the flexible RSA problem, and n is a
special RSA modulus, we may assume that u is a generator of QRn.

The following lemma originates from the analysis of the primality test due
to Miller [29] and Rabin [31].

Lemma 11. Let a composite integer n be given. Given any value x such that
φ(n) | x, one can find a non-trivial divisor of n in probabilistic polynomial time.

Corollary 3. Let n be an integer. Let e such that gcd(e, φ(n)) = 1 be given.
Given any value x such that φ(n) | x, one can efficiently compute v such that
ve ≡ u mod n.

For special RSA moduli, it is also true that given x > 4 such that x | φ(n),
one can factor n. The following lemma and proof are straightforward:

Lemma 12. Let n = pq be a special RSA modulus, i.e., p = 2p′ + 1 and q =
2q′ + 1, and p′ and q′ are primes. Suppose a value x > 4 is given such that
x | φ(n) = 4p′q′. Then it is possible to efficiently factor n.

Proof. Suppose x = 2Ip′, for I ∈ {0, 1, 2}. Then factoring n is immediate. The
more difficult case is x = 2Ip′q′. This immediately gives us φ(n). By Lemma 11,
we are done.

Corollary 4. Given a special RSA modulus n, and an integer x such that
gcd(φ(n), x) > 4, one can efficiently factor n.

The following lemma is due to Shamir [35]:

Lemma 13. Let an integer n be given. Suppose that we are given the values
u, v ∈ Z∗n and x, y ∈ Z, gcd(x, y) = 1 such that vx ≡ uy mod n. Then there is
an efficient procedure to compute the value z such that zx = u mod n.

The following lemma is a generalization of Lemma 13, in that we are not
restricted to the case where gcd(x, y) = 1. However, note that this generalization
applies only for special RSA moduli.

Lemma 14. Let a special RSA modulus n = pq, p = 2p′ + 1, q = 2q′ + 1, be
given. Suppose we are given the values u, v ∈ QRn and x, y ∈ Z, gcd(x, y) < x
such that vx ≡ uy mod n. Values z, w > 1 such that zw ≡ u mod n can be
computed efficiently.

Proof. Let c = gcd(x, y). If gcd(4c, φ(n)) > 4, then by Corollary 4, we factor n.
Otherwise, it must be the case that gcd(c, p′q′) = 1. Therefore, there exists a
value d ∈ Z∗p′q′ such that cd ≡ 1 mod p′q′.

By the extended GCD algorithm, find integers a and b such that ax+by = c.
Note that

vx/c ≡ (vx)d ≡ (uy)d ≡ uy/c mod n

Then, by Lemma 13, we find an element z such that zx/c = u and we obtain
e = x/c and z.

C A more Efficient Proof of Knowledge of a Signature

Common inputs: Public key (n, a, b, c) of the signature scheme with param-
eters `m, `s, `e

Public key (g, h) of a commitment scheme modulo n
Commitment public key (nC , gC , hC), commitment Cx

User’s input: The values (x, rx) such that Cx = gx
Chrx

C mod nC

and x is of length `m and rx is of length `n.
Values (s, e, v), a valid signature on message x.

U ←→ V Choose, uniformly at random, values w and rw of length `n. Com-
pute the following quantities: Cv = vgw mod n, Cw = gwhrw .
Send the values (Cv, Cw) to the verifier and carry out the following zero-
knowledge proofs of knowledge:

PK{(α, β, γ, ε, ξ, σ, ν,) :

c = Cε
v(1/a)ξ(1/b)σ(1/g)ϕ ∧

Cw = gνhα ∧ 1 = Cε
w(1/g)ϕ(1/h)β ∧

Cx = gξhγ ∧

2e−1 < ε < 2e ∧ 2`m−1 < ξ < 2`m}

Fig. 3. Proof of Knowledge of a Signature

Lemma 15. The protocol in Figure 3 is a zero-knowledge proof of knowledge of
the values (x, rx, s, e, v) such that Cx = gxhrx mod n and VerifyPK(x, s, e, v).

The proof of this lemma is similar to the one of Lemma 8.

