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Throughout the history encryption was used to hide the contents of transmitted data. The
rapid growth in the use of the Internet only increased the necessity of encryption. However,
encryption does not hide all the relevant information, for example, it does not hide the
identity of the communicating parties. That is, it does not prevent traffic analysis. In this
work we deal with the problem of anonymous communication — communication that does
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Abstract

This work develops a novel approach to hide the senders and the receivers of mes-
sages. The intuition is taken from an everyday activity that hides the “communication
pattern” — the public transportation system. To describe our protocols, busses are
used as a metaphor: Busses, i.e., messages, are traveling on the network, each piece of
information is allocated a seat within the bus. Routes are chosen and buses are sched-
uled to traverse these routes. Deterministic and randomized protocols are presented,
the protocols differ in the number of buses in the system, the worst case traveling time,
and the required buffer size in a “station.” In particular, a protocol that is based on
cluster partition of the network is presented; in this protocol there is one bus traversing
each cluster. The clusters’ size in the partition gives time and communication trade-
offs. One advantage of our protocols over previous works is that they are not based on
statistical properties for the communication pattern. Another advantage is that they
only require the processors in the communication network to be busy periodically.
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Introduction

not disclose the identity of the sender and receiver.
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We develop a novel approach to hide the senders and the receivers of messages. The
intuition is taken from an everyday activity that hides the “communication pattern” — the
public transportation system. For example, a traveler that takes buses from one place to
another remains anonymous, and it is hard to trace him. Metaphorically, we consider the
pieces of information that senders send to receivers as passengers. There are “buses,” i.e.,
messages, traveling on the network, and each piece of information is allocated a seat within
a bus. The sender and receiver are modeled as bus stations. Our aim is to simulate this
metaphor in the digital world while keeping the anonymity of the sender and receiver. In
most of our protocols we also hide the information that a message is sent, that is, hide the
number of passengers on each bus.

Previous work. One of the first works to consider the problem of hiding the communica-
tion pattern in the network is the work of Chaum [2] where the concept of a miz is introduced.
A single processor in the network, called a mix, serves as a relay. Each processor p that wants
to send a message M to a processor ¢ encrypts M using ¢’s public key to obtain M’. Then
p encrypts the pair (M’', ¢) using the public key of the mix. The mix decrypts the message
and forwards M’ to ¢. This scheme has been extended in [10, 11, 13, 14] where several mixes
are used to cope with the possibility of compromising the single mix. For example, in the
onion routing system [14] a proxy defines a route for a message through the routing network
by rapping the message with a layered data-structure called an onion; the onion is passed
through the routers as specified by the onion, each router which receives an onion peels of its
layer, identifies the next hop in the route, and sends the peeled onion to the next router. The
mix schemes operate under some statistical assumption on the pattern of communication.
If a single message is sent then an adversary that monitors the communication channels
can observe the sender and the receiver of the particular message. Another example for a
problematic case is when all the processors send a message to the same destination — in this
case the identity of the receiver is revealed. A discussion on other mix-like systems can be
found in [14].

An approach based on “xor-trees” has been presented in [6]. The scheme presented in [6]
fits long communication sessions during which the data exclusive-ored with pseudo-random
bits (that cancel each other) is transfered towards the root which in turn broadcast the
arriving information to the nodes in the tree. The solution presented in [6] is an extension
of the DC-net approach suggested in [3].

Our contribution. We present deterministic and randomized protocols for anonymous
message delivery based on the buses metaphor. The protocols differ in the number of buses
in the system, the worst case traveling time, and the required buffer size in a “station.”
Our first solution uses a single bus that traverses an Euler tour. The traveling time in
this protocol is O(n). Our second solution is a full communication solution for which two
buses traverse each link in opposite directions. The traveling time in this protocol is the
distance between the sender and receiver, that is, the protocol achieves optimal time. Our
third solution is based on cluster partition of the network; in this protocol there is one bus
traversing each cluster. The clusters’ size in the partition gives time and communication
tradeoffs.



Our solutions do not rely on statistical properties for the communication pattern. In our
solution, unlike the solution presented in [6], the processors in the communication network
are busy in the transmission only periodically. That is, a processor is busy only when a
bus arrives at the processor. Moreover, there is no need to store information (such as the
result of xoring arriving bits) in memory between bus arrivals; thus, our protocols are more
suitable for fault tolerant environments. For example, the scheme may be a base for a robust
anonymous message delivery by retransmitting a new bus upon a time-out.

Let us note two additional important properties of our scheme. First note that in our
protocols the buses traverse the network in fixed routes and fixed schedule, thus the adversary
cannot learn whether there is any communication between the processors or not. In addition,
our scheme can cope with an adversary that monitors any number of processors.

We also extend the scheme to cope with three extensions of the model: (1) protocols that
enable anonymous broadcast and multicast, (2) protocols which work even if the topology
of the network is unknown, and (3) protocols which tolerate Byzantine processors.

Organization. The rest of the paper is organized as follows. The problem statement
appears in Section 2. Two simple solutions that achieve minimum communication and
minimum time, respectively, are presented in Section 3. A solution that introduces a tradeoff
between time and communication is presented in Section 4. Lower bounds on the possible
tradeoffs between time and communication are proved in Section 5. Solutions which cope
with extensions of the model appear in Section 6.

2 The System and Threat Models

We consider a network of n processors, denoted py, ..., p,, connected by m communication
links. We use the communication graph G(V, E) to represent our network, V' is the set of
processors and FE is the set of communication links connecting the processors (that is n = |V|
and m = |E]). We assume that G is connected. Processors communicate by sending and
receiving messages. The system is synchronous — there is a common global pulse (possibly
implemented by synchronized distributed clocks) that triggers (whenever the clock reaches
an integer value) the processors to send messages; messages sent in a certain pulse arrive at
the neighboring processor before the next pulse.

Some processor p;, called sender, may decide to communicate with another (not neces-
sarily neighboring) processor p;, called receiver. Informally, our objective is to hide the fact
that p; communicates with p;. That is, we want to hide the identities of p; and p;. See below
for a formal definition. Furthermore, some of our protocols even hide the fact that a mes-
sage was sent. A protocol that achieves these goals is called an anonymous message delivery
protocol. We note that the vast majority of known cryptographic techniques focus on hiding
the contents of the transmitted data, but not the fact that data has been transmitted.

We consider two types of adversaries listening adversary and Byzantine adversary. The
listening adversary can monitor all the communication links and also monitor the internal
contents of some processors in the network. The adversary is non-adaptive: Before the
execution of the protocol the adversary chooses a set of processors C' C {py,...,p,} (we do



not limit the size of the set). Later a pair of parties (or some pairs) execute the anonymous
message delivery protocol. At the end of the executions the adversary should not know if
p; sent a message to p; for every p;,p; ¢ C.' This adversary is honest-but-curious, i.e.,
it cannot change any messages, delete messages, add any messages, or change the state of
any processor. We next formally define anonymous message delivery protocols. For this
definition, we recall the definition of indistinguishable distributions [9, 16].

Definition 2.1 (Indistinguishability) Two sequences of probability distributions, {Vi},—,
and {W}};~,, are polynomial-time indistinguishable if for every probabilistic polynomial-time
Turing Machine M, every integer ¢ > 1 and for every sufficiently large k,

1
Pr [ (01) =1] = Pr [ (w,1) =1]| < -

The protocols we define have a security parameter k£ which measures the length of the keys
in the cryptographic primitives they use (see Section 2.1 for description of these primitives).
Roughly speaking, the requirement is that a Turing Machine that runs in time polynomial
in k£ cannot know who are the sender and receiver. The view of the listening adversary
controlling a set C' of processors after an execution of a message delivery protocol in which
pi sends a message to p; is denoted by the random variable VIEW. (i, j) where k is the
security parameter. This view contains all messages exchanged in the network and the local
information known to processors in C i.e., the random inputs they used during the execution,
the state of the processors, and the secret keys they know.

Definition 2.2 We say that the protocol is an anonymous message delivery protocol if:
Correctness. If p; sends a message M to p; then p; receives the message.

Anonymity. For every C C {p1,...,pn} and every iy, is, j1,jo ¢ C the sequences of random
variables {VIEW’é(il,jl)}k_l and {VIEW’é(ig,jg)}k_l are indistinguishable.

The Byzantine adversary is more powerful than the listening adversary. Like the listening
adversary, the Byzantine adversary can monitor the communication links and the internal
contents of the processors of the network. In addition, for some parameter ¢, it can control
up to t processors in the network. These processors can insert messages, delete messages,
or arbitrarily change messages that they receive (before forwarding the messages). That
is, these processors can deviate from the pre-defined protocol. Again we assume that the
adversary is non-adaptive. We do not give a formal definition of an anonymous message
delivery protocol in the presence of a Byzantine adversary since it is quite complicated.
The definition is similar to the definition of secure function evaluation in the presence of a
Byzantine (malicious) adversary.

We evaluate a protocol by its time complexity, its communication complexity, and its
buffer complexity: the time complexity is the worst case time required to transmit a message

LTf the adversary monitors the internal contents of the sender or the receiver, then it can identify the
sender and the receiver.



from a sender to a receiver, the communication complexity is the maximal number of mes-
sages that are sent simultaneously by the processors in the network (however, these messages
can be long), and the buffer complexity is the buffer size required for each processor to store
incoming and outgoing messages in each time step. In our protocols the buffer complexity
is the number of seats in the buses that arrive simultaneously to a processor.

2.1 Cryptographic Primitives

The first cryptographic primitive that we use is encryption which guarantees the secrecy of
messages. That is, a sender can send an encrypted message such that only the intended
recipient can decrypt it. We will require semantic security — the encryption is randomized
and an eavesdropper cannot distinguish in polynomial time between encryptions of any pair
of messages. See, e.g., [7] for formal definitions. We consider two types of encryption:

Symmetric key encryption. Both sender and receiver have a common secret key, which
is used for both encryption and decryption.

Public key encryption. The receiver has a secret private key which it uses for decryption.
Furthermore, the receiver publishes a public key which is used for encryption by any
sender; an eavesdropper cannot distinguish between encryptions of messages even if it
has the public key.

Typical symmetric key encryption schemes are faster than public key encryption schemes;
however they require every pair of processors in the network to have a common secret key.

Authentication. The second cryptographic primitive that we use is authentication which
guarantees that if a sender sends a message to a receiver and a third party alters this message,
then with high probability the receiver can detect this fact. Again we can consider two types:
(1) symmetric key authentication in which the sender uses the common key to authenticate a
message and the receiver uses the common key to verify the authenticity of the message, and
(2) public key authentication, known as signatures, in which the sender uses its private key
to sign a message and the receiver uses the public key to verify the validity of the signature.
See, e.g., [8] for formal definitions of authentication and signatures.

3 Simple Solutions

In this section we present two simple protocols, one with optimal communication complexity
and another with optimal time complexity. In Section 4 we will generalize the ideas of these
protocols, and present protocols that exhibit tradeoffs between time and communication. In
all our protocols we metaphorically view each message as a bus. The protocols vary according
to the number of buses in the system, and the way they travel in the communication graph.



3.1 Communication Optimal Protocol

We start with a solution with message complexity 1, i.e., in each time unit only one processor
sends a message to one other processor. Using our metaphor, there is only one bus traveling
in the system. We next define how the bus travels in the communication graph. First, fix
any spanning tree in the graph. Next, use an Euler tour (that is, a DFS tour) of the spanning
tree to define a ring. The bus is rotating through the ring, and has n? seats. Seat s; ; is used
to communicate an encrypted message from processor p; to p;; this message is encrypted
either using the symmetric key of p; and p;, or using the public key of p; (depending which
encryption infra-structure exists). Each time the bus gets to processor p; it changes each
message in the row of seats s;; either to an encryption of a message it wants to send to
pj, or to some detectable garbage which is then encrypted for p;. Furthermore, p; checks
what messages were sent to it, by decrypting the n messages located in the i-th column and
ignoring the ones containing garbage.

By the semantic security of the encryption, a listening adversary cannot tell whether a
seat contains garbage or a real message, i.e., it cannot tell if two processors are commu-
nicating. Next, we state the communication and time complexities of our solution. The
communication complexity of this solution is optimal — there is single bus. However, the
time complexity is quite bad: it can take at most 2n — 1 time units until the bus reaches
the sender, and at most 2n — 1 additional time units until the bus reaches the destination.
The buffer complexity of this protocol is n?. We summarize the properties of this protocol
below.

Theorem 3.1 There is an anonymous message delivery protocol with communication com-
plexity 1, time complezity O(n), and buffer complezity O(n?).

We emphasize again that since there is one bus, most of the time each processor is not
involved in executing this protocol and does not need to store any information between two
visits of the bus. Furthermore, by Theorem 5.2, the time complexity in any protocol with
communication complexity 1 is Q(n).

3.1.1 Reducing the Number of Seats

In this section we present a protocol that reduces the number of seats in each bus assuming
that not too many messages are sent simultaneously. We modify the above protocol where
instead of assigning a seat for any source/destination pair, the sender writes its message in a
randomly chosen seat (deleting the previous contents of the seat). However, the sender wants
to hide the fact that it wrote a message in some seat/seats, thus it changes the contents of
all the seats in the bus. To achieve this goal, the sender encrypts the message using the
public keys, in reverse order, of all the processors in the Euler tour between the sender and
receiver. When the bus gets to some processor, it replaces the contents of each seat by the
decryption of the previous contents under its private key. Next, if any message makes sense,
then the processor knows that this is a message sent to it, and it changes it to a random
contents. Recall that we use a semantically-secure public-key encryption; such encryption
scheme must be probabilistic, and the length of the nested encryption, that is, after the



multiple encryptions, is O(n).2 The sender appends dummy blocks to the encryption such
that its length does not leak information on the intended receiver. For more details on
semantically-secure encryption, see e.g., [7]).

The buffer complexity in the protocol is O(n) times the size of the bus. To determine the
size of the bus that may serve well under this policy we use the so-called birthday problem
(or birthday paradox). As an example, with probability 1/2 in a group of 23 random people
there will be two people with the same birthday. More generally,

Claim 3.2 Suppose s balls are randomly and independently assigned to r bins. The proba-
bility that all balls fall into distinct bins is ~ e 55~ D/2r

Assume that we have an upper bound s on the number of messages that will be sent
anonymously. Thus, if we take the size of the bus to be 7 = O(s?) then the probability that
two processors will randomly choose the same seat is less than 1/4. If we take the size of
the bus to be r = O(ks?), for some security parameter k, then the probability of a collision
dropsto 1 —e "  ~1— (1 —1/k) = 1/k.

Of course, if there is a collision then the first message gets lost. A possible way to
overcome this problem is that the recipient sends an acknowledgment to the sender using
the same seat. If the sender does not get the message, then the sender resends the message.
The expected number of times that a message will be sent is less than 2 even if the number
of seats is r = O(s?).2

Theorem 3.3 Assume that there is some upper bound s on the number of anonymous mes-
sages that are sent simultaneously. There is an anonymous message delivery protocol with
communication complexity 1, expected time complexity O(n), and buffer complezity O(ns?).

The above protocol enables to send an anonymous-sender message, that is, a message
in which the sender keeps its anonymity from the receiver (simply by not mentioning the
originator of a message). Now, if a sender p; sees that it resends a message many times,
then p; can decide to double the size of the bus. However, p; does not want to reveal that
it is trying to send a message, thus it can send an anonymous-sender message to another
(random or fixed) processor to double the size of the bus. Similarly, a processor that receives
acknowledgments for several messages in a row can send an anonymous message to reduce
the size of the bus.

Another way to reduce the number of seats is to assume that each time the bus gets to
p; it will send only one message.® In this case, we can use a bus with only n seats: Each
processor has a single seat s; in the bus that can be used for sending a message to another
processor in the ring. The message M is encrypted by the sender in a way that ensures that
only the receiver can decrypt M. That is, when the bus gets to a processor p; it tries to
decrypt the messages in the n — 1 seats s;, where 7 # j, and receives the messages that it
can verify their authenticity.

2Here we ignore the security parameter.

3The disadvantage of this protocol is that when a sender does not get the acknowledgment then it knows
that someone else is also sending messages.

4 Alternatively, if p; has more than one processor with whom it wants to communicate, then it will use a
buffer to store these messages; this will increase the delivery time to O(n?).
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3.2 Full Communication — Time Optimal Protocol

We next present a protocol with optimal time complexity, however with bad communication
complexity. In this protocol two buses travel through every link — a bus in each direction.
The nodes transfer seats from one bus to another according to the shortest path criteria. A
seat s; ; that arrives at a node p;, is assigned to a bus that traverses the link attached to py
that is on a shortest path to p;. The seats that are transfered use the routing information,
and may be transfered together with the routing messages that are repeatedly exchanged.
That is, the communication in this protocol is “swallowed” by the communication of the
routing-update protocol.

As in the previous protocol all messages are encrypted using the key of the receiver
before they are assigned to seats, and encrypted garbage messages are sent if there is no
real message. Thus, anonymity is guaranteed. Next we state the communication and time
complexities of this protocol. The communication complexity of this protocol is the number
of buses, i.e., 2m (where m is the number of edges in the graph). This protocol has optimal
time for message arrival, which is the number of links in the shortest path between the
receiver and sender. The buffer complexity of a node is the number of shortest paths that
contain this node. This number can be small or big depending on the communication graph.
For example, if the graph is a complete graph, each bus contains one seat, and the buffer
complexity of a node is the number of its neighbors, i.e., n — 1, however, the number of buses
is O(n?). The other extreme is a star, where the buffer complexity of the center is O(n?)
and the number of buses is O(n).

Theorem 3.4 There is an anonymous message delivery protocol with communication com-
plexity 2m and buffer complexity at most O(n?). The time complexity between two nodes is
the distance between the nodes in the communication graph.

4 Time and Communication Tradeoff

In this section we will examine more sophisticated protocols that can be tuned up to trade
time and communication. The first observation is that the full communication protocol
presented in Section 3.2 already presents tradeoffs between time and communication: the
protocol can use any connected spanning sub-graph of the communication graph with two
buses on each edge of the subgraph. This reduces the communication complexity but might
increase the time complexity since the distance between two nodes in the sub-graph might
be bigger. To obtain the minimum number of buses, the protocol uses a spanning tree; in
this case the communication complexity is O(n).

We next present protocols which reduce the number of buses to less than n. In these
protocols we divide the graph into clusters and construct bus routes within each cluster. For
concreteness, we choose specific partitions to clusters that are based on [5], however similar
partitions can be used as well (see the related work in [5]).

The partition scheme of [5] uses a spanning tree of the communication graph, and parti-
tions its nodes and edges to clusters. One way to partition the tree is a node partition which
results in clusters with at least z nodes and no more than dx nodes, where = can be chosen



to be any value in the range 1,...,n and ¢ is the maximum degree of a node in the tree. In
this partition neighboring clusters are connected by a single link. The partition scheme that
we will use is edge partition, that is, each edge in contained in exactly one cluster. In this
case each cluster contains at least x edges and no more than 3x edges, where, again, x can
be chosen to be any value in the range 1,...,n. (In fact at most one cluster is of size 3z
and all the rest are of at most 2z.) Each cluster is a connected sub-graph of the spanning
tree, i.e., it is a tree that contains O(x) nodes. In this partition two neighboring clusters are
connected by a single node.

We now roughly describe the edge partition scheme of [5]. A rooted spanning tree is
constructed and each node p is marked by M,, the number of edges in its subtree. In each
iteration a node with M, > z, such that for all p’s children ¢ it holds that M, < z, is chosen.
Then a subset of the subtrees rooted at p’s children are selected such that the total number
of the edges in these subtrees is greater than x but not exceeding 2x. These trees form a
cluster, that is removed from the tree. Now, the numbers M, recalculated for the remaining
tree, and the scheme proceeds to the next iteration. Note that if the number of edges in the
tree is less than 3x then it may not be possible to partition the last remaining tree into a
cluster of x to 2x edges. For example, a root with three outgoing edges for which the subtree
rooted at each of them is of size exactly x — 1 cannot be partitioned as we require — hence
we allow the last cluster to include 3z edges.

Once the network is partitioned to clusters, we have one bus in each cluster which per-
forms an Euler tour on the spanning tree of the cluster. There are at most [n/x]| clusters
in the graph, thus the number of buses, i.e., the communication complexity, is no more than
[n/x]. If a message is sent from a node in one cluster to a node in another cluster then this
message should move from one bus to another until it reaches the cluster of the receiver.
That is, when a bus reaches a node that is part of more than one cluster (recall that we use
an edge partition), then seats are transfered from one bus to another. The bus in Cluster,
has a seat s; ; for every p; and p; such that the simple path connecting them in the spanning
tree passes through an edge of Cluster,. We next analyze the buffer complexity: For a given
node and a given seat s; ;, there can be at most two clusters containing the node such that
the path from p; to p; in the spanning tree uses an edge from the cluster. Thus, the buffer
size of each node is at most twice the number of simple paths in the tree passing through the
node. This number is at most O(n?). Since the messages are encrypted using a semantically
secure encryption, the anonymity is guaranteed.

4.1 Bus Scheduling

We would like to minimize the time required for a message to arrive to its destination. To
achieve this goal, buses in clusters with a common node, should reach the common node
simultaneously in order to transfer seats. We show how to schedule the buses to satisfy this
condition. Recall that we consider a synchronous settings, where the bus traverses an edge
in a single time unit. Furthermore, we use the fact that clusters have similar sizes. Let us
first consider an ideal case, where the clusters have identical size. In this case, we can start
with an arbitrary cluster, schedule its bus, and whenever the bus reaches a node shared with
another cluster, we start scheduling the bus of the neighboring cluster. Since we consider a



spanning tree then there are no cycles and this scheduling is possible.

If the clusters have different number of nodes, we first schedule the bus in a cluster Cluster,
with the maximum number of edges mny.. Recall that an Euler tour in this cluster will take
2Mmax time units. Then whenever the bus reaches a node that is part of other clusters, the
buses of the other clusters are scheduled. It is possible that a neighboring cluster Cluster;
has m’ < Myyax nodes, in such a case the bus of Cluster; will wait, O(mpax —m') time units,
for the bus of Clustery, whenever it reaches the node that is common to Cluster, and Cluster;.
The procedure continues in a fashion similar to the case of identical size clusters.

We next analyze the time complexity of this protocol. If the distance between node p;
and node p; in the spanning tree is d, then the path can pass through at most d clusters,
and in each cluster it would take less than 2m,,, steps until the message would pass to the
next cluster. Thus, the delivery time from p; to p; is O(dz) (since mmax < 37, where x is
the parameter chosen in the edge partition scheme). In the worst case the message will pass
through each edge of the spanning tree at most twice and the delivery time would be O(n).

Theorem 4.1 For every x, where 1 < x < n, there is an anonymous message delivery
protocol with communication complexity O(n/x), buffer complexity O(n?), and time com-
plezity between two nodes is O(min(dzx,n)), where d is the distance between the nodes in the
spanning tree.

Example 4.2 Consider a complete binary tree with a “natural” partition into clusters.
More precisely, consider a complete binary tree whose height is fa for some parameters /¢
and a, and its number of nodes is n = 2/*! — 1. We partition the tree into clusters of size
z & 201 1 where each cluster is a complete binary tree of depth a. The distance d between
two nodes in this case is at most 2logn. However, the upper-bound of Theorem 4.1 is too
pessimistic for this case. Observe that any simple path in the tree passes through at most
2logn/logx clusters, thus the delivery time is O(z logn/logz) and the message complexity
is (n —1)/(z — 1). See example in Figure 1.

Figure 1: A tree of height 3 partitioned into 7 clusters of height a = 1.
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4.2 Reducing the Number of Seats

We can reduce the number of seats in a bus, i.e., reduce the buffer complexity. We use a bus
with O(n?/z?) seats, a seat si, for a message that should be transfered from the £’th cluster
to the ’th cluster. In this case only one message can be sent at a time from a particular
cluster to another cluster. It is possible that more than one processor in Clustery will try
to transmit a message to Cluster,. We use a probabilistic approach, where each processor
in Cluster; that would like to send a message to Cluster; uses a random function to decide
whether to overwrite the seat s;,. To ensure that overwrites are not observed each message
is changed at every node. To do so, every message is encrypted in a nested fashion, using
all the keys of the processors in the route to the bus exchange node.

5 Lower Bounds

In this section we prove lower bounds on the time/communication tradeoffs. As a warm-up
we start with the simple case where there is one bus traversing the communication tree
according to some Euler tour. This tour, whose length is O(n), traverses each leaf of the tree
once and there are at least two leaves. Thus, for any two leaves v and v the distance between
w and v or v and wu in the tour is at least n/2, and it takes at least n/2 time units to send a
message from u to v or from v to u. The next lemma generalized the above simple scenario.
It considers a protocol where in each time step only one processors sends a message. The
order of the processors sending the messages can be arbitrary, it may change in time, or
even be randomized. In this case we consider a very long execution of the protocol, where
processors exchange many messages. We measure the expected delivery time from p; to pj,
where the expectation is taken over the many times that p; sends a message to p;.

Lemma 5.1 In any protocol with communication complexity 1, there are two nodes in the
graph such that the expected delivery time from one node to the second is Q(n).

Proof: A necessary condition for transmitting a message from a node u to a node v is that
u sends some message on one of its outgoing edges. In each time unit there is at most one
node sending a message. For any ¢, consider the sequence of nodes that send messages in
the first ¢ time units. (We do not assume anything about this sequence other than that it
contains at most ¢ nodes.) There is at least one node u that appears at most ¢/n times in this
sequence. In other words, the expected distance from two occurrences of u in the sequence
is Q(n). Fix such u and pick any node v. Assume that u wants to send a message to v one
time unit after each time that it appears in the sequence. It takes ©(n) time units for u to
send a message to v.

The above proof does not use the anonymity requirement of the delivery protocol, but only
relies on the message complexity. There is one delicate issue that we should elaborate. By the
assumptions on the order of sending message, this order might depend on the transmitting
parties (if we use the anonymity requirement then this assumption might be reasonable).
The simplest way to get rid of this problem is to fix a vertex v in advanced, and assume
that each other vertex wants to transmit a message to v one time unit after each time that
it appears in the sequence. [ ]
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Note that every protocol with communication complexity ¢ and time complexity ¢ can be
transformed into a protocol with communication complexity 1 and time complexity tc (since
we consider a synchronous system). Thus,

Theorem 5.2 In any protocol with communication complezity c, there are two nodes in the
graph such that the expected delivery time from one node to the second is Q(n/c).

The above theorem implies that the tradeoff in Theorem 4.1 cannot be improved by
a factor bigger than O(d) where d is the distance between the two nodes in the spanning
tree. We next show that if we consider the “natural” partition of the complete binary tree
into clusters described in Remark 4.2 then we obtain message complexity n/x and time
complexity O(xzlogn/logz). The upper-bound is shown in Remark 4.2. We next show that
this upper bound is tight for this partition. To prove this claim consider an Euler tour in a
complete binary tree with x nodes starting from the root, and let v be the first leaf visited
in the tour. The distance in the tour between v and the root is Q(z). Now we consider the
complete binary tree, and define a sequence of logn/logx nodes vy, v1,. .., Viogn/logz, Where
vp is the root of the tree, and v; is a leaf in the cluster of v;_; whose distance from v;_; in
the Euler tour of the cluster is (). Thus, the delivery time of a message from vjog /102 t0
the root is Q(x logn/log x) no matter how the buses are scheduled.

6 Extensions

In this section we show how simple modifications to the idea of the buses can cope with
three extensions to the model. The first extension is anonymous multicast and broadcast,
the second is when the topology of the communication graph is unknown, and the third is to
a Byzantine adversary, that is, an adversary that can cause processors to behave maliciously.

6.1 Anonymous Multicast and Broadcast

In this section we discuss informally how to anonymously multicast and broadcast a message.
Anonymous broadcast enables a sender to broadcast a message to all processors without
revealing its identity. To enable anonymous broadcast the sender only needs to send an
anonymous-sender message to some (fixed or randomized) receiver p;, that is, a message
in which the sender keeps its anonymity from the receiver. This message will simply say
“broadcast message M to all processors.” Processor p; uses any (non-anonymous) broadcast
protocol to broadcast M. The protocol of Theorem 3.3 enables anonymous-sender messages
hence enables anonymous broadcast. Furthermore, in all our protocols where we allocate a
seat s;; for sending a message from p; to p; (e.g., the protocol of Theorem 3.1) we can add
a seat s, ; meaning that some anonymous processor wants to send a message to p;, in this
case the sender uses the nested encryption method described in Section 3.1.1 to hide the fact
that it changes the content of a seat. If there are not to many anonymous broadcasts sent
simultaneously and the sender selects a random p; then this solution is efficient.

Multicast enables a sender to send a message to some subset D of processors. We consider
three variants of anonymous multicast: (1) keeping the anonymity of the sender, (2) keeping
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the anonymity of the recipients, (3) keeping the anonymity of both the sender and the
recipients. Anonymous-sender multicast reduces to sending an anonymous-sender message
to a single processor in the multicast set saying “multicast message M to the processors
in D.” Anonymous-recipients multicast reduces to independently sending the message M
anonymously to each processor in . This can be done without any over-head in all our
protocols where we allocate a seat s; ; for each pair of processors. Finally, anonymous-sender,
anonymous-recipients multicast can be achieved by independently sending the message M
to each processor in D using an anonymous-sender protocol.

6.2 Unknown Topology

We consider the scenario where the processors in the network do not know the topology of
the network (for example, the network can change periodically). The solution we propose
for this problems is to use a random walk on the communication graph. More precisely,
there is one bus traversing the graph, and in each step the processor holding the bus chooses
uniformly one of its neighbors, and sends the bus to the chosen neighbor. Aleliunas et al. [1]
proved that the expected time of a random walk that visits all the nodes of an undirected
graph with n nodes and m edges is O(nm). Thus, the expected delivery time of a message
using a random walk (in an unknown graph) is O(nm). This bound on the delivery time is
tight for some graphs, e.g., the so called lollipop graph. However, it is too pessimistic for
some graphs, e.g., for a clique the expected delivery time is O(nlogn) (and not O(n?)).

Theorem 6.1 There is an anonymous message delivery protocol in a network whose topology
is unknown with communication complexity 1, expected time complexity O(nm), and buffer
complezity O(n?).

6.3 Byzantine Adversary

We now turn to the case in which processors are Byzantine, that is, they may try to
add/delete or change messages in a malicious way. First note that the communication graph
must be t + 1 connected in order to tolerate ¢ faults. Otherwise, there is a cut of ¢ or less
Byzantine processors that can partition the graph into two isolated connected components.
We therefore assume that the communication graph is £ + 1 connected, thus, by Menger’s
theorem, for every two nodes there are £ + 1 paths connecting them such that there is no
internal node common to two of these paths. For every pair of processors we fix such ¢ + 1
disjoint paths. We describe a protocol in which there are two buses on each link, one in each
direction. When p; wants to anonymously send a message to p;, then p; authenticates this
message using a private key common to p; and p;. Processor p; sends the message over the
t + 1 fixed disjoint paths, therefore the message will reach the destination through at least
one path with no Byzantine processor. This ensures that a Byzantine processor can not
generate/change a message originating from some sender in a way that is not identified by
the receiver. Thus, the Byzantine processor can only drop messages. To achieve anonymity
we use the mechanism of the full communication protocol described in Section 3.2. The
number of seats in a bus equals to the number of paths that use this link in the bus traveling
direction. The time complexity from p; to p; in this protocol is the length of the longest
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path amongst the ¢ + 1 disjoint paths from p; to p;. In the worst case this can be n. We
summarize the properties of the above protocol below.

Theorem 6.2 Assume that the communication network is t + 1 connected. There is an
anonymous message delivery protocol against a Byzantine adversary that controls at most t
processors with communication complexity 2m, time complexity O(n), and buffer complezity

O(n?).

We next discuss how to reduce the number of buses. Given a communication graph that is
at least t+1 connected, we will find a spanning sub-graph that is t+1 connected and contains
fewer edges. Finding a ¢ + 1-connected spanning subgraphs that has the minimum number
of edges is NP-hard. However, there are good approximation algorithms for this problem. A
recent result [4] describe an efficient algorithm that returns a graph whose number of edges
is no more than 1+ 1/(¢ + 2) times the optimal number of edges. In particular, the number
of edges is no more than (¢ + 1)n. This, however, might increase the delivery time since the
length of the ¢+ 1 disjoint paths might be longer. We summarize the properties of the above
protocol below.

Theorem 6.3 Assume that the communication network is t + 1 connected. There is an
anonymous message delivery protocol against a Byzantine adversary that controls at most
t processors with communication complexity 2(t + 1)n, time complezity O(n), and buffer
complezity O(n?).
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