
39

BLAC: Revoking Repeatedly Misbehaving
Anonymous Users without Relying on TTPs

PATRICK P. TSANG
Dartmouth College
MAN HO AU
University of Wollongong
APU KAPADIA
Indiana University Bloomington
and
SEAN W. SMITH
Dartmouth College

Several credential systems have been proposed in which users can authenticate to service
providers anonymously. Since anonymity can give users the license to misbehave, some variants
allow the selective deanonymization (or linking) of misbehaving users upon a complaint to a
Trusted Third Party (TTP). The ability of the TTP to revoke a user’s privacy at any time, however,
is too strong a punishment for misbehavior. To limit the scope of deanonymization, some systems
have been proposed in which users can be deanonymized only if they authenticate “too many
times,” such as “double spending” with electronic cash. While useful in some applications, such
techniques cannot be generalized to more subjective definitions of misbehavior, for example, using
such schemes it is not possible to block anonymous users who “deface too many Web pages” on a
Web site.

Patrick Tsang passed away on October 27, 2009. He was a prolific researcher and in his short
career made several outstanding contributions to the scientific community. He will be remembered
and missed by those of us who had the pleasure of working with him.
This work was supported in part by the Institute for Security Technology Studies, under Grant
number 2005-DD-BX-1091 awarded by the Bureau of Justice Assistance, and the National Science
Foundation, under grant CNS-0524695. The views and conclusions do not necessarily represent
those of the sponsors.
Authors’ addresses: P. P. Tsang, Department of Computer Science, Dartmouth College, Hanover,
NH 03755; M. H. Au, Centre for Computer and Information Security Research, School of Computer
Science and Software Engineering, University of Wollongong, Australia; A. Kapadia (correspond-
ing author), School of Informatics and Computing, Indiana University Bloomington, 107 S. Indiana
Ave., Bloomington, IN 47405-7000; email: kapadia@indiana.edu; S. W. Smith, Department of Com-
puter Science, Darthmouth College, Hanover, NH 03755.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial ad-
vantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1094-9224/2010/12-ART39 $10.00 DOI: 10.1145/1880022.1880033.

http://doi.acm.org/10.1145/1880022.1880033.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 2 · P. P. Tsang et al.

We present BLAC, the first anonymous credential system in which service providers can revoke
the credentials of misbehaving users without relying on a TTP. Since revoked users remain anony-
mous, misbehaviors can be judged subjectively without users fearing arbitrary deanonymization
by a TTP. Additionally, our construction supports a d-strikes-out revocation policy, whereby users
who have been subjectively judged to have repeatedly misbehaved at least d times are revoked
from the system. Thus, for the first time, it is indeed possible to block anonymous users who have
“defaced too many Web pages” using our scheme.

Categories and Subject Descriptors: K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Authentication; E.3 [Data]: Data Encryption—Public key
cryptosystems

General Terms: Algorithms, Security

Additional Key Words and Phrases: Privacy, anonymous authentication, user misbehavior, anony-
mous blacklisting, privacy-enhanced revocation

ACM Reference Format:
Tsang, P. P., Au, M. H., Kapadia, A., and Smith, S. W. 2010. BLAC: Revoking repeatedly misbe-
having anonymous users without relying on TTPs. ACM Trans. Inf. Syst. Secur. 13, 4, Article 39
(December 2010), 33 pages. DOI = 10.1145/1880022.1880033.
http://doi.acm.org/10.1145/1880022.1880033.

1. INTRODUCTION

While anonymous access to Service Providers (SPs) offers users a high degree
of privacy, it can give users the license to misbehave without the fear of
punishment. For example, Wikipedia1 has allowed editors to modify content
anonymously, and as a result several users have misbehaved by posting inap-
propriate content. SPs, therefore, desire some level of accountability against
misbehaving users. Several anonymous credential systems have been proposed
in which users can be selectively deanonymized or have their accesses linked
(pseudonymized) under special circumstances. As we will discuss, for certain
applications the existing schemes are either too punitive—deanonymization
(or linking) is unreasonably harsh, and often relies on Trusted Third Parties
(TTPs) capable of revoking a user’s privacy at any time—or too restrictive—
allowing deanonymization under only certain narrowly defined types of
misbehavior.

Deanonymizing a user is not always necessary; in some cases it is sufficient
to simply block misbehaving users from making future accesses (while main-
taining their anonymity). We call this property privacy-enhanced revocation,2
where revoked users remain anonymous. For example, anonymous access at
SPs such as Wikipedia and YouTube3 empowers users to disseminate content
without the fear of persecution; a user may add political content on Wikipedia

1http://www.wikipedia.org
2We originally called this concept anonymous blacklisting [Tsang et al. 2007a]. As will become
clear, we differentiate between the action of blacklisting, which may or may not result in revocation.
3http://www.youtube.com

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 3

that is forbidden by his or her government, or post a video of police brutality to
YouTube. While SPs may want to penalize other users who deface Web pages
or post copyrighted material, it is of paramount importance for SPs to preserve
the anonymity of their well-behaving users. Privacy-enhanced revocation guar-
antees anonymity to all users, and SPs can penalize misbehavior without the
risk of exposing legitimate users.

Anonymous credential systems that support accountability [Ateniese et al.
2000; Boneh et al. 2004; Camenisch and Lysyanskaya 2001, 2004; Chaum
and van Heyst 1991; Kiayias and Yung 2005] feature a TTP called the Open
Authority (OA). The OA is capable of deanonymizing (or linking) the user
behind any anonymous authentication. Anonymous credential systems with
dynamic membership revocation [Ateniese et al. 2002; Boneh and Shacham
2004; Camenisch and Lysyanskaya 2002a; Nguyen 2005], many of which are
constructed from dynamic accumulators [Camenisch and Lysyanskaya 2002a],
also feature a TTP that is capable of deanonymizing (or linking) users. Re-
cently, some of the authors of this article proposed the Nymble system [Johnson
et al. 2007], which makes several practical considerations for anonymous IP-
address blocking in anonymizing networks such as Tor [Dingledine et al. 2004],
but it too relies on a TTP (albeit distributed). The existence of such TTPs,
however, is undesirable; users can never be assured their privacy will be main-
tained by the TTP. Defining the circumstances under which a TTP can expose
a user, and ensuring its trustworthiness to judge fairly, is an undue burden
on the system. For such applications, therefore, a system without TTPs is
desirable.

To eliminate the reliance on TTPs, certain “threshold-based” approaches
such as e-cash [Au et al. 2005; Camenisch et al. 2005, 2006b] and k-Times
Anonymous Authentication (k-TAA) [Au et al. 2006; Nguyen and Safavi-Naini
2005; Teranishi and Sako 2006; Teranishi et al. 2004] have been proposed. In
these schemes, users are guaranteed anonymity unless they authenticate more
than a certain number of threshold times. For example, spending an e-coin
twice (“double spending,” an undesirable action) or authenticating k + 1 times
in a k-TAA scheme provides the SP with enough information to compute the
user’s identity. Linkable ring signatures [Liu et al. 2004; Tsang et al. 2004]
and periodic n-times anonymous authentication [Camenisch et al. 2006a] also
fall into this category. Unfortunately, misbehavior cannot always be defined
in terms of threshold values such as double spending. For example, “inappro-
priate” edits to a Wikipedia page, or “offensive” video uploads to YouTube are
usually identified based on human subjectivity and cannot be reduced to “too
many authentications.” For such applications, therefore, subjective judging is
desirable.

Finally, we note that Syverson et al. [1997] present a relevant scheme in
which SPs issue users blind tokens that are renewed at the end of a user’s
transaction for a subsequent authentication. An SP can block future connec-
tions from a user by simply not issuing a new token at the end of a transaction
(e.g., if the user fails to pay for continued service). The drawback of this ap-
proach is that misbehavior must be judged while the user is online. Such a
scheme, therefore, is not practical in our setting, where a user’s misbehavior is

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 4 · P. P. Tsang et al.

usually identified long after he or she has disconnected. Thus, a system where
users’ accesses can be revoked after they have disconnected is desirable.

1.1 Our Contributions

We present the Blacklistable Anonymous Credential system (BLAC), which
was the first4 construction of an anonymous credential system that supports
privacy-enhanced revocation and subjective judging without relying on TTPs
that are capable of revoking the privacy of users at will. We formalize the
security model for such a system and prove that our construction is secure un-
der this model. Furthermore, we implement our construction and evaluate its
performance analytically and experimentally. These results were reported in
a conference paper [Tsang et al. 2007a] and a technical report [Tsang et al.
2007b], which included more details.

In this article we make a significant additional contribution by extending
our original construction of BLAC to provide more flexible revocation; SPs can
specify a d-strikes-out revocation policy, so that users can authenticate anony-
mously only if they have not misbehaved d or more times. Such a policy forgives
a few (i.e., up to d − 1) misbehaviors, but then blocks users who misbehave re-
peatedly. Following authentication, users remain anonymous, and SPs learn
only whether a user has crossed the threshold of d misbehaviors. The original
construction of BLAC is a special case with d = 1.

Our proposed concept of d-strikes-out is an important improvement on ex-
isting threshold schemes such as k-TAA, which deanonymize (or link) users
who authenticate more than a certain number of times. k-TAA cannot be used
to punish “too many misbehaviors” (unless “too many authentications” itself is
deemed a misbehavior) because users necessarily suffer degraded privacy after
k authentications. Our scheme, for the first time, decouples the notion of mis-
behaviors from authentications; users can verify the SP’s blacklist of identified
misbehaviors and be assured that their authentication will be anonymous, ir-
respective of the number of past authentications.

Finally, formally defining the exact meaning of security (and privacy) of
BLAC that supports a d-strikes-out revocation policy is a nontrivial task. We
have spent considerable effort in formalizing a security model and proving the
security of our construction under this model.

1.2 Article Outline

We provide a high-level overview of BLAC in Section 2. In Section 3 we present
preliminary information on the various cryptographic tools and assumptions
used in our construction. In Section 4, we formalize the syntax and security
properties for BLAC. We present our construction at a high level in Section 5,
and fill in the details of how the various zero-knowledge proofs can be instan-
tiated in Section 6. We analyze the algorithmic complexity and security of

4Concurrently and independently, Brickell and Li [2007] proposed a similar scheme called En-
hanced Privacy ID (EPID); more recently, the authors of this article (BLAC) presented Privacy-
Enhanced Revocation with Efficient Authentication (PEREA) [Tsang et al. 2008], which alters the
semantics of revocation for more efficient authentication. We discuss them in Section 9.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 5

our construction in Section 7, and present an experimental evaluation of it
in Section 8. We discuss several issues in Section 9, and finally conclude in
Section 10.

2. SOLUTION OVERVIEW

We give a high-level overview of our Blacklistable Anonymous Credential
system (BLAC) in this section, and defer the details of its construction to the
subsequent sections.

In our system, users authenticate to Service Providers (SPs) anonymously
using credentials issued by a Group Manager (GM). The GM is responsible for
enrolling legitimate users into the system by issuing credentials to them.5 Each
enrolled user privately owns a unique credential which is not known even by
the GM. We emphasize that the GM is not a TTP that can compromise the pri-
vacy of users, that is, the GM cannot link a specific user to an authentication.
The GM is trusted only to enroll legitimate users into the system, and to issue
at most one credential per user. The GM may demand or check various user
attributes to enroll the user in the system, but once enrollment is complete
the authentications are anonymous even to the GM. SPs are willing to serve
enrolled anonymous users that have never misbehaved thus far, where misbe-
havior may be arbitrarily defined and subjectively judged by each individual
SP. We describe this process next.

The novelty of our approach is that SPs maintain their own blacklists of mis-
behaving users without knowing the identity of the misbehaving users. Users
anonymously authenticating to the SP must first prove that there are fewer
than d entries on the blacklist corresponding to that user (otherwise authenti-
cation will fail). Following a user’s authentication, SPs store a ticket extracted
from the protocol transcript of the authentication and if the user is later deemed
to have misbehaved during the authenticated session, possibly long after the
user has disconnected, the SP can add the ticket as an entry into its black-
list.6 If a user Alice detects that she is on the blacklist (d or more times), she
terminates the authentication and disconnects immediately. The SP, therefore,
learns only that some anonymous revoked user was refused a connection, and
does not learn the identity of the revoked user. Users that are not revoked
will be able to authenticate successfully, and the SPs learn only that the user
is not on the blacklist d or more times. Furthermore, our system allows SPs
to remove entries from the blacklist, thereby forgiving past misbehaviors. De-
pending on the severity of misbehavior, a user may be blacklisted for varying
periods of time; using inappropriate language could correspond to being black-
listed for one week, whereas posting copyrighted material could correspond to
one month. Users are always assured that if they successfully authenticate
to an SP their access will always remain anonymous; all that an SP can do is
block future accesses by a misbehaving user.

5Who is a legitimate user and how to verify such legitimacy are application dependent.
6In practice, the SP may privately log arbitrary information about an authenticated session that
is necessary for it to judge at a later time whether the anonymous user misbehaved during that
session.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 6 · P. P. Tsang et al.

A glimpse into tickets. Tickets are a vital object in BLAC. A ticket is the
only piece in the authentication protocol transcript that contains information
about the identity of the authenticating user. Jumping ahead, tickets in BLAC
have the form of (s, t), where the serial number s is a bit-string and the tag t
is an element in a DDH-hard group G (to be defined later). A user produces a
new ticket during each authentication by randomly choosing s and computing
t as H(s||sid)x, where sid is the target server’s identity, x is from the user’s
credential, and H is a secure cryptographic hash function.

Here we highlight three features of such a ticket construction. First, it al-
lows every user to produce tickets that are different and more importantly un-
linkable, for otherwise SPs would be able to tell if two authentications are from
the same user. Second, users can prove and disprove to the SPs that a ticket be-
longs to them. This allows, on the one hand, for users to prove that they are not
blacklisted, and, on the other hand, the prevention of users fabricating incor-
rect tickets to circumvent blacklisting and/or impersonating and hence framing
other users. Finally, it provides the option to allow or disallow the sharing of
blacklist entries (tickets) between SPs. Sharing a blacklist entry would allow
multiple SPs to block a user who misbehaved at one of the SPs. We will first
present the system where such sharing is disallowed and then point out how
to allow sharing in Section 9.

3. PRELIMINARIES

In this section we outline the assumptions and cryptographic tools that we use
as building blocks in our BLAC construction.

3.1 Notation and Terminology

|S| represents the cardinality of a set S. If S is a nonempty set, a ∈R S means
that a is an element in S drawn uniformly at random from S. A ⊆d S denotes
that A is a subset of S of cardinality d. We denote by N the set of natural
numbers {1, 2, . . .} and by Z∗ the set of nonnegative integers {0, 1, 2, . . .}. If
n ∈ Z∗, we write [n] to mean the set {1, 2, . . . , n}; [0] is the empty set ∅. If
s, t ∈ {0, 1}∗, then s||t ∈ {0, 1}∗ is the concatenation of binary strings s and t.

A sequence Q = (a1, a2, . . . , a!) is an ordered list of ! ∈ Z∗ (not necessarily
unique) natural numbers a1, a2, . . . , a!. Q is index-bounded-from-below, or sim-
ply bounded, if ai ≥ i for all i ∈ [!]. Q is empty if ! = 0; an empty sequence
is by definition always bounded. For any k ∈ N, Q can be partitioned into k
(possibly empty) subsequences Q1, Q2, . . . , Qk in an order-preserving manner.
We call the set P = {Q1, Q2, . . . , Qk} a k-partitioning of Q. There is at least
one k-partitioning of Q for all k ∈ N. Finally, a sequence Q is k-boundedly-
partitionable, or simply k-partitionable, if there exists a bounded k-partitioning
of Q.

We note the following two facts: (1) If Q is k-partitionable, then Q is also
k′-partitionable, for all k′ > k. Thus, if Q is not k-partitionable, then Q is also
not k′-partitionable for all k′ ∈ [k − 1]. (2) If Q is k-partitionable, then any sub-
sequence Q′ of Q is also k-partitionable. Thus, if Q is not k-partitionable, then
any sequence Q′ that contains Q as a subsequence is also not k-partitionable.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 7

3.2 Pairings

A pairing is a bilinear mapping from a pair of group elements to a group el-
ement. Specifically, let G1, G2 and G be multiplicative cyclic groups of order
p. Suppose P and Q are generators of G1 and G2, respectively. A function
ê : G1 × G2 → G is said to be a pairing if it satisfies the following properties:

—(Bilinearity.) ê(Ax, By) = ê(A , B)xy for all A ∈ G1, B ∈ G2 and x, y ∈ Zp.
—(Nondegeneracy.) ê(P, Q) *= 1, where 1 is the identity element in G.
—(Efficient computability.) ê(A , B) can be computed efficiently (i.e., in polyno-

mial time) for all A ∈ G1 and B ∈ G2.

3.3 Mathematical Assumptions

The security of our BLAC construction requires the following two assumptions.

Assumption 1 (DDH). The Decisional Diffie-Hellman (DDH) problem in
group G is defined as follows: On input of a quadruple (g, ga, gb , gc) ∈ G4, out-
put 1 if c = ab and 0 otherwise. We say that the DDH assumption holds in
group G if no Probabilistic Polynomial-Time (PPT) algorithm has nonnegligible
advantage over random guessing in solving the DDH problem in G.

Assumption 2 q-SDH. The q-Strong Diffie-Hellman (q-SDH) problem in
(G1, G2) is defined as follows: On input of a (q + 2)-tuple (g0, h0, hx

0, hx2

0 , . . .,
hxq

0) ∈ G1 × Gq+1
2 , output a pair (A , c) ∈ G1 × Zp such that A (x+c) = g0 where

|G1| = p. We say that the q-SDH assumption holds in (G1, G2) if no PPT algo-
rithm has nonnegligible advantage in solving the q-SDH problem in (G1, G2).

The q-SDH assumption was introduced by Boneh and Boyen [2004] and has
since then been used in many cryptographic schemes [Boneh et al. 2004; Boyen
2007; Catalano et al. 2008; Kiayias and Yung 2005]. Boneh and Boyen [2004]
derived a lower bound on any generic algorithms that solve the q-SDH problem.

3.4 Proofs of Knowledge

In a Zero-Knowledge Proof of Knowledge (ZKPoK) protocol [Goldwasser et al.
1989], a prover convinces a verifier that some statement is true without the ver-
ifier learning anything except the validity of the statement. "-protocols are a
type of ZKPoK protocols, which can be converted into noninteractive Signature
Proof of Knowledge (SPK) schemes, or simply signature schemes [Goldwasser
et al. 1988], that are secure under the Random Oracle (RO) model [Bellare and
Rogaway 1993].

In the following, we review several "-protocols that will be needed as build-
ing blocks in our construction. We follow the notation introduced by Camenisch
and Stadler [1997]. For instance, PK{(x) : y = gx} denotes a "-protocol that
proves the knowledge of x ∈ Zp such that y = gx for some y ∈ G. The corre-
sponding signature scheme resulting from the application of the Fiat-Shamir
heuristic to the aforesaid "-protocol is denoted by SPK{(x) : y = gx}(M).

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 8 · P. P. Tsang et al.

3.4.1 Knowledge and Inequalities of Discrete Logarithms (DLs). Let g, b ∈
G and bi ∈ G for all i be generators of some group G of prime order p such
that their relative DLs are unknown. One can prove in zero-knowledge the
knowledge of the DL x ∈ Zp of y ∈ G in base g by using the "-protocol
PK

{
(x) : y = gx

}
, the construction of which first appeared in Schnorr identi-

fication [Schnorr 1991]. As we shall see, our BLAC construction requires the
SPK of this protocol to prove the correctness of tickets.

One can further prove in zero-knowledge that x does not equal logb t, the
DL of t ∈ G in base b , using the "-protocol PK

{
(x) : y = gx ∧ t *= b x

}
, the most

efficient construction of which is due to Camenisch and Shoup [2003, Section 5].
In our BLAC construction we will need a generalized version of the preceding

"-protocol to prove that a user is not currently on the blacklist. In particular,
we need a protocol that allows one to prove in zero-knowledge that, for some
n > 1 and for all i = 1 to n, x *= logbi

ti, where ti ∈ G. That is,

PK

{

(x) : y = gx ∧
(

n∧

i=1

ti *= b x
i

)}

.

Such a "-protocol can be constructed by applying a technique due to Cramer
et al. [1994] to Camenisch and Shoup’s construction mentioned earlier.7

3.4.2 Proving d out of n DL Representations. Let n, d be positive integers
such that d ≤ n. Let Ãi, bi, ti be elements in some group G of prime order p
such that there exist I ⊆d [n] and β,ρ ∈ Zp such that Ãi = bβ

i t−ρ
i for all i ∈ I.

One can prove in zero-knowledge the knowledge of such (β,ρ) by using the "-
protocol

PK




(β,ρ) :
∨

I⊆d[n]

∧

i∈I
Ãi = bβ

i t−ρ
i




 ,

the construction of which was first presented by Cramer et al. [1994] with O(n)
complexity both during signing and verification.

3.4.3 BBS+ Signatures. Let g0, g1, g2 ∈ G1 and h0 ∈ G2 be generators of G1
and G2, respectively, such that g0 = ψ(h0) and their relative DLs are unknown,
where ψ is a computable isomorphism and (G1, G2) is a pair of groups of prime
order p in which the q-SDH assumption holds. Let ê be a pairing defined over
the pair of groups. One can prove the possession of a tuple (A , e, x, y) ∈ G1 ×Z3

p
such that Ae+γ = g0gx

1gy
2, or equivalently, ê(A , whe

0) = ê(g0gx
1gy

2, h0), where w =
hγ

0 , by the following "-protocol.

PK
{
(A , e, x, y) : Ae+γ = g0gx

1gy
2
}

Boneh et al. [2004, Section 4] presented a construction of this protocol which is
secure under the decision-linear Diffie-Hellman assumption. Au et al. [2006]
provided a modified construction that is perfect zero-knowledge, and hence does

7The technique describes a general method of constructing proofs of disjunction or conjunction of
any of the two statements about knowledge of discrete logarithms.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 9

not rely on any hardness assumption. As first pointed out by Camenisch and
Lysyanskaya [2004], the protocol’s corresponding SPK is actually the SDH-
variant of CL Signatures [Camenisch and Lysyanskaya 2002b], which Au et al.
[2006] refer to as BBS+ Signatures.

Our BLAC construction will make use of BBS+ Signatures as a building block
for users to prove that they are enrolled in the system.

4. MODEL

We present the syntax of BLAC, followed by the security properties that any
BLAC construction must satisfy.

4.1 Syntax

The entities in BLAC are the Group Manager (GM), a set of Service Providers
(SPs), and a set of users. BLAC consists of the following protocols.

4.1.1 Setup: (gpk, gsk) ← Setup(1λ). The Setup algorithm is executed by
the GM to set up the system. On input of security parameter 1λ, the algorithm
outputs a pair consisting of a group public key gpk and a group private key
gsk. The GM keeps gsk private and publishes gpk to the public. 1λ and gpk are
implicit input to all the algorithms described next.

4.1.2 Registration: (RegistrationGM() ↔ RegistrationU()). The Registration
protocol is executed between the GM (running the PPT algorithm
RegistrationGM(gsk)) and a legitimate user (running the PPT algorithm cred ←
RegistrationU()) to register the user into the system. Upon successful comple-
tion of the protocol, the user obtains a credential cred, which she keeps private,
and is thereby enrolled as a member in the group of registered users.

4.1.3 Authentication: (AuthenticationU() ↔ AuthenticationSP()). The
Authentication protocol is executed between a user (running the PPT al-
gorithm AuthenticationU(cred)) and an SP (running the PPT algorithm
{success, failure} ← AuthenticationSP(BL, d)). The initial input to the user
is her credential cred. The initial input to the SP is its blacklist (BL) and a
threshold value d. When an execution of the protocol terminates, the SP out-
puts a binary value of success or failure. If the SP outputs success in an
execution of the protocol, we call the execution a successful authentication and
say that the authenticating user has succeeded in authenticating herself; oth-
erwise the authentication is unsuccessful and the user has failed. Only upon a
successful authentication does the SP establish an authenticated session with
the authenticating user during which the user can access the service provided
by the SP. Note that the protocol transcript, (, of a successful authentication
as seen by the SP is useful for the SP to blacklist the authenticating user, as
described next.

4.1.4 Blacklist Management. This is a suite of three algorithms: ticket ←
Extract((), BL ← Add(BL′, ticket), and BL′ ← Remove(BL, ticket), which are
executed by SPs for managing their blacklists. On input of an authentication

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 10 · P. P. Tsang et al.

protocol transcript (, Extract extracts and returns a ticket from the transcript.
A blacklist BL is a collection of tickets. On input of a blacklist and a ticket,
Add returns a new blacklist that contains all the tickets in the input blacklist
as well as the input ticket. On the other hand, on input of a blacklist and a
ticket, Remove returns a new blacklist that contains all the tickets in the input
blacklist, except the one(s) equivalent to the input ticket.8

When we say that a user Alice is blacklisted by an SP, we mean that there
exists an authentication between Alice and the SP such that the SP has added
the ticket extracted from the authentication transcript to its blacklist and has
not removed it (yet). Otherwise Alice is not blacklisted by the SP. Also, we say
that Alice is misbehaving, and thus revoked, with respect to the SP if she has
been blacklisted by the SP at least a threshold number of times d. Otherwise,
she is well-behaving.

4.2 Correctness and Security

Any BLAC construction must be correct and secure.

Definition 1 (Correctness). A construction of the BLAC system is correct if all
entities in the system being honest (i.e., they follow the system’s specification)
implies that for any enrolled user Alice and for any SP, Alice is able to success-
fully authenticate herself to the SP with overwhelming probability if Alice has
been blacklisted by the SP fewer than a specified threshold number of times.

Definition 2 (Security). A construction of the BLAC system is secure
if it has misauthentication resistance, blacklistability, anonymity, and
nonframeability.

To complete the previous definition for BLAC’s security (Definition 2), we
must define each of the four notions misauthentication resistance, blacklista-
bility, anonymity, and nonframeability. Next we first give an informal expla-
nation. We dedicate the next subsection (Section 4.3) for a formal treatment.

4.2.1 Misauthentication Resistance. Misauthentication occurs when an
unregistered user successfully authenticates herself to an SP. In a BLAC
construction with misauthentication resistance, SPs are assured to accept
authentications from only enrolled users.

4.2.2 Blacklistability. Any SP may blacklist a user who has authenticated
successfully at any later time. In a BLAC construction with blacklistability,
SPs are assured to accept authentications from only well-behaving users, that
is, users who are blacklisted fewer than a threshold number of times. As a
consequence, misbehaving users are revoked from the system, and they will no
longer be able to successfully authenticate themselves to the SP (even if they
collude with other SPs) until enough misbehaviors of theirs are unblacklisted
by the SP.

8We do not define the equivalence of tickets here because it is construction dependent.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 11

4.2.3 Anonymity. In a system with anonymity, all that SPs can infer about
the identity of an authenticating user is whether the user is or was revoked at
the time of protocol execution, regardless of whatever the SPs do afterwards,
such as arbitrarily manipulating their blacklists or colluding together with a
malicious GM.

4.2.4 Nonframeability. A user Alice is framed if she is not currently re-
voked by an honest SP, but is unable to successfully authenticate herself to the
SP. In a BLAC construction with nonframeability, well-behaving users can al-
ways successfully authenticate themselves to honest SPs, even if all other SPs,
users, and GM collude together.

4.3 Formal Security Definitions

We use a game-based approach to define the notion of security formally. The
adversary’s capabilities are modeled by arbitrary and adaptive queries to or-
acles, which are stateful and together share a private state denoted as state,
which contains three counters i, j, k (for indexing the users, SPs, and authen-
tications, respectively), and six sets I,IU ,IG (user-related index sets), J ,JS
(SP-related index sets), and KU (authentication-related index set). Initially,
the three counters are 0 and the six sets are ∅. We next describe the oracles,
which are simulated by the simulator S during the games.

—REG(). This oracle allows the adversary to register an honest user with
the honest GM. Upon invocation, the oracle increments i by 1, simulates
the Registration protocol between an honest user and the honest GM, sets
state := state||〈i,(i, credi〉, where (i is the resulting protocol transcript and
credi is the resulting user credential, adds i to I, and finally outputs ((i, i) to
the adversary. The newly registered user is indexed by i.

—REGU(). This oracle allows the adversary to register a corrupt user with the
honest GM. Upon invocation, the oracle increments i by 1, plays the role of
the GM and interacts with the adversary in the Registration protocol, sets
state := state||〈i,(i,⊥〉, where (i is the protocol transcript, adds i to IU , and
finally outputs i to the adversary. The user is indexed by i.

—REGG(). This oracle allows the adversary to register an honest user with the
corrupt GM. Upon invocation, the oracle increments i by 1, plays the role
of a user and interacts with the adversary in the Registration protocol, sets
state := state||〈i,⊥, credi〉, where credi is the credential issued to the user by
the adversary, adds i to IG , and finally outputs i to the adversary. The user is
indexed by i.

—CORRUPT-U(i). This oracle allows the adversary to corrupt an honest user.
On input i ∈ I ∪ IG , the oracle removes i from I and IG , adds i to IU , and
finally outputs credi to the adversary.

—ADD-SP(sid). This oracle allows the adversary to introduce an SP with
fresh identity sid ∈ {0, 1}∗ into the system. Upon invocation, the oracle
increments j by 1, adds it to J , and finally outputs it to the adversary. The
SP is indexed by j.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 12 · P. P. Tsang et al.

—CORRUPT-SP(j). This oracle allows the adversary to corrupt an honest SP.
On input j ∈ J , the oracle removes j from J and adds it to JS.

—AUTH(i, j, d). This oracle allows the adversary to eavesdrop an authentica-
tion run between an honest user and an honest SP. On input (i, j, d) such
that i ∈ I ∪ IG , j ∈ J and d ∈ N, the oracle increments k by 1, simulates
(using credi) the Authentication protocol between honest user i and honest
SP j assuming a threshold value of d, sets state := state||〈k,(k〉, where (k is
the resulting protocol transcript, and finally outputs (k,(k) to the adversary.

—AUTHU(j, d). This oracle allows a corrupt user to authenticate to an honest
SP. On input j ∈ J and d ∈ N, the oracle increments k by 1, plays the role of
SP j assuming a threshold value of d and interacts with the adversary in the
Authentication protocol, adds k to KU , sets state := state||〈k,(k〉, where (k is
the resulting protocol transcript, and finally outputs k to the adversary.

—AUTHS(i, j). This oracle allows the adversary to have an honest user authen-
ticate to a corrupt SP. On input i ∈ I ∪ IG and j ∈ JS, the oracle increments
k by 1, plays the role of user i to authenticate to SP j and interacts with the
adversary in the Authentication protocol, sets state := state||〈k,(k〉, where
(k is the resulting protocol transcript, and finally outputs k to the adversary.

—ADD-TO-BL(j, k). This oracle allows the adversary to influence an honest
SP to judge a user as having misbehaved during an authenticated session.
On input j ∈ J and k ∈ [k], the oracle adds the ticket τk = Extract((k) to SP
j’s blacklist.

—REMOVE-FROM-BL(j, τ). This oracle allows the adversary to influence an
honest SP to forgive a user for her misbehavior during an authenticated
session. On input j ∈ J and τ such that τ is in SP j’s blacklist, the oracle
removes τ from that blacklist.

We remark that queries to REG and REGU do not interleave because the
honest GM registers users one at a time; queries to ADD-TO-BL(j, ·) and
REMOVE-FROM-BL(j, ·) do not interleave with one another, or with queries to
AUTH or AUTHU because honest SPs update their blacklists only when no au-
thentication is in progress. Queries to AUTH is atomic, but we allow interleav-
ing among queries to AUTH, AUTHU, and AUTHS.

4.3.1 Misauthentication Resistance and Blacklistability. The property of
misauthentication resistance is implied by the property of blacklistability: if
someone can authenticate to an SP without having registered, she can authen-
ticate after being blacklisted by mounting an attack against misauthentication
resistance. The following game between the simulator S and the adversary A
formally defines blacklistability.

Setup Phase. S takes a sufficiently large security parameter and generates
gpk and gsk according to Setup. gpk is given to A.

Probing Phase. A is allowed to issue queries to all the oracles except REGG.
In other words, the GM is always honest.

End Game Phase. A outputs j, n ∈ N and k1, k2, . . . , kn ∈ N.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 13

Let SO be the sequence of all oracle queries made throughout the game in
chronological order. A wins the game if all of the following hold.

(1) There exist d1, d2, . . . , dn ∈ N such that the sequence SO
∗ =





k1 ← AUTHU(j, d1), ADD-TO-BL(j, k1),
k2 ← AUTHU(j, d2), ADD-TO-BL(j, k2),

...
kn−1 ← AUTHU(j, dn−1), ADD-TO-BL(j, kn−1),

kn ← AUTHU(j, dn)





is a subsequence of SO.
(2) In all n AUTHU queries in SO

∗ =, the honest SP j as simulated by S termi-
nated the Authentication protocol successfully.

(3) Without loss of generality, before the query kn ← AUTHU(j, dn), A never
queried REMOVE-FROM-BL(j, Extract((ki)), where 〈ki,(ki〉 ∈ state, for all
i ∈ [n − 1].

(4) Either |IU | = 0 or the sequence D = (d1, d2, . . . , dn) is not |IU|-partitionable.
(For the definition of partitionability, see Section 3.1.)

This completes the description of the game.
Throughout the game, adversary A has corrupted |IU | registered users. If

|IU | = 0, then the existence of even a single successful AUTHU query implies
that the adversary has broken misauthentication resistance and thus black-
listability. Otherwise, that is, |IU | > 0, the adversary wins only if D is not
|IU |-partitionable. Next we provide more explanation for this latter case.

Consider the contrary that D is |IU |-partitionable. Let P = (D1, D2, . . . ,
D|IU |) be one such partitioning. Adversary A could have successfully made the
n AUTHU queries in D according to the following strategy: use the credential
of the i-th corrupted user in the j-th AUTHU query if dj ∈ Di. This strategy
is always feasible for any BLAC construction with the correctness property; D
could simply have been a sequence of legitimate authentications in the system
where there are only honest participants. Therefore, an |IU |-partitionable se-
quence D is not considered as a breach in blacklistability and thus a victory of
the adversary in the game.

Now, consider the case when D = (d1, . . . , dn) is indeed not |IU|-partitionable.
There is always an n′ ≤ n such that D′ = (d1, . . . , dn′) is also not |IU |-
partitionable. Let n∗ be the smallest such n′. The n∗-th AUTHU is considered
to be a breach in blacklistability for the following reason: no matter in what
order and who among any group of |IU | honest registered users have authen-
ticated in the first n∗ − 1 successful authentications, each of them has already
authenticated at least dn∗ times by the time the n∗-th authentication is about
to be made. Since the n∗-th authentication has a threshold value of dn∗ , none of
them should be able to successfully authenticate in the n∗-th authentication.

4.3.2 Anonymity. The following game between the simulator S and adver-
sary A formally defines anonymity.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 14 · P. P. Tsang et al.

Setup Phase. S takes a sufficiently large security parameter and generates
gpk and gsk, which are given to A.

Probing Phase. A is allowed to issue queries to all the oracles except REG
and REGU. Oracle queries can be interleaved and/or span the Challenge Phase
and Probing Phase 2.

Challenge Phase. A outputs i∗0, i∗1 ∈ IG , j∗ ∈ [j] and d∗ ∈ N. S then flips
a fair coin b̂ ∈ {0, 1}. A queries AUTH(⊥, j∗, d∗) if j∗ ∈ J , or AUTHS(j∗, d∗)
otherwise. Notice that A leaves i unspecified in either query. S answers the
query assuming i = i∗

b̂
. Let (∗

k be the resulting transcript. Furthermore, let d∗
0

(respectively, d∗
1) be the current number of tickets on the blacklist sent from SP

j∗ to S during the AUTH or AUTHS query that are extracted from the transcript
of an authentication involving user i∗0 (respectively, i∗1).

Probing Phase 2. A is allowed to issue queries as in the Probing Phase,
except that queries to CORRUPT-U(i∗0) or CORRUPT-U(i∗1) are not allowed.

End Game Phase. A outputs a guess bit b ′. A wins the game if b̂ = b ′ and
at least one of the following is true.

—(Case I.) Both d∗
0 and d∗

1 are smaller than d∗ and A never queried
ADD-TO-BL(∗, k∗).

—(Case II.) Both d∗
0 and d∗

1 are greater than or equal to d∗.
The condition of Case I implies that A cannot blacklist the challenge authen-
tication in an attempt to break anonymity. This prevents the trivial attack
in which A simply blacklists the authentication and has the two users (i∗0
and i∗1) attempt to authenticate. Whoever fails to authenticate will be the
underlying user of the challenge authentication.

4.3.3 Nonframeability. The following game between the simulator S and
the adversary A formally defines nonframeability.

Setup Phase. S takes a sufficiently large security parameter and generates
gpk and gsk, which are given to A.

Probing Phase. A is allowed to issue queries to all the oracles except REG
and REGU. Oracle queries may span over the End Game Phase.

End Game Phase. A outputs i∗ ∈ IG , j∗ ∈ J and d∗ ∈ N. Let d∗
i be the

number of unique ADD-TO-BL(j∗, k), where k is such that (·, k) is the output of
a AUTH(i∗, j∗, ·) query, minus the number of unique REMOVE-FROM-BL(j∗, τ),
where τ is the ticket extracted from the transcript of an authentication involv-
ing user i∗. S then runs AUTH(i∗, j∗, d∗). A wins the game if d∗ > d∗

i and SP
terminates unsuccessfully in the AUTH query.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 15

5. SYSTEM CONSTRUCTION

We now detail our cryptographic construction and assess its security and effi-
ciency. For simplicity, we first present our construction without flexible black-
listing, and then show how the construction can be extended to support a
d-strikes-out revocation policy.

5.1 Parameters

Let λ, ! be sufficiently large security parameters. Let (G1, G2) be a bilinear
group pair with computable isomorphism ψ as discussed such that |G1| = |G2| =
p for some prime p of λ bits. Also let G be a group of order p where DDH
is intractable. Let g0, g1, g2 ∈ G1 and h0 ∈ G2 be generators of G1 and G2,
respectively, such that g0 = ψ(h0) and the relative discrete logarithm of the
generators are unknown.9 Let H0 : {0, 1}∗ → G and H : {0, 1}∗ → Zp be secure
cryptographic hash functions.

5.2 Setup

The GM randomly chooses γ ∈R Zp and computes w = hγ
0 . The group secret key

is gsk = (γ) and the group public key is gpk = (w).

5.3 Registration

Upon successful termination of this protocol between a user Alice and the GM,
Alice obtains a credential in the form of (A , e, x, y) such that Ae+γ = g0gx

1gy
2. We

note that x and y are known only to Alice (i.e., but not the GM). The private
input to the GM is the group secret key gsk.

(1) The GM sends m to Alice, where m ∈R {0, 1}! is a random challenge.
(2) Alice sends a pair (C,*1) to the GM, where C = gx

1gy′

2 ∈ G1 is a commitment
of (x, y′) ∈R Z2

p and *1 is a signature proof of knowledge of

SPK1

{
(x, y′) : C = gx

1gy′

2

}
(m) (1)

on challenge m, which proves that C is correctly formed.
(3) The GM returns failure if the verification of *1 returns invalid. Oth-

erwise the GM sends Alice a tuple (A , e, y′′), where e, y′′ ∈R Zp and A =
(g0Cgy′′

2)
1

e+γ ∈ G1.
(4) Alice computes y = y′ + y′′. She returns failure if ê(A , whe

0) *= ê(g0gx
1gy

2, h0).
Otherwise she outputs cred = (A , e, x, y) as her credential.

To prevent the possibility of a concurrent attack [Damgård 2000], we require
that users must be registered sequentially.

9This can be done by setting the generators to be the output of a cryptographic hash function of
some publicly known seeds.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 16 · P. P. Tsang et al.

5.4 Authentication: The Special Case

We first describe the protocol construction assuming the special case when the
SP enforces a 1-strike-out revocation policy, that is, it uses a threshold value
of 1. In the next subsection, we show how the construction can be extended to
allow a d-strike-out revocation policy, with any d ≥ 1.

During an execution of this protocol between a user Alice and the SP, Alice’s
private input is her credential cred = (A , e, x, y). Let sid ∈ {0, 1}∗ be the string
that uniquely identifies the SP. When the protocol terminates, the SP outputs
success or failure, indicating whether the SP should consider the authentica-
tion attempt successful.

(1) (Challenge.) The SP sends to Alice a pair (BL, m), where m ∈R {0, 1}! is
a random challenge and BL = 〈τ1, . . . , τn〉 is its current blacklist and τi =
(si, ti) ∈ {0, 1}! × G, for i = 1 to n, is the i-th ticket in the blacklist.

(2) (Blacklist Inspection.) Alice computes, for i = 1 to n, the bases bi =
H0(si||sid). She returns as failure if tag ti = b x

i for some i (indicating
that she is blacklisted). She proceeds otherwise.

(3) (Proof Generation.) Alice returns to the SP a pair (τ,*2), where τ = (s, t) ∈
{0, 1}! × G is a ticket generated by randomly choosing a serial s ∈R {0, 1}!
and computing the base b as H0(s||sid) and then the tag t as b x, and *2 is
a signature proof of knowledge of

SPK2




(A , e, x, y) : Ae+γ = g0gx
1gy

2 ∧ t = b x ∧




∧

i∈[n]

ti *= b x
i








 (m) (2)

on the challenge m, which proves the following.
(a) Ae+γ = g0gx

1gy
2, that is, Alice is a group member,

(b) t = b x = H0(s||sid)x, that is, the ticket τ is correctly formed, and
(c)

∧n
i=1 ti *= H0(si||sid)x, that is, Alice is not currently on the SP’s blacklist.

(4) (Proof Verification.) The SP returns failure if the verification of *2 returns
invalid.10 Otherwise it returns success.

The protocol transcript of a successful authentication at the SP is thus (=
〈sid, BL, m, τ,*2〉. The SP stores ticket τ extracted from the transcript, along
with information logging Alice’s activity within the authenticated session.

5.5 Authentication: The General Case

We now modify the protocol for Authentication presented in Section 5.4 to sup-
port a d-strikes-out revocation policy. Our extension does not alter the time
and communication complexities of the authentication protocol, which remain
O(n), where n is the size of the blacklist.

The inputs to each of user Alice and the SP in the protocol in the general
case are the same as those in the special case, except that the SP additionally

10The SP also terminates with failure if the blacklist is being updated concurrently. This behavior
ensures that if a user is blacklisted at time t, she cannot authenticate to the SP after time t, until
she is unblacklisted.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 17

gets a threshold value d. When the protocol terminates, the SP outputs success
or failure, indicating whether the SP should consider the authentication at-
tempt successful. Authentication succeeds only if there are less than d entries
corresponding to Alice’s credential in the blacklist.

(1) (Challenge.) In addition to (BL, m), the SP sends to Alice the threshold
value d ∈ [n], where n is the size of BL.

(2) (Blacklist Inspection.) Alice computes, for i = 1 to n, the bases bi =
H0(si||sid). She returns failure if tag ti = b x

i for d or more distinct i’s
(indicating that she has reached the blacklisting threshold). She proceeds
otherwise.

(3) (Proof Generation.) *2 is instead a signature proof of knowledge of

SPK3

{

(A , e, x, y) :
Ae+γ = g0gx

1gy
2 ∧ t = b x ∧(∨

I⊆(n−d+1)[n]
∧

i∈I ti *= b x
i

)
}

(m) (3)

on the challenge m, which proves the following.
(a) Ae+γ = g0gx

1gy
2, that is, Alice is a group member,

(b) t = H0(s||sid)x, that is, the ticket τ is correctly formed, and
(c)

∧n
i=1 ti *= H0(si||sid)x, that is, Alice is not currently on the SP’s blacklist

d times or more.
(4) (Proof Verification.) The verification of *2 changes accordingly.

The protocol transcript of a successful authentication at the SP thus becomes
(= 〈sid, BL, m, d, τ,*2〉.

5.6 Blacklist Management

The three algorithms are all very simple and efficient. Extract(() returns
ticket τ in the input transcript (= 〈BL, m, τ,*2〉. Add(BL, τ) returns blacklist
BL′, which is the same as the input blacklist BL, except with the input ticket τ
appended to it. Remove(BL, τ) returns blacklist BL′, which is the same as the
input blacklist BL, except with all entries equal to the input ticket τ dropped.

6. INSTANTIATION OF ZKPOK PROTOCOLS

The ZKPoK protocols SPK1, SPK2, and SPK3 presented earlier require instan-
tiation. We omit spelling out the relatively trivial instantiation of SPK1. In the
following, we instantiate SPK3. Note that SPK2 is a special case of SPK3 at
d = 1.

In what follows, we write ê(gi, h0) as êi, for i = 0 to 2.

6.1 SPK3

6.1.1 Signing. Let (A , e, x, y) ∈ G1 × Z3
p be a tuple such that Ae+γ = g0gx

1gy
2,

t = b x, and
∧

i∈J
(
ti *= b x

i
)

for some J ⊆(n−d+1) [n]. To produce a proof *3 for
SPK3 on message m ∈ {0, 1}∗, a prover with the knowledge of (A , e, x, y) does
the following.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 18 · P. P. Tsang et al.

(1) Produce auxiliary commitments

aux = (C1, C2, C3, C̃1, C̃2, . . . , C̃n)

as follows. First pick ρ1,ρ2,ρ3,ρ4 ∈R Zp and compute C1 = gρ1
1 gρ2

2 , C2 = Agρ1
2 ,

and C3 = gρ3
1 gρ4

2 . Then pick C̃i ∈R G for all i ∈ [n]\J , pick ri ∈R Zp, for all
i ∈ J, and compute C̃i = (b x

i /ti)ri for all i ∈ J .
(2) Return *3 as (aux,*4,*5), where *4 and *5 are, respectively, signature

proofs of knowledge of

SPK4









e, x, y,

ρ1,ρ2,ρ3,ρ4,
α1,α2,β3,β4



 :

C1 = gρ1
1 gρ2

2 ∧ 1 = C−e
1 gα1

1 gα2
2 ∧

C3 = gρ3
1 gρ4

2 ∧ 1 = C−x
3 gβ3

1 gβ4
2 ∧

ê(C2,w)
ê0

= ê(C2, h0)−eêx
1êy+α1

2 ê(g2, w)ρ1 ∧
1 = bβ3t−ρ3





(m̂)

SPK5




(µi, ri)i∈[n] :
∨

I⊆(n−d+1)[n]

∧

i∈I

(
1 = bµit−ri ∧ C̃i = bµi

i t−ri
i

)



 (m̂)

on message m̂ = aux||m. *4 can be computed using the knowledge of

(e, x, y,ρ1,ρ2,ρ3,ρ4,α1,α2,β3,β4),

where α1 = ρ1e, α2 = ρ2e, β3 = ρ3x and β4 = ρ4x; *5 can be computed using
the knowledge of (µi, ri)i∈J , where µi = rix for all i ∈ J .

6.1.2 Verification. To verify a proof *3 = (aux,*4,*5) for SPK3 on message
m where aux = (C1, C2, C3, C̃1, C̃2, . . . , C̃n), return valid if the verification of
both *3 and *4 on m̂ = aux||m returns valid, and C̃i *= 1 for all i = 1 to n.
Return invalid otherwise.

Next we enumerate the instantiation of SPK4 and SPK5.

6.2 SPK4

6.2.1 Signing. To produce a proof *4 for SPK4 on message m̂ ∈ {0, 1}∗, do
the following.

(1) (Commit.) Pick re, rx, ry, rρ1 , rρ2, rρ3 , rρ4 , rα1 , rα2 , rβ3 , rβ4 ∈R Z∗
p and compute

T1 = g
rρ1
1 g

rρ2
2 , T2 = C−re

1 g
rα1
1 g

rα2
2 , T3 = g

rρ3
1 g

rρ4
2 , T4 = C−rx

3 g
rβ3
1 g

rβ4
2 ,

T5 = ê(C2, h0)−re · êrx
1 · êry+rα1

2 · ê(g2, w)rρ1 , T = brβ3 t−rρ3 .

(2) (Challenge.) Compute c = H(T1, . . . , T5, T, m̂).
(3) (Respond.) Compute

se = re − ce, sx = rx − cx, sy = ry − cy,

sρi = rρi − cρi for i = 1 to 4,

sαi = rαi − cρie for i = 1, 2, and sβi = rβi − cρix for i = 3, 4.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 19

(4) (Output.) The signature proof of knowledge *4 on m̂ is

*4 = (c, se, sx, sy, sρ1 , sρ2 , sρ3, sρ4 , sα1 , sα2 , sβ3 , sβ4).

6.2.2 Verification. To verify a proof *4 for SPK4 on message m̂, do the
following.

(1) Compute

T ′
1 = g

sρ1
1 g

sρ2
2 Cc

1, T ′
2 = C−se

1 g
sα1
1 g

sα2
2 , T ′

3 = g
sρ3
1 g

sρ4
2 Cc

3, T ′
4 = C−sx

3 g
sβ3
1 g

sβ4
2 ,

T ′
5 = ê(C2, h0)−se · êsx

1 · êsy+sα1
2 · ê(g2, w)sρ1 ·

(
ê(C2, w)

ê0

)c

, T ′ = bsβ3 t−sρ3 .

(2) Return valid if c = H(T ′
1, . . . , T ′

5, T ′, m̂). Return invalid otherwise.

6.3 SPK5

6.3.1 Signing. To produce a proof *5 for SPK5 on message m̂ ∈ {0, 1}∗, do
the following.

(1) (Commit.) Pick rµi, rri ∈R Zp for all i ∈ J and pick ci, sµi, sri ∈R Z∗
p for all

i ∈ [n]\J . Then compute

Ti =
{

brµi t−rri , i ∈ J ,
bsµi t−sri , i ∈ [n]\J ,

and T̃i =

{
b

rµi
i t

−rri
i , i ∈ J ,

bsµi
i t−sri

i C̃ci
i , i ∈ [n]\J .

(2) (Challenge.) Compute c0 = H((Ti, T̃i)n
i=1, m̂). Construct a polynomial f over

Z∗
p of degree at most (d−1) such that ci = f (i) for all i ∈ {0}∪[n]\J . Compute

ci = f (i) for all i ∈ J .
(3) (Respond.) Compute, for all i ∈ J , sµi = rµi − ciµi and sri = rri − ciri.
(4) (Output.) The signature proof of knowledge *4 on m̂ is

*4 = (f, (sµi, sri)i∈[n]).

6.3.2 Verification. To verify a proof *5 for SPK5 on message m̂, do the
following.

(1) Compute, for all i ∈ [n], T ′
i = bsµi t−sri and T̃ ′

i = b
sµi
i t

−sri
i C̃ f (i)

i .
(2) Return valid if deg(f) ≤ d − 1 and f (0) = H((T ′

i, T̃ ′
i)

n
i=1, m̂). Return invalid

otherwise.

6.4 Efficiency

Note that among the 5 pairings needed to compute T5 given before, 4 of them
are constant and are assumed to be included in the system’s parameters. The
signer thus only needs to compute one pairing, namely e(A2, h0). This pairing
does not depend on the blacklist and the message, and can thus be precom-
puted. Similarly, the SP needs to compute two pairings during verification,
namely e(A2, h0) and e(A2, w).

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 20 · P. P. Tsang et al.

Table I. Number of Operations during an Authentication with a Blacklist of Size n

Operation User SPw/o Preprocessing w/ Preprocessing
G1 multi-EXP 7 0 4
G multi-EXP 3n + 3 2n 2n + 4
Pairing 1 0 2

7. ANALYSIS

7.1 Complexities

We analyze the efficiency of our construction in terms of both time and
space/communication complexities. First we emphasize that both complexi-
ties are independent of the number of users and SPs in the system. Thus our
system scales well with respect to these two quantities. Both complexities,
however, are dependent on the size of the blacklist. In particular, the commu-
nication overhead and the time it takes for both a user and an SP to execute the
Authentication protocol grow linearly with the current size of the SP’s blacklist.

More specifically, a blacklist of size n contains n tickets, each consisting of an
!-bit string and an element of G. A proof *3 of SPK3 consists of 3 G1 elements,
n G elements and 3n + 12 Zp elements. The total communication complexity
for an authentication is thus n + 1 !-bit strings, 3 G1 elements, (2n + 1) G ele-
ments, and 3n + 12 Zp elements. SPs need to store a ticket for every successful
authentication.

A breakdown of time complexity of the Authentication protocol into the num-
ber of pairing operations and multi-exponentiations (multi-EXPs)11 in various
groups is shown in Table I. Operations such as G addition and hashing have
been omitted as computing them takes relatively insignificant time. Some pre-
processing is possible at the user before the knowledge of the challenge message
and the blacklist. In fact, all but 2n multi-EXPs in G can be precomputed by
the user.

7.2 Correctness and Security

The correctness of our construction mostly stems from the correctness of the
SPKs. Its proof is thus relatively straightforward. We claim that our construc-
tion has correctness without proof for the sake of conciseness.

We now state the following theorem about the security of our construction,
and then sketch its proof.

THEOREM 1 (SECURITY). Our construction of BLAC is secure if the q-SDH
problem is hard in (G1, G2) and the DDH problem is hard in G under the Ran-
dom Oracle model.

7.2.1 Blacklistability. Suppose there exists a PPT adversary A who can
win in game Blacklistability with nonnegligible probability, we show how to

11A multi-EXP computes the product of exponentiations faster than performing the exponentia-
tions separately. We assume that one multi-EXP operation multiplies up to 3 exponentiations.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 21

construct a PPT simulator S that solves the q-SDH problem with nonnegligible
probability.

On input of an instance of the q-SDH problem (g′
0, h′

0, h′
0
γ , . . . , h′

0
γ q

), S ’s task
is to output a pair (Ā, ē) such that ê(Ā, h′

0
γ h′

0
ē) = ê(g′

0, h′
0). We assume that A

queries REGU or CORRUPT-U at most q times.

Setup Phase S randomly generates a degree (q − 1) polynomial f such that
f (x) =

∏q−1
ι=1 (x + eι). It computes h0 = h′

0
f (γ) and w = hγ

0 = h′
0
γ f (γ). It also com-

putes h1 = [(whe∗
0)ν1 h−1

0]1/ν2 and h2 = hµ
1 for some e∗, ν1, ν2, µ ∈ Z∗

p generated
uniformly at random. Next, it computes g! = ψ(h!) for ! = 0 to 2. Finally, S
gives (h0, h1, h2, g0, g1, g2, w) to A as the system parameters. Let C be the set
{1, . . . , q − 1} ∪ {∗} and C ′ be an empty set ∅.

Probing Phase S keeps track of every user in the system. For a user i ∈ I, S
simulates the REG() oracle by first selecting xi ∈ Z∗

p uniformly at random and
then using it to simulate the Registration protocol. This is possible since the
Registration protocol has Honest-Verifier Zero-Knowledgeness (HVZK).
When A issues CORRUPT-U(i) for user i ∈ I, S chooses ϕ from set C \ C ′

uniformly at random. If ϕ = ∗, S sets yi = (ν2 − xi)/µ, Ai = gν1 and ei = e∗, and
returns (Ai, ei, xi, yi) as the credential of user i. Otherwise, S chooses yi ∈ Z∗

p
uniformly at random, sets ei = eϕ , computes Ai as

Ai =
(
g0gxi+µyi

1
) 1

ei+γ = g′
0

f (γ)
ei+γ g

xi+µyi
γ +eϕ

1 = g′
0

f (γ)
ei+γ

(
g

(xi+µyi)ν1(e∗+γ)−(xi+µyi)
(ei+γ)ν2

0

)

= g′
0

f (γ)
ei+γ

(
1− xi+µyi

ν2

) (
g

(xi+µyi)ν1
ν2

0

)(
1− ei−e∗

ei+γ

)

= g′
0

f (γ)
ei+γ

(
1− xi+µyi

ν2
− (ei−e∗)(xi+µyi)ν1

ν2

)

g
(xi+µyi)ν1

ν2
0 ,

and returns (Ai, ei, xi, yi) as the credential of user i. In both cases, S adds ϕ
to C ′, removes i from I and adds it to IU .
The simulation of REGU() is similar. Upon receiving C for user i (to be added
to IU), S first extracts the pair (xi, y′

i) by rewinding the adversary and selects
ϕ from C \ C ′ uniformly at random. If ϕ = ∗, S chooses y′′

i such that xi + µ(y′
i +

y′′
i) = ν2, sets Ai = gν1 , ei = e∗ and finally returns (Ai, ei, y′′

i). Otherwise, S
chooses y′′

i uniformly at random, sets ei = eϕ and yi = y′
i + y′′

i , computes Ai as

Ai = g′
0

f (γ)
ei+γ

(
1− xi+µyi

ν2
− (ei−e∗)(xi+µyi)ν1

ν2

)

g
(xi+µyi)ν1

ν2
0 ,

and finally returns (Ai, ei, y′′
i). S adds ϕ to K′ in both cases and i to IU .

S stores all the credentials issued to A. For each SP j, S maintains a table
T j of q rows. The rows are indexed by elements of C ′ and contain no elements
initially.
Let j be the current counter for SP. For each ADD-SP(sid), S adds j to J and
returns j to A. S increments j by 1. For each CORRUPT-SP(j), S removes j
from J and adds it to JS.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 22 · P. P. Tsang et al.

To simulate AUTH(i, j, d) and AUTHS(i, j) for user i ∈ I, S computes the tag
as t = b xi and simulates the other steps using the HVZK property of the
Authentication protocol.
For each AUTHU(j, d) query, S tests if the associated ticket (s, t) satisfies t =
H0(s||sid j)xϕ , where sid j is the server ID of SP j, for all ϕ ∈ C ′. If such ϕ
exists, it appends / := (k, d) to row ϕ in the table T j. Otherwise, it rewinds
and extracts the underlying credential c′ := (A ′, e′, x′, y′). We call c′ a special
tuple.
For each REMOVE-FROM-BL(j, τ) query, S removes the corresponding ele-
ment from the table T j.

Reduction If a special tuple c′ exists, S solves the q-SDH problem as follows.
—Case I: e′ *= eϕ for all ϕ ∈ C ′.

Denote z = x′ + µy′. We have

A ′e′+γ = g0gz
1 = g

ν1z(e∗+γ)−z
ν2

0

A ′ = g
ν2−z

ν2(e′+γ)

0

(
g

ν1 z
ν2

0

)(
1− e′−e∗

e′+γ

)

g
1

e′+γ

0 =
(

A ′g
−ν1 z
nu2

0

) ν2
ν2−z−ν1z(e′−e∗)

.

Denote B′ = g0
1

e′+γ = g′
0

f (γ)
e′+γ . Using long division, there exists a degree (q − 2)

polynomial fq such that f (γ)
(e′+γ) = fq(γ)(e′ + γ) + f1 for some f1 ∈ Z∗

p\{0}. Thus

B′ = g′
0

f1
e′+γ

+ fq(γ). Finally, S computes Ā =
(

B′g′
0
− fq(γ)

)1/ f1
and sets ē = e′.

(Ā, ē) is a solution to the q-SDH problem.
—Case II: (e′ = ei ∧ A ′ = Ai) for some i ∈ I ∪ IU .

This case happens with negligible probability unless A can solve the dis-
crete logarithm of h2 to base h1.

—Case III: e′ = eϕ for some ϕ ∈ C ′.
If e′ *= e∗, S aborts. Otherwise denote z = x′ + µy′. We have

A ′e∗+γ = g0gz
1

A ′ = g
ν2−z

ν2(e∗+γ)

0 g
ν1z
ν2

0

g
1

e∗+γ

0 =
(

A ′g
−ν1 z

ν2
0

) ν2
ν2−z

.

Denote B′ = g0
1

e∗+γ = g′
0

f (γ)
e′+γ . S uses the same method as in Case I to solve

the q-SDH problem.
Successful simulation. It remains to argue that, if A can win the game, a special

tuple exists with nonnegligible probability.
Assume there is no special tuple and |IU | *= 0. A wins the game if there exists
a sequence of AUTHU oracle query (AUTHU(j, d1), . . . , AUTHU(j, dm)) such that
the sequence (d1, . . . , dm) is not q-partitionable. We can assume m is equal to
the number of AUTHU(j, ·) query, for if the sequence formed by the whole

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 23

series of AUTHU(j, ·) query is q-partitionable, any subsequence of it must be
q-partitionable. Let the sequence be Q∗. The set of the sequences formed by
the second element of each row of table T j is a q-partition of Q∗. Denote this
particular q-partition as Q′. Since Q∗ is not q-partitionable, it must be the
case that Q′ is not bounded. It implies that there exists an ϕ and d such that
the table entry d∗ in the ϕ-th row and the d-th column is less than d, that is,
d∗ < d. Let the corresponding query be k := AUTHU(j, d∗), during which A
has constructed a valid proof of knowledge of SPK *3 using a witness with
xϕ in it.
Now, on the blacklist used in k := AUTHU(j, d∗), there are (d − 1) tickets gen-
erated using xϕ. (Otherwise, the adversary would have already violated the
soundness of *3 in at least one of the authentications associated with those
(d − 1) tickets.) The soundness of *3 thus implies that, with nonnegligible
probability, d < d∗, which contradicts to d∗ < d given earlier.
Otherwise, |IU | = 0. In that case, there must be a special tuple as C ′ is
empty. Moreover, Case I as given before happens with overwhelming proba-
bility since the adversary does not have any information about the ei’s.

7.2.2 Anonymity. Suppose there exists a PPT adversary A who can win in
game Anonymity with nonnegligible probability (say, 1

2 + ε), we show how to
construct a PPT simulator S that solves the DDH problem in G with nonnegli-
gible probability. Given a DDH problem instance (g′, g′u′

, g′v ′
, T ′), S is to decide

if T ′ = g′u′v ′
.

Setup Phase S sets G = 〈g′〉 and generates all other parameters honestly. The
parameters and the master key of the GM are given to A.

Probing Phase 1 S keeps track of every user in the system. S chooses one user,
denoted as user i∗. For all oracle queries (except the Hash oracle) not related
to user i∗, S follows the protocol honestly.
Queries related to user i∗ are handled as follows. For REGG(), S simulates the
protocol as if (u′, y′) is an opening of the commitment C. The distribution is
perfect since for any u′ there exists an y′ such that C = gu′

1 gy′

2 . Upon receiving
(A , e, y′′) from A, S records the credential for user i∗ as (A , e,⊥,⊥). The
credential for user i∗ is (A , e, u′, y) such that y = y′ + y′′. This credential,
however, is unknown to S.
For AUTH(i∗, j, d) or AUTHS(i∗, j) queries, S chooses s and R uniformly at ran-
dom and sets H0(s||SPj) = g′R, where SPj is the sid of SP j. S then computes
t = g′u′ R and simulates the protocols with τ = (s, t).

Challenge Phase In the challenge phase, A outputs two users i∗0 and i∗1 from
IG . If i∗ /∈ {i∗0, i∗1}, S aborts. Else, A queries AUTH(⊥, j∗, d∗) if j∗ ∈ J , or
AUTHS(⊥, j∗, d∗) otherwise. Now there are two cases to consider.
In the case when d∗

0 and hence d∗
1 are greater than or equal to d∗, S simply

returns ⊥ as the protocol transcript. It is straightforward to see that the
corresponding AUTHS or AUTH query does not contain any information on i∗0
or i∗ and probability of A winning cannot be greater than 1

2 .
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 24 · P. P. Tsang et al.

In the case when d∗
0 and d∗

1 are both less than d∗, S flips a fair coin b̂ . If
i∗ *= i∗

b̂
, S aborts. Otherwise, S chooses si∗ uniformly at random and sets

H0(si∗ ||SPj) = g′v ′
. S computes the ticket τ = (H0(si∗ ||SPj), ti∗) = (g′v ′

, T ′) and
simulates the corresponding Authentication protocol.

Probing Phase 2 S simulates in the same way as in Probing Phase 1 except
queries to CORRUPT-U(i∗0) or CORRUPT-U(i∗1) are not allowed.

End Game Phase Finally, if A guessed b̂ correctly, S answers that
(g′, g′u′

, g′v ′
, T ′) is a DDH tuple.

Probability of Success If T ′ is a DDH tuple, the simulation is perfect and A
wins with probability 1

2 +ε. On the other hand, if T ′ is a random element, the
simulation is imperfect in the sense that the authentication transcript is not
related to either of the challenge users. In that case probability of A winning
cannot be greater than 1

2 .
Now with probability 2

|IG | , i∗ ∈ {i∗0, i∗1}. With probability 1
2 , i∗ = i∗b . Thus,

the probability of not aborting is 1
|IG | , which is nonnegligible. We assume

S answers “no” when it has to abort, in which case the probability of S
winning is 1

2 .
If S does not abort and T ′ is a DDH tuple, A wins with probability 1

2 + ε. If T ′

is a random element, A can only output the guess bit correctly with probabil-
ity no more than 1

2 since the transcript of the challenge authentication does
not contain any information on i∗

b̂
. In fact, A could abort or behave randomly

and for simplicity we let its winning probability be ε′ such that 0 ≤ ε ′ ≤ 1
2 .

To summarize, there are four cases.

(1) T ′ is a DDH tuple, S answers “yes”. The corresponding probability is 1
2 +ε.

(2) T ′ is a DDH tuple, S answers “no”. The corresponding probability is 1
2 −ε.

(3) T ′ is not a DDH tuple, S answers “yes”. The corresponding probability is
ε ′ for some ε ′ such that 0 ≤ ε ′ ≤ 1

2 .
(4) T ′ is not a DDH tuple, S answers “no”. The corresponding probability is

1 − ε ′ for some ε ′ such that 0 ≤ ε ′ ≤ 1
2 .

The probability that S answers correctly (case 1 + case 4) is therefore

1
2

(
1
2

+ ε + 1 − ε ′) =
1
2

+
ε

2
+ (

1
2

− ε ′),

which is no less than 1
2 + ε

2 . Summing up the cases of aborting and not
aborting, the probability of S winning is at least 1

2 + ε
2|IG | .

7.2.3 Nonframeability. Suppose there exists a PPT adversary A who can
win in game Nonframeability with nonnegligible probability, we show how to
construct a PPT simulator S that solves the discrete logarithm problem in G.

On input of a DL problem instance (T ′, g′), S is required to compute u′ such
that g′u′

= T ′.

Setup Phase S sets G = 〈g′〉 and all other parameters are generated honestly.
The parameters and the master key of the GM are given to A.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 25

Probing Phase S keeps track of every user present in the system. S chooses one
user, denoted as user î. For all oracle queries (except Hash oracle) not related
to user î, S follows the protocol honestly. Let C be the set of credentials S has
obtained from A in the REGG() query.
Queries related to user î are handled as follows. For REGG(), S simulates the
protocol as if u′, y′ is an opening of the commitment C. The distribution is
perfect since for any u′ there exists a y′ such that C = gu′

1 gy′

2 . Upon receiving
(A , e, y′′) from A, S adds (A , e,⊥,⊥) to C. Note that the credential for user î
is (A , e, u′, y) such that y = y′ + y′′ and is unknown to S.
For AUTH(î, j, d) or AUTHS(î, j), S chooses s and R uniformly at random and
sets H0(s||SPj) = g′R, where SPj is the sid of SP j. S then computes t = g′u′ R

and simulates the protocols with τ = (s, t).
End Game Phase Finally, S aborts if î *= i∗. With probability 1

|IG | , S does not
abort. Since d∗ > d∗

i (refer to Section 4.3.3 for their meaning), the fact that
the challenge AUTH query terminated unsuccessfully implies that with over-
whelming probability there exists an ADD-TO-BL(j∗, k′) query for some k′

such that k′ is the output of an AUTHU query. (Observe that k′ cannot be
an output of AUTH(i∗, ·, ·) or AUTHS(i∗, ·, ·).) Denote by (k′ the transcript of
the AUTHU query. Assume (s′, t′) = Extract((′

k), S rewinds the SPK in the
AUTHU query and obtains u′ = logH0(s′||·)(t′). It returns u′ as the solution of the
DL problem.
Informally speaking, the preceding means that, to prevent an honest user
from authenticating himself successfully, the adversary must have conducted
some kind of k′ := AUTHU query such that the associate ticket is equal to
H0(·||·)x so that x is the secret of the target user i∗. Then the adversary
queries ADD-TO-BL(j∗, k′), making the corresponding AUTH terminate un-
successfully. S, by rewinding the AUTHU query k′, thus gets to know the DL
of u′, which is x.

8. PERFORMANCE EVALUATION

We now present results from the experimental evaluation of our BLAC
construction.

8.1 Prototype Implementation

We implemented our construction of BLAC in C and packaged the code into
a software library to allow for easy adoption by application developers. We
have not implemented the extension for supporting a d-strikes-out revocation
policy and our current implementation therefore supports only a 1-strike-out
revocation policy. We used the PBC library12 (version 0.4.11) for the underlying
elliptic-curve and pairing operations, which is built on the GMP library.13

We also made use of several routines in OpenSSL,14 such as its SHA-1 hash

12http://crypto.stanford.edu/pbc/
13http://gmplib.org/
14http://www.openssl.org/

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 26 · P. P. Tsang et al.

function for instantiating the cryptographic hash functions needed by our
construction.

We used pairings over Type-A curves as defined in the PBC library. A curve
of this type has the form of E : y2 = x3 + x over the field Fq for some prime
q. Both G1 and G2 are the group of points E(Fq) of order p for some prime p
such that p is a factor of q + 1. The pairing is symmetric and has an embedding
degree k of 2. Thus G is a subgroup of Fq2 . In our implementation, q and p are
respectively 512-bit and 160-bit integers. We used G for the group wherein the
tickets reside.

The interface to the library we implemented is defined by a list of C func-
tions. Some of the more important functions are as follows. setup() is a func-
tion that implements the Setup algorithm. The functions register gm() and
register user(), executed by the GM and the user respectively, together im-
plement the Registration protocol. Similarly authen sp() and authen user()
together implement the Authentication protocol.

To test and evaluate our library implementation, we wrote a driver appli-
cation that allows users to post text messages at a Web forum. This can be
thought of as users editing Wikipedia pages. We did not prototype the user
registration part of the system because our major interest was to study the
performance of the Authentication protocol.

In the application, authentication is carried out as follows. The SP first
creates a listening socket. Upon the arrival of a connection request from a user,
the SP sets up an SSL socket with the user using OpenSSL.15 This means that
a confidential and server-authenticated channel is set up between the user and
the SP. From within this channel, the user and the server respectively execute
authen user() and authen sp(). If authen sp returns failure, the SP closes
the SSL connection, thereby refusing to serve the user. Otherwise, SP serves
the user using the same channel by recording the text message sent by the
user, along with the ticket extracted from the authentication transcript. The
SP may then manually inspect the text message and add the associated ticket
to its blacklist.

Alternatively, by integrating BLAC authentication into SSL server authen-
tication, one can realize a kind of mutual authentication, in which the user
authenticates the server’s identity while the server is assured that (and only
that) the user is some well-behaving user.

8.2 Experimental Results and Analysis

For our experiments, we used a Dell OptiPlex 745 desktop machine with an In-
tel dual-core (Core 2) 1.86 GHz CPU and 1GB of RAM, running Linux/Ubuntu
7.10. All the timings reported to follow were averaged over 10 randomized runs.

We measured two time quantities related to the execution of the
Authentication protocol: (1) the time it took for an SP to verify the authen-
tication (i.e., step 4 of the protocol), and (2) the time it took for a user to inspect

15For the sake of simplicity, the SP uses a self-signed key-pair to authenticate itself.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 27

the blacklist and produce a proof (i.e., steps 2 and 3 of the protocol), with pre-
processing enabled. The sum of these two quantities roughly represents the
total latency incurred by the protocol as perceived by the user.

When the blacklist was empty, it took the SP 0.06s to verify the authentica-
tion. When the blacklist had 400 entries instead, it took the SP 0.46s to do the
same. On the other hand, when the blacklist size was 0 and 400, the user spent
0.09ms and 0.73s, respectively, to inspect the blacklist and produce a proof. The
estimated protocol latencies are thus 0.06s and 1.19s respectively. The total
communication overhead due to the authentication protocol is roughly 0.27KB
per blacklist entry. Figure 1(a) and 1(b) show experimental data collected with
different blacklist sizes. In Section 9, we elaborate on the feasibility of our
construction in real applications.

Note that our authentication protocol scales well with the number of cores in
CPUs because virtually all computation that grows linearly with the blacklist
size is parallelizable.16 As evidence, on our dual-core machine, all the tim-
ings we collected using a single-threaded implementation almost doubled the
figures of our current multithreaded implementation, whose figures were re-
ported earlier.

9. DISCUSSION

We discuss several issues related to the deployment of BLAC in a real-world
setting.

9.1 Efficiency

In our cryptographic construction, blacklist verification requires O(n) compu-
tations, where n is the number of entries in the blacklist. As indicated by
Section 8, our scheme would support 1,600 blacklist entries with 2 authentica-
tions per second on an 8-core machine.17 Since anonymous authentication will
be used at SPs such as Wikipedia only for certain operations such as editing
Web pages, we believe this performance is reasonable. Consider two extreme
examples. In March 2007, Wikipedia averaged about two edits per second to
its set of English Web pages.18 Likewise, YouTube reported less than one video
upload per second on average in July 2006.19 The communication complexity
required to sustain one or two authentications per second with 1,600 blacklist
entries would be about 3.5 to 7 Mbps for the SP. Such a data rate would be
high for an individual server, but would be reasonable for large SPs such as
YouTube and Wikipedia, which may have distributed servers across the na-
tion for handling large bandwidth. Based on these calculations, SPs with much
lower authentication rates than Wikipedia or YouTube (e.g., one authentication
every few seconds) can easily be served on commodity hardware and T-1 lines.

16The only exception is the two calls to SHA-1, but they take comparably negligible time.
17An 8-core Mac Pro with two 2.26 GHz Quad-Core Intel Xeon processors was available for approx-
imately $3,000 at the time of writing.
18http://stats.wikimedia.org/EN/PlotsPngDatabaseEdits.htm
19http://technology.guardian.co.uk/weekly/story/0,,1823959,00.html

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 28 · P. P. Tsang et al.

Fig. 1. The communication and execution times scale linearly with the size of the blacklist.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 29

We reiterate that our construction is the first to allow anonymous blacklist-
ing without TTPs, and more efficient blacklist checking, perhaps in O(log n) or
O(1) time, is an open problem that deserves further research. Faster verifica-
tion will allow much higher rates of authentication while supporting extremely
large blacklists, and this problem is, therefore, worthy of further study. As
mentioned earlier, our follow-up work on PEREA [Tsang et al. 2008] alters
the semantics of revocation to provide more efficient authentication. PEREA
introduces the concept of a revocation window, the number of subsequent au-
thentications before which a misbehavior must be recognized and blacklisted
for the user to be revoked. These semantics allow for more efficient authenti-
cation at the server, but allows for the possibility of blacklisted users to remain
unrevoked (if misbehaviors are not recognized within the revocation window).

9.2 Interleaving Authentications

An individual user may attempt to interleave multiple authentications and
take up several hundreds of entries in the blacklist by misbehaving several
times in a short span of time. Such an attack is possible because users can
parallelize several anonymous sessions with an SP. A promising approach
would be to use a scheme such as Camenisch et al.’s [2006a] periodic n-times
anonymous authentication to rate-limit the number of anonymous accesses
from users. In such a scheme, an anonymous user would be able to access
the SP anonymously at most n times within a time period. For example, for
n = 10 and a time period of 1 day, a single user would be able to contribute at
most 10 entries to the blacklist in a given day. Alternatively, Syverson et al.
[1997] scheme mentioned in Section 1 could be used to force serialized connec-
tions from anonymous users, but nevertheless users may connect several times
(serially) within a short span of time. Thus rate-limiting of some kind would be
necessary.

Remark. Since concurrent sessions are preempted while an entry is added
(atomically) to a blacklist, our system guarantees that once an entry is added to
the blacklist at time t, the blacklisted user will not be able to access the service
after time t (or until unblacklisted at a later time).

9.3 Enrollment Issues

We assume that the Group Manager issues only one credential per legitimate
user and assume it is difficult to perform “Sybil” attacks [Douceur 2002], where
users are able to obtain multiple credentials by posing as different identities.
The Sybil attack, however, is a challenging problem that any credential system
is vulnerable to, and we do not attempt to solve this problem here.

In reality, users may eventually misplace their credentials, or have them
compromised. Since that credential may be blacklisted by an SP, issuing a new
credential to a user can help that user circumvent blacklisting. As a trade-off,
we suggest that if a user misplaces his or her credential, that user is issued
a pseudonymous credential for a certain amount of time called the “linkability
window” before a new anonymous credential is issued. If a user repeatedly

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 30 · P. P. Tsang et al.

attempts to acquire new credentials, the linkability window of that user can be
increased to curb misbehavior.

9.4 Allowing the Sharing of (Entries in) Blacklists

We have presented BLAC in which an SP cannot use an entry from another SP’s
blacklist (corresponding to Alice) to prevent Alice from successfully authenti-
cating to the SP. Nevertheless, in some applications, a group of SPs may desire
to block users misbehaving at any one of the SPs.

BLAC can be modified to allow such sharing: instead of computing the tag
in a ticket as t = H(s||sid)x, a user computes it as t = H(s)x regardless of the
SP the user is connecting to. Tickets computed as such can be shared among
SPs as adding a user’s ticket borrowed from another SP is no different from
the SP obtaining a ticket directly from the same user. Such a modified con-
struction, however, has different privacy implications. For instance, Wikipedia
may decide to add only YouTube’s tickets to its blacklist. If a user’s authen-
tication fails, Wikipedia knows that the user has previously visited YouTube.
Even though the user is anonymous, an SP can learn some information about
the user’s behavior at another SP.

9.5 Revoking Compromised TPMs

Concurrent to our work, Brickell and Li [2007] have proposed a method to un-
linkably revoke compromised Trusted Platform Modules (TPMs) [TPM Work
Group 2006]. While targeting a different application, their solution is similar
to ours. Nevertheless, signatures in their solution are not bound to the verifier’s
identity and authenticating even once could result in the global revocation of
the prover; BLAC provides more privacy by allowing the nonsharing of black-
list entries among verifiers as an option. Also, their solution does not support
a d-strikes-out revocation policy. We note, however, their solution is RSA based
while ours is pairing based, thus providing an alternative based on different
hardness assumptions.

10. CONCLUSIONS

We present BLAC, a credential system for anonymous authentication that for
the first time simultaneously provides privacy-enhanced revocation, subjective
judging, and eliminates the reliance on trusted third parties capable of revoking
the privacy of users. We believe the ability to revoke users while maintaining
their anonymity is a worthwhile endeavor. While BLAC demonstrates the fea-
sibility of such a goal, we encourage researchers to develop solutions that are
more efficient; BLAC requires computation at the SP that is linear in the size
of the blacklist. We make one such attempt with PEREA [Tsang et al. 2008],
albeit with different revocation semantics. We also believe our contributions
of supporting a d-strikes-out revocation policy is a novel analog to threshold-
based approaches such as k-TAA. Future work could explore policies such as
boolean combinations of misbehaviors (such as “user has defaced a Web page
AND user has posted copyrighted material more than three times”).
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 31

ACKNOWLEDGMENTS

P. P. Tsang was a PhD student in the Computer Science program at Dartmouth
College, and passed away on October 27, 2009 as a victim to cancer. He was
28 years old. Patrick was a disciplined and cheerful student, and he battled
his illness with strength and courage. Even in those final moments, he was
busy extending ideas presented in this article. We dedicate this article to his
memory.

The authors would like to thank J. Li and the anonymous reviewers for their
valuable comments.

REFERENCES

ATENIESE, G., CAMENISCH, J., JOYE, M., AND TSUDIK, G. 2000. A practical and provably secure
coalition-resistant group signature scheme. In Proceedings of the International Cryptology Con-
ference (CRYPTO’00). M. Bellare Ed., Lecture Notes in Computer Science, vol. 1880, Springer,
255–270.

ATENIESE, G., SONG, D. X., AND TSUDIK, G. 2002. Quasi-efficient revocation in group signatures.
In Proceedings of the Conference on Financial Cryptography. M. Blaze Ed., Lecture Notes in
Computer Science, vol. 2357, Springer, 183–197.

AU, M. H., CHOW, S. S. M., AND SUSILO, W. 2005. Short e-cash. In Proceedings of the International
Conference on Cryptology in India (INDOCRYPT’05). S. Maitra et al. Eds., Lecture Notes in
Computer Science, vol. 3797, Springer, 332–346.

AU, M. H., SUSILO, W., AND MU, Y. 2006. Constant-size dynamic k-TAA. In Proceedings of the 5th
International Conference on Security and Cryptography for Networks (SCN’06). R. D. Prisco and
M. Yung Eds., Lecture Notes in Computer Science, vol. 4116, Springer, 111–125.

BELLARE, M. AND ROGAWAY, P. 1993. Random oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the ACM Conference on Computer and Communications
Security. 62–73.

BONEH, D. AND BOYEN, X. 2004. Short signatures without random oracles. In Proceedings of
the Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT’04). C. Cachin and J. Camenisch Eds., Lecture Notes in Computer Science,
vol. 3027, Springer, 56–73.

BONEH, D. AND SHACHAM, H. 2004. Group signatures with verifier-local revocation. In Proceed-
ings of the ACM Conference on Computer and Communications Security. V. Atluri et al. Eds.,
ACM, 168–177.

BONEH, D., BOYEN, X., AND SHACHAM, H. 2004. Short group signatures. In Proceedings of the
24th Annual International Cryptology Conference, Advances in Cryptology (CRYPTO’04). M. K.
Franklin Ed., Lecture Notes in Computer Science, vol. 3152, Springer, 41–55.

BOYEN, X. 2007. Mesh signatures. In Proceedings of the Annual International Conference on Theory
and Applications of Cryptographic Techniques (EUROCRYPT’07). M. Naor Ed., Lecture Notes in
Computer Science, vol. 4515, Springer, 210–227.

BRICKELL, E. AND LI, J. 2007. Enhanced privacy ID: A direct anonymous attestation scheme
with enhanced revocation capabilities. In Proceedings of the ACM Workshop on Privacy in the
Electronic Society (WPES’07). P. Ning and T. Yu Eds., ACM, 21–30.

CAMENISCH, J., HOHENBERGER, S., KOHLWEISS, M., LYSYANSKAYA, A., AND MEYEROVICH, M.
2006a. How to win the clonewars: Efficient periodic n-times anonymous authentication. In Pro-
ceedings of the ACM Conference on Computer and Communications Security. A. Juels et al. Eds.,
ACM, 201–210.

CAMENISCH, J., HOHENBERGER, S., AND LYSYANSKAYA, A. 2005. Compact e-cash. In Proceedings
of the 24th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Advances in Cryptology (EUROCRYPT’05). R. Cramer Ed., Lecture Notes in Com-
puter Science, vol. 3494, Springer, 302–321.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

39: 32 · P. P. Tsang et al.

CAMENISCH, J., HOHENBERGER, S., AND LYSYANSKAYA, A. 2006b. Balancing accountability and
privacy using e-cash (extended abstract). In Proceedings of the 5th International Conference on
Security and Cryptography for Networks (SCN’06). R. D. Prisco and M. Yung Eds., Lecture Notes
in Computer Science, vol. 4116, Springer, 141–155.

CAMENISCH, J. AND LYSYANSKAYA, A. 2001. An efficient system for non-transferable anonymous
credentials with optional anonymity revocation. In Proceedings of the Annual International
Conference on the Theory and Applications of Cryptographic Techniqes (EUROCRYPT’01). B.
Pfitzmann Ed., Lecture Notes in Computer Science, vol. 2045, Springer, 93–118.

CAMENISCH, J. AND LYSYANSKAYA, A. 2002a. Dynamic accumulators and application to efficient
revocation of anonymous credentials. In Proceedings of the International Cryptology Conference
(CRYPTO’02). M. Yung Ed., Lecture Notes in Computer Science, vol. 2442, Springer, 61–76.

CAMENISCH, J. AND LYSYANSKAYA, A. 2002b. A signature scheme with efficient protocols. In Pro-
ceedings of the International Conference on Security and Cryptography for Networks (SCN’02).
S. Cimato et al. Eds., Lecture Notes in Computer Science, vol. 2576, Springer, 268–289.

CAMENISCH, J. AND LYSYANSKAYA, A. 2004. Signature schemes and anonymous credentials from
bilinear maps. In Proceedings of the 24th Annual International Cryptology Conference, Advances
in Cryptology (CRYPTO’04). M. K. Franklin Ed., Lecture Notes in Computer Science, vol. 3152,
Springer, 56–72.

CAMENISCH, J. AND SHOUP, V. 2003. Practical verifiable encryption and decryption of discrete
logarithms. In Proceedings of the International Cryptology Conference (CRYPTO’03). D. Boneh
Ed., Lecture Notes in Computer Science, vol. 2729, Springer, 126–144.

CAMENISCH, J. AND STADLER, M. 1997. Efficient group signature schemes for large groups (ex-
tended abstract). In Proceedings of the International Cryptology Conference (CRYPTO’97). Lec-
ture Notes in Computer Science, vol. 1294, Springer, 410–424.

CATALANO, D., FIORE, D., AND MESSINA, M. 2008. Zero-knowledge sets with short proofs. In
Proceedings of the Annual International Conference on the Theory and Applications of Cryp-
tographic Tehnqies (EUROCRYPT’08). N. P. Smart Ed., Lecture Notes in Computer Science,
vol. 4965, Springer, 433–450.

CHAUM, D. AND VAN HEYST, E. 1991. Group signatures. In Proceedings of the An-
nual International Conference on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT’91). 257–265.

CRAMER, R., Ed. 2005. Proceedings of the 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Advances in Cryptology (EUROCRYPT’05). Lecture
Notes in Computer Science, vol. 3494, Springer.

CRAMER, R., DAMGARD, I., AND SCHOENMAKERS, B. 1994. Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In Proceedings of the International Cryptology Con-
ference (CRYPTO’94). Y. Desmedt Ed., Lecture Notes in Computer Science, vol. 839, Springer,
174–187.

DAMGARD, I. 2000. Efficient concurrent zero-knowledge in the auxiliary string model. In Proceed-
ings of the Annual International Conference on the Theory and Applications of Cryptographic
Techniqes (EUROCRYPT’00). 418–430.

DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. F. 2004. Tor: The second-generation onion
router. In Proceedings of the USENIX Security Symposium. USENIX, 303–320.

DOUCEUR, J. R. 2002. The sybil attack. In Proceedings of the International Workshop on Peer-to-
Peer Systems (IPTPS’02). P. Druschel et al. Eds., Lecture Notes in Computer Science, vol. 2429,
Springer, 251–260.

FRANKLIN, M. K., Ed. 2004. Proceedings of the 24th Annual International Cryptology Conference,
Advances in Cryptology (CRYPTO’04). Lecture Notes in Computer Science, vol. 3152, Springer.

GOLDWASSER, S., MICALI, S., AND RACKOFF, C. 1989. The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18, 1, 186–208.

GOLDWASSER, S., MICALI, S., AND RIVEST, R. L. 1988. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17, 2, 281–308.

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

BLAC: Revoking Repeatedly Misbehaving Anonymous Users · 39: 33

JOHNSON, P. C., KAPADIA, A., TSANG, P. P., AND SMITH, S. W. 2007. Nymble: Anonymous IP-
address blocking. In Proceedings of the Conference on Privacy Enhancing Technologies. N. Borisov
and P. Golle Eds., Lecture Notes in Computer Science, vol. 4776, Springer, 113–133.

KIAYIAS, A. AND YUNG, M. 2005. Group signatures with efficient concurrent join. In Proceedings
of the 24th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Advances in Cryptology (EUROCRYPT’05). R. Cramer Ed., Lecture Notes in Com-
puter Science, vol. 3494, Springer, 198–214.

LIU, J. K., WEI, V. K., AND WONG, D. S. 2004. Linkable spontaneous anonymous group signature
for ad hoc groups (extended abstract). In Proceedings of the Australian Conference on Informa-
tion Security and Privacy (ACISP’04). H. Wang et al. Eds., Lecture Notes in Computer Science,
vol. 3108, Springer, 325–335.

NGUYEN, L. 2005. Accumulators from bilinear pairings and applications. In Proceedings of the
Cryptographers Track at the RSA Conference (CT-RSA’05). A. Menezes Ed., Lecture Notes in
Computer Science, vol. 3376, Springer, 275–292.

NGUYEN, L. AND SAFAVI-NAINI, R. 2005. Dynamic k-times anonymous authentication. In
Proceedings of the International Conference on Applied Cryptography and Network Security
(ACNS’05). J. Ioannidis et al. Eds., Lecture Notes in Computer Science, vol. 3531, Springer,
318–333.

PRISCO, R. D. AND YUNG, M., Eds. 2006. Proceedings of the 5th International Conference on Se-
curity and Cryptography for Networks (SCN’06). Lecture Notes in Computer Science, vol. 4116,
Springer.

SCHNORR, C.-P. 1991. Efficient signature generation by smart cards. J. Cryptol. 4, 3, 161–174.
SYVERSON, P. F., STUBBLEBINE, S. G., AND GOLDSCHLAG, D. M. 1997. Unlinkable serial trans-

actions. In Proceedings of the Conference on Financial Cryptography. R. Hirschfeld Ed., Lecture
Notes in Computer Science, vol. 1318, Springer, 39–56.

TERANISHI, I., FURUKAWA, J., AND SAKO, K. 2004. k-times anonymous authentication (extended
abstract). In Proceedings of the Annual International Conference on the Theory and Application of
Cryptology and Information Security (ASIACRYPT’04). P. J. Lee Ed., Lecture Notes in Computer
Science, vol. 3329, Springer, 308–322.

TERANISHI, I. AND SAKO, K. 2006. k-times anonymous authentication with a constant proving
cost. In Proceedings of the Conference on Public Key Cryptography. M. Yung et al. Eds., Lecture
Notes in Computer Science, vol. 3958, Springer, 525–542.

TPM WORK GROUP. 2006. TCG TPM specification version 1.2 revision 94. Tech. rep., Trusted
Computing Group.

TSANG, P. P., AU, M. H., KAPADIA, A., AND SMITH, S. W. 2007a. Blacklistable anonymous cre-
dentials: Blocking misbehaving users without TTPs. In Proceedings of the ACM Conference on
Computer and Communications Security. P. Ning et al. Eds., ACM, 72–81.

TSANG, P. P., AU, M. H., KAPADIA, A., AND SMITH, S. W. 2007b. Blacklistable anonymous cre-
dentials: Blocking misbehaving users without TTPs (full version). Tech. rep. TR2007-601, Dart-
mouth College.

TSANG, P. P., AU, M. H., KAPADIA, A., AND SMITH, S. W. 2008. PEREA: Towards practical TTP-
free revocation in anonymous authentication. In Proceedings of the ACM Conference on Computer
and Communications Security. P. Ning et al. Eds., ACM, 333–344.

TSANG, P. P., WEI, V. K., CHAN, T. K., AU, M. H., LIU, J. K., AND WONG, D. S. 2004. Separable
linkable threshold ring signatures. In Proceedings of the International Conference on Cryptology
in India (INDOCRYPT’04). A. Canteaut and K. Viswanathan Eds., Lecture Notes in Computer
Science, vol. 3348, Springer, 384–398.

Received September 2008; revised October 2009; accepted October 2009

ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 39, Pub. date: December 2010.

