Robust Information-Theoretic Private Information Retrieval

Amos Beimet Yoav Stahl

Abstract

A Private Information Retrieval (PIR) protocol allows a user to retrieve a data item of its choice from
a database, such that the servers storing the database do not gain information on the identity of the item
being retrieved. PIR protocols were studied in depth since the subject was introduced in Chor, Goldreich,
Kushilevitz, and Sudan 1995. The standard definition of PIR protocols raises a simple question — what
happens if some of the servers crash during the operation? How can we devise a protocol which still works
in the presence of crashing servers? Current systems do not guarantee availability of servers at all times
for many reasons, e.g., crash of server or communication problems. Our purpose is to design robust PIR
protocols, i.e., protocols which still work correctly even if orlyout of £ servers are available during the
protocols’ operation (the user does not know in advance which servers are available).

We present various robust PIR protocols giving different tradeoffs between the different parameters.
These protocols are incomparable, i.e., for different valuesarfdk we will get better results using differ-
ent protocols. We first present a generic transformation from regular PIR protocols to robust PIR protocols,
this transformation is important since any improvement in the communication complexity of regular PIR pro-
tocol will immediately implicate improvement in the robust PIR protocol communication. We also present
two specific robust PIR protocols. Finally, we present robust PIR protocols which can tolerate Byzantine
servers, i.e., robust PIR protocols which still work in the presence of malicious servers or servers with
corrupted or obsolete databases.

1 Introduction

A Private Information Retrieval (PIR) protocol allows a user to retrieve a data item of his choice from a database,
such that the server storing the database does not gain information on the identity of the item being retrieved.
For example, an investor might want to know the value of a certain stock in the stock-market without revealing
which stock she is interested in. The problem was introduced by Chor, Goldreich, Kushilevitz, and Sudan [13],
and has attracted a considerable amount of attention. It is convenient to model the databasebhiysaimg

x, where the user, holding sometrieval indexi, wishes to learn théth data bitz;. This default setting can be

easily extended to handle more general scenarios, e.g., of larger data items, several users, or several retrieved
items per user.

The definition of PIR protocols raises a simple question — what happens if one of the servers crashes
during the operation? How can we devise a protocol which still works in the presence of crashing servers?
Current systems do not guarantee availability of servers at all times for many reasons, e.g., crash of server
or communication problems. Our purpose is to design robust PIR protocols. Given a databhid is
replicated amongst servers, and a parameter< ¢ which specifies the minimal number of servers that are
available at any moment, the user in our protocol can retrig\uy using the answers of arlyservers. l.e.,
even if /-k severs are unreachable while the protocol is being performed (e.g., they have crashed or they are
disconnected), the user can still reconstrct The user does not need to know in advance which servers are
online and which servers will be online during the process.

A trivial solution to this problem is to execute an independent PIR protocol for each graugeiers.

This yields a solution of whose complexity@é) times the complexity of the best known PIR protocol. Even
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for fairly small ¢ andk, the factor(}) can be too expensive. Another trivial solution is that the user first checks

which servers are available and then executes a regular PIR protocol with these servers. The problem with this
solution is that we need two rounds of communication. Another problem is that servers can crash between
the first round and the second round. Our goal is to design robust protocols in which the dependency of the
communication complexity oAandk is polynomial.

We next present two additional motivation examples. First, consider a database which is updated frequently.
In this case, the servers might hold different versions of the database. If the user and servers execute a robust
PIR protocol, and each server sends the version number of the database, then as long as a big enough subset of
the servers hold the latest version of the database, then the user can recover the desired bit. Second, consider
a system in which the servers do not have the same response time. Furthermore, the response time can vary
according to the server’s load at a specific moment. In this case, using a robust protocol, the user needs only
the firstk answers that it receives, i.e., it need not wait for slow servers.

Related Work. Before proceeding, we give a brief overview of some relevant results on PIR. The simplest
solution to the PIR problem is sending the entire database to the user. This solution is impractical for large
databases. However, if the server is not allowed to gaininformation about the retrieved bit, then the linear
communication complexity of this solution is optimal [13]. To overcome this problem, [13] suggested that

the user accesses replicated copies of the database kept on different servers, requiring that each server gains
absolutely no information on the bit the user reads (thus, these protocols areicflethtion-theoretidPIR

protocols). The best information-theoretic PIR protocols known to date are summarized below:géjvar

protocol with communication complexity @?(n'/3) bits [13], (2) ak-server protocol, for any constaht> 1,

with communication complexity of)(k*n!/(2s=1)) bits [17] (improving on [13, 3, 18], see also [7]), (3) a

k-server protocol, for any constaht> 1, with communication complexity ap(2°() . n%) bits [8], and

(4) a protocol withO(log n) servers and communication complexity@flog? n log log n) bits [5, 6, 13] . In

all these protocols it is assumed that the servers do not communicate with eachqiheate protocols, in
which the user is protected against collisions of upgervers, have been considered in [13, 17, 7]. Specifically,
the best communication complexity of such protocaDig:!/L(2k—1)/t]) [7]. For a more extensive discussion
on PIR related work the reader can consult, e.g., [27].

One of the main tools we use perfect hash families/hich were introduced by [21]. These families were
first used in compiler design to prove lower bounds on the size of a computer program. In the last few years,
perfect hash families have been applied to circuit complexity problems [23], derandomization of probabilistic
algorithms [2], threshold cryptography [9, 11], and other tasks in cryptography [15, 28]. Perfect hash families
are also considered from a combinatorial point of view [1, 4, 10, 12, 16, 19, 29]. A comprehensive overview on
perfect hashing can be found in [14].

Our Results. We present several protocols with various features which address the robust PIR problem. These
protocols are incomparable, i.e., for different values @hdi we get better results using different protocols.

Ouir first result is a generic transformation framout-of-k PIR protocols tdk-out-of-¢ PIR protocols: we
show that if there exists a perfect hash fandily;, of sizew, . (the definition of a perfect hash family appears
in Definition 3.3) and if there exists faout-of-k PIR protocol with communication complexiBIR(n) per
server, then there existskaout-of-¢ PIR protocol with communication complexity,, , - PIRy(n) per server.
Since this is a generic transformation, any improvement in the communication complexiyutfof-- PIR
protocols (e.g., the recent result of [8]) directly translates to improved robust PIR protocols. We also present a
generic transformation fromprivate k-out-of-k PIR protocols tg-privatek-out-of-¢ PIR protocols.

Our second result is a robust PIR protocol using the polynomial interpolation based PIR protocol of [5, 6,
13]. This protocol is &-out-of-¢ PIR protocol with communication complexity 6f(kn'/*¢log¢). That is,
the communication in this protocol is polynomial drand &, however its dependency onis worse than the
protocols that can be obtained via the generic transformation.

Our third protocol combines Shamir’s secret sharing scheme with the 2-server protocol of [13]. This results



in a 2-out-of-/ protocol with communication complexity @ (n!/?log ¢), that is, the same communication
complexity that can be achieved using the generic protocol. We present this protocol as it is a more direct
approach; we hope that this approach will be used in the future to construct more efficient protocols for larger
values ofk.

Finally, we extend our discussion to robust PIR protocols which can tolerate Byzantine servers. That is, we
require that the user can reconstruct the correct valug e¥en if the answers of some servers are maliciously
altered. We first show a generic transformation from robust PIR protocols to robust PIR protocols that tolerate
Byzantine servers. We next show that there exists a rdbuosit-of-¢ PIR protocol where the user can recon-
struct the correct value aof; as long as it receives at ledsanswers of which at mogt/3 are corrupted. The
communication complexity in the protocol@(kn'/L*/31¢10g ¢).

Organization. In Section 2 we provide the necessary definitions, in Section 3 we show generic transforma-
tions from PIR protocols to robust PIR protocols, in Section 4 we show a specific constructidnaftaof-/

robust PIR protocol, and in Section 5 we constru&-aut-of-¢ robust PIR protocol using Shamir’s secret
sharing scheme. Finally, in Section 6 we present robust PIR protocols tolerating Byzantine servers.

2 Preliminaries

We start with some notation. Bjk] we denote the seftl, ..., k}. Let GHgq) denote the finite field withy
elements, where is a prime-power. Given a vectdf, we denotd/[j] as thej-th coordinate of/.

2.1 PIR Protocols

We define 1-round information-theoretic PIR protocolst-Aut-of-¢ PIR protocol involveg serversSy, . .., Sy,
each holding the samebit stringx (the database), and a user who wants to retrieve s bit the database.

Definition 2.1 (Robust PIR) A k-out-of< PIR protocolP = (R, Q, A, C) consists of a probability distribu-

tion R and three algorithms: query algorithr@(-, -, -), answering algorithmA(-, -, -), and a reconstruction
algorithmC(-,-,...,-) (C hask + 3 arguments). At the beginning of the protocol, the user picks a random
string r according to the distributiorR. For j = 1,...,/, it computes a query; = Q(j,4,r) and sends it to
serverS;. Each server responds with an answgr= A(j, ¢;, ) (the answer is a function of the query and

the database; without loss of generality, the servers are deterministic). Finally, the user, upon receiving any
k answersa;,, ..., aj,, computes the bit; by applying the reconstruction algorith@(i, r, K, a;,, ..., a;,),
whereK = {ji,...,Jjr}. Ak-out-of£ protocol as above is &private robust PIR protocol, if it satisfies the
following requirements:

Correctness. The user always computes the correct value:ofrom anyk answers. Formally, for every
i € {1,...,n}, every random string, every sef = {ji,...,jx} C {1,...,¢} and every database € {0, 1}"
it holds that,C(i,r, K, A(j1, Q(j1,%,7),2), - - ., A(Jk, QUJk, 1, 7), 7)) = ;.

t-Privacy. Each collusion of up ta servers has no information about the bit that the user tries to re-
trieve: For every two indices;,i2 € {1,...,n} and for every{ji,...,5:} C {1,...,¢}, the distributions
(Q(41,11,7)y ..., Q(jt,01,7) : r € R) and(Q(j1,92,7), - .., Q(Jt, t2,7) : 7 € R) are identical.

We denotel -private k-out-of-¢ PIR protocol ask-out-of-( PIR protocols. The main difference between
the definition of PIR and robust PIR is in the correctness requirements. That is, the regular PIR protocols are
k-out-of-k robust PIR protocols.

Definition 2.2 (Communication Complexity) Given ak-out-of< PIR protocol, thecommunication per server
is the number of bits communicated between the user and any single server on a database ofiaxmized
over all choices oft € {0,1}",i € [n], and all random inputs. Th®tal communicatiorin the protocol is the
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number of bits communicated between the user and $eevers.The query complexitys the maximal number
of bits sent from the user to any single server, andath@ver complexitys the maximal number of answer bits
sent by any server.

2.2 Shamir's Secret-Sharing

Secret-sharing schemes are an important tool in the construction of several PIR protocols. See [7] for a discus-
sion on the role of secret sharing in PIR protocols. In general terms, a secret sharing scheme enables a user to
share a given secret amongsisers such that only subsets of at Ieagsers can reconstruct the secret, and

any subset of less thanusers gets no information on the secret. We next describe Shamir's secret sharing
scheme [25] which we use in our protocols.

Shamir's scheme [25]. Let F' be a finite field withg > ¢ elements, and let, . .., w, be distinct nonzero
elements ofF". In order to share a secrete F' using at-out-of-¢ sharing scheme, the dealer chooses
1 random elements,, ..., a;—1, which together with the secrstdefine a univariate polynomial(Y") gef
a1 Y+ a0V 2 + L. 4+ a1Y + s. Observe thap(0) = s. The share of the-th player isp(w;).
Each set of at least players can recoves(Y') by interpolation, and hence can also reconstruet p(0).
More formally, for every se{ji, ..., j:} there exist constants; , ..., «;, (independent 0p(Y") ands) where
aj, = Ilazn wj:)i‘fuj such thats = p(0) = >}, _; a;,p(w;,). On the other hand, every setof- 1 players
learns nothing om from their shares.

In the previous scheme we shared one element of the field; we extend this notion in the natural way to a
scheme for sharing of a vector of elements in the field. Given a véttfrlengthm, i.e.,V € F™ we define
the shares of the vector, denoted(y, . . ., V;), where each7j is a vector inf"™ as follows: For each element
Vla], wherel < a < m, the user executes Shamit'®ut-of-¢ secret sharing scheme independently over the
field F" producing/ sharess{, . . ., sj. We then define the vecto?j aS<s]1-, e ,s§”>, i.e., thej-th share out of
each set of shares.

3 Generic Transformations

In this section we present several generic transformations from PIR protocols to Robust PIR protocols.

3.1 A Replication Solution for 2-out-of-¢ Robust PIR

We start with a generic transformation from 2-out-of-2 PIR protocols to 2-0dtRIR protocols proving the
next theorem:

Theorem 3.1 If there is a 2-out-of-2 PIR protocol with communicati®iR»(n) per server, then there is a
2-out-of£ PIR protocol with communicatioRIRy(n) log ¢ per server.

Proof:  Let P be a 2-out-of-2 PIR protocol. Given the retrieval indgxhe user executes the given PIR
protocol P to producelog ¢ independent pairs of querig®):, ..., Qg ¢} for the retrieval ofz;, each pair
comprises of 2 queries, i.€); = (Q;[0], Q;[1]) whereQ;[a] is the query for server. Each serves,,...,S;
receives one query out of each pair of queries and answers this query. (We will describe the algorithm that
chooses one query out of each pair later.) The queries received by each server guarantees that if the user
receives correct answers from at least 2 servers then there exists aminslash that the user receives an
answer for the querie®,,[0] and@,,[1] and thus he can reconstruct the bijt(this is done independently of
the answers that the user receives or does not receive for the other queries).

We next explain which queries each server receives. Given a s&fyave look at the representation

bib),...b],, , of j as a binary number. The user sends the folloviing’ queries taS; — for eachl < a < log¢
send the querg),[b]] 0 S;, i.e., if b) = 0 send@,[0] and if»), = 1 sendQ,[1]. Each server, upon receiving

4



the queries, replies independently to each query according to the PIR protocol. Since we assume that at least
2 servers are reachable, the user will receive answers from at least 2 servers, say seamerservess;,
(j1 # j2)- The binary representations ¢f and j, differ in at least one bit; letn be the index of the first bit
that differs betweeri; and;j,, and without loss of generality/! = 0 andb/2 = 1. The user takes the answer
received from serves§;, for the queryQ,,[0] and the answer received from sengy for the queryQ,,[1] and
reconstruct the desired hit.

This scheme is secure since each server receives only one query out of each pair of queries and these pairs of
queries are independent. In this protocol each server redeiyégjueries and answers each one of them, thus
the complexity of the protocol is the number of queries multipliedbR2(n), i.e., the total communication is
O(PIR2(n)llog¥). 0

Plugging the PIR protocol of [13] we get:

Corollary 3.2 There exists &-out-of+ PIR protocol with total communication di(néflog 0).

3.2 A Generick-out-of-¢ Replication Solution

In this section we will generalize the solution presented in the previous section, and show a generic trans-
formation fromk-out-of-k PIR protocols tok-out-of-¢ PIR protocols. The idea is similar to the 2-outof-

PIR protocol; however we need to be more careful in partitioning the queries. For this purpose we recall the
following definition:

Definition 3.3 (Perfect hashing [21]) A perfect hash family, ;, = {hl, ceey hwl’k} is a family of functions

of the form:h, : {1,...,¢} — {1,...,k} such that for each subset C {1,...,¢},|A| = k, there exists an
indexa such thath,(A)| = k (that is, h, restricted toA is one-to-one and on-to). The size of the family is the
number of functions in the family, denoteduys,.

We have 3 parameters for a perfect hash family, £, andwy, .. The parameters and/ are part of the
specification of the problem. On the other hand, we woulddikg — the number of functions in the perfect
hash family — to be as small as possible, singg will directly affect our protocol’s complexity.

Theorem 3.4 If there exists a perfect hash famity ;. of sizew, ;, and if there exists &-out-of+% PIR protocol
with communicatio®IR(n) per server, then there existstaput-of PIR protocol with communicatiom, j, -
PIR(n) per server, thus total communicatién wy j, - PIR;(n).

Proof:  Given ak-out-of-k PIR protocolP we do the following. Giveri, the retrieval index, the user uses
to producew ; independent vectors of queri%é)l, e Qwe,k} for the retrieval ofz;, each vector comprises

of k queries, i.e.Q; = (Q;[1],...,Q;[k]), that s, the user executes ; times the protocoP independently
and the user holds the, ;, query vectors. Each server receives from the user one query out of each vector of
queries and answers this query. Since each server recgiyeRIR queries, which are completely independent,
the server gains no knowledge anWe show below how the user chooses which queries to send to each server.
This choice of queries received by each server guarantees that if the user receives answers frokrsatlemst
then it can reconstruat;.

Given a perfect hash familyd, ;, for each serve&; the user sends the following, ;. queries — for each
1 <a < wp, let A = hy(j), then the user sendy,[A] to S;, i.e., the user sends the-th query out of the
vector@,. In other words, the perfect hash family determines which queries we need to take from each vector
of queries)),. LetS;,, ..., S;, bek servers from which the user receives answers. By the definition of perfect
hashing, there is an indexsuch thath,({j1, ..., jx})| = k, i.e., the se{hy(j1), . . ., ha(Jjr)} IS @ permutation.
We consider the answefs), [hq(j1)], - - -, Qu[ha(jr)]} received from these servers to the following queries.
Since these queries are distinct, we hawnswers in &-out-of-k PIR protocol, and the user can reconstruct
x; from the answers received for these queries. O



The communication complexity of the above protocol depends on the size of the perfect hash family. The
explicit hash family of [26] has sizleg ¢ - 2°(%) (this is basically optimal [21]). Using the protocol of [13] and
the hash family of [26] we get:

Corollary 3.5 There is ak-out-of£ protocol with total communicatioﬁo(’“)nﬁﬁlog L.

Applying the protocol of [8] and the hash family of [26] we get:

2loglogk
klo

Corollary 3.6 There is ak-out-of<£ protocol with total communicatiopO*)p, Floe k Llogl.

We use the same approach taken in Theorem 3.4, only this time, instead of using “régolardf-k PIR
protocol, we use &privatek-out-of-k PIR protocol to produce the, ;, independent query vectors.

Theorem 3.7 If there is a perfect hash famil§/, ;. of sizew, ;, and if there is a&-privatek-out-of+% PIR protocol
with communicatio®IRy .(n) per server, then there istaprivate k-out-of-£ PIR protocol with communication
wy i, - PIRy ¢+(n) per server, thus total communicatién wy j, - PIR +(n).

Applying the protocol of [7] and the hash family of [26] we get:

Corollary 3.8 There is a-privatek-out-of+ protocol with total communicatio@ (¢-log £-20 ). 1/L2k=1)/t]),

3.3 A Generalized Transformation

We now show a generalization of the previous transformation, where our goal is to reduce the dependency on
k. As seen in [21] the size of every perfect hash fantily;, is at least”, thus, we first generalize the notion
of perfect hashing.

) W ko
he : {1,...,0} — {1,..., |ak]} such that for each subset C {1,...,¢},|A| = k, there exists an index
such thath,(A)| = |ak].

Definition 3.9 An a-perfect hash familyd, ;. , = {hl, N} } (wherea < 1) is a family of functions

Note that whemy = 1 we get the standard definition of a perfect hash family. We now show how to use the
a-perfect hash family in the construction kfout-of-¢ PIR protocols.

Theorem 3.10 If there is ana-perfect hash familydy, , , of sizew, ;. and if there is an| ok |-out-of- ok |
PIR protocol with communicatio®IR |, (n) per server, then there existsiaout-of£ PIR protocol with
communicationu k. o - PIR |4k (n) per server, thus total communicatién wy i o - PIR |4 (7).

Proof:  This proof is similar to the one shown in Theorem 3.4, only this time we ugevafn-out-of-| ak |

PIR protocol and an-perfect hash family. Le§;,, ..., S;, bek servers from which the user receives answers.
Using thea-perfect hash property, letbe an index such that, ({ji, ..., jx})| = |ak]. This means that the
user hag ak | distinct answers of apak | -out-of-| ak | PIR protocol, and the user can reconstrtictrom the
answers received for these queries. O

In the last proof we used, as our building block to construetat-of-¢ PIR protocol, arj ak |-out-of-| ak |
PIR protocol (as opposed to Theorem 3.4 where we ugedwt-of-k£ PIR protocol). Since the communication
complexity of PIR protocols decrease fagjets bigger and since we are using< 1 then we will get a less
efficient PIR protocol in its dependency anour hope is thatv, ;. , is considerably smaller thus the dependency
on k will be better. Fore = 1/In k& we get a family whose size is small.

klogt

Claim 3.11 There exists ar;-perfect hash family of siz@ (5 ;757)-



Proof: ~ We will prove the claim using a probabilistic proof. As a first step lets consider a specific subset
A C{1,...,4},]|A| = k, one hash function chosen at random from the space of functions fidm .., ¢}
to{1,...,|ak]}, andoneindex € {1,..., |ak|}. We now look at the probability

Iﬂw@Mﬁ¢q=(mﬂélf3((b};f3é<a£:;

The last equality is true sinee = ﬁ By the union bound we conclude that

1

. 1
Pr[ |h(A)| < |ak] ] =Pr[3Vjea h(j) # c] < |ak] % <a= E 1)
As the next step we choose j, , hash functions independently from the space of functions from. . , ¢} to

{1,..., ak]}. Thus for a fixed setl we get

1 Wy ko
Pr[VlgaSwz,k,a |ha(A)| < {Oxk‘J ] < (lnk‘) .

Therefore,

Pr| 3 v ha(A k O ()" < LY

Baiais Yoz Bl < Lok < () (7)< (ng) -

If E’“(ﬁ)wmva < 1, then choosing at randomy ;. , hash functions, the probability that this family of hash
functions is not anv-perfect hash family is smaller then 1, i.e., there existevgrerfect hash family of size

Wy k.o Thus, it suffices that < (Ink)¥eke, i.e.,wppq > lfglffggk. O

In the above analysis, Inequality (1) could have been derived from the so-called coupon collector problem,
see, e.g., [22, pages 57-63]. The analysis of the coupon collector problem implies that if we tr)/attztahll%%
then for a givenA of sizek the probability thath(A)| = |ak| would be exponentially small, thus the size of
family we would construct using the above proof would be exponentiil in

With the current state of the art of PIR protocols we cannot describe a more efficient transformation to robust
PIR protocol using th@nl—k-perfect hash family. If, for example, there exists a PIR protocol with communication

poly(k) OGzr) then we will get a robust protocol with communication complexity of pbly) .n3%. Notice
that the recent PIR protocols [8] are close to these requirements (however, they are not polynkmial in

4 A k-out-of-¢ Polynomial Interpolation based PIR Protocol

In this section we construct gout-of-¢ PIR protocol which uses the polynomial interpolation based PIR
Protocol of [5, 6, 13]. We start with a technical lemma, and then present the protocol.

Lemma 4.1 Letd andm be integers such that = Q(d-ni). Thereis a functio® : {1,...,n} — {0,1}™
and anm-variant degreel polynomial P, such that in every fiel®,(E(i)) = x; for eachl <i <n.

Proof: Let E(1),..., E(n) ben distinct binary vectors of lengtm and weightd, let £ (i), be thea-th bit
of E(i) and defineP, (21, . .., Zm) £ Yiy @i [ pgy,—1 Za- O

Lemma 4.2 There exists &-out-of¢ PIR protocol with query complexit@(lmﬁ log ¢) and answer com-
plexity O(log ¢) per server.



Proof: Letd = k — 1 andP, andE be as promised in Lemma 4.1. Given the retrieval infleke user
does the following: Calculates the vect®(i) = (yi,...ym), Wherey; is the j-th bit of E(:). Now the user
uses Shamir's 2-out-af-scheme [25], over a finite field witt?(¢) elements, to sharg(i). That is, it chooses
at randomm polynomials{p1,...,pn} (each of degree 1) such that(0) = y, for eachl < a < m. Let
wi, - . . ,wy be distinct nonzero elements of the field, the user sends to sgrtlee sharesp (w;), . .., pm(w;)).

We now consider the following univariate polynomi&(Y) = P,(p1(Y),...,pm(Y)); the degree of this
polynomial isd sinceR is constructed from the polynomi&l,, whose degree i$, by replacing each variabl€;
with a degreel polynomial. Given these definition&(0) = Py (p1(0),...,pm(0)) = Pe(y1,- .-, Ym) = ;.
Furthermore, the servef; can computeR(w;) without knowingR sinceR(w;) = Py(p1(wj), ..., pm(w;))
and sincgpi (wj), - .., pm(wj)) are the shares that serv@y receives from the user. ThuS; computesk(w;)
and sends it to the user.

The user upon receiving any answersR(wj, ), ..., R(w;,) (from k different servers) reconstructs the
polynomial R by interpolation (since the user hagoints on a polynomial of degrek= k — 1) and computes

ServerS; does not gain any information arsinceS; receives one share of the seckt) in a 2-out-of-
secret sharing scheme. Thus, the protocol is private. The usensestdges to each server, each share is of size
O(log ¢). Each server sends an answer of len@ffog ¢) and thus the total communication@m/¢log ¢) =

O(kn™1(log 0). 0

In the above protocol, the answer complexity is larger than the query complexity. We will balance these
complexities using the balancing technique of [13], yielding the following theorem:

Theorem 4.3 There exists &-out-of+ PIR protocol with total communicatio@(kniﬁlog ?).

Proof:  This communication complexity is achieved by balancing the complexities of the queries and answers
of the protocol described in Lemma 4.2, i.e., reducing the query complexity and increasing the answer com-
plexity. This is done by looking at the database as a matrix ofs{ng x % wherea(n) will be determined

later. We consider each indé»as a cell(i1, i2) whereiy, iy is the natural mapping afaccording to the size
of the matrix. To achieve the balancing, the user executes the above PIR protocol with retrieva} iadex
database of siza(n). Each server considers each row of the matrix as a database of(sigeand sends the
answer to the query it gets for each row. The user then takes the answers that it got for themnowecon-
structsz;, 4,. The user sends one query to each server with database ef(sizethus the query complexity

is O(log ¢ - ka(n)ﬁ) per server. Each server sends one answer per row, each answer is ofd¢hgth);
thus, the answer complexity Isg ¢ - —*~ per server. To minimize the total communication complexity we

a(n)

require:log - 7~ = logfka(n)ﬁ. Takinga(n) = O(n%), yields a protocol with total communication

a(n)

O(kn*log (). O
A similar construction works fot-private robust protocols.

Lemma 4.4 There exists &-private k-out-of{ PIR protocol with query complexit@(énukfm/ﬂ log ¢) and
answer complexity aD(log ¢) per server.
k—1

Proof: Letd = {TJ m = ©(dn4), and P, and E be as promised in Lemma 4.1. The protocol we

construct is similar to the protocol described in the proof of Lemma 4.2 with the following differences: In
the ¢-private protocol the user uses Shamifs+ 1)-out-of- scheme, that is, the degree of the polynomials
p1,-..,pm IS t. Thus, the degree aR is dt = L%J -t < k — 1. The user, upon receiving answers
R(wj,), ..., R(wj,) (from k different servers), reconstructs the polynonfiaby interpolation (since the user
hask points on a polynomial of degrée— 1) and compute®(0) = x;.

Next we analyze the properties of the protocol. A coalition sérvers does not gain any informationn
since the user uses Shamifis+ 1)-out-of-¢ secret sharing scheme. Thus, the protocélpsivate. As for the
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communication, the user sendsshares to each server, each share is of Gideg ¢). Each server sends an
1
answer of lengtt (log ¢) thus the query complexity i©(m log ¢) = O(%n [&=1)/t] log £) per server. O

Theorem 4.5 There is at-private k-out-of PIR protocol with total communication
O (’:nukﬁ/wmog z) =0 (]znt/’% log z) .

Proof:  We use here the same technique described in Theorem 4.3. The query complé)eﬂft%/ldgé .
a(n) L(kflwﬂ) per server. Each server sendsa(n) answers each of lengtlog ¢, thus in order to mini-

1

mize the total communication complexity we requiteg ¢ - o = %logf - a(n) =D/, Takinga(n) =
omL%J/(L%HD), yields a protocol with the desired communication complexity. O

5 A Robust PIR Protocols Using Shamir’'s Secret Sharing

In this section we show how one can use Shamir’s secret sharing in order to produce robust PIR protocols. We
first construct &-out-of-¢ PIR protocol with total communication complexity 6f(n¢log¢). This protocol
is just a “warmup” (because the result is trivial), however, the ideas of this protocol are used to construct a
2-out-of+ protocol whose complexity i€ (n'/3¢1og ().

Given the retrieval index, the user computes the vectdis, . . ., V;) — the shares of Shamir’s scheme (as
described in Section 2.2) over GE°¢¢1) of the unit vector; of lengthn, and send¥; to serverS; for each

—

1 < j < £. ServerS;, upon receiving’;, sends back to the user the following scalar multiplication V; - ,

i.e., the server computes the scalar product of the database and theﬁgeamdrsends the result to the user.
The user upon receivinganswers;,, . . ., a;, uses the appropriate constants, . . ., o;, (see Section 2.2)
to perform the following computation (in the following proof all additions and multiplications are done in the
GF(2Mls*T)):
k k . k .
Z Qi Ay, = Z O‘jh(th ) f) = (Z ajh‘/jh) =€ T =
h=1 h=1 h=1

Thus, the user can reconstrugtfrom anyk answers.

We now present a more efficient protocol that uses the above ideas combined with the 2-server protocol
of [13]. This2-out-of-¢ protocol works with total communication 6i(n!/3¢log ¢). Lets first recall the proto-
cols presented by [13]:

ORIGINAL PROTOCOL (VARIANT OF [13]). Letn = m? for somem, and consider the database a8-a
dimensional cube, i.e., evelye [n] is represented a&1,is,i3) wherei, € [n!/?] for r = 1,2,3. This is
done using the natural mapping frof, 1} to ({0, 1}”1/3)3. In Figure 1 we describe the protocol. It can be
checked that each bit, except for, ;, .., appears an even number of times in the exclusive-or the user computes
in Step 3, thus cancels itself. Therefore, the user outputs ;, as required. Furthermore, the communication
is O(n!/3).

We can look atd? = AL ¢ &;_andA?! as two shares in a 2-out-of-2 sharing scheme of the unit végtor
We use a similar approach to construct a robust protocol. There is one difference — we will use Shamir’s 2-out-
of-¢ secret sharing scheme in order to share the unit végtpthese shares are used to generate the queries for
the protocol.

We next define some notation concerning cubes. This notation is helpful in describing the next protocols.



The Two Server Protocol of [13]

1. The user selects three random vectd}sAL, AL € {0,1}™, and computes
A2 = Algeé forr=1,2,3.

The user sendd?, A7, Ag toS; forj =1,2.

2. ServerS; computes for every € [n!/?]

def

def 7 j el
a2 b= A Ty p - Az and

al b= A @pan - A
] def 17
a3 b= A] Ton s+ A

and sends than'/? bits {ai’b cre{l,2,3},be [n1/3]} to the user.

3. The user output®, _; » 3(a, ;. ®az; ).

Figure 1: The two server protocol of [13] with communicatiofn /).

Definition 5.1 Letz = ({0,1}™)? be a three dimensional cube. We denotg, . as the matrix of all the ele-
ments ofc where the first index of this elementjis Formally, we define ;, . . as the matrix4d whereA4;, ;, =
Tj, i1 40~ We definer, ;, . andx, . ;, similarly. We denote;, ;, . as the vector obtained from the 3-dimensional
cubez by taking all the elements afwhere the first index of this elementjisand the second ig,. Formally,
we definez;, j, . as the vectodd whered;, = z;, j, ;. We definer, j, ;, andz;, . j, similarly.

Theorem 5.2 There exists &-out-of4 PIR protocol with total communication 6f(n'/3¢1log ¢).

Proof:  In this proof we consider the databasas a 3-dimensional cube and use Shamir’'s 2-outs#eret
sharing scheme to construct our queries:

Given ¢ and the retrieval index = (i1, o, i3), the user computes the vect(ly, ..., U,), the vector
(Vi,...,Vp), and the vectotWWy, ..., W) as the shares in a Shamir’s 2-outédecheme of the unit vectat ,

the unit vectoré;,, and the unit vecto#;, respectively. The user sends the quEry V;, W; to serverS; for
eachl <j </ .

ServerS; upon receiving’;, V;, W; sends back to the user the followiig!/3 numbers: For each <
a < n'/3 the server sends to the user: The set of numbg&ts #, .. .- W; , the set of numbersg; -z, , .- W,
and the set of numbers; - . ., - V;, i.e., each number the server sends is a result of multiplications of a
two-dimensional matrix produced from the cube with the vectors sent by the user. As in the regular 2-out-of-2
scheme the user takes one element out of each set of answers: The user upon receiving answers from 2 servers
r andq considers the following 6 numbers:

‘77" C Ly ke Wr; [77" * L jig,* er (_jr * Lk iz * vra vq * Ly wx I/T'/vq> ﬁq * L jig,* an (_jq * LTk x iz * vq'
The following claim is similar to the fact that in the protocol of [13] the user reconstructs the corregt bit
Claim 5.3 There exists a linear combination of these 6 numbers that computes to the desirgd,hit.

Proof: In our proof we use the constants from Shamir’'s schemenda, (see Section 2.2), these two

constants are independent of the answers received from the seersotel/ £ .U, andU £ o,U,. We

The constants.,. anda,, depend both om andg, which means that the servers themselves cannot compute them since the servers
do not know in advance which of the servers will send an answer to the user.
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denoteM?/, IX/ andX;', X; similarly. Thus,
UtU=2, V+V=3c, andW + W = é,. )

Notice thatV - z;, .. - W = (ar)2(V, Ty ek W,). In our computation we multiply each of the first three
numbers byx? and each of the last three number&igyand consider the following combination:

—

s = &xll**ﬁ/+ﬁx*22*ﬁ/+ﬁx**zg‘/
+&le**ﬁ/+l}x*12*ﬁ/+[}w**13‘;
We use the fact that in GE 1"g“) the sum of every number W|th itself is zero, so we add the number
V Ty s " Wt\Nlce the numbet/ - T g 5 ° WtW|ce and the numbeﬂf T iz * Vt\Nlce and get:
S = V. Tign WV i WA U 2agy W Uiy - W
+U T xig V+U Tsxis V+V Ty 5 ° W+V Ty ex V{/
+ U-x*,z‘2,* : W—i—U-x*,w,* W+ U~m*,*,ig Vot U~$*,*,i3 v
= (‘;4—\7)-xil,*,*-l/f/+(7-m*,¢2,*'(VF/+V'F/)
+((}+5)-x**¢5-§+ ‘.}"l’il,**'(ﬁ}ﬁ-ﬁ/)
(O +0)- Tai Wt U 2y - (V4 V)
= €y Tiy W+U T ig, 5 Cig
+é}1‘LU*,*,Z‘;,‘V+V'xi17*,*'5i;;
-I-é}'l'x*,i2,*'ﬁ/+ﬁ'w*,*,i3'5i2-

The last equality follows (2). Notice tha}, - i, «« = €i; - Tuinx = Tiyin,» and similarlyz, ;, . - €, =
T nsin " Cio = T in,in ANOT;, 4 - iy = €51 T 445 = Tiy x4, (MUltiplication from the right replaces the rightmost
x and multiplication from the left replaces the leftme¥tthus we get:

S = Liy yig,* (W + W) + (U + U) Tjin,ig T Tiyx,ig ° (V + V)
= Liyigx - €iz + €3, “ iz T Tighig ° €iy = Tiyinyiz T Tirsinss T Titjinsis = Liyio,is-
O
We now provide the proof of the protocol’s privacy and its communication complexity analysis. Each server
gets one share of Shamir's 2-outfscheme. Since Shamir's scheme is secure each server cannot gain any

information about from the share it received, and the protocol is secure. Each server sends and fecéives
elements of GR2/°2¢1) and thus the total communication@n'/?¢1og ¢). O

6 Dealing with Byzantine Servers

In previous sections we assumed that servers can crash, however they cannot reply with wrong answers. We
next show solutions for the robust PIR problem tolerating some Byzantine servers, that is, some servers might
be malicious servers or have a corrupted or obsolete database, these servers can return any answer to the user’s
query. The user needs to be prepared for wrong answers from the servers and still reconstruct the right value of
the desired bit;.

Definition 6.1 (Byzantine-Robust PIR) A b Byzantine-robusk-out-of4 PIR protocolP = (R, Q, A,C) is
defined as in Definition 2.1 where the correctness requirement is replaced by the following requirement:

11



Correctness. The user always computes the correct value;dfom anyk answers, of which at leagt—b are
correct. Formally, for every € {1, ...,n}, every random string, every seik = {ji,...,jx} C {1,..., ¢}, ev-
ery database: € {0,1}", and evenyk answers{ay, . .., ax} such that {a,, : aw, = A(jw, Qw,?,7),z)} | >
k — b, we getthatC(i,r, K, ay,...,ar) = ;.

The correctness holds even if the Byzantine servers cooperate. For the privacy we assume that the Byzantine
servers do not cooperate. (Later on we will show what can be done when we discard this assumption.) Note
that since we are talking about one-round PIR protocols then the definition is simple. For example, Byzantine
servers will not learn any new information as a result of sending wrong answers.

The first observation is that if the server receives answers frearvers, then, to enable the user to recon-
struct the correct value af;, more than half of the answers must be correct. This condition is also sufficient as
shown by the following trivial protocol: Each server sends the entire database to the userk @nssmers, out
of which less thark /2 are Byzantine, the user takes the value:pivhich appears at leasy/2 times.

Next we show a generic transformation from robust protocols to robust protocols that tolerate Byzantine
servers.

Theorem 6.2 Leta be a parameter wheré < a < k, and assume there is anout-of< robust PIR protocol
with total communicatio®IR’ (n), then there exists @& — a)/2 Byzantine-robust-out-of+ PIR protocol with
total communicatioPIRY (n).

Proof:  The user and the servers executenamut-of-¢ robust PIR protocol. Assume that the user receives
answers from a sdb of servers of size at least Now, for each subset of sizeof B, the user reconstructs
(recall that the user can reconstrugtfrom anya answers). The user finds a maximal sub$et B such that

for every subset ofi of sizea the user reconstructs the same value;pfind outputs this value as.

We next prove that the user reconstructs the correct valug &ince there are at moSt — a) /2 Byzantine
servers and the size &f is at leask, there are at leagt— (k — a)/2 = (k+a)/2 honest servers iB; for every
subset of the honest servers of sizéhe user reconstructs the correct valuecpf Hence,|A| > (k + a)/2.
Since there are at moét — a)/2 Byzantine servers, the sdtcontains at leastk + a)/2 — (k — a)/2 = a
honest servers, therefore the valuergfreconstructed for this set (and any other subset)ofs the correct
value ofz;. O

In the previous protocol the user is required to reconstrpfcir (’;) sets. We now show a construction which
overcomes this problem, this iskaout-of-¢ robust PIR protocol in which at mo&t/3 servers are Byzantine.
Note that in the following protocol the communication complexity is worse than in the generic protocol.

Theorem 6.3 There is & Byzantine-robust-out-of< PIR protocol with total communicatiof(kn'/[¥/3) ¢ 1og ¢).

Proof:  We use the k/3]-out-of-£ protocol described in Section 4. In this protocol, the answers of the honest
servers are points on a univariate polynomfiavhose degreék /3] — 1. The user needs to interpolate the
polynomial R from the answers of the servers. Since some of the servers are Byzantine, not all of the answers
are points omR. Nevertheless, we now show that the user can still recongirastit is the only polynomial on
which at Ieas% of the points (answers) reside.

We know that at leasf2k /3] of the servers are not Byzantine, thus all of these servers send points on
R. Next, we show that at mo&t| k/3| — 1 points from the answers lie on a polynomialof degree at most
|k/3] — 1 which is notR: SinceB and R are different polynomials of degree at mgét/3| — 1, they can
have at mostk/3] — 1 common points. Since the honest servers send poinis ¢imey can contribute at most
|k/3] — 1 points onB. Furthermore, the Byzantine parties can contribute at ig&t| points onB, thus we
getatmose |k/3] — 1 < [2k/3] points that lie onB.

The user has to finf2k /3| points which reside on a polynomial of degree at mast3| — 1 (i.e., onR)
and use this polynomial to reconstrugt The user does this task using the decoding algorithm of the Reed-
Solomon error correcting codes [24]. (For more information on error-correcting codes the reader can refer
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to, e.g., [20].) The communication complexity of the above protocol is the communication complexity of the
| k/3]-out-of-£ protocol described in Section 4, i.€(kn'/l¥/3]¢10g ). O

Since we consider Byzantine servers, the assumption that they do not cooperate is questionable, thus it
might be more reasonable to considgurivate robust PIR protocols in the presence @yzantine servers.
That is, robust PIR protocol where the privacy holds evéri/zantine servers cooperate. We next show two
corollaries where we allow the Byzantine servers to cooperate.

Corollary 6.4 Leta be a parameter wheré/3 < a < k, and defineb = (k — a)/2. Assume there is a
b-private a-out-of robust PIR protocol with total communicatid?iIRfL,b(n), then there exists &private b

Byzantine-robust-out-of+/ PIR protocol with total communicatioPlIRﬁyb(n).

The idea is to use the same approach seen in Theorem 6.2, but vjthvate a-out-of-¢ PIR protocol.
Notice thatb-private a-out-of-£ PIR protocol with sub-linear communication exists only: if> b, thus we get
a>k/3.

Corollary 6.5 There is at-private ¢ Byzantine-robusk-out-of{ PIR protocol (wheret < k/3) with total
1
communicatiorO (£ n TF=173 ¢ log £).

The idea is to use theprivate | k/3|-out-of- protocol described in Lemma 4.4 in the same way as in
Theorem 6.3.
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