
Blending different latency traffic
with alpha-mixing

Roger Dingledine1, Andrei Serjantov2, and Paul Syverson3

1 The Free Haven Project (arma@freehaven.net)
2 The Free Haven Project (aas23@freehaven.net)

3 Naval Research Laboratory (syverson@itd.nrl.navy.mil)

Abstract. Currently fielded anonymous communication systems either
introduce too much delay and thus have few users and little security,
or have many users but too little delay to provide protection against
large attackers. By combining the user bases into the same network, and
ensuring that all traffic is mixed together, we hope to lower delay and
improve anonymity for both sets of users.

Alpha-mixing is an approach that can be added to traditional batching
strategies to let senders specify for each message whether they prefer
security or speed. Here we describe how to add alpha-mixing to various
mix designs, and show that mix networks with this feature can provide
increased anonymity for all senders in the network. Along the way we
encounter subtle issues to do with the attacker’s knowledge of the security
parameters of the users.

1 Introduction

Anonymous communication systems today don’t provide much protection against
a large attacker. Tor [11] and JAP [3] have hundreds of thousands of concur-
rent users, but their low latency and low overhead mean they do not defend
against an adversary who observes most of the network. At the other end of the
spectrum, Mixminion’s design [5] theoretically provides strong security against a
global attacker by adding high variance in latency, but this latency has crippled
adoption — which in turn decreases the security that the network can provide,
discouraging even the users who need high security [2, 10].

Here we design a hybrid mix batching strategy that combines users with
different anonymity and performance goals into the same network.

In our scheme each sender communicates an α – a security parameter – to
each mix along the route of her message. The time the message spends inside
each mix (and hence the anonymity it accumulates) then depends on the size of
this security parameter. The message’s α value at each mix decrements based
on certain events, and when it reaches zero it is reintegrated back into the mix
network. Our scheme can be combined with any of the standard mix types such
as timed mixes, pool mixes, etc. [14] to give each sender more control over the
anonymity/performance tradeoff of her message.

Users that desire better anonymity then have the opportunity to obtain it by
increasing α for their messages. More importantly, there is a network effect: when
the attacker knows little about the security parameters chosen by individual
users, all senders will benefit because of the mere possibility that they chose a
higher α.

In this paper we start by outlining some simple alpha-mix designs and analysing
the anonymity properties they can provide to users with different security pref-
erences. Next we look at the strategies users should follow when picking the
security parameter for each mix in the message’s path. In Section 5, we look
at the incentives users have for choosing a high security parameter themselves
rather than expecting others to take the latency penalty (and thus provide more
anonymity to everyone). Lastly we consider more sophisticated alpha-mixing
strategies which should provide better properties but are hard to analyse.

2 Deterministic-alpha mix

While threshold mixes fire only when a sufficient number of messages have ar-
rived, timed mixes simply fire at regular intervals. Timed mixes may be appro-
priate for traffic for which timeliness matters, since with threshold mixes the
time until the next firing is unpredictable without assumptions about the rate of
incoming messages. On the other hand, threshold mixes can provide minimum
anonymity properties.

“Deterministic” here refers to the algorithm by which messages change α
after each mix firing. Later we will consider algorithms that will change alpha
probabilistically, for example based on the number of messages with certain
alpha values in the mix. In this section, all messages simply drop one alpha level
after each mix firing.

Timed deterministic-alpha mix: The mix fires every t seconds. All messages for
which α = 0 are sent out.1 All remaining messages have their α decremented by
one. New messages that arrive before the next firing are buffered based on their
initial α and are placed at the according α level.

Threshold deterministic-alpha mix: This is the same as the timed version, except
that the mix fires when at least a threshold n of messages with α = 0 are in
the mix. Note that since the number of messages with α = 1 may be above
the firing threshold, some batches may include more than n messages. (When
many messages with α > 0 are waiting in a mix before a threshold number
of α = 0 accumulate, this is analogous to the situation where many mixes in a
free-route threshold-mix net are waiting and nearly full while messages are being
accumulated at relatively empty mixes.)

1 We do not describe the reordering of messages or changing of their appearance in
this paper. We assume that messages emerging from a mix have an appearance that
cannot be correlated with their appearance upon entering the mix and that the order
of all α = 0 messages is randomly permuted before they are sent.

As we will see, one of the virtues of alpha mixing is that the timed/threshold
distinction for mixes can blur, and it becomes more a distinction for firing strate-
gies of individual messages than of mixes. For our initial analysis we will assume
a steady-state network with constant rate of incoming messages, which means
against a passive adversary the anonymity properties are equivalent.

It is also possible to have a threshold-or-timed alpha mix in which all mes-
sages are decremented in the alpha stack if either t seconds have passed or n
messages have arrived. Similarly, one can have a threshold-and-timed alpha mix
to reduce the effective rate of flooding attacks [14]. Even more complex variants
of these designs are discussed in Section 6.

2.1 Deterministic-alpha mix:
anonymity against a local passive adversary

Here we describe the anonymity for a threshold alpha mix during steady-state
(i.e., messages arrive with various alphas at a regular rate, and the mix fires at
regular intervals).

We assume the adversary does not know the specific alpha of any message
entering the mix, e.g., that this is provided to the mix encrypted together with
the message. However, we do allow that the adversary might know the strat-
egy by which alpha was chosen; we examine this issue further in Section 2.2.
What should that strategy be? It would seem that choosing higher alphas would
correspond to greater anonymity for messages. We now make this more precise.

Claim. Given any set of other messages in a threshold deterministic-alpha mix,
a message has greater anonymity if it is assigned an alpha from a broader range
(chosen uniformly) than from a narrower range.

Proof. Suppose messages occur with some distribution of alphas in a mix with
firing threshold n. A sender will assign to message M an initial αM for a par-
ticular mix in a given position in the message’s path. Suppose the adversary
knows the strategy chosen by the sender. Assume the choice of strategies are
between choosing αM from either a range of 0 to j or a range of 0 to k > j.
The anonymity set size increases by n(k − j) if the broader range is chosen.
(In information-theoretic terms, the entropy has increased by log(n(k − j).) If
the adversary does not know the strategy, then we cannot put a precise number
on his uncertainty. However, the less predictable the range is to the adversary,
the greater the uncertainty is, even if we cannot say how much. She can either
guess too small a range and risk not seeing the output message at all, or guess
too large and include many additional batches in the anonymity set for the mes-
sage. (These points carry over mutatis mutandis when we reason probabilistically
rather than just possibilistically.)

If the adversary does know the strategy (although still not the actual α) for
each incoming message, then the anonymity of M is less affected by the strategy
that other messages use for choosing α in a steady-state network. However, if

the strategies are not known, then choosing α from a broader range increases the
anonymity for other messages in the mix as well, although it is difficult to say
by how much. If the distribution of strategies across all messages in the mix at
any time is known to the adversary, however, then it is clear that increasing the
range from which α is chosen for any unknown one of those messages increases
the uncertainty about the future batch in which any of the messages still in the
mix will emerge. Thus,

Claim. Assume a set of messages in a steady-state deterministic-alpha mix. As-
sume the αM for any message M is chosen uniformly at random from the range
given by 0 ≤ αM ≤ kM . Then anonymity increases for every message M in the
mix if any kM ′ increases.

The key is not that a high α necessarily provides better security, but rather
that when the variance of our α is high, its value within the range is hard for
the attacker to predict.

In summary, for threshold mixes or steady-state timed mixes, choosing α from
a broader range improves the anonymity for that message whether the adversary
knows one’s strategy or not. Further, if the adversary knows nothing about the
strategies of choosing alphas or knows simply the distribution of strategies, then
increasing the α-range for any message improves anonymity for all messages.

2.2 Attacker knowledge

In the previous section we noted that the anonymity properties provided by
alpha mixes depend on what the attacker knows about the security parameters
of the users. Specifically, while choosing from a wider range of alphas improves
anonymity, an attacker can reduce anonymity if he has information about which
alphas are chosen. We illustrate this on a simple example.

Consider sender anonymity in the setting of just one mix, illustrated on two
rounds only (equivalently, suppose maximum alpha is 1):

Round 1: I1 = i1,1 . . . im,1 entered the mix, messages o1,1 . . . ox,1 came out.
Round 2: I2 = i1,2 . . . in,2 entered, messages o1,2 . . . oy,2 came out.
Let α(x) be the set of possible alphas of message x as known by the attacker.

Note that if the attacker knows nothing, then ∀x, α(x) = {0, 1}.
Our target message is o1,2. The sender anonymity set (in messages) is:

{x|x ∈ I1 ∧ 1 ∈ α(x)} ∪ {y|y ∈ I2 ∧ 0 ∈ α(y)}
Hence (almost) any knowledge of alphas by the attacker degrades anonymity.

Note that complete knowledge of alphas by the attacker may leave the message
with no anonymity; however, this is extremely unlikely (or amounts to a rather
expensive variant of the trickle attack).

Indeed, when analysing alpha mixes we need not constrain ourselves to rea-
soning about anonymity sets. We now compute the anonymity probability dis-
tribution, but first we need a little more formalization of the assumptions. Es-
sentially, where we allowed the attacker possibilistic knowledge about the alphas
of the messages, we now allow him (better) probabilistic knowledge.

Notation: call αM the alpha in message M . Hence the attacker knows the
probability distributions P (αM = a) for every message M with a ranging from
0 to amax.

Now, the anonymity probability distribution:

Normalise({p|M ∈ I1 ∧ p = P (αM = 0)} ∪ {p|M ∈ I2 ∧ p = P (αM = 1)})

and the anonymity is the entropy of this distribution. Clearly, the more the
attacker knows about alpha, the lower the anonymity.

2.3 Correlating message content with requested security

Now let us study an interesting example which has long been known intuitively...
Suppose the attacker knows that sender S only sends with a high security pa-
rameter (let’s say alpha of 5). He now sees a message from sender S at round 0,
and a message detailing Enron’s finances emerges at round 5. Suppose further
that all other messages have an alpha of 0. Our above definitions give the target
message the anonymity set of all the senders of round 5 union S. Nevertheless,
we conjecture the attacker will tend to suspect that S sent the message. How
can we reconcile the intuition of the attacker with our formalism above and how
can we design the system to avoid such a judgement?

The attacker is likely to be correct — what we ignore here is the fact that
the choice of the security parameter is likely conditional on the importance
of the message and the attacker has used this fact to form his judgement. In
order to avoid this, we must (paradoxically!) ignore this fact completely and
pick alphas from a distribution which is independent of the receiver and the
message’s content. Of course, we cannot defeat this attack entirely because the
sender’s distribution will still be conditional on her utility function: messages
from users with higher security needs will in fact still behave differently.

There are still external factors to consider. We’d like to go a step further and
make the sender’s software enforce that she doesn’t vary alpha based on each
message’s receiver or content. This approach would best convince the attacker
that the sender could not have changed it. Also, if a given user is the only sender
with extremely high alpha values, then intersection attacks over time (watching
the high-value messages and what senders were active before each) will reveal
her [4, 13]. But we will ignore these black-box network attacks since they are not
the focus of this paper.

Below we will see that some strategies for choosing the alpha values are
more effective than others at preventing the attacker from learning the security
preferences of senders.

3 Allocating
∑

α against a distributed adversary

In the previous section we discussed the fact that an adversary who can learn
about the sender’s alphas can weaken her anonymity. For example, sending only

high value messages and picking high security parameters for them can actually
decrease anonymity.

In this section we examine an attack that a compromised mix can perform to
deduce the sender’s alphas, and we deal with the problem of allocating the overall
message’s security parameter Σα over the mixes in the message’s path. There are
two problems to solve. Firstly, if a bad mix observes one of the alphas, it should
get as little information as possible about the other alphas of this message.2

Secondly, it should be hard for the bad mixes to link any alpha parameter to
a particular sender, i.e. figure out how much any sender is concerned about
security.

One possible solution for picking a sequence of α(i) (where the “(i)” repre-
sents the ith mix in the route) is simply to pick from a uniform distribution over
the partitions of Σα into ` buckets where the buckets themselves are indistin-
guishable. The number of such partitions are given by

∑̀
k=1

Q(Σα, k)

where Q denotes the number of ways of partitioning Σα into exactly k distinct
parts. Generating values from such a distribution is possible, for instance, using
the algorithm described in [7]. This seems to deal with the first problem (the
analysis to show this is beyond the scope of this paper). For the second part,
it depends what the sender wants to protect: does she care about having an
estimate of the security parameter associated with just herself, with herself and
the recipient, or just the recipient? Note that if the first and the last mixes are
bad and can observe a “higher security” message passing through each of them,
they can conjecture that it is one of a relatively small set of sensitive messages.
There are a variety of properties to explore in this area; we merely observe
that by reordering the value that we obtain from the uniform distribution over
partitions, we can make sure that the minimum values in that partition are sent
to the first and the last mix. For example, if Σα = 5, then the distribution is
uniform over: {5, 0, 0, 0}, {4, 1, 0, 0}, {3, 2, 0, 0}, {3, 1, 1, 0}, {2, 1, 1, 1}. Supposing
we draw the partition {3, 1, 1, 0}, we reorder it into {0, 3, 1, 1} and hence obtain
a sequence of alphas to insert into the message.

If we wish to guarantee that neither the first nor the last mix can locally
know anything about the sensitivity level of a message, we can simply stipulate
for message M that α

(0)
M = α

(n)
M = 0 (for a path length of n + 1). Similarly we

could stipulate that α
(1)
M = α

(n−1)
M ≤ 1, etc. The tradeoff is that with each such

move we are reducing what an adversary observing just the endpoints can learn
about sensitivity of messages, but a more concentrated set of nodes in the center
learn more about the sensitivity of messages. Against an adversary who controls
the central node(s) combined with, e.g., a global passive observer, our protec-
tion is diminished. We can gain advantage against both types of adversaries by

2 Note the similarity between picking an alpha and message splitting [15] — in both
cases they are distributions over partitions.

increasing path length, with the usual concomitant risk to robustness of delivery
that comes with increased path length.

4 Dummies

Our focus so far has been on steady-state networks with passive adversaries.
However, we want to provide uncertainty even in edge cases where there is a
momentarily lull in traffic [8, 9, 14]. An active attacker can arrange an edge case
via blending attacks, but a passive attacker can also simply wait for an edge case
to occur. For timed mixes there will be occasions when only a single message
enters and leaves the mix in a given round. Alpha mixes have a clear advantage
here since there is no guarantee that the message that exited the mix is the
same message that entered. The attack is never exact (guaranteed to recognize
a target message as it exits the mix) unless the adversary can bound the range
of α with certainty for all messages he observes.

We provide a very lightweight dummy policy that guarantees that no exact
attack is possible against an alpha mix, even for active attackers: simply initialize
the mix with a single dummy message set at an arbitrary alpha. Before firing,
always check the mix for the presence of a dummy somewhere in the alpha-stack.
If none is present, add one.

But what do we mean by “arbitrary alpha”? Obviously it must occur within
some finite range. It could be uniformly chosen between 0 and the maximum
expected α. If a message is ever received with a higher α, then the maximum
should be raised to this level. Such a strategy will prevent any exact attack, but
it will still allow most practical attacks that dummies are intended to counter
(active or passive) because most traffic will not have high alpha. Thus, a single
message entering and a single message exiting a timed mix in a single firing
interval are much more likely to be the same message than a dummy.

A strategy that should maximize uncertainty at least in the edge cases would
be to insert dummies according to the expected distribution of αM for messages
M entering the mix. The expected distribution can be determined by obser-
vation. Mixes joining the network can be initialized with a default expected
distribution averaged from one or more mixes already in the network. If the net-
work is uninitialized, individual mixes can be initialized with a uniform strategy
(as above), or better a geometric one, e.g., add a dummy at level α with prob-
ability 2−(α+1). Dummy policy can then be periodically shifted to reflect the
distribution of alphas for actual traffic through the mix. More research remains
here to make this dummy approach resistant to an adversary who sends lots of
messages with non-standard alphas into a particular mix to influence its view of
a typical value for alpha.

If active attacks are suspected, the amount of dummy traffic added to the
alpha stack can be increased according to the expected duration of and strength
of the blocking (assuming timed deterministic-alpha mixes, for which there is no
point in flooding) and the anonymity one intends to maintain for messages so
attacked.

The easiest way to disguise dummies from others in the network is to route
them in a circuit leading back to the mix that generates them [6]. The length of
the path should be randomly chosen as suggested in [14]. Obviously the alphas
chosen for the dummy message at other mixes in the path should be distributed
to minimize recognition of the message as a dummy; hence some dummies should
follow an alpha pattern as if they had entered the network at that mix and others
should appear to be in mid path as they emerge from the mix (cf. Section 3).

5 Strategic Choice of Alpha

As observed in Section 2.1, the anonymity of any message can be improved by
greater uncertainty about the alpha level of other messages. Since Alice benefits
from the fact that other people might choose non-zero α for their messages, she
has an incentive to take advantage of this by choosing a lower α to get better
performance but still have good security. This can be viewed as a commons:
everybody will hope that somebody else takes the latency hit.

There are two ways to resolve this risk. First, note that not all users have the
same sensitivity level: some users favor performance and others favor anonymity.
Three factors are most important in characterizing the utility function for our
users: their need for anonymity, their willingness to accept delay, and their guess
at (expectation of) the current alpha levels in the network. In [2] it was shown
that there can be optimal levels of free riding: more-sensitive users have incentive
to provide “free” communications service for less-sensitive users by running net-
work nodes because this will still provide additional value in the form of better
anonymity protection for the more-sensitive users. This can provide adequate
incentive even if there are many others running nodes. Similarly, while the ex-
istence of higher α traffic may reduce Alice’s incentive to set higher α levels for
her own traffic, it does not eliminate that incentive.

Second, when Alice chooses her alphas’ range based on her sensitivity and
timeliness constraints for her own messages, she gets increased autonomy and
control over her own security and utility. Indeed, if an adversary can make rea-
sonable guesses about a choice of alpha range for a message, then much higher
or much lower alphas for other messages in a mix might actually decrease the
anonymity set for a target message. For example, consider a mix containing a
target message with low alpha and an ancillary message that is either from about
the same alpha range or from a much larger alpha range than the target mes-
sage. If the adversary learns that the second message has a larger range, then
his uncertainty about the target message decreases.

Even more significantly, however, security is hard to get right when it doesn’t
depend on the strategic behavior of others. Users of the system are not likely
to have such fine-tuned knowledge of the system, the behavior of others, and
their own needs. Thus if we can prescribe recommendations for choice of alpha,
for example based on analysis and observed patterns within the network, we
can expect most people to heed them. (On the other hand, they may not — we

can also expect hyperbolic discounting of risk, disregard of risk for expedience,
etc. [1].)

Alpha mixing itself is likely to affect the applications that can be securely
used and how, so recommendations are likely to evolve. Initial recommendations
can be guided by existing anonymity networks. Traffic that must arrive in real-
time obviously must have

∑
α = 0. For more sensitive traffic, we might initially

try to follow networks such as Mixminion and Mixmaster. But how can we do
that? These use a dynamic batching strategy in which messages are chosen for
the current batch randomly by the mix from a collective pool, while alpha mix-
ing is based on individual choices made by the sender. We now turn to various
generalizations on the basic deterministic-alpha mix design, including ways to
combine these features.

6 Beta Alpha: Variations on Alpha Mixing

In the previous sections, we investigated and analysed some basic alpha mixing
designs and the incentive questions and attacks that arise from them. In this sec-
tion we introduce and briefly discuss some more complex designs that are harder
to analyse fully but may provide better protection against stronger attacks.

6.1 Preventing end-to-end timing attacks on alpha mixnets

The prior work that is probably most similar to alpha mixing is stop-and-go
mixing [12]. In stop-and-go mixing, the sender gives to each mix in the path
a time interval. If the message arrives within the interval, it is sent at the end
of the interval, otherwise it is discarded. This approach is similar to the timed
deterministic-alpha mix described above, but an important difference is that a
stop-and-go mixnet must be entirely synchronized to prevent losing messages.
Alpha mixes offer predictable delivery times, but will still mix and deliver mes-
sages even if some nodes in the path are not adequately synchronized. On the
other hand, this flexibility is also a flaw: an adversary that is global-passive
except for being able to delay messages from a single sender could batch up a
victim’s messages and send them through an alpha mixnet all at once. Unless
all the messages have

∑
α = 0 the adversary will gain limited information from

this attack, but he can still learn more than from a stop-and-go mixnet.
We could include timestamps along with the α that each mix receives, and

require that the message be dropped if it arrives more than some delta from
the timestamp. This would make timed alpha mixes essentially equivalent to
stop-and-go mixes, which might prove useful against timing correlations by such
an adversary. For example, Alice might send one hundred messages to Bob that
are sensitive so each has

∑
α(i) chosen uniformly at random from a range of 0

to 10. An adversary that can block all messages from Alice during this period
and send them into the network will see approximately ten messages delivered
to Bob immediately followed by approximately ten messages in each of the next
nine time intervals. However, we need not resort to assuming a synchronized

network. Instead of including any timestamps, Alice could choose
∑

α(i) from
some private distribution on a private range (not necessarily including 0). This
would (1) prevent such an attack if the adversary cannot predict her distribution,
(2) still have as much predictability on delivery time as stop-and-go mixes, and
(3) unlike stop-and-go, still allow eventual delivery of all messages (unless they’re
dropped by the attacker). We are not primarily focused in this paper on end-to-
end timing attacks, and we will say no more about them.

6.2 Variations on deterministic-alpha mixing

In the basic threshold deterministic-alpha mix, if there are threshold = n mes-
sages in each of alpha levels 0 through `, all of the messages in levels 0 through
` will be sent at once; however, messages from the different levels will not be
mixed together. The mix will send all messages with α = 0, lower the stack,
send the next batch of messages that now have α = 0, etc. An adversary may
not know exactly where level i ends and level i + 1 begins because there may
be more than n messages in a given level, but if more than n messages emerge
he can know that the last messages to emerge were considered more sensitive
by their senders than the first, in a stepped linear order of sensitivity. And by
sending in messages of his own at known alpha levels above 0 the adversary can
learn the exact levels of the messages that emerge between his messages. Then,
by flooding first α = `, then α = ` − 1, . . . , then α = 0, the adversary can
guarantee a flush of the mix all the way up to α = ` while also learning the
alpha level of most of the messages.

The simplest solution is simply to mix all messages that emerge at once. This
will prevent an adversary from watching the order in which messages exit during
a flush and thus learning about their sensitivity. The stronger attack we worry
about is the blending attack: an adversary emptying the mix of all messages up
to the highest reasonably expected level, trickling in a message, then flooding
with α = 0 messages repeatedly to learn the sensitivity of that message and its
next destination. Batching all outgoing messages together, combined with the
dummy schemes presented in Section 4, would substantially reduce the risk from
blending.

We could also use a threshold-and-timed mix, which would prevent the ad-
versary from triggering an alpha-stack dump because only messages of one alpha
level will emerge in each time interval. It is unclear what the local advantage
is of this vs. the above multilevel-batching threshold mix. In addition, having
threshold-and-timed batching would preclude the predictability advantages of
timed mixes while the multilevel-batching approach could potentially offer faster
performance. The primary risk of not having timing limitations on mix firing is
the end-to-end effects that the adversary could induce by flooding, which would
not be countered by our dummy scheme. However, that assumes a powerful ad-
versary that can flood and watch the entire network. The nice thing about alpha
mixing is that we can still have both good realtime properties and threshold
protections together.

There are various ways to have realtime and threshold properties together in
one mix design. We note two of them next.

6.3 Dynamic-alpha mixing

In this design, alphas are assigned to messages as they have been all along,
except instead of deterministically decreasing by one after each mix firing, there
is a probabilistic function f that dictates how they decrement:
αM,i+1 = f(αM,i,Pool(αM,i)) where
Pool(αM,i) = |{M ′ : 1 ≤ αM ′,i−1 ≤ αM,i−1}|

We believe that f would typically be monotonically nonincreasing. The sender
gives fM to a mix along with αM . We would expect that there be some small
number of easy-to-compute fs that can be chosen. The idea is that alphas de-
crease but only as a function of the current alpha level of the message and how
many messages are in the pool below it. We have also limited the input of f to
messages that arrived with a non-zero alpha, although this is not necessary. This
effectively puts each message in a dynamic pool, which could also be timed.

6.4 Tau mixing

We have been describing alpha all along as a level which determines a batch of
messages that a given message will be sent with, after (or possibly also together
with) the messages in the alpha levels that are below it in the stack. This lends
itself naturally to the batching concept familiar in the mix literature. Intuitively,
threshold batching implies unpredictable delays since we don’t know how long
it will take for a threshold number of messages to accumulate at α = 0. Timed
mixing on the other hand will allow a predictable delay by providing an upper
bound on latency. But because timed mixing also provides a lower bound on
latency, threshold batching can be faster because it can allow messages to be
processed as quickly as they arrive, provided the batch size does not get in the
way.

This is the idea behind tau mixing: a message M arrives at a mix with an
associated threshold τM of how many other messages must be sent by the mix
between the arrival and sending of M . Multiple messages that have the same tau
can be sent together after mixing, e.g., three messages that arrive with τ = 2 are
sent together. Messages that are to be sent as quickly as possible are assigned
τM = 0. This can provide realtime properties limited only by the processing
speed of the network components. For example, if a message with τ = 0 arrives
at a mix containing messages with current τ = 1, τ = 2, and τ = 3, the latter
three should be mixed and sent together after sending the former. (We assume
messages with initial τ = 0 should always be sent as quickly as they arrive
without the delay associated with mixing.) Messages that are more sensitive
should be assigned a

∑
τ

(i)
M from a private distribution on a range that increases

with sensitivity. Many of the same features of alpha mixing apply, including the
dummy strategy discussion, the techniques for allocating

∑
τ across the mixes

in the path, and so on.

If taus are purely threshold values, then an adversary that is powerful enough
to perform a sustained flush of the entire network will be able to conduct end-to-
end timing correlations on more sensitive messages (assuming we stick to a purely
internally routed dummy scheme). To address this attack, both a threshold and
a random minimum delay at each mix can be given as security parameter. This
will prevent effective flushing unless the adversary can also perform sustained
blocking of all inputs to the mixnet, and even then the attack will be substantially
slowed.

7 Conclusion

In this paper we have presented a mixing technique that works together with
traditional batching strategies to allow senders with varying anonymity and per-
formance goals to share the same network and have their traffic mixed. Aside
from simply letting high-sensitivity users choose to get higher anonymity for their
messages, the key property it provides is a network effect: when some users ask
for higher anonymity, all users can benefit.

While we proved anonymity properties for the simplest versions of alpha
mixing, we have only begun to explore the possibilities and analysis of this
design. Future work includes:

Multiple messages and stream-based communication: This paper has assumed
the single-message model, where each sender produces individual uncorrelated
messages. We did describe countermeasures to end-to-end timing correlations in
Section 6; however, we have not carefully examined the implications of stream-
based communication. Much of the reason for the success of Tor and JAP is not
just the low overhead, but rather their support for bidirectional streams. But the
stream model introduces many end-to-end anonymity attacks that seem hard to
resolve simply with better batching strategies.

A full analysis of the alpha mix design: In this paper we have added to mixes
an additional user-defined security parameter and explored some scenarios of
attacker’s knowledge about it. However, the more complex dynamic-alpha mixes
and tau mixes are yet to be analysed; this seems difficult as we need to make
some assumptions both about how users choose their security parameters and
what the attacker knows about them.

User behavior: However much we postulate about how users behave, there is no
substitute for actually getting user profiles and learning how to create incentives
for secure behavior. We expect that unless we protect our users, they will try
to condition their security parameter on the threat level of the message; as we
have seen above this reduces rather than increases anonymity.

References

1. Alessandro Acquisti. Privacy in electronic commerce and the economics of im-
mediate gratification. In ACM Conference on Electronic Commerce, pages 21–29,
2004.

2. Alessandro Acquisti, Roger Dingledine, and Paul Syverson. On the economics of
anonymity. In Rebecca N. Wright, editor, Financial Cryptography. Springer-Verlag,
LNCS 2742, Jan 2003.

3. Oliver Berthold, Hannes Federrath, and Stefan Köpsell. Web MIXes: A system for
anonymous and unobservable Internet access. In H. Federrath, editor, Designing
Privacy Enhancing Technologies: Workshop on Design Issue in Anonymity and
Unobservability, pages 115–129. Springer-Verlag, LNCS 2009, 2000.

4. George Danezis. Statistical disclosure attacks: Traffic confirmation in open envi-
ronments. In Gritzalis, Vimercati, Samarati, and Katsikas, editors, Proceedings
of Security and Privacy in the Age of Uncertainty, (SEC2003), pages 421–426,
Athens, May 2003. IFIP TC11, Kluwer.

5. George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: Design of a
type III anonymous remailer protocol. In 2003 IEEE Symposium on Security and
Privacy, pages 2–15. IEEE CS, May 2003.

6. George Danezis and Len Sassaman. Heartbeat traffic to counter (n-1) attacks. In
Proceedings of the Workshop on Privacy in the Electronic Society (WPES 2003),
Washington, DC, USA, October 2003.

7. Luc Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.
Available from: <http://cgm.cs.mcgill.ca/~luc/rnbookindex.html>.

8. Claudia Dı́az, Len Sassaman, and Evelyne Dewitte. Comparison between two
practical mix designs. In Proceedings of ESORICS 2004, LNCS, France, September
2004.

9. Claudia Dı́az and Andrei Serjantov. Generalising mixes. In Roger Dingledine,
editor, Proceedings of the Privacy Enhancing Technologies workshop (PET 2003).
Springer-Verlag, LNCS 2760, March 2003.

10. Roger Dingledine and Nick Mathewson. Anonymity loves company: Usability and
the network effect. In Proceedings of Workshop on Economics and Information
Security (WEIS06), June 2006.

11. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-
Generation Onion Router. In Proceedings of the 13th USENIX Security Symposium,
Aug 2004.

12. Dogan Kesdogan, Jan Egner, and Roland Büschkes. Stop-and-go MIXes: Providing
probabilistic anonymity in an open system. In David Aucsmith, editor, Proceedings
of Information Hiding Workshop (IH 1998). Springer-Verlag, LNCS 1525, 1998.

13. Nick Mathewson and Roger Dingledine. Practical traffic analysis: Extending and
resisting statistical disclosure. In Proceedings of Privacy Enhancing Technologies
workshop (PET 2004), volume 3424 of LNCS, May 2004.

14. Andrei Serjantov, Roger Dingledine, and Paul Syverson. From a trickle to a flood:
Active attacks on several mix types. In F. Petitcolas, editor, Proceedings of Infor-
mation Hiding Workshop (IH 2002). Springer-Verlag, LNCS 2578, October 2002.

15. Andrei Serjantov and Steven J. Murdoch. Message splitting against the partial
adversary. In George Danezis and David Martin, editors, Proceedings of Privacy
Enhancing Technologies workshop (PET 2005). Springer-Verlag, May 2005.

