Preventing Active Timing Attacks in
Low-Latency Anonymous Communication
[Extended Abstract]

Joan Feigenbaum!*, Aaron Johnson?**, and Paul Syverson3* **

! Yale University Joan.Feigenbaun@yale.edu
2 The University of Texas at Austin ajohnson@cs.utexas.edu
3 Naval Research Laboratory syverson@itd.nrl.navy.mil

Abstract. Low-latency anonymous communication protocols in gen-
eral, and the popular onion-routing protocol in particular, are broken
against simple timing attacks. While there have been few proposed so-
lutions to this problem when the adversary is active, several padding
schemes have been proposed to defend against a passive adversary that
just observes timing patterns. Unfortunately active adversaries can break
padding schemes by inserting delays and dropping messages.

We present a protocol that provides anonymity against an active adver-
sary by using a black-box padding scheme that is effective against a pas-
sive adversary. Our protocol reduces, in some sense, providing anonymous
communication against active attacks to providing a padding scheme
against passive attacks.

Our analytical results show that anonymity can be made arbitrarily good
at the cost of some added latency and required bandwidth. We also per-
form measurements on the Tor network to estimate the real-world per-
formance of our protocol, showing that the added delay is not excessive.

1 Introduction

Anonymous communication protocols are designed primarily to allow users to
communicate with destinations anonymously. They face, however, the challenge
of optimizing over several competing criteria: anonymity, latency, and band-
width. High latency and limited bandwidth are unacceptable for many popular
Internet applications, and onion routing [12], despite its vulnerability to correla-
tion attacks, has become a successful protocol for anonymous communication on
the Internet. To design a useful protocol, we focus on providing better anonymity
than onion routing while maintaining acceptable latency and bandwidth.
Low-latency protocols in general have been vulnerable to several attacks
based on the timing of events in the system. Typically, the user in these proto-
cols chooses a set of routers to mediate between the user and the destination,

* Supported in part by NSF grants 0331548 and 0716223 and TARPA grant FA8750-
07-0031.
** Supported by NSF grant 0716223.
*** Supported by ONR.

forwarding data between the two and obscuring their relationship. The essential
problem is that timing patterns in these data are conserved between the source
and destination. Therefore an adversary only needs to observe the incoming
stream of data (the consecutive messages exchanged during a communication
session), from the user and the outgoing stream of data to the destination to use
patterns to link the two. In a passive timing attack, an adversary relies on timing
patterns that are generated by the user. Because the user creates these patterns,
he can prevent this attack by adding dummy packets and delays into the stream
to make his traffic look similar to the traffic of other users [27]. However, the
adversary can defeat this by performing an active attack, in which he inserts
timing patterns into the traffic as it passes through routers under his control.

As a result of this sort of active attack, existing low-latency anonymity proto-
cols do not provide anonymity when the adversary controls the routers that the
user communicates with directly and the routers that the destination communi-
cates with directly. Suppose the adversary controls a fraction b of the network.
In onion routing, users select routers uniformly at random, and the adversary
compromises anonymity with probability b%.

This probability is fixed and cannot be improved by trading off performance
elsewhere, and it can be quite insufficient. Consider Tor [7], the popular imple-
mentation of onion-routing and the associated volunteer network. In Tor, a user
sends a message over a sequence of routers he sets up in advance called a circuit.
Suppose the adversary runs just two routers. If we take into account the way Tor
chooses circuits, the size of the network [28], and the number of users observed
on Tor in one day [17], we expect the adversary to compromise 15 users at least
once in that day. If the adversary provides the top two routers by bandwidth,
the expected number of compromised users increases to 9464.! Thus, the system
provides poor anonymity against a wide variety of realistic opponents, such as
governments, ISPs, and criminals willing to purchase the use of botnets.

We consider the very weak anonymity provided by low-latency protocols
against an active adversary to be a fundamental and critical challenge in anony-
mous communication. In this paper, we present a low-latency protocol that pro-

! Roughly, circuits are selected in Tor as follows: the first hop is chosen from a set
of guard routers, the second hop is chosen from the entire network, and the third
and final hop is chosen from a set of exit routers. As of April 2010, the Tor network
consists of around 1500 routers, of which around 250 are guard routers and around
500 are exit routers. Suppose that the adversary runs one guard router and one exit
router. McCoy et al. observed 7571 unique clients while running a guard router for
one day. The expected number of these that would lose anonymity is 7571/500 =
15.142. Moreover, Tor weights by bandwidth, and so suppose that the adversarial
routers are the top two by bandwidth. McCoy et al. observed that the top 2% of
routers transported about 50% of the traffic. Then, very roughly, the probability of
choosing the adversary in a guard set would increase from 1/250 to .5/(250%*.02),
and so the expected number of users observed would be 25%7571=189275. By similar
rough approximation, for every circuit, the adversary’s exit router would be selected
with probability .5/(500%.02)=.05, and so the expected number of deanonymized
users would be 189275%.05=9463.75.

vides arbitrarily good anonymity against an adversary that can observe and
create timing patterns. The protocol makes black-box use of a padding scheme
to prevent passive timing attacks. Several padding schemes that defeat passive
timing attacks have been proposed [27,25,30], and furthermore we believe that
there is still potential for substantial improvement. The protocol provides two-
way stream communication.

A two-way protocol requires different defenses, depending on the direction
of communication, because of an asymmetry in the communication between the
user and destination. The user can talk directly to many routers and will add
padding correctly. We will require that the destination communicate with just
one router, and that router can’t be trusted to pad the stream correctly. As a
result, our protocol uses a somewhat different scheme for traffic on the way from
the user as on the way to the user. The essential features of our solution are

1. Packets have timestamps with their intended send time.

2. Packets from the user to the destination are sent in several copies over a
layered mesh topology . This balances limiting view of the stream to a small
number of routers while providing redundancy against malicious delays

3. Packets from the destination to the user are sent over a path that performs
in-stream padding.

For simplicity, we describe forming the layered mesh as a cascade: a fixed
arrangement of routers that all users use to send data. The biggest drawback to
using cascades is that the resource constraints of the cascade routers obviously
limit the number of feasible users and therefore limit anonymity. Another draw-
back is that cascades make long-term intersection attacks easier because only
two known endpoints need to be watched. Giving users freedom to choose the
meshes, analogous to free routes, is an important future extension to our scheme.

We evaluate the anonymity provided by our protocol in a network model that
incorporates timing and an active adversary. The theoretical results suggest that
the approach has good asymptotic efficiency and that a promising next step is
to optimize within the framework of the scheme we describe. Moreover, because
we are concerned with eventual practicality, we do measure a component of the
system over which we have no control and which could have made our protocol
unusable, delay variations in the host network. Specifically, we measured the
likely latency costs of running our protocol on the existing Tor [7] network. This
provides a strenuous, real-world scenario to evaluate our protocol’s performance.

Our results are therefore a mix of the theoretical and experimental:

1. We show that the user can be made anonymous with arbitrarily high prob-
ability as long as b is less than 1/2. The user is anonymous within the set
of users with identical traffic patterns as produced by the input padding
scheme.

2. We prove that our mesh topology in the forward direction is optimal for
anonymity in a limit sense.

3. The latency of our protocol is proportional to the length of the mesh and
return path. We show that the probability of compromise decreases to zero

polynomially in that length. This compares well with onion routing, which
adds latency proportional to its path length.

4. The bandwidth used is 2w + (I — 1)w? + 1, where [is the mesh/path length,
and w = O(log!). This compares well asymptotically to the [+ 2 copies that
are sent in an onion-routing path of the same total length.

5. For most of our measurements, we observe that added packet delay would
need to be less than a factor of two to achieve satisfactory reliability.

The results suggest that our approach indeed has the potential to mitigate ac-
tive timing attacks. Our results are presented here without proofs and detailed
measurement procedures because of space limitations. Please see our Technical
Report [9] for these details.

2 Related work

Timing attacks are a major challenge in low-latency anonymous communication
[16]. They have been observed in some of the earliest low-latency systems [1],
including initial versions of onion routing [12]. These attacks are also closely
related to traffic analysis in mix networks [24].

In a passive timing attack, the adversary observes timing patterns in a net-
work flow, and then correlates them with patterns in other traffic that it ob-
serves. If the adversary is able to observe both the user and the destination, he
can thereby link the two. The ability of the adversary to perform this correlation
has been experimentally demonstrated several times [32, 16, 23, 21, 2].

A solution to passive timing attacks is to get rid of identifying patterns in
the traffic by padding and delaying it. The drawbacks to such an approach are
added latency and bandwidth overhead. Our protocol relies on the existence of
some acceptable and effective padding scheme. Constant-rate padding, in which
traffic is sent at a constant rate by filling in the gaps with dummy packets, is
probably the most obvious such scheme. It has appeared multiple times in the
literature [27,11, 16]. Levine et al. [16] propose a “defensive dropping” mecha-
nism which adds dummy packets at the start of the circuit and drops them at
various routers before the end. This reduces the correlation between any patterns
in the incoming streams and patterns in the outgoing streams. Shmatikov and
Wang [25] propose a variable-rate padding scheme. In their scheme, packets from
the user are forwarded with little delay, and dummy packets are added by the
intermediate routers according to a probability distribution on the packet inter-
arrival times. Wang et al. [30] describe a link-padding scheme for low-latency
systems, but their system is designed for a situation in which the adversary is
not active and the destination participates in the protocol. This situation does
not reflect the kind of Internet communications that have proven useful and that
we target.

All of these schemes are vulnerable to an adversary that actively delays pack-
ets from the user. Yu et al. [31] show that this can be done in a way that makes
it difficult for the user or the system to detect that the attack is occurring. One
approach to this problem is to change the timing patterns within the network

by adding, dropping, or delaying packets (25, 16]). However, dropping or delay-
ing packets can’t hide very long delays without adding unacceptable latency or
bandwidth overhead. Adding dummy packets can, in our case, be detected by the
final router, and therefore do not help. A final router can detect them because,
in our case, the destination does not participate in the protocol; there must be
one last router in the system that provides the point of contact to the destina-
tion. Moreover, Wang et al. [29] experimentally show that many such schemes
for internal traffic shaping are still vulnerable to an active timing attack.

Simply delaying packets that pass directly through adversarial routers isn’t
the only active timing attack that has been demonstrated. Murdoch and Danezis
[20] show that in onion routing the adversary can actively add delay patterns
to the data by sending bursts of traffic through a router. This can be used to
determine the routers on a given circuit. Fu et al. [10] describe how the presence
of a flow on a router can also be determined by ping times to the router. Borisov
et al. [4] look at the case that the adversary doesn’t just delay, but drops packets
in a denial-of-service (DoS) attack aimed at forcing users to move to circuits that
the adversary can deanonymize. Such an attack was also discussed by Dingledine
et al. [8]. We do not address such attacks in this paper, and they are outside of
our model.

A related timing attack by Hopper et al. [13] uses congestion to exploit differ-
ent network latencies between hosts. They show that the latencies from multiple
hosts to a user can be very identifying. The user in our protocol communicates
with several routers as a first hop, and in light of this attack we took care not
to allow the adversary to infer these latencies.

One key feature of our protocol is the use of a layered mesh to provide re-
dundancy. The use of redundancy for several purposes has been also explored in
previous protocols. Syverson [26] suggests using router “twins,” pairs of routers
that share the same key, to provide a backup in case a router fails. Two re-
dundancy schemes to manage failures, K-Onion and Hydra-Onion, are proposed
by Iwanik et al. [14]. Redundancy to support failure is not our goal, and such
schemes are in some ways complementary to our own. However, the redundancy
in our protocol does protect against honest node failures as well as malicious
ones. Nambiar and Wright [22] use redundancy in the host lookup of Salsa to
protect against route capture. Interestingly, an analysis by Mittal and Borisov
[19] of this technique uncovers the tradeoff between preventing active and passive
attacks that we face as well.

Another critical feature of our protocol is the use of explicit timing to co-
ordinate the users and routers. This is similar to the timing instructions of
Stop-and-Go mixes [15]. Such mixes are given a time window within which the
packets must arrive, and they delay forwarding by an exponentially-distributed
amount of time. Although the techniques are similar, this scheme is designed
for mix networks and not stream communication, and this scheme does give the
adversary some slack time within which a timing signature could possibly be
placed. Moreover, the lack of any redundancy means that any slowdowns within
the network, even of benign origin, can quite easily kill a connection.

The timing approach we take is also similar to the use of synchronicity in
mix networks by Dingledine et al. [8]. They describe synchronous batching on
free routes and show that it typically provides better anonymity than cascades.
Our scheme can be viewed as low-latency synchronous batching.

3 Model

We will express and analyze our anonymity protocol in a model of network and
adversary behavior. A particular advantage of this approach is the ability to
make convincing guarantees of security when we cannot predict the tactics that
an adversary will use.

3.1 Network

Let the network consist of a set of onion routers R, a user population U, and
a set of destinations D. The network is completely connected, in that every
host can send a message directly to every other host. Each event in the network
occurs at some global time. We assume that each user and router has a local
clock that accurately measures time, and that these clocks have run some sort
of synchronization protocol [18]. Let dsync be the largest difference between two
synchronized clocks in the network.

There is some probabilistic network delay d,.:(r, s) between every pair (r, s)
of routers. This models the unpredictable delay between routers due to factors
such as route congestion and route instability. There is also some probabilistic
processing delay dproc(r) at every router r. This reflects changes in delay at a
router due to local resource contention among anonymous messages and among
multiple processes. The delay of a message is the sum of delays drawn indepen-
dently from these two distributions. We also let the delay of one message be
independent of the delays of the other messages. We assume the distributions of
both sources of delay is known to the system. In practice, this may be achievable
via network measurements.

We assume that all hosts (in particular, all destinations) respond to a simple
connection protocol. One host h; begins the connection by sending to another
host hs the pair < n, M >, where n € N7 is a number and M is a message. Any
responses M’ from hy are sent back as < n, M’ >. Once established, connections
in the anonymity protocol cannot be closed by anyone to prevent distinctions of
one from another by open and close times. All connections thus stay open for
a fixed amount of time and then close automatically. Application connections
running over these can of course be closed by the ultimate source and destination;
although this will not close the anonymity circuit, and padding messages will
continue to be sent until connection timeout.

3.2 Users

User communication drives the operation of the anonymity network. We view
the communication of a user as a sequence of connections. Each connection is

to one destination, and it includes messages to and from the destination. ‘User’
refers to both human users and software running on their behalf.

3.3 Adversary

The adversary controls some subset A C R of the routers, where b = |A|/|R].
It seems plausible that an adversary can run routers that are at least as fast as
the other routers on the network, and that it may dedicate them to running the
protocol. Therefore, in contrast to non-adversarial routers, we pessimistically as-
sume that the adversary has complete control over the processing delay dproc(a)
of routers a € A. If needed, we reflect compromise of links between routers by
the compromise of an adjacent router.

3.4 Padding scheme

The padding scheme P is a black box that initially takes as input a connection
start time and outputs the timing of the return traffic. Then every time step it
takes the presence of data from the user and returns whether or not a packet
should be sent. Note that this requires the scheme to determine in advance
the length of the connection. Let S, be the set of users that start connections
at the same time as user u and have the same traffic pattern. Our proposed
protocol relies on the effectiveness of the padding scheme. At best, it makes u
indistinguishable within the set S, supplied by P.

Some of the padding schemes previously proposed in the literature can pro-
vide the black box P. For example, to use basic constant-rate padding, in which
packets get sent at constant rate in both directions, we simply need to choose
a fixed length for the connection when it starts. This approach typically causes
high added latency and/or message overhead, however. As another example, the
padding scheme of Shmatikov and Wang [25] could be used by fixing the connec-
tion length and return scheme. In this padding scheme, inter-packet delays are
sampled from a distribution, which is adjusted if a packet arrives early. Dummy
packets are sent after the sampled delay, and real packets from the user are sent
immediately. In the direction from the user, this scheme could be used directly.
In the return direction, we could just skip shifting the distribution for early pack-
ets. Then we would send each return router the same sequence of random bits to
use in sampling the distribution. Alternatively, we could relax our requirements
for the return scheme and allow it to be updated periodically. The user could
then use the forward mesh to update the distribution of packet arrival times.

It is not hard to conceive of novel padding schemes that might satisfy these
requirements, although getting a good mix of anonymity and performance cer-
tainly does not seem easy.

4 Problem

The problem in this model is to design an anonymity protocol that supports
the low-latency, two-way, stream communication that has made Tor [7] popular.

In order to allow communication with hosts that are ignorant of the protocol,
we require that only one host communicates with the final destination, and
that the communication is only the original messages generated by the user. We
evaluate our protocol by three criteria: anonymity, latency, and the amount of
data transferred. We evaluate the anonymity in our protocol according to its
relationship anonymity, that is, the extent to which it prevents an adversary
from determining which user-destination pairs are communicating. For latency,
we consider the amount of time it takes for a message to reach the destination
from a user. For the amount of data transferred, we consider the total amount
of data that to be transferred during a single user connection.

5 A Time-stamping Solution

The padding scheme gives us sets of users that have traffic streams with identical
timing patterns. However, the model we have described gives the adversary the
ability to modify these patterns as the traffic travels through its routers towards
the destination. To prevent this, we try to enforce the desired timing pattern on
packets sent by including the times that the routers should forward them. Any
honest node that receives the packet will obey the instructions, removing any
delays inserted by the adversary. For traffic sent from the user to the destination
we can trust the user to correctly encode the padding-scheme times. Traffic
sent from the destination to the user must, by our requirements, pass initially
through a single router. Because it may be compromised, we cannot trust it to
use a proper padding scheme. However, this traffic is destined for an anonymity-
protocol participant, the user; therefore, unlike traffic from the user, we can
destroy inserted timing patterns by re-padding it all the way to the user. Observe
that re-padding does not work for traffic from the user, because the final router
sees which packets are real and which are padding.

5.1 From the user

First, consider what we could do if propagation and processing delays were de-
terministic. The user could send through a path in the network a layered data
structure called an onion which, for each packet, includes in the ith layer the
time that the onion should arrive at the ith router. Then each router on the
path could unwrap the onion to make sure that the initial timing sequence was
being preserved and, if so, forward the onion.

Unfortunately, in real networks, delays are somewhat unpredictable. For ex-
ample, an onion might be delayed by congestion in the underlying network.
However, if the distribution of delays is known, we know how long we need to
wait at a router for onions to arrive with any fixed probability. We will set that
probability to balance decreasing added latency with decreasing the chance of a
successful timing attack. Then we add in this buffer time to the send time.

Another problem is that the adversary could drop onions entirely in a pattern
the propagates down the path. Our approach to this problem is to send multiple

copies of an onion down redundant, intersecting paths. A router on a path needs
only one copy of the onion to arrive in time from any incoming path in order to
forward it by its send time.

This approach has limits, because each redundant router adds another chance
for the adversary to observe an entire path from source to destination. For ex-
ample, suppose that we simply send onions over k paths of length [that intersect
at a final router, where every router is chosen uniformly at random. Let b be the
fraction of routers that are controlled by the adversary. The probability that at
least one path is entirely composed of compromised routers is b(1 — (1 —b'=1)F).
This quickly goes to b as k increases. We use a layered-mesh topology to bal-
ance the ability of the adversary to passively observe a path with his ability to
actively perform a timing attack.

Fig. 1. Layered-mesh topology

Topology The layered-mesh topology we propose is pictured in Figure 1. For
some length [and width w, user u sends a copy of each onion to the w members
r1; of the first layer. Then, in layer i, each router r;; sends one copy of every
onion it receives to each router 7(; 1), of the next layer. Finally, the routers r;;
in the last layer send a copy of each onion received to a single router r, which
finishes decrypting them and sends the data on to the destination d. We call this
structure the layered mesh.

Timestamps As described, the user sets timestamps to instruct routers to
maintain a specific timing pattern. A user may have different latencies to the
different routers in the first layer. If the time that one of these routers is in-
structed to forward the packet only depended on the network and processing
delays of that router, the first-layer routers could send copies of the same packet
at different times. This would provide information to the next layer about the
identity of the user. Similarly, the adversary could use different times between
layers to link other layers in the mesh. Therefore, we set the send time for each
layer to be the send time of the previous layer plus the longest delay at our
chosen reliability level p. We must also add some extra delay to allow for clock
skews.

Let d*(r,s) be the amount of delay we need to ensure that a packet from r
is processed at s with success probability p:

P = Pr{dnet(r, s) + dproc(s) < d*(r, s)].

At time ¢, let user u be instructed by P to send a message. The user chooses
the same send time for all routers in the same layer. The send time for routers
r1; in the first layer is

t1 =t + maxd* (u,71;) + dsync-
j

The send time for routers r;; in the ¢th layer is

ti =11+ Hjlé}} d*(r(i—1)j>Tik) + Osyne-

If a router receives its first copy of an onion after the send time has passed,
it immediately forwards the onion to the routers in the next layer. At worst,
the delay is the result of attempts by the adversary to delay certain packets.
Sending the packet later or not at all in that case would only make it easier for
the adversary to observe its lateness later in the mesh. Forwarding it immediately
might even allow the onion to eventually get back on schedule. At best, the delay
is just a result of network delays and forwarding has no effect on anonymity.

Onions Let M be the message to be sent. We will encrypt the message with a
public key shared by all members of a layer. Given that the layers are set up in
advance and known to all, such a key can be generated by a trusted third party
or by electing a leader to do it. Let {M},., denote the encryption of M with the
public key of layer i. Let n,,,ns, € N be random numbers and k, be a private
key. Then the onion that u sends to the routers in layer 1 is

{n7‘17t17 {n7’25t27 e {n'fa da nswk’f” M}T" T }7'2}7"1

For each layer 4, a user generates the random number n,, € N as an onion
identifier. The routers keep track of the onion identifiers they have seen. When
they receive an onion, they decrypt it and examine the identifier. Routers only
forward an onion if its identifier n; has not been seen before. n,, is the identifier
that r should use with s; when sending back any reply, and k, is a private key
that will let r encrypt the return message for u.

The onion encoding and forwarding scheme should hide routing information,
prevent forgery, prohibit replay attacks, and hide message content. For clarity of
presentation, we have described a simple scheme that achieves this. We observe,
however, that several improvements to the protocol could be made. For exam-
ple, the protocol could do a more explicit stream open and close to reduce the
lists of identifiers that routers have to maintain. Also, symmetric keys could be
exchanged to speed up onion processing. Another improvement that we could
incorporate is forward secrecy. Numerous cryptographic details must be carefully
set out (e.g. as in [5]) for our protocol to have a cryptographically secure and
efficient implementation. These are not the focus of this paper.

5.2 To the user

Traffic returning to the user from the destination must first pass through the
one router that is selected to communicate directly with the destination. This
router may be compromised, and it may try to insert timing patterns in the
return traffic. We manage this by giving the intermediate routers the pattern of
the return traffic. They enforce it by fitting the return onions into the pattern,
adding dummy packets when necessary. We note again that this doesn’t work for
the traffic from the user because any added delays translate into delays in the
underlying data, and this can be viewed by the final router. We choose a simple
path of length k for the return traffic (Fig. 1), because there is no anonymity
advantage to adding redundancy here. We call this structure the return path.

To communicate the desired traffic pattern to the return path, we take ad-
vantage of the one-way communication protocol already developed. The user
takes the return traffic pattern that is given by the padding scheme P and sends
it via the layered mesh to every router in the return path. At the same time, the
user generates the random numbers n,, € N,1 <4 < k, and sends two random
numbers ng,,n,,,, and a key k,, to each router s;. The numbers will be the
incoming and outgoing identifiers for the onion. The user also sends n; and u to
sk- Let M be the message to be sent back from d to u. The return onion sent to
s; is

Oi =< s, { - {M}lr, ko, - tha,, >

After r receives M from d, it will take ng, and &, out of the inbound onion from
the user and send O; to s;. When s; receives O; it looks for a matching ng,
in the pairs of number it has received and then forms O;;; to send when the
padding scheme instructs it to.

5.3 Choosing the routes

A simple method to select the layered mesh and return path is for it to be chosen
by the network and shared among all users. This is analogous to cascades in mix
networks [3]. A disadvantage of cascades is that number of users that can be
confused with one another, i.e., the size of the anonymity set, is at most the
number of users that can simultaneously be handled by a router [8]. Allowing
users to choose the cascades with some freedom should allow anonymity sets to
grow with the size of the network, similar to free routes in onion routing, but we
leave this to future work.

6 Analysis

The purpose of our protocol is to provide better anonymity than onion routing at
reasonable cost in latency and bandwidth. A major drawback to onion routing is
that the probability of compromise is b2 and cannot be improved, e.g. by choosing
a longer path. We will show how in fact our scheme can provide arbitrarily good
probability by increasing the length and width of the layered mesh.

First, the design of the protocol onions essentially limits the adversary to
traffic analysis. For traffic from the user, the use of encryption and unique iden-
tifiers forces onions to be passed through the required layers and limits them
to being forwarded by an honest router at most once. It also hides the source
and destination from all but the first and last routers, and it makes messages
leaving one layer unlinkable to messages leaving another layer. For traffic to the
user, the source and destination are not included in the packets, and encryption
prevents messages leaving one router from being linked with messages leaving
another router.

For the adversary to break a user’s anonymity, then, he will need to either
observe traffic on an entire path between source to destination or link traffic at
different steps on that path. The latter depends on his ability to introduce delays
in the packet stream. To evaluate this possibility, we will make the simplifying
assumption that the network and processing delay between two routers r, s never
falls above the time allowed for it d*(r, s). In our model, such failures can happen
with probability 1 — p, where p can be set arbitrarily close to 1. Certainly, if the
adversary can deanonymize a user even under this assumption, he can do so with
possible link failures. When such failures do occur, they open up the chance for an
adversary to successfully delay packets and insert a timing pattern. However, late
packets are typically irrelevant because the same packet will have been forwarded
by another router in the previous layer. Also, late packets that are the first of
their type to arrive are immediately forwarded, thus benign delays are somewhat
self-correcting, and we estimate that they do not open up a large opportunity for
an active timing attack. However, if we wish to make a conservative estimation,
we can expect that for any given packet a fraction 1 — p of the packet copies will
fail to arrive in time. We can estimate the combined probability of malicious or
benign delay or dropping of packets by (1 — p) + b.

Assuming no link failures, then, the anonymity of a user only depends on
which routers the adversary controls. Because all users on the same cascade
use the same routers, the adversary can either deanonymize all users in the
anonymity set Sy, or he can not deanonymize any of them. Because the routers
in the cascade are selected randomly, there is some probability that the ad-
versary can deanonymize the users. Let C be the event that the adversary can
compromise anonymity. We can quantify the probability of C.

Theorem 1

— (- (1-b)” b
bw + (1 —b)w

1

Pr[C] = b* 4 (1 — ") [b© +(1—=(1=0b)" —bv)
Theorem 1 shows that, when less than half of the routers are compromised,
we can make the probability that a user is anonymous arbitrarily high by setting
w, I, and k large enough. (Recall that all proofs are in our technical report [9].)

Corollary 2
0 b<1/2
lim Pr[C]=41/4 b=1/2
wilih—oo b b>1/2

Corollary 2 shows that anonymity can be made arbitrarily good when b <
1/2, but that it is worse than onion routing when b > 1/2. Therefore assume
from now on that b < 1/2. We would like to determine how big the layered mesh
and return path grow as we increase our desired level of anonymity. First, we
will consider how wide the mesh must be for a given depth to achieve optimal
anonymity. This affects the number of messages that need to be sent. Also, it will
allow us to evaluate anonymity as a function of the lengths k and [, quantities
which we would like to keep small to provide good latency. Luckily, it turns out
that the optimal width w* grows slowly as a function of I.

Theorem 3 w* = O(log(l))

Thm. 3 shows that the total number of messages sent for every message from
the user is O(2log(l) + (I — 1) log(1)? + 1). This compares well asymptotically to
the [+ 2 copies that are sent in an onion-routing path of the same total length.

Network users are particularly sensitive to latency, and each additional step
in the layered mesh and return path represents a potentially global hop on our
network. To keep the lengths [and & of the mesh and return path small, then,
we would like for Pr[C] to converge quickly to its limit. As suggested by Thm. 3,
let w = logl, and consider the convergence of Pr[C]. It is clear that the first
term shrinks exponentially with k. The convergence time of the second term is
polynomial, although it does improve as b gets smaller.

Theorem 4 Let ¢c; =logb and co =log(1 —b). Then
PriCl =0O6(1*7%2).

Table 1 compares the performance
of our mesh topology to that of onion
routing using some reasonable param-

eter values. In it, we let both the Mesh |Onion Routing
mesh length and the onion-routing- | b |l|w| Pr[C] |[Msgs.|Pr[C]| Msgs.
path length be [, we let the length of |.05(3|3|.0002| 29 |.0025 8

the return path from the mesh equal |.05(4|3(.00003] 39 [.0025 10

the mesh length (i.e. k = 1), and the |.1[4/3].0007| 39 | .01 10
width w of the mesh is set to opti- [.25[4/2].0303| 22 [.0625 10

mize anonymity. We use small values
of [to make the number of hops close
to the three hops that have proven to
be usable in the current Tor system. The numbers show clear decreases in the
probability of compromise when using the mesh, especially with larger values of
[. We can see that larger compromised fractions b will require somewhat longer
paths for significantly improved anonymity. The total number of messages sent
in each scheme for every message-response pair between the user and destination
is also given.

Our analysis shows how our scheme can provide arbitrarily good probability
for b < 1/2. TIs it possible to improve this to include values of b greater than

Table 1. Mesh routing vs. Onion rout-
ing

1/27 First, we observe that some other plausible topologies do not perform as
well. For example, suppose the user sends onions to k routers, each of which
forwards it to the same next router, and then from then on there is a path to the
destination. The probability that anonymity is compromised in this situation
is b2(1 — (1 — b)* + b*=1(1 — b)). As k grows, the anonymity goes to b2, the
probability that the second-layer router and final router are both compromised.
As another example, consider using a binary tree, where the user sends to the
leaves of the tree, and each node forwards to its parent at most one copy of the
onions it receives. It can be shown that as the depth of the tree increases the
probability that anonymity is compromised goes to zero when b < 1/4, b(4b—1)
when 1/4 < b<1/2, and b when b > 1/2.

The following theorem shows that the layered mesh is optimal in the limit
among all topologies.

Theorem 5 Let c(b) be the probability of anonymity compromise in some for-
warding topology when the fraction of adversarial routers is b. Then, if b < 1/2,
c(b) < e implies that c(1 —b) > 1 — b — 13l

Theorem 5 implies that if the probability of compromise for a topology goes
to zero for b € [0, 3], then it must go to b for b € [1 — 3, 1]. This is achieved by
the layered-mesh topology for the largest range of b possible, [0,1/2).

7 Latency Measurements

Our protocol requires routers to hold messages until a specified send time. La-
tency between routers varies, and therefore this send time must be set high
enough to guarantee that with sufficiently high probability that it occurs after
the packet actually arrives. The amount of time that packets spend being de-
layed before the send time depends on the variability of latency. Because network
performance is critical to realizing effective anonymous communication [6], we
wish to evaluate the latency in our protocol.

In order to do so, we have measured latency in the Tor [7] network. Perfor-
mance data in the Tor network gives us reasonable estimates for the performance
of our protocol because the essential router operation in both protocols is de-
crypting and forwarding packets and the network is globally distributed and
therefore includes a wide variety of network and host conditions.

7.1 Methodology

During each experiment, we made three measurements on all Tor routers from
our test host. First, we measured round-trip time (RTT) by opening TCP con-
nections to the hosts. Second, we measured the connection delay, that is, the
time between sending the stream-open request to the router and receiving the
TCP connection from the router, by creating a circuit from our test host to the
router and opening a TCP stream over that circuit from the router back to the

test host. Third, we measured packet delay by sending five 400-byte segments of
data up the established TCP stream.

We took measurements hourly in the Tor network from February 22, 2009,
to March 21, 2009.

7.2 Results

N . Bt ot ot
(a) Round-trip times (b) Connection delays (c) Connection delays -
(w/o top 1%) (w/o top 5%) b0b3r

| : T ,

i N J

: i J i //,,/

0 5m foco fs0n S e O m m @ p"a;c:vme W 70 e @ w0 % m w @ Puinmm'u @ e im
(d) Packet delays (e) Relative connection (f) Relative packet delays,
(w/o top 1%) delays, p=0.95 p=0.95

Fig. 2. Measurement results

Round-trip times for the experiments are shown in Figure 2(a), with the top
1% removed to show the rest in greater detail. The mean of these times is 161ms
and the median is 110ms. We see a peak bin centered at 100ms. A histogram
of all the connection delays measured is shown in Figure 2(b), with the top 5%
of delays removed. It shows that nearly all delays are less than 1s. Also, we can
see that the distribution is bimodal, with peaks at about 120ms and 860ms. The
connection delays over time for a one such router - b0b3r (193.221.122.229) -
is shown in Figure 2(c). The clear and uniform timing stratification suggests a
cause other than varying Internet-route congestion or host-resource contention.
We believe that this is due to read/write rate-limiting that Tor servers manage
by periodically filling global token buckets. We can use the RT'T and connection
delay measurements, assuming they are independent, to estimate the distribution
of host processing delays. Considering the distribution over all routers, there is
almost a 40% probability of having a processing delay of nearly zero. Thus
processing delays are due to limited resources at the routers and not to inherent
costs of the protocol.

The delays of the 400-byte packets that were successfully forwarded is shown
in Figure 2(d). We again see times that cluster around certain levels. Here, there
are six obvious levels. If we examine the delay time series of individual routers
we see that again the different levels are interleaved. Thus, this phenomenon is
probably due to the same mechanism underlying the similar pattern in connec-
tion delays.

From the delay measurements we can estimate the added delay that would
have resulted from our protocol. The protocol chooses a time ¢ that must elapse
from the time the packet is originally sent before the packet is forwarded. It is set
such that with some success probability p the packet arrives at the forwarding
router in less than ¢ time. In our data, we examine the tradeoff that varying ¢
sets up between the fraction p of packets that arrive in time and the forwarding
delay that gets added to them.

We divide the delay measurements by router and into 6 hour periods. Within
each period, to achieve success probability p we set the send time ¢ to be the
smallest value that is larger than at least a fraction p of delays. We look at the
relative increase in delay, i.e., the total new delay divided by the original delay.

The distribution over all successfully-opened streams of relative connection
delays to achieve a success probability of 0.95 is shown in Figure 2(e). At the
50th percentile, the relative connection delay is less than 1.48. Also, at the 50th
percentile, we observe a failure rate of less than 0.005. The data for relative
packet delays appears in Figure 2(f). At the 50th percentile, the relative packet
delay is just over 2.95. The failure rate stays below 0.005 until the 99th per-
centile. The reason for this is that packet sends are not even attempted when
the connection fails.

8 Future Work

There are several developments that fit within our approach and have to poten-
tial to make it truly useful and effective. Foremost among these is to design and
evaluate a usable padding scheme, with large anonymity sets and low overhead.
It should also allow a predetermined, or perhaps only periodically updated, re-
turn padding scheme. Also, we have avoided for now optimizing the efficiency
of processing at the routers. Onion routing, in particular, has developed good
techniques to make this aspect of the protocol fast. For example, we could use
persistant circuits to speed up detecting duplicate packets, or we could switch
to private keys. Our analysis could be improved in some areas as well. First, we
could consider the positive effect of forwarding late packets immediately. Un-
derstanding this process better could improve the expected anonymity of the
protocol. Also, Tor is not optimized for latency, and therefore understanding its
resource congestion issues would help us better determine the added latencies of
our protocol.

References

10.

11.

12.

13.

14.

15.

Adam Back, Ulf Moller, and Anton Stiglic. Traffic analysis attacks and trade-offs in
anonymity providing systems. In Information Hiding, 4th International Workshop
(IH 2001), pages 245-257, 2001.

Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and Douglas
Sicker. Low-resource routing attacks against Tor. In Proceedings of the 2007 ACM
Workshop on Privacy in Electronic Society (WPES 2007), pages 11-20, 2007.
Oliver Berthold, Andreas Pfitzmann, and Ronny Standtke. The disadvantages of
free MIX routes and how to overcome them. In Designing Privacy Enhancing
Technologies, International Workshop on Design Issues in Anonymity and Unob-
servability, pages 30-45, 2000.

Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. Denial of ser-
vice or denial of security? In Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS 2007), pages 92-102, 2007.

Jan Camenisch and Anna Lysyanskaya. A formal treatment of onion routing. In
Advances in Cryptology Conference — CRYPTO 2005, pages 169-187, 2005.
Roger Dingledine and Nick Mathewson. Anonymity loves company: Usability and
the network effect. In 5th Workshop on the Economics of Information Security
(WEIS 2006), 2006.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th USENIX Security Symposium,
pages 303-320, 2004.

Roger Dingledine, Vitaly Shmatikov, and Paul Syverson. Synchronous batching:
From cascades to free routes. In Privacy Enhancing Technologies, 4th International
Workshop (PET 2004), pages 186—206, 2004.

Joan Feigenbaum, Aaron Johnson, and Paul Syverson. Preventing active timing at-
tacks in low-latency anonymous communication. Technical Report TR-10-15, The
University of Texas at Austin, 2010. ftp://ftp.cs.utexas.edu/pub/techreports/TR-
1965.pdf.

Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. Active traffic anal-
ysis attacks and countermeasures. In 2003 International Conference on Computer
Networks and Mobile Computing (ICCNMC’03), pages 31-39, 2003.

Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. Analytical and em-
pirical analysis of countermeasures to traffic analysis attacks. In Proceedings of the
2003 International Conference on Parallel Processing, pages 483-492, 2003.
David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding routing in-
formation. In Information Hiding, First International Workshop (IH 1996), pages
137-150, 1996.

Nicholas Hopper, Eugene Y. Vasserman, and Eric Chan-TIN. How much anonymity
does network latency leak? ACM Transactions on Information and System Secu-
rity, 13(2):1-28, 2010.

Jan Iwanik, Marek Klonowski, and Miroslaw Kutylowski. DUO-onions and hydra—
onions — failure and adversary resistant onion protocols. In Communications and
Multimedia Security: 8th IFIP TC-6 TC-11 Conference on Communications and
Multimedia Security, pages 1-15, 2004.

Dogan Kesdogan, Jan Egner, and Roland Biischkes. Stop-and-go-MIXes provid-
ing probabilistic anonymity in an open system. In Information Hiding, Second
International Workshop (IH 1998), pages 83-98, 1998.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

31.

32.

Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright. Tim-
ing attacks in low-latency mix-based systems (extended abstract). In Financial
Cryptography, 8th International Conference (FC ’04), pages 251-265, 2004.
Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas
Sicker. Shining light in dark places: Understanding the Tor network. In Pro-
ceedings of the 8th International Symposium on Privacy Enhancing Technologies
(PETS 2008), pages 63-76, 2008.

David Mills. Network time protocol (version 3) specification, implementation. RFC
1305, Internet Engineering Task Force, March 1992.

Prateek Mittal and Nikita Borisov. Information leaks in structured peer-to-peer
anonymous communication systems. In Proceedings of the 15th ACM Conference
on Computer and Communications Security (CCS 2008), pages 267-278, 2008.
Steven J. Murdoch and George Danezis. Low-cost traffic analysis of Tor. In 2005
IEEE Symposium on Security and Privacy (SP 2005), pages 183-195, 2005.
Steven J. Murdoch and Piotr Zielinski. Sampled traffic analysis by internet-
exchange-level adversaries. In Privacy Enhancing Technologies, 7th International
Symposium (PET 2007), pages 167-183, 2007.

Arjun Nambiar and Matthew Wright. Salsa: a structured approach to large-scale
anonymity. In Proceedings of the 13th ACM Conference on Computer and Com-
munications Security (CCS 2006), pages 17-26, 2006.

Lasse Qverlier and Paul Syverson. Locating hidden servers. In 2006 IEEE Sym-
posium on Security and Privacy (SP 2006), pages 100-114, 2006.

Jean-Francois Raymond. Traffic analysis: Protocols, attacks, design issues, and
open problems. In Designing Privacy Enhancing Technologies: Workshop on De-
sign Issues in Anonymity and Unobservability, pages 10-29, 2000.

Vitaly Shmatikov and Ming-Hsui Wang. Timing analysis in low-latency mix net-
works: Attacks and defenses. In Computer Security ESORICS 2006, 11th European
Symposium on Research in Computer Security, pages 18-33, 2006.

Paul Syverson. Onion routing for resistance to traffic analysis. In Proceedings of the
3rd DARPA Information Survivability Conference and Ezposition (DISCEX-III),
volume 2, pages 108-110, 2003.

Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. Towards an
analysis of onion routing security. In Designing Privacy Enhancing Technologies:
Workshop on Design Issues in Anonymity and Unobservability, pages 96114, 2000.
TorStatus - Tor network status. http://torstatus.kgprog.com/, April 2010.
Xinyuan Wang, Shiping Chen, and Sushil Jajodia. Network flow watermarking at-
tack on low-latency anonymous communication systems. In 2007 IEEE Symposium
on Security and Privacy (SP 2007), pages 116-130, 2007.

Mehul Motani Wei Wang and Vikram Srinivasan. Dependent link padding algo-
rithms for low latency anonymity systems. In Proceedings of the 15th ACM Con-
ference on Computer and Communications Security (CCS 2008), pages 323-332,
2008.

Wei Yu, Xinwen Fu, Steve Graham, Dong Xuan, and Wei Zhao. DSSS-based flow
marking technique for invisible traceback. In 2007 IEEE Symposium on Security
and Privacy (SP 2007), pages 18-32, Washington, DC, USA, 2007.

Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. On flow
correlation attacks and countermeasures in mix networks. In Privacy Enhancing
Technologies, 4th International Workshop (PET 2004), pages 207-225, 2004.

